Miscellaneous Spaceship collections in Other Cellular Automata

For discussion of other cellular automata.
User avatar
FWKnightship
Posts: 953
Joined: June 23rd, 2019, 3:10 am
Location: Hey,wait!! Where am I!? Help! Somebody help!I'm lost!!

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by FWKnightship » May 26th, 2021, 10:37 am

yujh wrote:
May 26th, 2021, 9:15 am
2c/4d, 4c/4o, 6c/6o, 12c/12o, 4c/5o, 4c/5o, 4c/5o, 4c/5o

Code: Select all

x = 175, y = 16, rule = B2ac5a/S01e
4bobo37b2o16b2o18b2o17bo3bo15bo3bo19bo3bo15bo3bo$4bo40bo55bo3bo15bo3bo
19bo3bo15bo3bo$3bo4bo36bo$2bo39bo2bo14bobo17bob2obo14bo5bo13bo5bo17bo
5bo13bo5bo$2o5b2obo32bobo15bo$43bobo94bo4b5o4bo5bo4b5o4bo$o81b2o17b5o
15b5o19bo3bo15bo3bo$4bo96bo3bo15bo3bo14bo4bo3bo4bo5bo4bo3bo4bo$2bobo4b
o34bo56bo3bo15bo3bo15bobo2bobo2bobo7bobo2bobo2bobo$8bo31bo7bo53bobo17b
obo42bo$4bo36bo5bo75bo5$81bo2bo!
I also made a spaceship collection for this rule.
New 8c/8:

Code: Select all

x = 16, y = 20, rule = B2ac5a/S01e
b2o$4b2o$4b2o$b2ob2o2$3bo$5bo5b2o$12bo$o11bo$3bo5bo2bo$2bo7bobo$2bo7bo
bo3$11bo$7bo7bo$8bo5bo3$3bobo!
8c/8 6c/6 siderake:

Code: Select all

x = 34, y = 115, rule = B2ac5a/S01e
11b2o$11bo$11bo$11bo2bo$2b2o6bo3bo$4bo9bobo$17bo$10bo6bo$16bo$11bo3bo$
2ob2o6bo3bo$2bo8bo$8bo3b2o2bo3bo$2bo$8bo6bo7b3o$7b2o7bo6b3o$16bobo3bo$
8bo5bo2bo$15bo3bo2$15bobo2bo9bo$12bo2bobo$15bobo12bo2bo$33bo$16bo2$11b
o$13bo3bo2$12bo2$15bo$20bo$24b2o$11bo14bo$13bo2$12bo2$15bo6b2ob2o$20bo
3bo2$11bo12bo$13bo2$12bo2$15bo$19b2o$21bo$11bo$13bo2$12bo$17b2ob2o$15b
o3bo2$19bo$11bo$13bo2$12bo4$17b2o$11bo7bo$13bo2$12bo2$15b2ob2o$17bo$
14bo$11bo4$14b3o4bo$8bo3bob3o2$8bo2bobo2bo2$20bob2o$21bo$16bo$21bo$12b
o6bo$17b2ob2o2$20b2o$16bo2$16bo3bo2$18bo$17bo5bo$15bo2$15bo5$23bo$27b
2o$29bo5$25b2ob2o$23bo3bo2$27bo!
Pseudo 6c/6 12c/12 siderake:

Code: Select all

x = 26, y = 79, rule = B2ac5a/S01e
12b2o$12b2o$12b2o$11b4o$10bob2obo$11b4o$12b2o$12b2o$12b2o2$13bo$12bobo
$13bo$14bo3bo$11b3o5bo$11b4o4bo$2o13bo2bo2$9bo$bobo4bobo5bo7bo$5b9obo
9bo$5b9obo9bo$8bobo5bo7bo$9bo2$11bo4bo3$12bo3$16bo2$12bo2$12bo2bo2$18b
o4$11b2o$10bo2bo$16bo6$8b2o8bo$13bo$12bo$9bobo$10bo2$16bo4b2o$20bo2bo
5$12b2o$11bo2bo2$20bo2bo$21b2o5$11bo2bo$12b2o$20bo2bo6$11bo2bo!
8c/10:

Code: Select all

x = 31, y = 41, rule = B2ac5a/S01e
25bo3bo$25bo3bo$9b3ob3o$9b3ob3o8bo5bo2$9bo$25b5o$13bo11bo3bo$25bo3bo$
10bo15bobo$27bo$20bo$12bo$10bo14bo3bo$14bo10bo3bo$bo3bo$bo3bo18bo5bo2$
o5bo$25b5o$12bo12bo3bo$b5o19bo3bo$bo3bo8bo11bobo$bo3bo21bo$2bobo$3bo3$
12bo6bo3bo$19bo3bo$3bo3bo6bo$3bo3bo10bo5bo2$2bo5bo$19b5o$19bo3bo$3b5o
11bo3bo$3bo3bo12bobo$3bo3bo13bo$4bobo$5bo!
It seems that I can upload my apgsearch results now!
search.php?keywords=FWKnightship

User avatar
yujh
Posts: 2249
Joined: February 27th, 2020, 11:23 pm
Location: 我不觉得我迷路了,我可能在K2-146 b上 (@bibunsekibun)
Contact:

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by yujh » June 6th, 2021, 9:57 am

c/4d, c/2o, 2c/5o ,c/3o, 9c/30o, c/4o, c/5o, c/9o(naturally), modified from a rule of SMOSMOS, and a reflector poited out by toroidalet

Code: Select all

x = 151, y = 33, rule = B2n3-ckq5iy78/S2-i3-jr4kry5jnqy6e7c8
3o13bo19b3o18b3o14bo21bo14b3obo3bob3o7bo9bobo3bobo$o11bob2ob2obo15b3o
18b3o13bobo19bobo12bobobobobobobobo5b3o7bobo5bobo$bo9b4o3b4o13bo3bo12b
o3bo3bo3bo7bo3bo17bo3bo12bo2bobobobo2bo17b3o3b3o$10bo3bobobo3bo11bo2bo
2bo10bobo3b3o3bobo6bo3bo17bo3bo14b2obobob2o$11bo4bo4bo13bo3bo10bo3bo2b
3o2bo3bo5b2ob2o8bo8b2ob2o13bobo5bobo$34bo5bo10b2ob2ob3ob2ob2o17bo3bo
23bo11bo$34bo2bo2bo13b2obobob2o20b2ob2o22bobo9bobo$34bobobobo13b2obobo
b2o48b3o7b3o$55b7o50b2obo3bob2o$36b3o15b3o3b3o19b2o3b2o24bobo3bobo$35b
o3bo13b2o7b2o6b2o5b2o2b2o5b2o2b2o5b2o12b4ob4o$35b5o30b2o5b2o3bobobobo
3b2o5b2o12bob2ob2obo$36bobo44b2ob2o24b2obo3bob2o$36b3o46bo26bo9bo$36bo
bo73bobo5bobo$35b2ob2o76bobo$35bobobo74b2o3b2o$116b3o$36bobo75bo2bo2bo
$32bo2bo3bo2bo72bobobo$31b3o7b3o71b5o$30b2ob9ob2o70b5o$33b3o3b3o71b3o
3b3o$33b2o5b2o69b2o2bo3bo2b2o$32bobo5bobo68b2o9b2o$110bo2bobo3bobo2bo$
34bo5bo75b3o$33b4ob4o75bo$32bo2bo3bo2bo74bo$32b3o5b3o73bobo$30bo5b3o5b
o71bobo$30bo2b3o3b3o2bo72bo$32b4o3b4o!
Edit:Help!

Code: Select all

x = 138, y = 22, rule = B2i3-c6/S2-i3
2o12bo8b3o6b3o9bo8bo8bo8bo11bo18bo18bo$obo9b2ob2o5bo2b8o2bo7b3o6b3o6b
3o6b3o9bobo16bobo16bobo$o10bo2bo2bo5bo4b2o4bo7bo3bo4bo3bo4b2ob2o15b2ob
ob2o13b5o15b3o14bo$10bo3bo3bo3bo4bo2bo4bo7b2o2bo2bo2b2o6b3o19bo53bo$
10bo7bo3b2o2bo4bo2b2o4bo3bo2b4o2bo3bo2b2ob2o36b3o31b3o$12bo3bo6b2o8b2o
5b2o2bob2o2b2obo2b2o4bo18bobobo14bo$10bo7bo3b2o10b2o6bo3bo4bo3bo5b3o
36bo$12bo3bo5b3o8b3o8b3o4b3o7b3o18bobo15bo2bo$10bobo3bobo9b2o14b3o4b3o
$22bob3o4b3obo8b2o6b2o$26bo4bo29b3o$21b2o2bob4obo2b2o25bo$25b3o2b3o$
25bo6bo29bo$24bobo4bobo$22bo2bo6bo2bo$24b3o4b3o$21bo14bo$20bo2b2o8b2o
2bo$20bo4bo6bo4bo$21bob2o8b2obo$22bo12bo!
Are you here, iNoMed?
Edit2:qfind, are you OK?

