Spaceships in Life-like cellular automata

For discussion of other cellular automata.
User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » June 24th, 2020, 3:00 am

I found that Rocknlol had found a c/5o earlier in B378/S2458 (here), so I took out a few entries made redundant by it.

Code: Select all

#C Rocknlol, 2020, B37/S245-B378/S24578
x = 14, y = 22, rule = B37/S245
2bo8bo$bobo6bobo$o3b2o2b2o3bo$o3b2o2b2o3bo$b3o6b3o2$b4o4b4o$o12bo$bo2b
o4bo2bo$2bobo4bobo$5bo2bo$5bo2bo$3bo2b2o2bo$4bob2obo$3b2ob2ob2o$4b6o$
3bo6bo$4b6o$b2obo4bob2o$2bo8bo$o2bo6bo2bo$4o6b4o!
They are:

Code: Select all

:Rocknlol, 2020:B378/S2457:B378/S2457:5:0:-1:13:38:2b2o5b2o$2bo2b3o2bo$2bo2b3o2bo$2bobo3bobo2$4bobobo$3b2o3b2o$2b4ob4o$6bo$2b2o2bo2b2o$5bobo$5b3o2$4bo3bo$2bobo3bobo$bo9bo$o3bo3bo3bo$o2b2o3b2o2bo$4bo3bo$2b3o3b3o$2bo7bo$3b2o3b2o$3bo5bo2$4bo3bo$3b3ob3o$2b4ob4o$3b3ob3o2$3b2o3b2o$2b3o3b3o$2b3o3b3o$3o7b3o$2o9b2o2$bo4bo4bo$2b3o3b3o$5b3o!
:Rocknlol, 2020:B37/S2457:B37/S2457:5:0:-1:13:40:2bobo3bobo2$b3obobob3o$2bobo3bobo$4b5o$3bo5bo$b3ob3ob3o$6bo$bobobobobobo$2b4ob4o$bo2bo3bo2bo$3o2bobo2b3o$2b2obobob2o$3b3ob3o$4bo3bo$4b2ob2o$3b2o3b2o2$5b3o$3b7o$4bo3bo$2bo7bo$2b4ob4o$2bobobobobo$2b2o5b2o$4b5o2$4b2ob2o$bo2bo3bo2bo$ob4ob4obo$3bobobobo$b2o2bobo2b2o$3b2o3b2o$2b4ob4o$3b2o3b2o$3b3ob3o$bo2b2ob2o2bo$3bo2bo2bo$b2obo3bob2o$4bo3bo!
:Rocknlol, 2020:B37/S24578:B378/S24578:5:0:-1:13:63:bob2obob2obo$3bo2bo2bo$2bob2ob2obo$2bobo3bobo$4b5o$2bob2ob2obo$3bobobobo$o3bo3bo3bo$2o9b2o$4bo3bo$2b2obobob2o$b5ob5o$4bo3bo$3bobobobo$4bo3bo$2b2o5b2o2$2b3o3b3o$3b2o3b2o$5bobo$2bobo3bobo$4b2ob2o$2bo2bobo2bo2$2b2o5b2o$2b2o5b2o$3bo5bo$3b2o3b2o$2bo7bo$2bo7bo$3b3ob3o$2b3o3b3o$2b2o5b2o$2bo7bo2$3bobobobo2$2bo2bobo2bo$bob2o3b2obo$b4o3b4o$2bo2bobo2bo$b2o7b2o$b2obo3bob2o$2bob2ob2obo$o2bobobobo2bo$2ob3ob3ob2o$b2obo3bob2o$bo3bobo3bo$2bob2ob2obo2$4bo3bo$3bo2bo2bo$3b7o$3bo5bo$3bo5bo$bob7obo$3ob5ob3o$b2ob5ob2o$2b2o5b2o$2b9o$5b3o$5b3o$6bo!
:Rocknlol, 2020:B378/S2458:B378/S2458:5:0:-1:13:55:3b2o3b2o$b4o3b4o$bo2bo3bo2bo$2bo7bo$2b3o3b3o$2b4ob4o2$3bob3obo$6bo$bo3b3o3bo2$obo7bobo$2b2o5b2o$2o3bobo3b2o$obo3bo3bobo$b3obobob3o$bo9bo$2o9b2o$b2o7b2o$b2o2b3o2b2o$4bobobo$2bo3bo3bo$3bobobobo$bobobobobobo$obo2b3o2bobo$3bo2bo2bo$bo9bo$2b2o5b2o$b2o7b2o$b4o3b4o$2bobo3bobo$6bo$3b3ob3o$3bo2bo2bo2$5bobo$5bobo$2bobo3bobo$3bo5bo$6bo$3b3ob3o$4b2ob2o$3bo5bo$2b2o5b2o$bo2bo3bo2bo$3bo5bo$3bo5bo$4b2ob2o$5b3o$6bo$4bo3bo$4b5o$4bo3bo$4b5o$6bo!
:Rocknlol, 2020:B37/S2458:B37/S2458:5:0:-1:13:83:4b2ob2o$5bobo$6bo$5b3o$bobo2bo2bobo$o2bo2bo2bo2bo$2ob3ob3ob2o$3b2o3b2o2$2bo7bo$2bobo3bobo$3bobobobo$bobo5bobo$o3bo3bo3bo$bo2bo3bo2bo$2bo2bobo2bo$5bobo$4b2ob2o$5b3o$4bobobo$2b2o5b2o$2bo7bo$2b2o5b2o$4b2ob2o$4b5o$6bo$3bo5bo2$2b2obobob2o$2bo7bo$bo3bobo3bo$2bo2bobo2bo$3bobobobo$3bobobobo$2b2o5b2o$2bo7bo$2bob2ob2obo$bob2o3b2obo$5bobo$2b2obobob2o$b4o3b4o$2bobobobobo$bo9bo$bo2bo3bo2bo$b4o3b4o$2b3o3b3o$bo9bo$b3o5b3o2$2bo7bo2$b2o7b2o$2o2bo3bo2b2o$o2bo5bo2bo$2b4ob4o$4b2ob2o$4b2ob2o$3bobobobo$4b2ob2o$3b2o3b2o$2b2o5b2o$4bobobo$3bo5bo$4bobobo$3bob3obo$3b3ob3o$2bo7bo$3b3ob3o$5bobo2$4b2ob2o$5bobo$2b2obobob2o$bo2b2ob2o2bo$2bobo3bobo$5bobo$4b2ob2o2$6bo$5bobo$4b2ob2o$4b5o$5b3o!
:Rocknlol, 2020:B378/S245:B378/S2458:5:0:-1:13:68:4bo3bo$3bo5bo$2b4ob4o$3b3ob3o$4bo3bo$4b5o$3bobobobo$3b3ob3o$2bo7bo$3bo5bo$3bobobobo$4bo3bo$5bobo$6bo2$6bo$4bobobo2$2b3obob3o$2b2obobob2o$2o3bobo3b2o$bo3bobo3bo$3b2o3b2o$4bo3bo$3b3ob3o$4b2ob2o$5bobo$5bobo$5bobo2$2b2obobob2o$bo3bobo3bo$4bo3bo$bo2bo3bo2bo$b2obo3bob2o$bob3ob3obo$4bo3bo$2b2o5b2o$2bo2b3o2bo$2b9o$4b2ob2o$5bobo2$3bo2bo2bo$3b3ob3o$4b5o3$3bob3obo$2bo7bo$3bob3obo$3bo5bo$4b2ob2o$2bobobobobo$bo9bo$2b4ob4o$3o2b3o2b3o$2bo3bo3bo$4bobobo$5b3o$3bo5bo$2b3o3b3o$bo9bo$3bo5bo$3b3ob3o$5bobo$o2b2o3b2o2bo$b2o7b2o!
:Rocknlol, 2020:B37/S245:B37/S245:5:0:-1:13:59:o11bo$3o7b3o$2b2o5b2o$2bo3bo3bo$5b3o$2bob2ob2obo$3bobobobo$5bobo$obo2bobo2bobo$b4o3b4o$b2obo3bob2o$2bo7bo$2bobo3bobo$bo3bobo3bo$4bo3bo$b3obobob3o$6bo2$4bobobo$4b2ob2o$3b3ob3o$3bob3obo$4bobobo$2bob5obo$bo2b5o2bo$5b3o$2b2o5b2o$3bobobobo$3b2o3b2o2$5b3o$6bo3$2b4ob4o$bo2b2ob2o2bo$2bo7bo$5b3o$b2ob5ob2o$3bob3obo$b3o5b3o$3bo5bo$bo9bo$3b3ob3o$3bobobobo$4bo3bo$4bobobo$4bobobo$5bobo$5b3o$3b3ob3o$5bobo$3b2o3b2o$3bo5bo$5b3o$4b5o$2b2obobob2o$3b2o3b2o$3b7o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

