Minor topic: Rule table for immigration

For discussion of other cellular automata.
Post Reply
User avatar
gmc_nxtman
Posts: 1150
Joined: May 26th, 2015, 7:20 pm

Minor topic: Rule table for immigration

Post by gmc_nxtman » May 30th, 2015, 1:13 pm

Can somebody write a ruletable for immigration, that is, a three-state version of life where dead cells take the majority of their live neighbors when being born? (again, sorry to create a new topic for this)

User avatar
Alexey_Nigin
Posts: 326
Joined: August 4th, 2014, 12:33 pm
Location: Ann Arbor, MI
Contact:

Re: Minor topic: Rule table for immigration

Post by Alexey_Nigin » May 30th, 2015, 2:08 pm

Code: Select all

@RULE Immigration
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute
var all1={0,1,2}
var all2={all1}
var all3={all1}
var all4={all1}
var all5={all1}
var all6={all1}
var all7={all1}
var all8={all1}
var all9={all1}
var a={1,2}
var b={a}
var c={a}
var d={a}
a,b,c,0,0,0,0,0,0,a
a,b,c,d,0,0,0,0,0,a
0,a,a,b,0,0,0,0,0,a
all1,all2,all3,all4,all5,all6,all7,all8,all9,0
@COLORS
0  48  48  48
1   0 255   0
2  32  32 255
And as a bonus, here is QuadLife:

Code: Select all

@RULE QuadLife
@TABLE
n_states:5
neighborhood:Moore
symmetries:permute
var x1={0,1,2,3,4}
var x2={x1}
var x3={x1}
var x4={x1}
var x5={x1}
var x6={x1}
var x7={x1}
var x8={x1}
var x9={x1}
var a={1,2,3,4}
var b={a}
var c={a}
var d={a}
a,b,c,0,0,0,0,0,0,a
a,b,c,d,0,0,0,0,0,a
0,a,a,b,0,0,0,0,0,a
0,1,2,3,0,0,0,0,0,4
0,1,2,4,0,0,0,0,0,3
0,1,3,4,0,0,0,0,0,2
0,2,3,4,0,0,0,0,0,1
x1,x2,x3,x4,x5,x6,x7,x8,x9,0
@COLORS
0  48  48  48
1 255  16  16
2   0 255   0
3  32  32 255
4 255 255   0
There are 10 types of people in the world: those who understand binary and those who don't.

User avatar
gmc_nxtman
Posts: 1150
Joined: May 26th, 2015, 7:20 pm

Re: Minor topic: Rule table for immigration

Post by gmc_nxtman » May 30th, 2015, 2:42 pm

Thanks!

User avatar
confocaloid
Posts: 4918
Joined: February 8th, 2022, 3:15 pm
Location: https://catagolue.hatsya.com/census/b3s234c/C4_4/xp62

Re: Immigration

Post by confocaloid » November 30th, 2024, 12:53 am

Is it feasible to enumerate all possible colourised variants of the spider spaceship (xq5_ug1hmgc865da808ad568cgmh1guz124w6yb6w421) in Immigration?

Code: Select all

x = 82, y = 93, rule = Immigration
71.A.A$6.A.A62.2A$7.2A11.A51.A$7.A13.2A$20.2A$A$.2A68.A.A$2A56.A12.2A
$13.A44.A.A11.A$11.A.A44.2A$7.A4.2A$8.A$6.3A3$78.A$78.A.A$78.2A2$74.A
$74.A.A$74.2A7$12.A$13.2A$12.2A2$10.A33.B$8.A.A29.2B.B.B$9.2A30.B.B2.
A$41.B2.A.A$36.B5.B.2A$35.B.B.B2A.A$35.B.B.B3.A$36.B3.3B2$38.5B$35.B.
B3.B.A$35.2B.2B3.A$38.B.3B$38.B.B$37.2B$38.B.B$38.B.3B$35.2B.2B3.B$
35.B.B3.A.B$38.5A2$36.B3.3B$35.B.B.B3.B$35.B.B.3B.B$36.B5.B.2B$41.B2.
B.B$41.B.B2.B11.A$9.A30.2B.B.B12.A.A12.2A$9.2A33.B13.2A6.A5.2A$8.A.A
44.A9.2A7.A$54.2A9.A.A$54.A.A4$6.3A$8.A$7.A3$80.A$79.2A$79.A.A6$6.3A$
8.A$7.A4.2A$11.A.A44.2A$13.A44.A.A11.A$2A56.A12.2A$.2A68.A.A$A$20.2A$
7.A13.2A$7.2A11.A51.A$6.A.A62.2A$71.A.A!
127:1 B3/S234c User:Confocal/R (isotropic CA, incomplete)
Unlikely events happen.
My silence does not imply agreement, nor indifference. If I disagreed with something in the past, then please do not construe my silence as something that could change that.