Code: Select all

qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8
qfind v2.1 by Matthias Merzenich, 3 May 2021
Input: qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8


Rule: B2i3-c6/S2-i3
Period: 7
Offset: 2
Width:  8
Symmetry: even
Queue size: 2^20
Hash table size: 2^20
Minimum deepening increment: 7
Cache memory per thread: 32 megabytes
Number of threads: 1
Starting search
Queue full, depth 6, deepening 7, 131k/137k -> 7.4k/9.5k
Queue full, depth 7, deepening 13, 131k/164k -> 8.4k/14k
Queue full, depth 9, deepening 18, 131k/164k -> 6.8k/17k
Queue full, depth 10, deepening 24, 131k/170k -> 3.9k/14k
Queue full, depth 13, deepening 28, 131k/181k -> 3.2k/14k
Queue full, depth 15, deepening 33, 131k/183k -> 2.4k/13k
Queue full, depth 18, deepening 37, 131k/187k -> 1.8k/12k
Queue full, depth 23, deepening 39, 131k/244k -> 1.4k/13k
Queue full, depth 27, deepening 42, 131k/198k -> 970/11k
Queue full, depth 32, deepening 44, 131k/218k -> 688/10k
Queue full, depth 37, deepening 46, 131k/219k -> 475/8.5k
Queue full, depth 41, deepening 49, 131k/219k -> 304/6.4k
Queue full, depth 48, deepening 49, 131k/316k -> 229/5.7k
Queue full, depth 57, deepening 47, 131k/365k -> 208/5.0k
Queue full, depth 62, deepening 49, 131k/188k -> 286/4.2k
Queue full, depth 66, deepening 52, 131k/184k -> 303/4.0k
Queue full, depth 69, deepening 56, 131k/157k -> 356/3.9k
Queue full, depth 72, deepening 60, 131k/154k -> 394/3.6k
Queue full, depth 75, deepening 64, 131k/160k -> 333/3.6k
Queue full, depth 78, deepening 68, 131k/148k -> 318/3.4k
Queue full, depth 82, deepening 71, 131k/187k -> 313/3.8k
Queue full, depth 86, deepening 74, 131k/170k -> 267/3.8k
Queue full, depth 90, deepening 77, 131k/203k -> 190/3.4k
Queue full, depth 93, deepening 81, 131k/166k -> 140/2.9k
Queue full, depth 98, deepening 83, 131k/183k -> 118/2.9k
Queue full, depth 103, deepening 85, 131k/175k -> 98/2.6k
Queue full, depth 108, deepening 87, 131k/186k -> 91/2.7k
Queue full, depth 114, deepening 88, 131k/192k -> 72/2.5k
Queue full, depth 120, deepening 89, 131k/272k -> 63/2.4k
Queue full, depth 129, deepening 87, 131k/311k -> 53/2.4k
Queue full, depth 135, deepening 88, 131k/239k -> 50/2.4k
Queue full, depth 142, deepening 88, 131k/264k -> 38/2.1k
Queue full, depth 148, deepening 89, 131k/250k -> 32/1.6k
Queue full, depth 153, deepening 91, 131k/149k -> 26/1.4k
Queue full, depth 169, deepening 82, 131k/891k -> 25/1.5k
Queue full, depth 181, deepening 77, 131k/481k -> 25/1.7k
Queue full, depth 195, deepening 70, 131k/441k -> 25/1.5k
Queue full, depth 206, deepening 66, 131k/260k -> 21/1.5k
Queue full, depth 241, deepening 38, 35k/983k -> 28/1.6k
Queue full, depth 267, deepening 19, 131k/789k -> 569/4.2k
Queue full, depth 275, deepening 18, 131k/524k -> 702/6.8k
Queue full, depth 285, deepening 15, 131k/569k -> 913/8.2k
Search complete.

0 spaceships found.
Maximum depth reached: 348
Longest partial result:

x = 16, y = 49, rule = B2i3-c6/S2-i3
bo2bo2b2o2bo2bo$3bo2bo2bo2bo$b4o6b4o$6bo2bo$obobob4obobobo$2bob
8obo$o3bo6bo3bo$bo2b2o4b2o2bo$bo2bo6bo2bo$3bo2b4o2bo$3bo8bo2$4b2o
b2ob2o$b3o8b3o2$o2bobo4bobo2bo$bo3bo4bo3bo$3b2o6b2o$2bobob4obobo
$3b3o4b3o$2b2obo4bob2o$3bo3b2o3bo$2b12o$3bobo4bobo$4b3o2b3o$4bo6b
o$5bo4bo$5bo4bo$6b4o$6b4o$5bob2obo2$5b2o2b2o$5b2o2b2o$5b2o2b2o$5b
6o$6bo2bo$7b2o$6b4o2$5b2o2b2o2$5b2o2b2o$4bo2b2o2bo$4bo2b2o2bo$5b
2o2b2o$2bo3bo2bo3bo$3b3o4b3o$4bo6bo!

Sokwe
Moderator
Posts: 1906
Joined: July 9th, 2009, 2:44 pm

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by Sokwe » June 11th, 2021, 1:15 am

yujh wrote:
June 6th, 2021, 9:57 am
Edit2:qfind, are you OK?

Code: Select all

qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8
qfind v2.1 by Matthias Merzenich, 3 May 2021
Input: qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8


Rule: B2i3-c6/S2-i3
Period: 7
Offset: 2
Width:  8
Symmetry: even
Queue size: 2^20
Hash table size: 2^20
Minimum deepening increment: 7
Cache memory per thread: 32 megabytes
Number of threads: 1
Starting search
Queue full, depth 6, deepening 7, 131k/137k -> 7.4k/9.5k
Queue full, depth 7, deepening 13, 131k/164k -> 8.4k/14k
Queue full, depth 9, deepening 18, 131k/164k -> 6.8k/17k
Queue full, depth 10, deepening 24, 131k/170k -> 3.9k/14k
Queue full, depth 13, deepening 28, 131k/181k -> 3.2k/14k
Queue full, depth 15, deepening 33, 131k/183k -> 2.4k/13k
Queue full, depth 18, deepening 37, 131k/187k -> 1.8k/12k
Queue full, depth 23, deepening 39, 131k/244k -> 1.4k/13k
Queue full, depth 27, deepening 42, 131k/198k -> 970/11k
Queue full, depth 32, deepening 44, 131k/218k -> 688/10k
Queue full, depth 37, deepening 46, 131k/219k -> 475/8.5k
Queue full, depth 41, deepening 49, 131k/219k -> 304/6.4k
Queue full, depth 48, deepening 49, 131k/316k -> 229/5.7k
Queue full, depth 57, deepening 47, 131k/365k -> 208/5.0k
Queue full, depth 62, deepening 49, 131k/188k -> 286/4.2k
Queue full, depth 66, deepening 52, 131k/184k -> 303/4.0k
Queue full, depth 69, deepening 56, 131k/157k -> 356/3.9k
Queue full, depth 72, deepening 60, 131k/154k -> 394/3.6k
Queue full, depth 75, deepening 64, 131k/160k -> 333/3.6k
Queue full, depth 78, deepening 68, 131k/148k -> 318/3.4k
Queue full, depth 82, deepening 71, 131k/187k -> 313/3.8k
Queue full, depth 86, deepening 74, 131k/170k -> 267/3.8k
Queue full, depth 90, deepening 77, 131k/203k -> 190/3.4k
Queue full, depth 93, deepening 81, 131k/166k -> 140/2.9k
Queue full, depth 98, deepening 83, 131k/183k -> 118/2.9k
Queue full, depth 103, deepening 85, 131k/175k -> 98/2.6k
Queue full, depth 108, deepening 87, 131k/186k -> 91/2.7k
Queue full, depth 114, deepening 88, 131k/192k -> 72/2.5k
Queue full, depth 120, deepening 89, 131k/272k -> 63/2.4k
Queue full, depth 129, deepening 87, 131k/311k -> 53/2.4k
Queue full, depth 135, deepening 88, 131k/239k -> 50/2.4k
Queue full, depth 142, deepening 88, 131k/264k -> 38/2.1k
Queue full, depth 148, deepening 89, 131k/250k -> 32/1.6k
Queue full, depth 153, deepening 91, 131k/149k -> 26/1.4k
Queue full, depth 169, deepening 82, 131k/891k -> 25/1.5k
Queue full, depth 181, deepening 77, 131k/481k -> 25/1.7k
Queue full, depth 195, deepening 70, 131k/441k -> 25/1.5k
Queue full, depth 206, deepening 66, 131k/260k -> 21/1.5k
Queue full, depth 241, deepening 38, 35k/983k -> 28/1.6k
Queue full, depth 267, deepening 19, 131k/789k -> 569/4.2k
Queue full, depth 275, deepening 18, 131k/524k -> 702/6.8k
Queue full, depth 285, deepening 15, 131k/569k -> 913/8.2k
Search complete.