Naszvadi
Posts: 662
Joined: May 7th, 2016, 8:53 am
Contact:

Re: Spaceships in Life-like cellular automata

Post by Naszvadi » June 24th, 2020, 9:15 am

Little corderizing improvement in a rule - reduced the number of engines and narrower to the current record - an endemic ship in all meanings:

Code: Select all

x = 26, y = 49, rule = B356/S23
19b2o$19bobo$19b3o$19bo2bo$19bo2bo$19bo2bo$20bobo7$5b2o$4bob2o$o3b3o
18bo$o24bo$o24bo2$o24bo$o24bo$o24bo$16b2o$15bo3bo$16bo2bo$19bo$17b2o2$
14b3o$14bo$13b2o$14b3o3$3b2o15b3o$b3obo14bo2bo$b2obobo12b3o2bo$ob2obo
14b4o$21b2o4$6b2o$6b3o7b2o$4bob4o6bobobo$4bobo10bo$6bo10bo3bo$4b3o11bo
$19b2o!

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » June 29th, 2020, 3:55 pm

Is there a backend for each side of this c/2o partial, possibly at a higher period?

Code: Select all

x = 157, y = 50, rule = B247/S0125
39bobo$17bo16bobo$16b3o2bo15b2o6bobo5bo23bo2bobo29bo12bobo11bo$16b2ob
4o10b4o11b5o11bo11b3ob2o29b3o2bo11b11o15bo$15bo5bo13bob2o5b3o8bo7b3o
10bob5o20bo7b2ob4o6b3o14bo11b2o$14b2o16bo2bo2b4o4b4ob3o9b2o3bo7b5ob3o
10bobo4b3o5bo5bo6bob7ob5o3b2o10b2o$13bo17bobobo7b7obobob2o4bo2b3ob2o4b
o9bo13b5ob2o3b2o10bo2bo2b5obo4bo4bo9b2obo$12b2obo2b2o4bo5b7o3b2o2bo2b
2obob6o6bobo8bo2b3obo3bo7b3o7bo3bo11b2ob2obob2ob2ob3obo4bo9bo$10bo2b3o
3bo3b3o4bo2bo3bo3b5o2bo2bobobobobo3bobo2b4obobo2b2o3bo12b6o2b2ob2o4b2o
4b3o3bobo3b5ob2obo2bo2bo5b2o2bo$11b2o2b2o2b2o2bob2o3b3o2bo3b4o3bobo7b
2ob8o4b2obobo2b2obob4obo3b2o2b2o2bo2bo3b2o5bo3b2o2bo6b3o5b3o10b2o$13bo
11bob7obo2bo5bo7b2o3bo5bo10b2o5bo3b2o5b2o9bo2b2o3bo5bob2obo6b3obo5b2ob
3o2bo2b4obo$9b2obo3bo4bo2bob3o2b4o2b3o3bo3b2obo4b2ob4obob3o2bo3b2obo7b
ob2o3b2o3b2o2b3ob2o3b3ob8obo2b2o4bo5bobob2o5b2o$9bobob2obobob3ob2o2b2o
2bob2o3b3ob3o7bo2b3o2bo4b2obobo2bobo2b3o3bo3bobo8bob2o3b2ob3o2b3obo2bo
4bobo5b2obo2b2o7bob2obo$9bob4o3bo4b5o6bo3bobobob4o2b2o3b2o6bo2b5obobob
3o5b6o3bo3bo3b2obo2b4o2b2ob2o2b5o8b2obo5bo8b3o$9b3ob2o2bobo3bob3o8b6ob
3obo6bo3bo2b2obo4bo2bob4ob3ob3o3b2o3b2o6bo4b3obobo4b6o2bo3b3o2bob4o11b
o$8b3obobo3b2o2bobo2b2o4bob2obo4b5obo2b2o2b2o2bobo4b6o6b2o2b2obobob2o
2b3o3b3obo3bo4bo3b7obobob6obobob3o$7b2ob6o3b2o2bob3o4bobo3bobob3o2bob
2o2b3obo3b2obo5b2o3bobo3bo4bo5b3o4bo3b2o2bo2b2ob2o2bobo3bo3bob3o2bo3b
2o2bo$6bo2bo3b4ob5ob4o2bob4o2b2o2bo2bob3o2b2o5bo2b4o2b2obobo3bobo6bo3b
obo5b4o4b2o2b2o6b3o12bob2o2b2o$5b2obo2b4obob4o2b2obo2bobo4bo3bo4bob3ob
5o3bob6ob3o5b2o2bo5b2o7b2obob4o3bob4ob2o3bo3b2o2bob3o2b2o5bobobo$4bob
2o4b2ob2ob3ob6obo2b3o5bo2bo3b2o4b2obo3bobo8bo2bo2b3o2bo2bo5b2o2b2o5b4o
2bobo6bobo5bo2bo3bob3ob2obo$3b10obo3b6obo2bo5bo3b3ob6o2b2ob4o2b7o2bo3b
2ob2o6bo2bobobo7bo2b2ob2o4b3o3bo5b2o3bo3bob4o4b3o$bo2bo4b2o2b2o5b7o5bo
5b2o2b2ob3o7bo2bo4b2obo3b6o2b2o3b2ob3o4bob2obo2bo2b3ob3obo18bo2bo3bo6b
2obo$6bo2b3o5bo2bo9b2obob2o4bobo2bo5bo5b4ob3o4bo5b2o3bo6bo3bo2bo7bo2bo
3bo2b3o3bobobo2b2o2b2o4b2ob2o4bo$4o7b2obob2o2b2obobo4b2o4bo6bob2o3bo2b
2ob4ob2ob2obobob3obobob2o11b2o5b2o2b3obobob4obob3ob2o3b2o7bobobo2b2o$b
o3b3ob5obo3b3o5bo2bobo3bob3o2bo3b2o7bo3bo4bo3b2o2b3obo2bo8bo2bobo3b2o
3b2o4b2o2b2o3bobo3bo5b2o4bo2b3o2b2o$bo3b3ob5obo3b3o5bo2bobo3bob3o2bo3b
2o7bo3bo4bo3b2o2b3obo2bo8bo2bobo3b2o3b2o4b2o2b2o3bobo3bo5b2o4bo2b3o2b
2o$4o7b2obob2o2b2obobo4b2o4bo6bob2o3bo2b2ob4ob2ob2obobob3obobob2o11b2o
5b2o2b3obobob4obob3ob2o3b2o7bobobo2b2o$6bo2b3o5bo2bo9b2obob2o4bobo2bo
5bo5b4ob3o4bo5b2o3bo6bo3bo2bo7bo2bo3bo2b3o3bobobo2b2o2b2o4b2ob2o4bo$bo
2bo4b2o2b2o5b7o5bo5b2o2b2ob3o7bo2bo4b2obo3b6o2b2o3b2ob3o4bob2obo2bo2b
3ob3obo18bo2bo3bo6b2obo$3b10obo3b6obo2bo5bo3b3ob6o2b2ob4o2b7o2bo3b2ob
2o6bo2bobobo7bo2b2ob2o4b3o3bo5b2o3bo3bob4o4b3o$4bob2o4b2ob2ob3ob6obo2b
3o5bo2bo3b2o4b2obo3bobo8bo2bo2b3o2bo2bo5b2o2b2o5b4o2bobo6bobo5bo2bo3bo
b3ob2obo$5b2obo2b4obob4o2b2obo2bobo4bo3bo4bob3ob5o3bob6ob3o5b2o2bo5b2o
7b2obob4o3bob4ob2o3bo3b2o2bob3o2b2o5bobobo$6bo2bo3b4ob5ob4o2bob4o2b2o
2bo2bob3o2b2o5bo2b4o2b2obobo3bobo6bo3bobo5b4o4b2o2b2o6b3o12bob2o2b2o$
7b2ob6o3b2o2bob3o4bobo3bobob3o2bob2o2b3obo3b2obo5b2o3bobo3bo4bo5b3o4bo
3b2o2bo2b2ob2o2bobo3bo3bob3o2bo3b2o2bo$8b3obobo3b2o2bobo2b2o4bob2obo4b
5obo2b2o2b2o2bobo4b6o6b2o2b2obobob2o2b3o3b3obo3bo4bo3b7obobob6obobob3o
$9b3ob2o2bobo3bob3o8b6ob3obo6bo3bo2b2obo4bo2bob4ob3ob3o3b2o3b2o6bo4b3o
bobo4b6o2bo3b3o2bob4o11bo$9bob4o3bo4b5o6bo3bobobob4o2b2o3b2o6bo2b5obob
ob3o5b6o3bo3bo3b2obo2b4o2b2ob2o2b5o8b2obo5bo8b3o$9bobob2obobob3ob2o2b
2o2bob2o3b3ob3o7bo2b3o2bo4b2obobo2bobo2b3o3bo3bobo8bob2o3b2ob3o2b3obo
2bo4bobo5b2obo2b2o7bob2obo$9b2obo3bo4bo2bob3o2b4o2b3o3bo3b2obo4b2ob4ob
ob3o2bo3b2obo7bob2o3b2o3b2o2b3ob2o3b3ob8obo2b2o4bo5bobob2o5b2o$13bo11b
ob7obo2bo5bo7b2o3bo5bo10b2o5bo3b2o5b2o9bo2b2o3bo5bob2obo6b3obo5b2ob3o
2bo2b4obo$11b2o2b2o2b2o2bob2o3b3o2bo3b4o3bobo7b2ob8o4b2obobo2b2obob4ob
o3b2o2b2o2bo2bo3b2o5bo3b2o2bo6b3o5b3o10b2o$10bo2b3o3bo3b3o4bo2bo3bo3b
5o2bo2bobobobobo3bobo2b4obobo2b2o3bo12b6o2b2ob2o4b2o4b3o3bobo3b5ob2obo
2bo2bo5b2o2bo$12b2obo2b2o4bo5b7o3b2o2bo2b2obob6o6bobo8bo2b3obo3bo7b3o
7bo3bo11b2ob2obob2ob2ob3obo4bo9bo$13bo17bobobo7b7obobob2o4bo2b3ob2o4bo
9bo13b5ob2o3b2o10bo2bo2b5obo4bo4bo9b2obo$14b2o16bo2bo2b4o4b4ob3o9b2o3b
o7b5ob3o10bobo4b3o5bo5bo6bob7ob5o3b2o10b2o$15bo5bo13bob2o5b3o8bo7b3o
10bob5o20bo7b2ob4o6b3o14bo11b2o$16b2ob4o10b4o11b5o11bo11b3ob2o29b3o2bo
11b11o15bo$16b3o2bo15b2o6bobo5bo23bo2bobo29bo12bobo11bo$17bo16bobo$39b
obo!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