User avatar
confocaloid
Posts: 4918
Joined: February 8th, 2022, 3:15 pm
Location: https://catagolue.hatsya.com/census/b3s234c/C4_4/xp62

Re: Immigration

Post by confocaloid » December 2nd, 2024, 8:30 am

Several dozens of pseudorandom variants of the spider, the loafer and the copperhead, to show some possibilities:

Code: Select all

x = 258, y = 110, rule = Immigration
4.2B8.2A8.2A8.2B8.2B8.2B8.2B8.2A8.2B8.2B8.2B8.2A8.2B8.2B8.2B8.2A8.2B
8.2A8.2A8.2B8.2A8.2B8.2A8.2A8.2A8.2A$.2B2.B5.2A2.A5.2B2.A5.2B2.B5.2B
2.B5.2A2.B5.2B2.B5.2A2.A5.2B2.B5.2A2.B5.2B2.B5.2A2.B5.2A2.B5.2A2.B5.
2A2.B5.2A2.A5.2B2.B5.2A2.B5.2B2.A5.2A2.B5.2A2.A5.2B2.B5.2B2.A5.2A2.B
5.2A2.A5.2B2.A$.2B2.B5.2A2.A5.2B2.A5.2B2.B5.2B2.B5.2A2.B5.2B2.B5.2A2.
A5.2B2.B5.2A2.B5.2B2.B5.2A2.B5.2A2.B5.2A2.B5.2A2.B5.2A2.A5.2B2.B5.2A
2.B5.2B2.A5.2A2.B5.2A2.A5.2B2.B5.2B2.A5.2A2.B5.2A2.A5.2B2.A$6.B9.A9.A
9.B9.B9.A9.B9.A9.A9.A9.A9.B9.A9.B9.B9.A9.A9.B9.A9.B9.A9.A9.A9.B9.B9.B
$.B.4B4.A.4A4.B.B3A4.A.A3B4.A.A3B4.A.4A4.B.4B4.A.4A4.A.4A4.B.B3A4.B.B
3A4.A.A3B4.B.B3A4.A.A3B4.A.A3B4.A.4A4.B.B3A4.B.4B4.B.B3A4.B.4B4.B.B3A
4.A.4A4.B.B3A4.A.A3B4.A.A3B4.B.4B$2B.B6.2A.A6.2B.B6.2A.A6.2A.A6.2A.A
6.2B.B6.2A.A6.2A.A6.2B.B6.2B.B6.2A.A6.2B.B6.2A.A6.2A.A6.2A.A6.2B.B6.
2B.B6.2B.B6.2B.B6.2B.B6.2A.A6.2B.B6.2A.A6.2A.A6.2B.B$4.3A7.3A7.3A7.3B
7.3B7.3A7.3B7.3A7.3A7.3A7.3B7.3B7.3A7.3B7.3B7.3B7.3A7.3B7.3A7.3B7.3B
7.3A7.3A7.3B7.3B7.3B$5.A9.B9.A9.A9.B9.B9.A9.B9.B9.A9.B9.A9.A9.B9.A9.B
9.A9.B9.A9.A9.B9.A9.A9.B9.B9.B$5.2A8.2B8.2A8.2A8.2B8.2B8.2A8.2B8.2B8.
2A8.2B8.2A8.2A8.2B8.2A8.2B8.2A8.2B8.2A8.2A8.2B8.2A8.2A8.2B8.2B8.2B$7.
A9.B9.A9.A9.B9.A9.A9.A9.B9.A9.A9.A9.A9.B9.A9.B9.A9.A9.A9.B9.A9.B9.A9.
B9.A9.A$6.A9.B9.A9.A9.B9.A9.A9.A9.A9.A9.A9.A9.B9.B9.A9.B9.B9.A9.A9.B
9.A9.B9.B9.A9.A9.A$6.A9.B9.A9.A9.B9.A9.A9.A9.A9.A9.A9.A9.B9.B9.A9.B9.
B9.A9.A9.B9.A9.B9.B9.A9.A9.A$2.3B7.3B7.3B7.3A7.3B7.3B7.3B7.3A7.3A7.3A
7.3B7.3B7.3B7.3A7.3A7.3A7.3B7.3A7.3A7.3A7.3A7.3B7.3A7.3B7.3B7.3A2$2.
3A7.3B7.3B7.3A7.3A7.3A7.3A7.3B7.3B7.3A7.3B7.3B7.3A7.3B7.3A7.3B7.3B7.
3B7.3B7.3A7.3B7.3A7.3B7.3A7.3B7.3B$6.A9.B9.A9.A9.B9.B9.A9.A9.B9.A9.B