0 spaceships found.
Maximum depth reached: 348
Longest partial result:

x = 16, y = 49, rule = B2i3-c6/S2-i3
bo2bo2b2o2bo2bo$3bo2bo2bo2bo$b4o6b4o$6bo2bo$obobob4obobobo$2bob
8obo$o3bo6bo3bo$bo2b2o4b2o2bo$bo2bo6bo2bo$3bo2b4o2bo$3bo8bo2$4b2o
b2ob2o$b3o8b3o2$o2bobo4bobo2bo$bo3bo4bo3bo$3b2o6b2o$2bobob4obobo
$3b3o4b3o$2b2obo4bob2o$3bo3b2o3bo$2b12o$3bobo4bobo$4b3o2b3o$4bo6b
o$5bo4bo$5bo4bo$6b4o$6b4o$5bob2obo2$5b2o2b2o$5b2o2b2o$5b2o2b2o$5b
6o$6bo2bo$7b2o$6b4o2$5b2o2b2o2$5b2o2b2o$4bo2b2o2bo$4bo2b2o2bo$5b
2o2b2o$2bo3bo2bo3bo$3b3o4b3o$4bo6bo!
Is something wrong? The partial result seems to work properly in that rule. Should it have found a spaceship? Please report any potential bugs in the qfind discussion thread.
-Matthias Merzenich

User avatar
yujh
Posts: 2249
Joined: February 27th, 2020, 11:23 pm
Location: 我不觉得我迷路了,我可能在K2-146 b上 (@bibunsekibun)
Contact:

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by yujh » June 11th, 2021, 7:30 am

Sokwe wrote:
June 11th, 2021, 1:15 am
yujh wrote:
June 6th, 2021, 9:57 am
Edit2:qfind, are you OK?

Code: Select all

qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8
qfind v2.1 by Matthias Merzenich, 3 May 2021
Input: qfind -f 1 -r B2i3-c6/S2-i3 -p 7 -y 2 -s e -w 8


Rule: B2i3-c6/S2-i3
Period: 7
Offset: 2
Width:  8
Symmetry: even
Queue size: 2^20
Hash table size: 2^20
Minimum deepening increment: 7
Cache memory per thread: 32 megabytes
Number of threads: 1
Starting search
Queue full, depth 6, deepening 7, 131k/137k -> 7.4k/9.5k
Queue full, depth 7, deepening 13, 131k/164k -> 8.4k/14k
Queue full, depth 9, deepening 18, 131k/164k -> 6.8k/17k
Queue full, depth 10, deepening 24, 131k/170k -> 3.9k/14k
Queue full, depth 13, deepening 28, 131k/181k -> 3.2k/14k
Queue full, depth 15, deepening 33, 131k/183k -> 2.4k/13k
Queue full, depth 18, deepening 37, 131k/187k -> 1.8k/12k
Queue full, depth 23, deepening 39, 131k/244k -> 1.4k/13k
Queue full, depth 27, deepening 42, 131k/198k -> 970/11k
Queue full, depth 32, deepening 44, 131k/218k -> 688/10k
Queue full, depth 37, deepening 46, 131k/219k -> 475/8.5k
Queue full, depth 41, deepening 49, 131k/219k -> 304/6.4k
Queue full, depth 48, deepening 49, 131k/316k -> 229/5.7k
Queue full, depth 57, deepening 47, 131k/365k -> 208/5.0k
Queue full, depth 62, deepening 49, 131k/188k -> 286/4.2k
Queue full, depth 66, deepening 52, 131k/184k -> 303/4.0k
Queue full, depth 69, deepening 56, 131k/157k -> 356/3.9k
Queue full, depth 72, deepening 60, 131k/154k -> 394/3.6k
Queue full, depth 75, deepening 64, 131k/160k -> 333/3.6k
Queue full, depth 78, deepening 68, 131k/148k -> 318/3.4k
Queue full, depth 82, deepening 71, 131k/187k -> 313/3.8k
Queue full, depth 86, deepening 74, 131k/170k -> 267/3.8k
Queue full, depth 90, deepening 77, 131k/203k -> 190/3.4k
Queue full, depth 93, deepening 81, 131k/166k -> 140/2.9k
Queue full, depth 98, deepening 83, 131k/183k -> 118/2.9k
Queue full, depth 103, deepening 85, 131k/175k -> 98/2.6k
Queue full, depth 108, deepening 87, 131k/186k -> 91/2.7k
Queue full, depth 114, deepening 88, 131k/192k -> 72/2.5k
Queue full, depth 120, deepening 89, 131k/272k -> 63/2.4k
Queue full, depth 129, deepening 87, 131k/311k -> 53/2.4k
Queue full, depth 135, deepening 88, 131k/239k -> 50/2.4k
Queue full, depth 142, deepening 88, 131k/264k -> 38/2.1k
Queue full, depth 148, deepening 89, 131k/250k -> 32/1.6k
Queue full, depth 153, deepening 91, 131k/149k -> 26/1.4k
Queue full, depth 169, deepening 82, 131k/891k -> 25/1.5k
Queue full, depth 181, deepening 77, 131k/481k -> 25/1.7k
Queue full, depth 195, deepening 70, 131k/441k -> 25/1.5k
Queue full, depth 206, deepening 66, 131k/260k -> 21/1.5k
Queue full, depth 241, deepening 38, 35k/983k -> 28/1.6k
Queue full, depth 267, deepening 19, 131k/789k -> 569/4.2k
Queue full, depth 275, deepening 18, 131k/524k -> 702/6.8k
Queue full, depth 285, deepening 15, 131k/569k -> 913/8.2k
Search complete.

0 spaceships found.
Maximum depth reached: 348
Longest partial result:

x = 16, y = 49, rule = B2i3-c6/S2-i3
bo2bo2b2o2bo2bo$3bo2bo2bo2bo$b4o6b4o$6bo2bo$obobob4obobobo$2bob
8obo$o3bo6bo3bo$bo2b2o4b2o2bo$bo2bo6bo2bo$3bo2b4o2bo$3bo8bo2$4b2o
b2ob2o$b3o8b3o2$o2bobo4bobo2bo$bo3bo4bo3bo$3b2o6b2o$2bobob4obobo
$3b3o4b3o$2b2obo4bob2o$3bo3b2o3bo$2b12o$3bobo4bobo$4b3o2b3o$4bo6b
o$5bo4bo$5bo4bo$6b4o$6b4o$5bob2obo2$5b2o2b2o$5b2o2b2o$5b2o2b2o$5b
6o$6bo2bo$7b2o$6b4o2$5b2o2b2o2$5b2o2b2o$4bo2b2o2bo$4bo2b2o2bo$5b
2o2b2o$2bo3bo2bo3bo$3b3o4b3o$4bo6bo!
Is something wrong? The partial result seems to work properly in that rule. Should it have found a spaceship? Please report any potential bugs in the qfind discussion thread.
Luckily, nothing is wrong.
I's just quite weird to me

Code: Select all

Queue full, depth 103, deepening 85, 131k/175k -> 98/2.6k
Queue full, depth 108, deepening 87, 131k/186k -> 91/2.7k
Queue full, depth 114, deepening 88, 131k/192k -> 72/2.5k
Queue full, depth 120, deepening 89, 131k/272k -> 63/2.4k
Queue full, depth 129, deepening 87, 131k/311k -> 53/2.4k
Queue full, depth 135, deepening 88, 131k/239k -> 50/2.4k
Queue full, depth 142, deepening 88, 131k/264k -> 38/2.1k
Queue full, depth 148, deepening 89, 131k/250k -> 32/1.6k
Queue full, depth 153, deepening 91, 131k/149k -> 26/1.4k
Queue full, depth 169, deepening 82, 131k/891k -> 25/1.5k
Queue full, depth 181, deepening 77, 131k/481k -> 25/1.7k
Queue full, depth 195, deepening 70, 131k/441k -> 25/1.5k
Queue full, depth 206, deepening 66, 131k/260k -> 21/1.5k
Queue full, depth 241, deepening 38, 35k/983k -> 28/1.6k
Queue full, depth 267, deepening 19, 131k/789k -> 569/4.2k
Queue full, depth 275, deepening 18, 131k/524k -> 702/6.8k
Queue full, depth 285, deepening 15, 131k/569k -> 913/8.2k
Search complete.
Edit:

Code: Select all

x = 105, y = 32, rule = B2cen3acy4ce5ajqry6cn7/S01c2-kn3kny4w5inq6cn8
2bo13bo17bo15b2o5b2o12bo20bo9bo$10b3o2bobo15bobo14bobobobobo11bobo18bo
bo7bobo$bobo6bobo21b2o17b3o36bo9bo$obobo6bobo16b3ob2o15bo5bo35bo7bo$2b
o27bobo18bobobobo34bobo2bo2bobo$2bo28bo19bobobobo33bo3b2ob2o3bo$2bo47b
o7bo33bobo2bo2bobo$51bo5bo34bo2bobobo2bo$bobo49bobo34bo3bobobobo3bo$bo
bo48bobobo33bo4bobobo4bo$2bo3bo44b3ob3o32bo2bob2ob2obo2bo$51b2obob2o$
53bobo$53bobo$52bobobo$52bobobo$53b3o2$54bo$54bo$13b3o$13bobo38bo$14bo
37b2ob2o2$14bo$12bo3bo$14bo2$11bo2bobo$10bobo$15bo$13bobo!