Naszvadi
Posts: 662
Joined: May 7th, 2016, 8:53 am
Contact:

Re: Spaceships in Life-like cellular automata

Post by Naszvadi » June 30th, 2020, 6:56 am

Naszvadi wrote:
June 24th, 2020, 9:15 am
Little corderizing improvement in a rule - reduced the number of engines and narrower to the current record - an endemic ship in all meanings:

Code: Select all

x = 26, y = 49, rule = B356/S23
19b2o$19bobo$19b3o$19bo2bo$19bo2bo$19bo2bo$20bobo7$5b2o$4bob2o$o3b3o
18bo$o24bo$o24bo2$o24bo$o24bo$o24bo$16b2o$15bo3bo$16bo2bo$19bo$17b2o2$
14b3o$14bo$13b2o$14b3o3$3b2o15b3o$b3obo14bo2bo$b2obobo12b3o2bo$ob2obo
14b4o$21b2o4$6b2o$6b3o7b2o$4bob4o6bobobo$4bobo10bo$6bo10bo3bo$4b3o11bo
$19b2o!
Minor improvements are here: https://conwaylife.com/forums/viewtopic.php?f=11&t=974

User avatar
Saka
Posts: 3552
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X
Contact:

Re: Spaceships in Life-like cellular automata

Post by Saka » July 2nd, 2020, 6:49 am

A new speed in this rule in my copy. c/6o

Code: Select all

x = 32, y = 9, rule = B3678/S4568
4bo$4b2obobo6b2o8bobo$3b2obo2b2o4b2obo8b2o$2b2ob2o2b5o2b4o2bo3b4o$b5ob
o2bob8ob3o5b3o$obobo5bob2o2b2ob6o4b3o$3bo6b3o5b2ob2o3b4o$9bobobo7bobo
3b2o$11bo14bobo!

Code: Select all

o3b2ob2obo3b2o2b2o$bo3b2obob3o3bo2bo$2bo2b3o5b3ob4o$3o3bo2bo2b3o3b3o$
4bo4bobo4bo$2o2b2o2b4obo2bo3bo$2ob4o3bo2bo2bo2bo$b2o3bobob2o$3bobobo5b
obobobo$3bobobob2o3bo2bobo!
(Check gen 3)
Add your computer to the Table of Lifeenthusiast Computers!