9.B9.B9.B9.B9.A9.A9.A9.B9.A9.B9.A9.A9.A9.A9.B$6.A9.B9.A9.A9.B9.B9.A9.
A9.B9.A9.B9.B9.B9.B9.B9.A9.A9.A9.B9.A9.B9.A9.A9.A9.A9.B$7.A9.B9.A9.A
9.A9.B9.A9.A9.A9.A9.B9.B9.A9.B9.B9.A9.A9.A9.B9.B9.B9.A9.B9.B9.A9.B$5.
2A8.2A8.2A8.2A8.2A8.2B8.2A8.2B8.2A8.2A8.2B8.2B8.2A8.2B8.2A8.2A8.2A8.
2A8.2B8.2B8.2B8.2B8.2B8.2B8.2B8.2B$5.A9.A9.A9.A9.A9.B9.A9.B9.A9.A9.B
9.B9.A9.B9.A9.A9.A9.A9.B9.B9.B9.B9.B9.B9.B9.B$4.3B7.3B7.3A7.3A7.3A7.
3B7.3B7.3B7.3A7.3A7.3B7.3B7.3A7.3A7.3A7.3A7.3A7.3B7.3B7.3A7.3B7.3B7.
3A7.3B7.3B7.3B$2A.A6.2B.B6.2A.A6.2A.A6.2B.B6.2B.B6.2B.B6.2B.B6.2B.B6.
2A.A6.2B.B6.2A.A6.2A.A6.2B.B6.2A.A6.2A.A6.2A.A6.2B.B6.2B.B6.2B.B6.2B.
B6.2A.A6.2B.B6.2B.B6.2B.B6.2B.B$.A.A3B4.B.4B4.A.A3B4.A.A3B4.B.4B4.B.
4B4.B.4B4.B.B3A4.B.B3A4.A.4A4.B.B3A4.A.4A4.A.4A4.B.B3A4.A.4A4.A.A3B4.
A.4A4.B.4B4.B.4B4.B.B3A4.B.4B4.A.4A4.B.B3A4.B.4B4.B.4B4.B.4B$6.B9.B9.
B9.B9.B9.B9.B9.A9.A9.A9.A9.A9.A9.A9.A9.B9.A9.B9.B9.A9.B9.A9.A9.B9.B9.
B$.2A2.B5.2A2.A5.2B2.B5.2A2.B5.2A2.A5.2B2.A5.2B2.A5.2A2.B5.2A2.A5.2B
2.A5.2B2.B5.2B2.B5.2A2.A5.2B2.A5.2B2.B5.2A2.A5.2B2.A5.2B2.A5.2A2.A5.
2B2.B5.2B2.B5.2A2.B5.2B2.A5.2A2.A5.2B2.B5.2B2.A$.2A2.B5.2A2.A5.2B2.B
5.2A2.B5.2A2.A5.2B2.A5.2B2.A5.2A2.B5.2A2.A5.2B2.A5.2B2.B5.2B2.B5.2A2.
A5.2B2.A5.2B2.B5.2A2.A5.2B2.A5.2B2.A5.2A2.A5.2B2.B5.2B2.B5.2A2.B5.2B
2.A5.2A2.A5.2B2.B5.2B2.A$4.2A8.2A8.2B8.2B8.2A8.2A8.2A8.2B8.2A8.2A8.2B
8.2B8.2A8.2A8.2B8.2A8.2A8.2A8.2A8.2B8.2B8.2B8.2A8.2A8.2B8.2A15$2B12.
2B12.2A12.2A12.2A12.2B12.2B12.2A12.2A12.2A12.2B12.2B12.2B12.2A12.2A
12.2B$2.B13.A13.A13.A13.B13.B13.A13.A13.A13.A13.B13.B13.B13.A13.A13.B
$3.B13.A13.B13.B13.B13.B13.A13.A13.A13.B13.A13.B13.B13.A13.A13.A$3B
11.3A11.3B11.3B11.3B11.3B11.3A11.3A11.3A11.3B11.3A11.3B11.3B11.3A11.
3A11.3A$B13.A13.B13.B13.B13.B13.A13.A13.A13.B13.A13.B13.B13.A13.A13.A
$6.A13.A13.B13.A13.B13.A13.B13.B13.A13.B13.A13.B13.B13.B13.A13.A$5.A.
A11.A.A11.B.B11.A.A11.B.B11.A.A11.B.B11.B.B11.A.A11.B.B11.A.A11.B.B
11.B.B11.B.B11.A.A11.A.A$.2B2.A2.A6.2B2.A2.A6.2B2.A2.A6.2A2.B2.B6.2B
2.B2.B6.2B2.A2.A6.2B2.B2.B6.2A2.B2.B6.2B2.B2.B6.2A2.B2.B6.2A2.A2.A6.