User avatar
LaundryPizza03
Posts: 1314
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by LaundryPizza03 » June 16th, 2021, 3:10 pm

B2ac/S1:

Code: Select all

x = 42, y = 12, rule = B2ac/S1
2o4b2o6b2o4b2o10b2o4bobo$3b2o12b2o10b2o9bo$3b2o12b2o11bo10bo$3bo24bo$
4bo12b2o8bobo$16b4o$o26bobobo$3bo24bo3bo2$28bo$27bo$26bobo!
Non-photons in B2ace/S:

Code: Select all

x = 23, y = 20, rule = B2ace/S
o10bo5bo2bo$bobob2obobo$17bo2bo2$17bo2bo$3b2o2b2o2$2bo2b2o2bo$18b2o$7b
2o6bobo2bobo$8b2o7bo2bo$2b2o12bo4bo4$3b2o$8bo2bo$2bo2bo6bo$6b3o$3bo!
There is also this push mechanism for a c/n spaceship with n odd ≥5, but I haven't found a pull yet.

Code: Select all

x = 3, y = 8, rule = B2ace/S
bo$o2$2bo$2bo2$o$bo!
B2ak/S0:

Code: Select all

x = 20, y = 4, rule = B2ak/S0
2o2b2o2b2o3b2o3b2o$2bo4bo8b2o$2bo4bo5bo3bo$14bo!
B2ack/S:

Code: Select all

x = 46, y = 10, rule = B2ack/S
b2o14bo10bo2bo4b3o2bobo$15bo3bo23bo$o2bo6bo4bobobo8bo2bo6bo2bo2b2o$8bo
3bo2bo5bo19bo$8bobobo14b2o2b2o9b2obo$6bo5bo6bo19bo$26bo6bo6bo$8bo34bob
o$45bo$45bo!
c/4o and c/5o partials:

Code: Select all

x = 103, y = 49, rule = B2ack/S
8bobo5bobo13bo20bo15bo22bo$6bo13bo11bobo4bo6bo4bobo$2bo3bobobo5bobobo
3bo9bo2bobo6bobo2bo11bobob5obobo14b5o$32bo4bo10bo4bo$2bo21bo9b3o4b4o4b
3o9b2o5bobo5b2o$obobobo13bobobobo3bo3bo4bo6bo4bo3bo$2bo3bo13bo3bo7bo6b
2o4b2o6bo5bo7bo3bo7bo8bobo3bobo$6bo13bo11bo7bob2obo7bo$2bo3bo3bobobobo
3bo3bo9bo4bo2b2o2bo4bo9b3o11b3o10bo7bo$4bo17bo14bo10bo$6bo3bobobobo3bo
11bo4bo10bo4bo8bobo9bobo15bo$5b4o9b4o15bo4b2o4bo13bobo9bobo$3bo6bo5bo
6bo12bo12bo12bobo9bobo9bobob5obobo$6b2o11b2o13bo16bo11b2o9b2o$3bobo4bo
5bo4bobo10bo3bobo4bobo3bo32b2o5bobo5b2o$4bo2b2o2bo3bo2b2o2bo7bobo3bo
12bo3bobo$bo5b4o5b4o5bo14bo4bo17bo11bo6bo7bo3bo7bo$38bo8bo15bo11bo$36b
o12bo10bobo13bobo5b3o11b3o2$60b2o2b2o7b2o2b2o6bobo9bobo$85bobo9bobo$
61b2o3b2o3b2o3b2o7bobo9bobo$86b2o9b2o$62bo4bo3bo4bo2$63bobobo3bobobo
10bo11bo$86bo11bo$59bob4o2bo3bo2b4obo3bobo13bobo2$60bo4bo7bo4bo4b2o2b
2o7b2o2b2o2$66bo5bo11b2o3b2o3b2o3b2o$64bobo5bobo$64bobo5bobo10bo4bo3bo
4bo$65bobo3bobo$61bobo11bobo8bobobo3bobobo$68bobo$61bo15bo4bob4o2bo3bo
2b4obo$66bo2bo2bo$64bo9bo8b2o3bo7bo3b2o2$84bo4b2o3b2o4bo2$86bob2ob3ob
2obo2$91bobo2$85b3o9b3o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

wwei47
Posts: 783
Joined: February 18th, 2021, 11:18 am

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by wwei47 » June 17th, 2021, 11:46 pm

Some spaceships in an explosive rule:

Code: Select all

x = 1126, y = 523, rule = B3-k4y5y6in/S23-q4t6k
obobo3bobobo26bobobo21bobobo3bobobo21bobobo21bobobo3bobobo11bobobo21bo
bo5bo3bo3bobobo49bobobo3bobo5bobobo129bo3bo3bobobo3bobobo439bobobo3bob
obo3bobobo84bobo5bo3bo3bo3bo3bobobo120bobobo2$4bo3bo30bo29bo3bo25bo29b
o3bo15bo27bo5bo3bo3bo57bo5bo5bo133bo3bo7bo3bo443bo11bo3bo90bo5bo3bo3bo
3bo3bo124bo2$obobo3bo30bo25bobobo3bo25bo29bo3bo15bo27bo5bobobo3bo53bob
obo5bo5bo133bobobo3bobobo3bo443bobobo3bobobo3bo90bo5bobobo3bobobo3bo
124bo2$o7bo30bo25bo7bo25bo29bo3bo15bo27bo9bo3bo53bo9bo5bo137bo3bo7bo
443bo3bo7bo3bo90bo9bo7bo3bo124bo2$obobo3bobobo26bobobo21bobobo3bobobo
21bobobo25bo3bobobo11bobobo21bobobo7bo3bobobo49bobobo3bobobo3bobobo
133bo3bobobo3bobobo439bobobo3bobobo3bobobo84bobobo7bo7bo3bobobo120bobo
bo7bobo2$1025bobobo91bo3bo2$obobobobobobo22bobobobobobobo17bobobobobob
obo17bobobobobobobo17bobobobobobobo7bobobobobobobo17bobobobobobobobobo
bobo49bobobobobobobobobobobo129bobobobobobobobobobobo439bobobobobobobo
bobobobo84bobobobobobobobobobobobobobobo40bo75bobobobobobobo3bo3bo2$
1025bobobo91bo3bo2$4bo3bo30bobobo25bobobo25bobobo21bobobo3bobobo11bobo
bo25bobobo3bobobo53bobo5bobobo3bobobo129bobobo3bobo5bobobo439bobobo3bo
bobo3bo3bo88bobobo3bo3bo3bobobo40bo83bo3bo7bobo2$4bo3bo34bo25bo33bo25b
o3bo15bo33bo7bo55bo5bo3bo3bo3bo133bo5bo5bo447bo7bo3bo3bo88bo7bo3bo3bo
3bo40bobobo79bo3bo2$4bobobo30bobobo25bobobo25bobobo21bobobo3bobobo11bo
bobo29bo3bobobo55bo5bo3bo3bobobo129bobobo5bo5bobobo439bobobo3bobobo3bo
bobo88bobobo3bobobo3bobobo124bobobo2$8bo30bo33bo29bo21bo11bo15bo29bo3b
o59bo5bo3bo3bo3bo129bo9bo5bo3bo443bo3bo11bo88bo3bo7bo3bo3bo128bo2$8bo
30bobobo25bobobo25bobobo21bobobo3bobobo11bobobo29bo3bobobo53bobobo3bob
obo3bobobo129bobobo3bobobo3bobobo439bobobo3bobobo7bo88bobobo7bo3bobobo
128bo6$3bo7bo12bo10bo11b2o19bo8bo10bo4bo4bo4bo4bo4bo14b3o3b3o10bo10bo
23b6o64b2o146b2o2b2o461b2o118b2o37bo3bo6bo3bo6bo56b3o$2b3o5b3o10b3o8b
3o8b2ob2o2b4o11b3o6b3o8bobo2bobo2bobo2bobo2bobo2bobo13bo2bobo2bo10bo
10bo22b8o28bo6bo26bo2bo144b3o2b3o459bo2bo116bo2bo36bo3b2o3bobo3bobo2bo
bobo56bo$b5o3b5o7b2o3bo6bo3b2o7bo3bo2bob2o9bo2b2o4b2o2bo7bobo2bobo2bob
o2bobo2bobo2bobo13bo2b3o2bo9bobo8bobo20bo2b4o2bo26b3o4b3o26b2o146b2o2b
2o461b2o118b2o37bo3b2o3bobo2bobo3bobobo55bo$2o3b2ob2o3b2o5b2ob3o8b3ob
2o12bob3o10bo10bo11b2o3b2o3b2o3b2o3b2o18bo3bo12bo10bo56bobobo2bobobo
804bo3bo6bo3bo3bo$b4obobob4o6b3ob3o6b3ob3o5bob2o5b2o14bo4bo71bo10bo55b
3ob6ob3o$o3bobobobo3bo6b2o3b2o4b2o3b2o31b2o2b2o71b3o6b3o56bobobo2bobob
o798b2o$b2o3b3o3b2o15b2o38b3o2b3o74b4o61b3o4b3o799b2o5bo7bo3b2o2b2o$2b
obo5bobo13bo2b2o2bo116bo4bo49b8o4bo6bo179b2o621b2o3b2obobob2o3bo4bo$2b
o2bo3bo2bo15bo2bo37b2o4b2o75b2o50bo8bo190b2o621b2o3b2ob3ob2o4b3o$6bobo
18b2o2b2o36b2ob2ob2o68b3o2bo4bo2b3o44bo6bo820bobobobo8bo$3bo2bobo2bo
34b4o6b4o5b2obo8bob2o7bo5bo8bo13bo27b3o2b2o2b2o2b3o19bo2b4o2bo857b2o$
4bo5bo34b2obo8bob2o4bo2bo8bo2bo6b2o5b2o6bobo11bobo31b2o2b2o25b8o837bo
24b2o$45b3obob4obob3o5bobo8bobo6bo2bo3bo2bo4bo3bo4bo4bo3bo25b7o2b7o21b
6o17bo6bo813b2obobobobobobobob2o6bobo$46b2o10b2o6bo12bo7b4ob4o13b3o33b
o4bo4bo4bo865b2ob3ob3ob3ob2o5b2obo$52b2o18b2o12b2o7b2o4b5o9b5o28b2o6b
2o20b2o4b2o841bobobobobobobobo3bo2b2obob2o$27bo5bo33bob2ob2ob2obo9bobo
bobo5b2o4b2o2bo2b2o4b2o26bo10bo18b2obo2bob2o18bo6bo830b2o6bo$26b3o3b3o
35bo4bo12bo5bo13b5o68b2o21bo8bo837b2o$24b2o2bo3bo2b2o29b2ob2o4b2ob2o6b
o2bo3bo2bo8b11o65b2o22b8o$23b2ob4ob4ob2o28b2ob2o4b2ob2o5bo11bo6bo2bo5b
o2bo61bo2b2o2bo231bo$21b2obobo7bobob2o28b3o4b3o7bo11bo6bo3bo3bo3bo64b
2o233b2o$20b2o4bo2b3o2bo4b2o29bo4bo11bo7bo12bo3bo68b2o233bobo606bobobo
$20b3o2bo9bo2b3o26bo10bo6b2o9b2o8bo7bo62b2obo2bob2o25bob2obo$21b2o15b
2o28b2ob4ob2o29b2o3b2o64b2o4b2o24b2ob4ob2o44b2o763bo$67bo2bob2obo2bo
133bob2obo45bo2bo$67b3o6b3o183bo4bo757bobobo$30bo35bobo8bobo9bo7bo11bo
153bo2bo$29b3o34bo12bo8bobo5bobo9bobo64bo6bo81b2o763bo$28b5o34bo10bo9b
obo2bo2bobo9bobo2bo61bo6bo$27b2o3b2o56bobobobo13bobobo58b2obo4bob2o67b
2o613b2o156bobobo$24bo2bob3obo2bo29bo12bo9bo2bobo2bo11bo2bobo58bo10bo
66b4o611b4o$23b3obo5bob3o27b2ob2o6b2ob2o6bob3o3b3obo7bob3o59b2o4bo2bo
4b2o65b2o148b2o67bo395b2o$21b2o3b3o3b3o3b2o26bo2b2o4b2o2bo6b2o11b2o5b
2o65bo10bo216bo2bo65b2o$20b2ob3o2bo3bo2b3ob2o25bo3bo4bo3bo10b2o3b2o13b
2o61b2obo4bob2o75bobo139b2o66bobo$20b3ob3o2bobo2b3ob3o26bobob4obobo7bo
3bo5bo3bo5bo3bo64bo6bo78b2o$21b2o3bo2bobo2bo3b2o27bobobo2bobobo7bobo9b
obo5bobo66bo6bo78bo$26bo7bo34bo6bo9bobobo5bobobo5bobobo101bob2obo$68bo
8bo127b2o3b2ob4ob2o29b3o$69b3o2b3o127b4o4bob2obo81bo2bo$69b2o4b2o126b
2o2b2o48bobo38bo4bo$69bo2b2o2bo127b4o90bo4bo$30bo39b2o2b2o13bo18bo4bo
91b2o91bo4bo721b2o7bo5b2o3b2o$29b3o38b2o2b2o12bobo16bobo2bobo184bo2bo
722bo3b2o2bobo4bo2bo2bo$27b2o3b2o34b2o6b2o10bobo2bo4bo4bo3bobo2bobo60b
o6bo342bo501bo2bo3bobo5b3o$22bo3b2ob3ob2o3bo28bo2bo4bo2bo11bobobo2bobo
2bobo5b2o62bob6obo340b2o501bobo6bo5bobo$21b3o2b4ob4o2b3o31b4o14bo2bobo
2bobo2bobo69bo2b4o2bo340bobo509bo6bo$20bo3b2o9b2o3bo29b2o2b2o11bob3o3b
2o3b2o75bo2bo855bobo4bo$21b2obo3b2ob2o3bob2o27bo3bo2bo3bo7b2o88b6o855b
obo$22bo2bo2bo3bo2bo2bo29b2o6b2o12b2o84b6o856bo$22bo4bobobobo4bo29b4o
2b4o8bo3bo85b6o$21bobo13bobo29bo6bo9bobo88bo2bo$68bo8bo8bobobo83bo2b4o
2bo841bo3bo$21b2o15b2o29bo6bo97bob6obo$175bo6bo842bo3bo$203b2o2b2o256b
2o$202b3o2b3o254bo2bo111bo445bobobo$203b2o2b2o256b2o111b2o$188bob2obo
384bobo448bo$186b2ob4ob2o$188bob2obo728b2o105bo$921bo2bo$920bo4bo$921b
o2bo$922b2o4$633bo$464b4o164b2o45b2o2b2o$414bo6bo210bobo43b3o2b3o$413b
2o6b2o41b4o211b2o2b2o$188bob2obo220bo6bo445b2o160bo5bo5b2o2b2o$186b2ob
4ob2o670b4o159bo4bob2o3b2o2b3o$188bob2obo208b2o463b2o160b3o6bo4b2o3bo$
401bo2bo516bo108b2o2bo2bobo7b2o$180b6o216b2o275b2o240b2o12b2o2b2o84b3o
2b2o4bo2bo$419b2o258b2o239bo2bo10b3o2b3o85b3o7b2o$419b2o501b2o11b2o2b
2o86b3o2$475b2o4b2o$299bo2bo171bo8bo442b2o$287bobo8bo4bo171b2o4b2o444b
o97bobobo$288b2o8bo4bo161b2o457bo2b2o$288bo9bo4bo160bo2bo201bo254bo2b
2o96bo$299bo2bo162b2o202b2o255b3o$668bobo196b2o57b2o59b2o36bobobo$182b
2o682b4o116b4o$181b4o150b2o4b2o524b2o52b3o5bo57b2o36bo3bo$182b2o149bob
o6bobo344bo2bo228bobo5bo$334bo8bo345bo2bo227bo8bo95bobobo$332b2o10b2o
343bo2bo225b2o2bo2b2o$334bo8bo573b2ob2o3bo$333bobo6bobo574bob3o2bo$
335b2o4b2o578bo4bo$410b2o509bo2b2o$410b2o203bo72b2o231b2obo72bo6bo$
465b2o148b2o70bobo232bo73bobo4bobo$464bo2bo146bobo69b2o228b2o3bo73bo3b
o2bo3bo$412b2o51b2o219b2o6b2o219bob2o77bobo4bobo$412b2o273bobo2bo3bo
219bobo78bo6bo$405bo282bo4bo$272b3o4b3o53b2o4b3o6b2o4b2o46bobo285bo
337b2o$174b3o4b3o88b2ob4ob2o51bobo15bo4bo48b2o621bo2bo$174b2ob4ob2o91b
o2bo55bo8b2o3bob2o4b2obo334bobo241bo59b2o29bo$177bo2bo94bo2bo53b2o9b3o
bo3bo4bo338bo241bobo58b2o26bo2bo$177bo2bo94bo2bo55bo9bo6bo4bo581bo88b
2o$177bo2bo94bo2bo54bobo6bob2obo3bo4bo576bo91bo$177bo2bo94bo2bo56b2o4b
2o5bob2o4b2obo201bo369bo2bo90b2o$177bo2bo91b2ob4ob2o60b2o7bo4bo204b2o
341bo26bo3bo$174b2ob4ob2o88b3o4b3o68b2o4b2o202bobo340b3o27b2o$174b3o4b