AforAmpere
Posts: 1134
Joined: July 1st, 2016, 3:58 pm

Re: Spaceships in Life-like cellular automata

Post by AforAmpere » July 5th, 2020, 12:45 pm

New 3c/7 (shortest at this width):

Code: Select all

x = 348, y = 19, rule = B3578/S236
6bo34bo61bo51b2o3bo$8bo32bo38bo18bob4o49bob6o47bo$5bobobob2o13b3o5bobo
4bo2bo22b2o10bo18b2ob5o6bo19b2obo20bob3obo46b2o45bo69bo8bo$5bobob3obo
12b4o4bobo3b5o19bob2obo8bo4bo13bo3b2obo5b3o3bo3bob3o6b4obo4bo2bo10b3o
3bobo16bobo18b2ob2ob3o2b3o7bo3b2o27bo2bo62b3o2bo6b3o4bo$7bob3o2bo10bob
2o6b2o2b3ob3ob3ob3o15bob3o4b2o2b6o2b2obo3b2obo2bobo3b3obobo2b2o2bo2bo
2b3o4b2o5b2obo2bo3bo5b2obo6bo4b2o3bo2b2o9bobo6bobo6bob3o8b2obobobobo
18bo3bobob2ob2o6b3o42bobo2b4o3b2o3bo2b2o2b3obo$4bo5bo3b2obob3obobo2b2o
2bo7b5o2b2o5bob2o2b2o6b2o4bo2b3obo3b2obo3bob2o3b2obob9ob2obob2o2b2o3bo
bob3o2bo3bo2b2ob3obobob3o2bo2b7o2bo2bob2o3bo5b4o3bob3obobob2obo2bo2bo
8b2obob2o2bo2b3o13bo2b2o3bo6b2o2b4o8bo10b2obo2bo3b2o6bo13b5o3bobo3bo5b
2o$6b3o3bo2bob8o2b2obob3o6b5o3bobo2bo9b2o2b2o5b4o2b4obobob2o2bob3ob3ob
3o3b3o9bo4bo3b3o4b2obo2bobob2o2b2ob2obob3o4b2obob5ob2obobo3bo2bo4bobo
2bobob3o3b2o2b3o5bobo5bob2o2b2o3b3o4b3o3bo2b2o3b3obo2b4o2b4o4bo4bo2bob
3o2b8o6b2o2bo2b2o2b2ob5obo4b2o4bobobo$obo4b2obobob2ob2ob3obob2ob6obobo
4bo2bo3b2o5bo2bob4o2bo2b2o2b2obobob5o4b3ob2obo3b2ob2ob4o5b3o6b3obo3bo
3bobobobobob5o5b2o4b4o4b2ob2o2b4o4bo2bobo2b2o2bo3b3o4bob2o2bo11b2obobo
bo5b4o3bo4bobo3b3o2bo4bo2bobo3bo3b3o2bo2bob5obo2bo3bo2bo4bo3b2ob2obo6b
obo3b4o2bob4o$b2o2b3o3b6obo4bob2o10b3o3bob3ob2o2bobo2bo2bo3bo3b5o6bo
16b3o9bo8b2o5b8o5b3obo3bo5bo2bob2o3b3o2bobo3b2ob3o4bo2bo2b2ob4obo5bo6b
2o5bo2bo2bob3ob5ob4obob4o5bo4b3obob3o2b2obob2obo2b4o2b2obob2o2b5o2b3o
2b2obo2b2o3bobo10b6o2bob3o2bo2bo$bobob3o25bobobobo3b2o3bobo2bobo5bo5b
2o56bobo3b2obo2b5obo2bo5bobo2b6o2bo3bob2obo5bo2bo2b2obo3b4ob2o2b2o6b2o
bo3bo2bo2bobobo2bobo2b7o2b3o3bo5bobob2o5bo4bobo2b2ob3ob2o2bo3b3ob2o2b
3o4bobo5b2o$b2o2b3o3b6obo4bob2o10b3o3bob3ob2o2bobo2bo2bo3bo3b5o6bo16b
3o9bo8b2o5b8o5b3obo3bo5bo2bob2o3b3o2bobo3b2ob3o4bo2bo2b2ob4obo5bo6b2o
5bo2bo2bob3ob5ob4obob4o5bo4b3obob3o2b2obob2obo2b4o2b2obob2o2b5o2b3o2b
2obo2b2o3bobo10b6o2bob3o2bo2bo$obo4b2obobob2ob2ob3obob2ob6obobo4bo2bo
3b2o5bo2bob4o2bo2b2o2b2obobob5o4b3ob2obo3b2ob2ob4o5b3o6b3obo3bo3bobobo
bobob5o5b2o4b4o4b2ob2o2b4o4bo2bobo2b2o2bo3b3o4bob2o2bo11b2obobobo5b4o
3bo4bobo3b3o2bo4bo2bobo3bo3b3o2bo2bob5obo2bo3bo2bo4bo3b2ob2obo6bobo3b
4o2bob4o$6b3o3bo2bob8o2b2obob3o6b5o3bobo2bo9b2o2b2o5b4o2b4obobob2o2bob
3ob3ob3o3b3o9bo4bo3b3o4b2obo2bobob2o2b2ob2obob3o4b2obob5ob2obobo3bo2bo
4bobo2bobob3o3b2o2b3o5bobo5bob2o2b2o3b3o4b3o3bo2b2o3b3obo2b4o2b4o4bo4b
o2bob3o2b8o6b2o2bo2b2o2b2ob5obo4b2o4bobobo$4bo5bo3b2obob3obobo2b2o2bo
7b5o2b2o5bob2o2b2o6b2o4bo2b3obo3b2obo3bob2o3b2obob9ob2obob2o2b2o3bobob
3o2bo3bo2b2ob3obobob3o2bo2b7o2bo2bob2o3bo5b4o3bob3obobob2obo2bo2bo8b2o
bob2o2bo2b3o13bo2b2o3bo6b2o2b4o8bo10b2obo2bo3b2o6bo13b5o3bobo3bo5b2o$
7bob3o2bo10bob2o6b2o2b3ob3ob3ob3o15bob3o4b2o2b6o2b2obo3b2obo2bobo3b3ob
obo2b2o2bo2bo2b3o4b2o5b2obo2bo3bo5b2obo6bo4b2o3bo2b2o9bobo6bobo6bob3o
8b2obobobobo18bo3bobob2ob2o6b3o42bobo2b4o3b2o3bo2b2o2b3obo$5bobob3obo
12b4o4bobo3b5o19bob2obo8bo4bo13bo3b2obo5b3o3bo3bob3o6b4obo4bo2bo10b3o
3bobo16bobo18b2ob2ob3o2b3o7bo3b2o27bo2bo62b3o2bo6b3o4bo$5bobobob2o13b
3o5bobo4bo2bo22b2o10bo18b2ob5o6bo19b2obo20bob3obo46b2o45bo69bo8bo$8bo
32bo38bo18bob4o49bob6o47bo$6bo34bo61bo51b2o3bo!
EDIT, C/6:

Code: Select all

x = 13, y = 16, rule = B3578/S236
4b2ob2o$3bo5bo$3b2o3b2o$b2o7b2o$obobo3bobobo$3b3ob3o2$5b3o2$4bobobo$4b
5o$5bobo$3bo5bo$6bo$6bo$5b3o!
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
FWKnightship
Posts: 637
Joined: June 23rd, 2019, 3:10 am
Location: 我不告诉你

Re: Spaceships in Life-like cellular automata

Post by FWKnightship » July 6th, 2020, 11:20 pm

26c/104:

Code: Select all

x = 16, y = 37, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o20$11b2o$10b4o$11b2o$9bob2obo$9bob2obo$9bob2o$10bobo!
EDIT:34c/136:

Code: Select all

x = 18, y = 40, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o23$13b3o$14b2obo$12bob2obo$12bob2obo$12bob2obo$14b2obo$14b
obo!
EDIT2:New c/6:

Code: Select all

x = 57, y = 65, rule = B014/S12
3bo6bo23bo6bo$4b6o25b6o$4b6o25b6o$5b4o27b4o$4bob2obo25bob2obo$4bob2obo
25bob2obo$5b4o27b4o$3b8o23b8o$4b6o25b6o$2b10o21b10o$bob8obo19bob8obo$o
b10obo17bob10obo$ob10obo17bob10obo$ob10obo17bob10obo$b12o19b12o$14o16b
16o$bo2bob2obo2bo18b14o$29b18o$28bob16obo$27bob18obo$27bob18obo$27bob
18obo$28b20o$26b24o$27b7o2bo2bo2b7o$25b8o10b8o$24bob7o10b7obo$23bob10o
6b10obo$23bob9obo4bob9obo$23bob9obo4bob9obo$24b10o8b10o$22b12o8b12o$
23b11o8b11o$21b12obo6bob12o$20bob11obo6bob11obo$19bob12obo6bob12obo$
19bob13obo4bob13obo$19bob34obo$21b34o$20b36o$22b32o$23b30o$24b28o$23bo
b26obo$23bob26obo$23bob26obo$25b26o$24b28o$26b24o$27b22o$28b20o$27bob
18obo$27bob18obo$27bob18obo$29b18o$28b20o$30b16o$31b14o$32b12o$31bob
10obo$31bob10obo$31bob10obo$32b12o$31b14o$32bo2bob2obo2bo!
Last edited by FWKnightship on July 6th, 2020, 11:48 pm, edited 1 time in total.
I'm too shy to talk to other members.
But I want to upload my apgsearch results to Catagolue like others.
search.php?keywords=FWKnightship

User avatar
yujh
Posts: 1445
Joined: February 27th, 2020, 11:23 pm
Location: China

Re: Spaceships in Life-like cellular automata

Post by yujh » July 6th, 2020, 11:25 pm

FWKnightship wrote:
July 6th, 2020, 11:20 pm
26c/104:

Code: Select all

x = 16, y = 37, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o20$11b2o$10b4o$11b2o$9bob2obo$9bob2obo$9bob2o$10bobo!
EDIT:34c/136:

Code: Select all

x = 18, y = 40, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o23$13b3o$14b2obo$12bob2obo$12bob2obo$12bob2obo$14b2obo$14b
obo!
Really neat!!!!
That's c/4, or (26+8n,0)104+32n unsimplified(?I might have made a mistake?)

sawtooth like thing?(wickstrecher)

Code: Select all

x = 16, y = 33, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o16$11b2o$10b4o$11b2o$9bob2obo$9bob2obo$9bob2o$10bobo!
442c1768

Code: Select all

x = 18, y = 40, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o16$3b2o$2b4o$3b2o$bob2obo$bob2obo$bob2obo5bob2o$bob2obo5bo
b2obo$bob2obo5bob2obo$bob2obo5bob2obo$3b2obo5bob2obo$3bobo6bob2obo$12b
ob2obo$14b2obo$14bobo!
B34kz5e7c8/S23-a4ityz5k!!!
Mission: find a rule with 2-5ob,7-15d,3-5o ships and 4 sparky hp osc.
B2ikn35j6i/S23-a8
B2ck3ar4ac5e6c7/S1e2-an3ejnr4air5iy6c7c8

User avatar
Ian07
Posts: 604
Joined: September 22nd, 2018, 8:48 am

Re: Spaceships in Life-like cellular automata

Post by Ian07 » July 7th, 2020, 1:46 pm

yujh wrote:
July 6th, 2020, 11:25 pm
That's c/4, or (26+8n,0)104+32n unsimplified(?I might have made a mistake?)
It's not adjustable period, unfortunately. Moving the growing spaceship back doesn't change how long it takes to start growing again:

Code: Select all

x = 16, y = 104, rule = B014/S12
b3o8b3o$2ob2o6b2ob2o$o3bo6bo3bo2$3bo8bo$3bo8bo$3b3o4b3o$3b2ob4ob2o$4b
8o$5b6o$6b4o87$11b2o$10b4o$11b2o$9bob2obo$9bob2obo$9bob2o$10bobo!

User avatar
FWKnightship
Posts: 637
Joined: June 23rd, 2019, 3:10 am
Location: 我不告诉你

Re: Spaceships in Life-like cellular automata

Post by FWKnightship » July 10th, 2020, 10:09 am

17c/34 in 3458/37/3:

Code: Select all

x = 21, y = 45, rule = 3458/37/3
3A2.3A5.3A2.3A$3A2.3A5.3A2.3A$B.A2.A.B5.B.A2.A.B$.AB2ABA8.4A$3.2A10.A
2.A$15.4A$2.B2.B9.4A$.6A9.2A$.A.2B.A$.BA2BAB$3.2A8$9.3A$9.3A$7.2A3.A.
A$7.2A.6A$7.3A.A.ABA$7.A.A2.5A$8.2A.2A2.B$8.2A2B.B$9.4A$11.A5$10.BA$
10.3A$10.3A$11.A$10.BAB8$7.B!
34c/68:

Code: Select all

x = 20, y = 14, rule = 3458/37/3
.A4.A6.A4.A$3A2.3A4.3A2.3A$ABA2.ABA4.ABA2.ABA$2.4A8.4A$.BA2.AB6.BA2.A
B$3.2A10.2A$3.2A10.2A$2.B2AB8.B2AB3$9.2A$8.4A$8.A2BA$7.BA2.AB!
Two 2c/5 spaceships;

Code: Select all

x = 42, y = 57, rule = 3458/37/3
3.2A7.2A14.2A7.2A$.B4AB3.B4AB10.B4AB3.B4AB$2A4.2A.2A4.2A8.2A4.2A.2A4.
2A$.A3.2A3.2A3.A10.A3.2A3.2A3.A$2A4.2A.2A4.2A8.2A4.2A.2A4.2A$.A.B3A3.
3AB.A10.A.B3A3.3AB.A$2A.A2.AB.BA2.A.2A8.2A.A2.AB.BA2.A.2A$.A.2A7.2A.A
10.A.2A7.2A.A$4A.2A3.2A.4A8.4A.2A3.2A.4A$B2.2A.2A.2A.2A2.B8.B2.2A.2A.
2A.2A2.B$2.B.4A.4A.B12.B.4A.4A.B$4.B2.A.A2.B16.B2.A.A2.B$7.B.B22.B.B
2$28.2A7.2A$26.B3A2.3A2.3AB$25.2A2.A.2AB2A.A2.2A$25.AB.2A.5A.2A.BA$
26.A.BA.A3.A.AB.A$25.B.3A.2A.2A.3A.B$26.A.2A.A3.A.2A.A$25.5A.2A.2A.5A
$25.B.B2.2A3.2A2.B.B$26.3A3.B.B3.3A$27.A.B2.A.A2.B.A$27.3A.2A.2A.3A$
26.A2BA2.B.B2.A2BA$26.3A.A5.A.3A$29.A.2A.2A.A$28.A.3A.3A.A$27.A.A.BA.
AB.A.A$26.3A.3A.3A.3A$26.A2.A.2A.2A.A2.A$26.B2A.3A.3A.2AB$29.A2.A.A2.
A$28.A.3A.3A.A$26.2A.A.BA.AB.A.2A$26.3A.3A.3A.3A$26.A2.A.2A.2A.A2.A$
27.B.4A.4A.B$27.B.A2.A.A2.A.B$28.AB.2A.2A.BA$31.BA.AB2$27.4A5.4A$26.
6A3.6A$26.2A2.2A3.2A2.2A$25.2A.A2.2A.2A2.A.2A$26.AB.3A3.3A.BA$25.2ABA
2.BA.AB2.AB2A$26.3A.B2A.2AB.3A$25.2A.A9.A.2A$26.A.2A.2A.2A.2A.A$26.B
2.4A.4A2.B$28.A3.A.A3.A$27.2B.BA3.AB.2B$29.ABA3.ABA!
Some spaceships in 23/35/3:

Code: Select all

x = 71, y = 78, rule = 23/35/3
2.A12.A11.A11.A10.A9.3A$.3A10.4A7.4A9.4A6.4A7.A2B.2A$A2.2A8.A3.2A5.2A
3.A7.B3.2A4.2A3.B7.A.A2.A.A$B4.B8.B.A.2A3.2A.A.B8.A2.B2.A2.A2.B2.A10.
A.AB2A$.AB2.2A10.BAB3.BAB11.2A3.6A3.2A11.B2.B2A$2.B2.2A12.A3.A12.B6A.
2B.6AB9.8A$5.A9.5A3.5A11.A3.A2BA3.A11.A4.A2.B$4.B9.A3.A.A.A.A3.A11.B
8.B13.A.A.B$13.A5.2A.2A5.A10.4A2.4A12.5A$13.A.B3.AB.BA3.B.A10.A.2A2.
2A.A11.A3.2A$14.BA2.B.A.A.B2.AB12.A.A2BA.A11.A4.A.A$13.2A4.AB.BA4.2A
10.2A6B2A10.A.B.BA2BA$41.2B.2A.2B12.BA3.2B$40.3A4.3A10.2A4.3A$69.A$
64.2A2.B$63.A2.A$63.A.A$15.A11.A10.3A8.3A12.B$14.4A7.4A8.A2B.2A4.2A.
2BA8.5A$13.A3.2A5.2A3.A8.2BA2BA2.A2BA2B8.A3B2.A$14.B.A.2A3.2A.A.B8.2A
2.BA4.AB2.2A6.A3BA.A.A$17.BAB3.BAB10.A2.3A2.2A2.3A2.A5.ABA3.B2A$19.A
3.A13.B2.2B.4A.2B2.B7.A5.2A$15.5A3.5A11.BA2B4.2BAB8.2A6.2A$14.A3.A.A.
A.A3.A12.3A2.3A11.B6.2BA$13.A5.2A.2A5.A10.A2.A2.A2.A14.2A2BA$13.A.B3.
AB.BA3.B.A10.BA2.2A2.AB13.A2BA$14.BA2.B.A.A.B2.AB11.A.6A.A13.ABAB$13.
2A4.AB.BA4.2A10.B2A4.2AB14.A$40.2A6.2A13.2A.A$19.2A.2A17.B6.B13.A2B3A
$15.A.4A.4A.A13.B6.B12.AB.B.3A$14.3A.B.A.A.B.3A11.2A6.2A11.3A4.2A$13.
A3.A2BA.A2BA3.A10.2A6.2A10.B7.AB$14.AB3.BA.AB3.BA10.A.AB4.BA.A9.A6.B.
A$39.A2.A4.A2.A9.2AB5.AB$40.BAB4.BAB9.B4A$39.4A4.4A12.2A$38.A3.B4.B3.
A10.A.2A$39.B2.BA2.AB2.B12.BAB$41.A2.2A2.A16.A$41.8A12.5A$40.B2A4.2AB
10.A3.A.2A$59.A3.B.A.2A$59.A.B.ABA2.2A$60.BA2.A.A3.A$38.2A10.2A7.2A5.
2A.B$38.2AB2A4.2AB2A13.AB$38.2A.2A4.2A.2A15.BA$37.2A2.2AB2.B2A2.2A12.
3A.A$36.A2B.A.2B2A2B.A.2BA10.A5.A$37.A2B2ABA2.AB2A2BA12.B2.B.A$39.A.
2AB2.B2A.A17.AB$41.A.A2.A.A20.2A$40.A2BA2.A2BA$40.A.2B2A2B.A$41.B2A2.
2AB$40.2A6.2A$44.2B$40.BAB4.BAB$41.A6.A2$37.2A3.2A2.2A3.2A$37.2ABA2.A
2.A2.AB2A$36.BA.ABA2.2A2.ABA.AB$39.B10AB$42.A4.A$43.B2AB2$42.6A$41.A
2B2A2BA$40.A2BA2.A2BA$40.AB6.BA$38.A.2A6.2A.A$37.2AB10.B2A$36.A.B.AB
6.BA.B.A$37.A14.A!
EDIT:c/4 in 23/35/3:

Code: Select all

x = 21, y = 55, rule = 23/35/3
4.2A9.2A$3.A2.A7.A2.A$2.A3.2A5.2A3.A$2.B4.B5.B4.B$.3A6.A6.3A$A3.3A2.A
BA2.3A3.A$.B3.2A.AB.BA.2A3.B$9.ABA$7.7A$5.A.2A3.2A.A$4.A2BA5.A2BA$4.A
B2A5.2ABA$4.A3.B3.B3.A$4.AB2.2A.2A2.BA$3.BA2.AB3.BA2.AB$3.3ABA5.AB3A$
3.B2.2A5.2A2.B$3.B2.2A5.2A2.B$5.2A7.2A2$8.A3.A$6.2A.A.A.2A$6.2B.A.A.
2B$5.A2B2AB2A2BA$6.2BA.A.A2B$7.BA3.AB$7.2A3.2A$6.A7.A$5.BA2.A.A2.AB$
7.7A$4.B2.2A.A.2A2.B$4.B2.2A3.2A2.B$7.A2.A2.A$4.B2.3A.3A2.B$3.2A3.BA.
AB3.2A$3.BA.A.A3.A.A.AB$5.2BA.A.A.A2B$4.AB4A.4ABA$3.AB2.A5.A2.BA$3.A
2BA7.A2BA$4.ABA7.ABA$6.3A3.3A$4.2A.ABA.ABA.2A$4.2A.A.A.A.A.2A$5.2A2.A
.A2.2A$6.A2.3B2.A$6.AB5ABA$6.A.B3.B.A$4.BA.7A.AB$4.B.A.5A.A.B$6.2A5.
2A$4.B2.A5.A2.B$3.2A2.B5.B2.2A$3.A13.A$3.B.B9.B.B!
EDIT2:A new 4c/14 in 0134/3/3:

Code: Select all

#C 0134/3/3 - 013478/378/3
x = 8, y = 6, rule = 0134/3/3
4.2A$2.2A.A$4.A$A3.B.2A$4.B2A$6.B!
I'm too shy to talk to other members.
But I want to upload my apgsearch results to Catagolue like others.
search.php?keywords=FWKnightship

Sokwe
Moderator
Posts: 1674
Joined: July 9th, 2009, 2:44 pm

Re: Spaceships in Life-like cellular automata

Post by Sokwe » July 15th, 2020, 3:58 am

Thanks LaundryPizza03 for reviving this project. Here are a few new ships found with qfind:

Code: Select all

:Matthias Merzenich, 2020:B34567/S02678:B34567/S02678:5:0:-1:16:15:6bo2bo$3bo2bo2bo2bo$4b2ob2ob2o$5bo4bo$3b10o$b3o8b3o$bo3b6o3bo$ob3ob4ob3obo$5b2o2b2o$5o2b2o2b5o$obob8obobo$bob4o2b4obo$2bo3b4o3bo$2b4ob2ob4o$6b4o!
:Matthias Merzenich, 2020:B35/S01278:B358/S01278:5:0:-1:16:22:3b2obo2bob2o$5bo4bo$6bo2bo$2b2o8b2o$4b2o4b2o3$4bobo2bobo$4bo6bo$2bo2b2o2b2o2bo2$6bo2bo$7b2o$4bo6bo$4b2ob2ob2o$3b2o2b2o2b2o$4bo6bo$3bo8bo$3o10b3o2$2bobo6bobo$3bo8bo!
:Matthias Merzenich, 2020:B3/S12367:B38/S123678:5:0:-2:18:29:2bo3b2o2b2o3bo$bo6b2o6bo$2bo2b2o4b2o2bo$2b2o4b2o4b2o$5b2o4b2o$8b2o2$3b2ob6ob2o$3b2o8b2o$b2obo3b2o3bob2o$2bobo8bobo$2bobo3b2o3bobo$5bo6bo$4b3o4b3o$3b3o6b3o$3b2o8b2o$2b5ob2ob5o$5bo6bo$5bo2b2o2bo$5b3o2b3o$3b2o8b2o$3b2ob2o2b2ob2o$5bo6bo$5b3o2b3o$5b3o2b3o$o3b3o4b3o3bo$b2o2bo6bo2b2o$2bo2bo6bo2bo$2b3o8b3o!
:Matthias Merzenich, 2020:B3456/S45:B3456/S45:7:0:-1:14:99:5b4o$5b4o$4b6o$5b4o$5bo2bo$5bo2bo2$o12bo$2b10o$14o$b2o8b2o$o12bo$bo10bo$2o10b2o$bo10bo$4o6b4o$b4o4b4o$2obob4obob2o$3bo2b2o2bo$2bobob2obobo$4b6o$3bo6bo$4b2o2b2o$3b8o$6b2o$2bo3b2o3bo$3b2ob2ob2o$2b3o4b3o$4b6o$2b10o$4bo4bo$2bob6obo$2bo8bo2$2o4b2o4b2o$bo3b4o3bo$bo4b2o4bo$3b8o$2b10o2$3b2o4b2o$2o2b6o2b2o$bo10bo$bo10bo$2bo8bo$b3o6b3o$2b2o6b2o$b12o$2b10o$b2o8b2o$2bo8bo$obob6obobo$obo2bo2bo2bobo$b5o2b5o$2ob2ob2ob2ob2o$b2o2b4o2b2o$ob3o4b3obo$2b2ob4ob2o$o2bobo2bobo2bo$3b2o4b2o$5ob2ob5o$2b10o$b3o2b2o2b3o$2bo2b4o2bo$2bo2b4o2bo$2b10o$3b8o$5b4o2$2b10o$2bob6obo$bob8obo$bo3b4o3bo$o4b4o4bo$bo3bo2bo3bo$o4bo2bo4bo$b4o4b4o$bo2bo4bo2bo$2b2ob4ob2o$b12o$2bob2o2b2obo$b3o6b3o$3bo6bo$bo10bo$2b2o6b2o$b3o6b3o$2bob2o2b2obo$bo2b2o2b2o2bo$obob2o2b2obobo$bo3bo2bo3bo$o4bo2bo4bo$bo3b4o3bo$2o3bo2bo3b2o$4b2o2b2o$bo2bo4bo2bo$3b8o$3bob4obo$4b6o$6b2o!
:Matthias Merzenich, 2020:B3456/S457:B3456/S457:7:0:-1:14:321:2bo8bo$4bo4bo$b4ob2ob4o$2b4o2b4o$b3ob4ob3o$2bo8bo$bo3bo2bo3bo$2bo2bo2bo2bo$bobobo2bobobo$2bobo4bobo$b3ob4ob3o$2b4o2b4o$b12o$3bobo2bobo$b5o2b5o$4bo4bo$3bo6bo$2b2ob4ob2o$4b6o$5bo2bo$4b6o2$3bo2b2o2bo2$5bo2bo$3b2ob2ob2o$3b2ob2ob2o$b4ob2ob4o$3b2o4b2o$b2ob2o2b2ob2o$2b3o4b3o$bob8obo$2bob6obo$b3ob4ob3o$3bob4obo$b4ob2ob4o$4bob2obo$b2ob6ob2o$2b10o$b4ob2ob4o$2b2obo2bob2o$b4ob2ob4o$2b3ob2ob3o$bobo6bobo$2b2ob4ob2o$b5o2b5o$4b6o$b2obob2obob2o$3b2o4b2o$b2obo4bob2o$2b10o$bo10bo$3bob4obo$b3ob4ob3o$3bob4obo$bobob4obobo$bob8obo$2bo8bo$b2ob6ob2o$3b2ob2ob2o$b2o2b4o2b2o$2bo8bo$3b8o$2ob3o2b3ob2o$2bobob2obobo$6o2b6o$3o3b2o3b3o$b12o$o3b6o3bo$bob8obo$o2b8o2bo$2bob6obo$4o2b2o2b4o$bo2bob2obo2bo$o3b6o3bo$bo2b6o2bo$obo2b4o2bobo$b5o2b5o$14o$b12o$obob2o2b2obobo$bobob4obobo$14o$bo3b4o3bo$o3b6o3bo$b2obob2obob2o$ob10obo$bo2b2o2b2o2bo$o3b6o3bo$4b2o2b2o$4ob4ob4o$b4o4b4o$3obob2obob3o$2b3o4b3o$obobo4bobobo$2ob2o4b2ob2o$b3ob4ob3o$ob2ob4ob2obo$b3ob4ob3o$14o$b2o2bo2bo2b2o$3o2bo2bo2b3o$bobobo2bobobo$2o2b6o2b2o$bob8obo$obob6obobo$b5o2b5o$4o6b4o$bob8obo$o2bo2b2o2bo2bo$b4ob2ob4o$ob10obo$2b10o$4obo2bob4o$b2o2bo2bo2b2o$6o2b6o$b5o2b5o$3o2b4o2b3o$b3o2b2o2b3o$6o2b6o$bob2o4b2obo$bo2bo4bo2bo$2b4o2b4o$3b2o4b2o$bob8obo$2b2o2b2o2b2o$bob8obo$2b2obo2bob2o$bo3b4o3bo$3bob4obo$b5o2b5o$2bob6obo$b2ob6ob2o$2b2ob4ob2o$ob2o2b2o2b2obo$5ob2ob5o$bob2ob2ob2obo$3o2b4o2b3o$3b2o4b2o$ob3o4b3obo$bo3b4o3bo$2obob4obob2o$3b8o$b4o4b4o$b3obo2bob3o$2bob6obo$bo2b6o2bo$2b10o$b12o$2b10o$b12o$2b10o$2b4o2b4o$bob8obo$2bob2o2b2obo$b12o$2bo3b2o3bo$bo2b2o2b2o2bo2$bo4b2o4bo$2b10o$b12o$2bob2o2b2obo$bob8obo$2b10o$b4o4b4o$2bo2b4o2bo$bo2b6o2bo$2bobob2obobo$b2o3b2o3b2o$3b8o$2b3ob2ob3o$bobobo2bobobo$2b2o6b2o$4o6b4o$b3o6b3o$obobob2obobobo$b2o3b2o3b2o$o5b2o5bo$b12o$4ob4ob4o$b3ob4ob3o$ob2o6b2obo$2b3o4b3o$2o2bo4bo2b2o$3b2o4b2o$2ob8ob2o$bob3o2b3obo$o2b8o2bo$bobob4obobo$2o4b2o4b2o$b3o2b2o2b3o$2ob8