2B2.B2.B6.2B2.B2.B6.2A2.A2.A6.2B2.A2.A6.2A2.A2.A$2B.A2.2B6.2B.A2.2A6.
2B.A2.2A6.2A.B2.2B6.2B.B2.2B6.2B.A2.2A6.2B.B2.2B6.2A.B2.2A6.2B.B2.2B
6.2A.B2.2B6.2A.A2.2A6.2B.B2.2A6.2B.B2.2B6.2A.A2.2A6.2B.A2.2A6.2A.A2.
2B6$2B12.2A12.2B12.2B12.2A12.2A12.2A12.2A12.2B12.2B12.2A12.2B12.2A12.
2B12.2A12.2A$2.B13.A13.B13.B13.A13.A13.A13.A13.B13.B13.A13.B13.A13.B
13.B13.B$3.B13.A13.B13.B13.A13.B13.A13.A13.A13.A13.B13.B13.B13.B13.B
13.B$3B11.3A11.3B11.3B11.3A11.3B11.3A11.3A11.3A11.3A11.3B11.3B11.3B
11.3B11.3B11.3B$B13.A13.B13.B13.A13.B13.A13.A13.A13.A13.B13.B13.B13.B
13.B13.B$6.A13.A13.A13.B13.B13.A13.A13.B13.B13.B13.B13.A13.A13.B13.A
13.B$5.A.A11.A.A11.A.A11.B.B11.B.B11.A.A11.A.A11.B.B11.B.B11.B.B11.B.
B11.A.A11.A.A11.B.B11.A.A11.B.B$.2A2.B2.B6.2A2.A2.A6.2A2.A2.A6.2A2.B
2.B6.2A2.B2.B6.2B2.A2.A6.2A2.A2.A6.2B2.B2.B6.2B2.B2.B6.2B2.B2.B6.2B2.
B2.B6.2A2.A2.A6.2B2.A2.A6.2B2.A2.A6.2A2.A2.A6.2B2.A2.A$2A.B2.2B6.2A.A
2.2B6.2A.A2.2A6.2A.B2.2B6.2A.B2.2B6.2B.A2.2B6.2A.A2.2A6.2B.B2.2A6.2B.
B2.2A6.2B.B2.2B6.2B.B2.2A6.2A.A2.2B6.2B.A2.2A6.2B.A2.2A6.2A.A2.2A6.2B
.A2.2A6$2B12.2A12.2A12.2B12.2B12.2A12.2B12.2A12.2A12.2B12.2A12.2B12.
2B12.2B12.2B12.2A$2.B13.A13.B13.B13.B13.B13.B13.A13.B13.A13.B13.B13.A
13.B13.A13.A$3.B13.A13.B13.A13.B13.B13.A13.A13.B13.A13.B13.A13.A13.B
13.A13.A$3B11.3A11.3B11.3A11.3B11.3B11.3A11.3A11.3B11.3A11.3B11.3A11.
3A11.3B11.3A11.3A$B13.A13.B13.A13.B13.B13.A13.A13.B13.A13.B13.A13.A
13.B13.A13.A$6.B13.B13.B13.B13.B13.B13.A13.A13.B13.B13.A13.A13.B13.A
13.B13.B$5.B.B11.B.B11.B.B11.B.B11.B.B11.B.B11.A.A11.A.A11.B.B11.B.B
11.A.A11.A.A11.B.B11.A.A11.B.B11.B.B$.2A2.A2.A6.2B2.A2.A6.2B2.B2.B6.
2A2.B2.B6.2A2.B2.B6.2A2.B2.B6.2A2.B2.B6.2A2.B2.B6.2A2.A2.A6.2A2.B2.B
6.2A2.B2.B6.2B2.A2.A6.2A2.B2.B6.2B2.B2.B6.2B2.B2.B6.2B2.B2.B$2A.A2.2A
6.2B.A2.2A6.2B.B2.2A6.2A.B2.2A6.2A.B2.2A6.2A.B2.2B6.2A.B2.2B6.2A.B2.
2B6.2A.A2.2A6.2A.B2.2A6.2A.B2.2B6.2B.A2.2A6.2A.B2.2B6.2B.B2.2B6.2B.B
2.2A6.2B.B2.2B13$5.A.2A16.A.2B16.A.2A16.B.2B16.A.2A16.B.2B16.A.2A16.B
.2B16.B.2B16.B.2A16.A.2A16.A.2B16.A.2A$4.A6.A12.A6.B12.A6.A12.B6.B12.