3o281b3o434bobobo24bo2bo$465b3o433b3ob3o17bo4b2obo91bobobo3bobobo$850b
obo4bobo42bobobo17bobo4bo4b2o33bo2bo$461b2o386bo2bo4bo2bo35b3o4b3o18bo
7bobob3o32bo2bo54bo3bo3bo$461bobo386bobo4bobo38bo5bo21bo6bo3b2o32bo2bo
$272b3o4b3o68b2o4b2o104b2o433bo26bo4bo4bo2bo87bobobo3bobobo$176b6o90b
2ob4ob2o69bo4bo106b3o4bo453bo$175b8o92bo2bo69bob2o4b2obo104b3o3bo454b
6o94bo7bo3bo$174bo2b4o2bo91bo2bo72bo4bo107b3o3bo456bobo$275bo2bo72bo4b
o112b3o35bo517bobobo3bobobo$275bo2bo72bo4bo112b2obo34b2o$275bo2bo69bob
2o4b2obo104b3o3bobo8b2o23bobo$272b2ob4ob2o69bo4bo105bo3bo6bo2bo6bo$
272b3o4b3o9bo58b2o4b2o102bo14bo5b2o$290bo53b3o112bo7bo$290b3o166bo7bo
562bo8bo$174bo2b4o2bo282bo15b2o473b2o71bo8bo$175b8o278bo3bo15bobo472bo
2bo69bobo6bobo$176b6o281bo18bo381bo90bo4bo12b3o35b2o2b2o13bo8bo$324b2o
11b2o523bobobo89bo2bo12bo3bo33b3o2b3o12bo8bo$172b2o4b2o144b3o9b3o524bo
bo91b2o12bo3bo26bo8b2o2b2o13bo8bo$172bo6bo141b3o3bo7bo3b3o519b2o3b2o
101bo3bo26bobo27bo8bo$172b2o4b2o141b2o3bobo5bobo3b2o519bo5bob3o104bo
24b2o26bobo6bobo$322b2o4b2o3b2o4b2o523b2o4b2o96bobo59bo8bo$323bo4b2o3b
2o4bo627b2o2bo58bo8bo$324b2obo7bob2o524bobo101b2o2bo39b2o$325b3o7b3o
526bo103b2o41b2o$326b2o7b2o525b2ob2o$349bo517b2o$299bo49bo510bo3b2o
109bo$299b2o47bobo509bo2b2o2bo97b3o5bo$171bo2bo123bobo48bo499bobo11b2o
107b2o51bobobo3bobo$170bo4bo173bo499b2o2bo10b2o105bo2b2o$170bo4bo168b
2o501b2o2bo2bo115b2o2bob2o51bo5bo$170bo4bo168bobo500b2o5bo115bo7bo$
171bo2bo145bo24bo501bo2b2obo116b3obo54bo5bo$318bobo527b2obo122bo2bo$
316b3o530b2obo124bo51bo5bo$315bo5b2o526bo2bo120bo3b2o$170b2o146bo45b4o
481bo2bo120b2ob4o49bo3bobobo$170b2o143b3o46b4o482bo125bo3bo$316b2o46b
4o608b4o$976b3o2$510bo2bo527bo$510bo2bo443bo83bo$510bo2bo442bobo81bobo
$957bo36b3o44bo$993bo3bo27b2o13b3o13b2o$993bo3bo27b2o13b3o13b2o$960b5o
28bo3bo43bo$994b3o43bobo$961bo2b2o75bo$379bo2bo575b2o3bo77bo$363b3o12b
o4bo102b2o376b2o97bo$366bo11bo4bo92b2o8b2o376b2o91bo2bobo6b3o$363bob2o
11bo4bo92b2o480b5o5bo3bo$379bo2bo584b4o$526b2o440b3o$369bo155bo2bo437b
3o$369b2o138b3o12bo4bo437bo2bo$367b2obo137bo3bo12bo2bo439b2o$367bo2bo
138bo3bo12b2o498b2o$369b2o140bo3bo317bobo189bo2bo$370bo137bo324b2o191b
obo15bo$514bobo317bo192bo3bo12bo16bo$365bo147bo2b2o525bobo14bobo$364b
3o4b3o139bo2b2o511bobo12bo16bo$366bo148b2o513bo12b3o$361b2ob2ob2o661bo
12b3o$361bo4bob2o659bobo12bo$361bobobob3o139bo533bobo$365bobo143bo5b3o
509b3o12bo$367b2o142b2o531bo$364b3o142b2o2bo$361bo3bo141b2obo2b2o$358b
obo2bobo140bo7bo$359bo2bo147bob3o$358bobo146bo2bo$362bo144bo$506b2o3bo
$505b4ob2o$381bo122bo3bo$380bobo122b4o$381bo124b3o533bo$376bo665bo16bo
$339bo35bobo663bobo14bobo$340b2o32b2o2bo148bo498bo15bo16bo$339b2o5b3o
26b3o148bobo496bobo13b3o$345bo3bo24b2o151bo498bo14b3o$345bo3bo24bobo
665bo16bo$345bo3bo17b3o4bo2bob2o660bobo14bobo$346b3o18b3o5bob2o2bo138b
5o517bo16bo$369b2o5bo2b2o112bo548bo$367b6o4bo2bo111bobo24b2o2bo$368bo
3bo5bo112bo3bo25bo3b2o$369bo2b2o112b2o4bobo26bo$369bobo104b2o8b2o5bo
19b3o6bobo2bo325b2o$476b2o34bo3bo5b5o326b2o$514b4o$514b3o$516b3o526bo$
514bo2bo527b3o$515b2o531bo12bo$1047b2o10b3o$855b3o200bo$1058b2o4$1034b
o13bo$1034bo13bo$1033bobo11bobo9bo13bo$1034bo13bo9b3o11b3o$469b6o550b
2o6b3o11b3o$1025b2o6b3o11b3o$1034bo13bo32b2o$864b2o167bobo11bobo31b2o$
824b2o6b2o30b2o168bo13bo$824b3o4b3o200bo13bo$469b2o353b2o6b2o224b3o11b
3o$467bo2bo588bo13bo2$476bo$467bo7b2o$469bo3b2o3$476bo$476bo2$832b2o
227bo$824bo3b3o2bo225b3o$809b3o4b3o5bo6bob2o223bo$809bobo4bobo5bo6b3o
224b2o$472bo6bo329b3o4b3o12bob2o$471b2o6b2o348bo2bo$472bo6bo349b3o$
830bo$821b3o6b2o$831bo202bo13bo$831bo202bo13bo$477b2o554bobo11bobo$
477b2o555bo13bo9b3o11b3o$832b3o190b2o6b3o11b3o8b3o11b3o6b2o$831bo3bo
189b2o6b3o11b3o8b3o11b3o6b2o$810bo6bo216bo13bo9b3o11b3o$809bobo4bobo
214bobo11bobo$808bo3bo2bo3bo11bo3bo198bo13bo$809bobo4bobo13b3o199bo13b
o$810bo6bo5$1058b2o$1058bo$1059b3o$727b2o332bo$726b4o$725b2o2b2o90b3o
29b2o$726b4o79b3o4b3o4bobo21bo5b2o170bobobo3bobobo$727b2o80bobo4bobo4b
2obo3b2o9b2o3bobo$809b3o4b3o4b2ob2o2b2o9b2o2b2ob2o179bo7bo2$833bo5bo
189bo3bobobo$832b2o5b2o$832bobo3bobo188bo3bo$855b3o$1029bo3bobobo2$
834b5o$834b5o$728b2o106bo$709bobo2bobo12b2o310bo$709bo2b2o2bo10bo313bo
$709bobo2bobo10b2o311bobo$1041bo$1025b2o13b3o6b2o$723b2o300b2o13b3o6b
2o$864b2o175bo$724bo139b2o174bobo$721bo3bo315bo$725bo315bo$722bobo$
728bo$727bobo$720b3o4bo2bo$728bob2o$724b2o6b2o$725b3o5bo$724b2o2bo2b2o
305bo$724bob2obo308b3o$726b2ob2o310bo12bo$725b2ob2o310b2o10b3o$727b2o
322bo$732b3o316b2o$732bo2bo167b2o$732bobo167bo2bo$804b4o93bo4bo$804b4o
94bo2bo135bo$804b4o95b2o136bo$712bo327bobo9bo$711bobo327bo9b3o$712bo
312b2o13b3o$1025b2o13b3o$716bobo322bo25b2o$715bob2o26b3o4bobo285bobo
24b2o$715b4o33b2o287bo$716bob3o22bobobobo3bo287bo$719b2o4bo17bo5bo301b
3o$712bob2obo2bo5bo16bobobobo302bo$715bob2o6bo176bo$715b3o7bo19b3o41bo
2bo11b4o94b2o12b2o2b2o$712b2o11bo62bo4bo10b4o93bo2bo10b3o2b3o$720bo2b
2obo61bo4bo10b4o95b2o11b2o2b2o$720b2ob3o62bo4bo$720b2obo65bo2bo$907b2o
$808bo99bo$798b3o6b3o95bo2b2o$807bob2o94bo2b2o144bo$807bo2bo96b3o142b
3o$806bo3bo96b2o142bo$805bo4bo240b2o$809bo92b3o5bo$810bo91bobo5bo$806b
o2b2o90bo8bo$788b2o2b2o12bo3bo88b2o2bo2b2o$787b3o2b3o13bo89b2ob2o3bo$
788b2o2b2o106bob3o2bo133bo$841b2o59bo4bo133bo$842bob2o56bo2b2o133bobo$
840b3o2bo3bo52b2obo135bo9b3o$842bobo4bo53bo121b2o13b3o8b3o13b2o$841b2o
2b2o2bo47b2o3bo122b2o13b3o8b3o13b2o$836b2o7bo4bo45bob2o141bo9b3o$835bo
2bo58bobo140bobo$835bobo5b2o6bo189bo$834b3o11bob2o189bo$834bo2bo4bo3b
2ob3o$789bo2bo5b3o32bo3bo5bo4bobo68bo$788bo4bo10b3o13b3o8bob3ob2o8bo2b
o67bobo$788bo4bo11b2o13b2o8bo5b3o8b2obob3o9b2o53bo$788bo4bo9bo19bo7b2o
4bo9b2o15b2o48bo$789bo2bo9b3ob2o11b2ob3o87bo2bo135b2o$802b2o2b2o11b2o
2b2o60bo26bo3bo134bo$801b3o19b3o18bo39b3o27b2o136b3o$801b2o2b2o2b2o5b
2o2b2o2b2o18bo38bobobo24bo2bo138bo$802bo3bo4bo3bo4bo3bo19bo37b3ob3o17b
o4b2obo$806bo5bobo5bo62bobobo17bobo4bo4b2o$807b2o2bo3bo2b2o57b3o4b3o
18bo7bobob3o105bobo5bobobo3bobobo$879bo5bo21bo6bo3b2o$878bo26bo4bo4bo
2bo108bo5bo3bo3bo3bo$810bo5bo88bo$808b2o7b2o87b6o115bo5bo3bo3bo3bo$
809bo7bo90bobo$1027bo5bo3bo3bo3bo2$1025bobobo3bobobo3bobobo5$1035b2o$
1032b6o$1036bo$1033b3o$1034b3o13$1025bobo5bo3bo3bobobo2$1027bo5bo3bo7b
o2$1027bo5bobobo3bobobo2$1027bo9bo7bo2$1025bobobo7bo3bobobo5$1034bo$
1034bo$1033bobo$1034bo$1025b2o6b3o27b2o$1025b2o6b3o27b2o$1034bo$1033bo
bo$1034bo$1034bo8$1025bobobo3bobobo3bo3bo2$1025bo11bo3bo3bo2$1025bobob
o7bo3bobobo2$1029bo7bo7bo2$1025bobobo7bo7bo5$1041bo$1041bo$1040bobo$
1041bo$1025b2o13b3o41b2o$1025b2o13b3o41b2o$1041bo$1040bobo$1041bo$
1041bo11$1055bo$1055bo$1054bobo$1055bo$1025b2o27b3o41b2o$1025b2o27b3o
41b2o$1055bo$1054bobo$1055bo$1055bo8$1025bobobo3bobobo3bobobo2$1025bo
3bo7bo3bo3bo2$1025bobobo3bobobo3bo3bo2$1029bo7bo3bo3bo2$1025bobobo3bob
obo3bobobo5$1041bo$1041bo$1040bobo$1041bo$1025b2o13b3o34b2o$1025b2o13b
3o34b2o$1041bo$1040bobo$1041bo$1041bo!
A4n5e is evil.

User avatar
FWKnightship
Posts: 953
Joined: June 23rd, 2019, 3:10 am
Location: Hey,wait!! Where am I!? Help! Somebody help!I'm lost!!

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by FWKnightship » Yesterday, 1:42 am

42c/432 spaceship:

Code: Select all

x = 129, y = 203, rule = B3-k4y5y6in/S23-q4t6k
2b2o$bo2bo$o4bo$bo2bo$2b2o3$36b3o$36bo$37bo56$125b2o$125b2o$111bo13b2o
$111b2o$110bobo38$125b2o$125b2o$125b2o17$2b2o$bo2bo$o4bo$bo2bo$2b2o2$
8b6o3$127b2o$127b2o38$8b6o27$8b2o$8b2o!
It seems that I can upload my apgsearch results now!
search.php?keywords=FWKnightship

wwei47
Posts: 783
Joined: February 18th, 2021, 11:18 am

Re: Miscellaneous Spaceship collections in Other Cellular Automata

Post by wwei47 » Yesterday, 9:13 am

FWKnightship wrote:
Yesterday, 1:42 am
42c/432 spaceship:
Nice! By the way, these replicators can phaseshift so you can try to get some weird speeds out of them.
2c/6:

Code: Select all

x = 13, y = 22, rule = B3-k4y5y6in/S23-q4t6k
bo4bo4bo$obo2bobo2bobo$obo2bobo2bobo$3b2o3b2o2$3b2o3b2o$4bo3bo$3b2o3b
2o$2b2obobob2o$4b2ob2o$6bo$4bobobo$3b2obob2o$3b2obob2o$5bobo2$6bo$5b3o
$5b3o$5b3o$6bo$6bo!
?????

Code: Select all

x = 15, y = 115, rule = B3-k4y5y6in/S23-q4t6k
2b3o5b3o$2bobo5bobo$4bob3obo$bo2bob3obo2bo$obobob3obobobo$obob2o3b2obo
bo$3b3o3b3o2$4o7b4o$obob2o3b2obobo$7bo$3b2ob3ob2o$7bo$4b2obob2o$3bobob
obobo$3bo2bobo2bo$5bo3bo$4b2o3b2o$3b2o5b2o$3b2o5b2o2$3b2obobob2o$b2obo
2bo2bob2o$4bob3obo$4bo5bo$3b3o3b3o$5b2ob2o$6bobo$5bobobo$4bo2bo2bo$4bo
5bo2$4b2o3b2o$3bo7bo$3bob2ob2obo2$7bo$5bobobo$7bo2$3b3o3b3o$3b3o3b3o2$
bo11bo$obo9bobo$obo9bobo$bo11bo$4bo5bo$3b3o3b3o$3b3o3b3o$4bo5bo$3o9b3o
3$2ob2o5b2ob2o$4bo5bo$4bo5bo2$b2o9b2o$2o11b2o3$3b3o3b3o$3b3o3b3o2$bo
11bo$obo9bobo$obo9bobo$bo11bo$4bo5bo$3b3o3b3o$3b3o3b3o$4bo5bo$3o9b3o3$
2ob2o5b2ob2o$4bo5bo$4bo5bo2$b2o9b2o$2o11b2o3$3b3o3b3o$3b3o3b3o2$bo11bo
$obo9bobo$obo9bobo$bo11bo$4bo5bo$3b3o3b3o$3b3o3b3o$4bo5bo$3o9b3o3$2ob
2o5b2ob2o$4bo5bo$4bo5bo2$b2o9b2o$2o11b2o3$3b3o3b3o$3b3o3b3o4$4b7o$3bo
7bo$4bo5bo$4bo5bo!
EDIT: Anyone have a smaller frontend for these?