A6.A12.B6.B12.A6.A12.B6.B12.B6.B12.B6.A12.A6.A12.A6.B12.A6.A$3.2A3.A
2.A11.2A3.B2.B11.2A3.A2.A11.2B3.B2.B11.2A3.A2.A11.2B3.B2.B11.2A3.A2.A
11.2B3.B2.B11.2B3.B2.B11.2B3.A2.A11.2A3.A2.A11.2A3.B2.B11.2A3.A2.A$2A
.A5.2A9.2B.A5.2B9.2B.A5.2A9.2A.B5.2B9.2B.A5.2A9.2B.B5.2B9.2A.A5.2A9.
2B.B5.2B9.2B.B5.2B9.2B.B5.2A9.2A.A5.2A9.2B.A5.2B9.2A.A5.2A$2B.A5.2B9.
2B.B5.2B9.2B.A5.2A9.2A.A5.2B9.2B.B5.2A9.2B.B5.2B9.2A.B5.2B9.2B.A5.2B
9.2A.B5.2B9.2B.B5.2A9.2B.A5.2A9.2A.A5.2A9.2A.A5.2A$3.2A3.B2.B11.2B3.B
2.B11.2A3.A2.A11.2A3.B2.B11.2B3.A2.A11.2B3.B2.B11.2B3.B2.B11.2A3.B2.B
11.2B3.B2.B11.2B3.A2.A11.2A3.A2.A11.2A3.A2.A11.2A3.A2.A$4.A6.B12.B6.B
12.A6.A12.A6.B12.B6.A12.B6.B12.B6.B12.A6.B12.B6.B12.B6.A12.A6.A12.A6.
A12.A6.A$5.A.2B16.B.2B16.A.2A16.A.2B16.B.2A16.B.2B16.B.2B16.A.2B16.B.
2B16.B.2A16.A.2A16.A.2A16.A.2A5$5.A.2B16.B.2B16.A.2B16.B.2A16.A.2A16.
A.2A16.A.2A16.A.2B16.A.2B16.A.2B16.B.2A16.B.2B16.A.2B$4.A6.B12.B6.B
12.A6.B12.B6.A12.A6.A12.A6.A12.A6.A12.A6.B12.A6.B12.A6.B12.B6.A12.B6.
B12.A6.B$3.2A3.B2.B11.2B3.B2.B11.2A3.B2.B11.2B3.A2.A11.2A3.A2.A11.2A
3.A2.A11.2A3.A2.A11.2A3.B2.B11.2A3.B2.B11.2A3.B2.B11.2B3.A2.A11.2B3.B
2.B11.2A3.B2.B$2A.A5.2B9.2A.B5.2B9.2B.A5.2B9.2A.B5.2A9.2B.A5.2A9.2B.A
5.2A9.2A.A5.2A9.2B.A5.2B9.2A.A5.2B9.2A.A5.2B9.2A.B5.2A9.2B.B5.2B9.2A.
A5.2B$2A.B5.2B9.2A.B5.2B9.2B.A5.2B9.2B.B5.2A9.2A.B5.2B9.2A.A5.2B9.2A.
A5.2B9.2B.A5.2A9.2A.A5.2B9.2B.A5.2B9.2B.A5.2A9.2A.B5.2A9.2B.B5.2A$3.
2B3.B2.B11.2B3.B2.B11.2A3.B2.B11.2B3.A2.A11.2B3.B2.B11.2A3.B2.B11.2A
3.B2.B11.2A3.A2.A11.2A3.B2.B11.2A3.B2.B11.2A3.A2.A11.2B3.A2.A11.2B3.A
2.A$4.B6.B12.B6.B12.A6.B12.B6.A12.B6.B12.A6.B12.A6.B12.A6.A12.A6.B12.
A6.B12.A6.A12.B6.A12.B6.A$5.B.2B16.B.2B16.A.2B16.B.2A16.B.2B16.A.2B
16.A.2B16.A.2A16.A.2B16.A.2B16.A.2A16.B.2A16.B.2A!
127:1 B3/S234c User:Confocal/R (isotropic CA, incomplete)
Unlikely events happen.
My silence does not imply agreement, nor indifference. If I disagreed with something in the past, then please do not construe my silence as something that could change that.

Post Reply