Code: Select all

x = 109, y = 99, rule = B3-k4y5y6in/S23-q4t6k
5bo7bo21bo7bo21bo7bo21bo7bo$4b3o5b3o19b3o5b3o19b3o5b3o19b3o5b3o$2bo3b
2o3b2o3bo15bo3b2o3b2o3bo15bo3b2o3b2o3bo15bo3b2o3b2o3bo$b2o4b2ob2o4b2o
13b2o4b2ob2o4b2o13b2o4b2ob2o4b2o13b2o4b2ob2o4b2o$o4b2obobob2o4bo11bo4b
2obobob2o4bo11bo4b2obobob2o4bo11bo4b2obobob2o4bo$b4o3bobo3b4o13b4o3bob
o3b4o13b4o3bobo3b4o13b4o3bobo3b4o$2bobo9bobo15bobo9bobo15bobo9bobo15bo
bo9bobo$2bob2ob2ob2ob2obo15bob2ob2ob2ob2obo15bob2ob2ob2ob2obo15bob2ob
2ob2ob2obo$bobobo7bobobo13bobobo7bobobo13bobobo7bobobo13bobobo7bobobo$
bo2bo2bo3bo2bo2bo13bo2bo2bo3bo2bo2bo13bo2bo2bo3bo2bo2bo13bo2bo2bo3bo2b
o2bo2$b2ob2o2b3o2b2ob2o13b2ob2o2b3o2b2ob2o13b2ob2o2b3o2b2ob2o13b2ob2o
2b3o2b2ob2o2$4b2o3bo3b2o19b2o3bo3b2o19b2o3bo3b2o19b2o3bo3b2o$3bo2b2o3b
2o2bo17bo2b2o3b2o2bo17bo2b2o3b2o2bo17bo2b2o3b2o2bo2$3b2o2bo3bo2b2o17b
2o2bo3bo2b2o17b2o2bo3bo2b2o17b2o2bo3bo2b2o$6bobobobo23bobobobo23bobobo
bo23bobobobo$8bobo27bobo27bobo27bobo$5b2o5b2o21b2o5b2o21b2o5b2o21b2o5b
2o$7bo3bo25bo3bo25bo3bo25bo3bo$5bo7bo21bo7bo21bo7bo21bo7bo$5bob2ob2obo
21bob2ob2obo21bob2ob2obo21bob2ob2obo$2bob3o5b3obo15bob3o5b3obo15bob3o
5b3obo15bob3o5b3obo$2obo4bobo4bob2o11b2obo4bobo4bob2o11b2obo4bobo4bob
2o11b2obo4bobo4bob2o$bo6bobo6bo13bo6bobo6bo13bo6bobo6bo13bo6bobo6bo$5b
3o3b3o21b3o3b3o21b3o3b3o21b3o3b3o$ob2obob2ob2obob2obo11bob2obob2ob2obo
b2obo11bob2obob2ob2obob2obo11bob2obob2ob2obob2obo$b5o7b5o13b5o7b5o13b
5o7b5o13b5o7b5o$4b5ob5o19b5ob5o19b5ob5o19b5ob5o$3b2obo5bob2o17b2obo5bo
b2o17b2obo5bob2o17b2obo5bob2o$3bo2bob3obo2bo17bo2bob3obo2bo17bo2bob3ob
o2bo17bo2bob3obo2bo$2bo3bo2bo2bo3bo15bo3bo2bo2bo3bo15bo3bo2bo2bo3bo15b
o3bo2bo2bo3bo$2bobobobobobobobo15bobobobobobobobo15bobobobobobobobo15b
obobobobobobobo$bo15bo13bo15bo13bo15bo13bo15bo$3bobo7bobo17bobo7bobo
17bobo7bobo17bobo7bobo$6b7o23b7o23b7o23b7o$6b2obob2o23b2obob2o23b2obob
2o23b2obob2o$4b2o7b2o19b2o7b2o19b2o7b2o19b2o7b2o$5bo7bo21bo7bo21bo7bo
21bo7bo$4bobo5bobo19bobo2bo2bobo19bobo2bo2bobo19bobo2bo2bobo$38b3o27b
3o27b3o$b3o4b3o4b3o20b3o27b3o27b3o$bo5bo3bo5bo19b2ob2o25b2ob2o25b2ob2o
$3bo2bo5bo2bo15b4o9b4o13b4o9b4o13b4o9b4o$2obo2bo2bo2bo2bob2o13bob2o7b
2obo15bob2o7b2obo15bob2o7b2obo$3b3o7b3o14b2o4b7o4b2o11b2o4b7o4b2o11b2o
4b7o4b2o$bobobob5obobobo14bo3bob3obo3bo15bo3bob3obo3bo15bo3bob3obo3bo$
4bo4bo4bo17bo13bo15bo13bo15bo13bo$2bobob2o3b2obobo14b3o11b3o13b3o11b3o
13b3o11b3o$4bo4bo4bo17bo5b3o5bo15bo5b3o5bo15bo5b3o5bo$4bo9bo17b2o4b3o
4b2o15b2o4b3o4b2o15b2o4b3o4b2o$3bobo3bo3bobo21bobobo25bobobo25bobobo$
5bo2b3o2bo23bobobo25bobobo25bobobo$4b4o3b4o21bobobobo23bobobobo23bobob
obo$2bo3bob3obo3bo19bo5bo23bo5bo23bo5bo$b2obobob3obobob2o21bo29bo29bo$
o3bo2bo3bo2bo3bo16bob5obo21bob5obo21bob5obo$b2o5bobo5b2o16b2obo3bob2o
19b2obo3bob2o19b2obo3bob2o$4o2bobobobo2b4o14bobo2bobo2bobo17bobo2bobo
2bobo17bobo2bobo2bobo$3bob3o3b3obo17b2obo5bob2o17b2obo5bob2o17b2obo5bo
b2o$2bo2bob2ob2obo2bo15bob2o7b2obo15bob2o7b2obo15bob2o7b2obo$2b2obo7bo
b2o15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo$bobobob2ob2obobobo13bo4bob
3obo4bo13bo4bob3obo4bo13bo4bob3obo4bo$2b2ob2o5b2ob2o16b2o3b3o3b2o17b2o
3b3o3b2o17b2o3b3o3b2o$b2obobo5bobob2o21bo29bo29bo$4bo9bo18b2o4bo4b2o
17b2o4bo4b2o17b2o4bo4b2o$4b3o5b3o16b2ob2o2bobo2b2ob2o13b2ob2o2bobo2b2o
b2o13b2ob2o2bobo2b2ob2o$6bob3obo19bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3b
o$6bob3obo21b3ob3ob3o19b3ob3ob3o19b3ob3ob3o$5b3obob3o17bob2obobobobob
2obo13bob2obobobobob2obo13bob2obobobobob2obo$5bobobobobo23bobobo25bobo
bo25bobobo$7bobobo20bo2bobo3bobo2bo15bo2bobo3bobo2bo15bo2bobo3bobo2bo$
7bo3bo25bo3bo25bo3bo25bo3bo$6b3ob3o19b2o2b3ob3o2b2o15b2o2b3ob3o2b2o15b
2o2b3ob3o2b2o$8b3o20bo2bo2bo3bo2bo2bo13bo2bo2bo3bo2bo2bo13bo2bo2bo3bo
2bo2bo$31bobo3b2ob2o3bobo13bobo3b2ob2o3bobo13bobo3b2ob2o3bobo$b4o2b2ob
2o2b4o12b2o15b2o11b2o15b2o11b2o15b2o$2obo2bo5bo2bob2o11bob4o7b4obo11bo
b4o7b4obo11bob4o7b4obo$3obo3b3o3bob3o13bo3b7o3bo15bo3b7o3bo15bo3b7o3bo
$b2o6bo6b2o14bo4b5o4bo15bo4b5o4bo15bo4b5o4bo$8bobo20b3o2bo5bo2b3o13b3o
2bo5bo2b3o13b3o2bo5bo2b3o$8b3o22b2ob2obob2ob2o17b2ob2obob2ob2o17b2ob2o
bob2ob2o$33bo2bobobobo2bo17bo2bobobobo2bo17bo2bobobobo2bo$6bo2bo2bo22b
2o5b2o21b2o5b2o21b2o5b2o$6b2o3b2o23bo2bo2bo23bo2bo2bo23bo2bo2bo$5b2obo
bob2o21bobo3bobo21bobo3bobo21bobo3bobo$5b3o3b3o21bo7bo21bo7bo21bo7bo$
6bo5bo23bo5bo23bo5bo23bo5bo$7b5o23bobo3bobo21bobo3bobo21bobo3bobo$8b3o
25bo5bo23bo5bo23bo5bo$34bo9bo$35bo7bo$35bo7bo51b3o3b3o$94bo3bobo3bo3$
94bobobobobobo$96bo5bo!
A4n5e is evil.

Post Reply