ob2o$2bobob2obobo$2ob2ob2ob2ob2o$b3ob4ob3o$obo8bobo$bobo6bobo$obo2b4o2bobo$2bob6obo$2obobo2bobob2o$3b2o4b2o$obobo4bobobo$b4o4b4o$5o4b5o$b2obob2obob2o$o2b8o2bo$b2o2bo2bo2b2o$6o2b6o$b2ob6ob2o$14o$b2obob2obob2o$2ob8ob2o$3b8o$6o2b6o$bobob4obobo$3obob2obob3o$2b4o2b4o$14o$b3ob4ob3o$o2b2o4b2o2bo$b2o2b4o2b2o$6o2b6o$b3o6b3o$3obob2obob3o$2bob6obo$o2b2o4b2o2bo$2b4o2b4o$2obobo2bobob2o$b4ob2ob4o$4obo2bob4o$b3obo2bob3o$4o6b4o$b12o$3o3b2o3b3o$b12o$o2b3o2b3o2bo$bobob4obobo$3ob2o2b2ob3o$2bobo4bobo$4obo2bob4o$bo2bob2obo2bo$3o2b4o2b3o$b2o3b2o3b2o$5ob2ob5o$b3o2b2o2b3o$o4b4o4bo$b3ob4ob3o$o2b2o4b2o2bo$b2o2b4o2b2o$4o2b2o2b4o$bo2bob2obo2bo$obobob2obobobo$b3ob4ob3o$2obob4obob2o$4bo4bo$ob2ob4ob2obo$bo2b6o2bo$3obo4bob3o$bo2b6o2bo$o5b2o5bo$b3o6b3o$4o6b4o$2bobo4bobo$4ob4ob4o$2b10o$b2obob2obob2o$b5o2b5o$2b3o4b3o$3obo4bob3o$bob3o2b3obo$14o$b2ob2o2b2ob2o$4ob4ob4o$2b10o$14o$3bo6bo$ob2ob4ob2obo$b3o6b3o$o2bo6bo2bo$o4bo2bo4bo$b12o$o2b8o2bo$bob8obo$ob10obo$b2ob6ob2o$5o4b5o$b3obo2bob3o$o5b2o5bo$bobob4obobo$obo2b4o2bobo$5b4o$3ob6ob3o$2bob6obo$2ob8ob2o$2bo3b2o3bo$o2b2o4b2o2bo$b3ob4ob3o$3obob2obob3o$bobobo2bobobo$2ob2ob2ob2ob2o$2bo2b4o2bo$ob4o2b4obo$2bob6obo$4obo2bob4o$2obobo2bobob2o$b2ob2o2b2ob2o$3o3b2o3b3o$b2o2b4o2b2o$3bobo2bobo$o3b2o2b2o3bo$b4o4b4o$4o6b4o$bob8obo$14o$bobo6bobo$ob2o6b2obo$bob8obo$b5o2b5o$4b2o2b2o$4bob2obo!
:Matthias Merzenich, 2020:B345678/S47:B345678/S47:7:0:-1:16:45:3b2o6b2o$b4o6b4o$2b2o2bo2bo2b2o$obob3o2b3obobo$o3bo6bo3bo$b6o2b6o$2obobo4bobob2o$3bobo4bobo$5o6b5o2$4o8b4o$2b3o6b3o$2o12b2o$bo2bo6bo2bo$3o10b3o$bo2bo6bo2bo$obobo6bobobo$2b5o2b5o$2o3b2o2b2o3b2o$3b3ob2ob3o$3o2b6o2b3o$2bo3b4o3bo$2ob2o6b2ob2o$b3o2b4o2b3o$3b10o$b2o2bob2obo2b2o$2bobobo2bobobo$b14o$6bo2bo$3bo2b4o2bo$2bo2b6o2bo$2bo3bo2bo3bo$4ob2o2b2ob4o$b14o$2o2b2o4b2o2b2o$b2o3b4o3b2o$ob3obo2bob3obo$b3ob6ob3o$ob2obob2obob2obo$2b2ob6ob2o$b4o2b2o2b4o$6bo2bo$3b10o2$6b4o!
:Matthias Merzenich, 2020:B345678/S478:B345678/S478:7:0:-1:15:46:6bobo$4bob3obo$5bo3bo$4bobobobo$4b7o$4b2o3b2o$3b9o$4b3ob3o2$4b2o3b2o$6bobo$4b7o$7bo$3bobo3bobo$3bob5obo$3bobo3bobo$bob4ob4obo$b4o5b4o$4ob5ob4o$2bobo2bo2bobo$obo2bobobo2bobo$ob2o3bo3b2obo$bo3b5o3bo$5o5b5o$2bobob3obobo$2ob2obobob2ob2o$b3ob5ob3o$3b2obobob2o$2bo3b3o3bo$2bob2o3b2obo$3b4ob4o$b3o2b3o2b3o$2bobo5bobo$2bobobobobobo$2b3o2bo2b3o$3b2obobob2o$2b3o5b3o$4obo3bob4o$b3ob5ob3o$b4ob3ob4o$2bob2o3b2obo$3b2ob3ob2o$5bo3bo$5b5o2$7bo!
:Matthias Merzenich, 2020:B3456/S0456:B3456/S0456:11:0:-1:9:15:2bobobo$2b2ob2o$2o5b2o$bo5bo$9o$b7o$o7bo$bo5bo$o7bo$b7o$9o$bo5bo$2o5b2o$b3ob3o$2bobobo!
:Matthias Merzenich, 2020:B34567/S0456:B34567/S0456:11:0:-1:9:33:2bobobo$2b2ob2o$2o5b2o$bo5bo$o7bo$bo5bo$9o$b7o$9o$b7o$2o5b2o$bo5bo$4ob4o$b7o$o3bo3bo$b7o$9o$bo5bo$o7bo$bo5bo$o7bo$bo5bo$o7bo$bo5bo$9o$b7o$o7bo$bo5bo$o7bo$b7o$4ob4o$b7o$bobobobo!
:Matthias Merzenich, 2020:B3456/S0456:B3456/S0456:13:0:-1:7:109:2bobo$2obob2o$bo3bo$o5bo$bo3bo$o5bo$bobobo$2obob2o$b5o$3ob3o$b2ob2o$ob3obo$bobobo$2obob2o$bobobo$3ob3o$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$2b3o$bo3bo$3bo!
:Matthias Merzenich, 2020:B34568/S0456:B34568/S0456:13:0:-1:7:112:bobobo$b5o$7o$b2ob2o$o5bo$b2ob2o$o2bo2bo$b2ob2o$3ob3o$b5o$o2bo2bo$b5o$2obob2o$b5o$7o$b2ob2o$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$2b3o$bo3bo$3bo!
:Matthias Merzenich, 2020:B34567/S0456:B34567/S0456:13:0:-1:7:86:bobobo$2bobo$obobobo$bo3bo$o5bo$b5o$7o$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bobobo$3ob3o$b2ob2o$o5bo$b5o$7o$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$b5o$7o$b5o$7o$bo3bo$o5bo$bo3bo$o5bo$2bobo$3ob3o$b5o$7o$b2ob2o$obobobo$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$7o$b5o$o5bo$b5o$7o$bo3bo$o5bo$bo3bo$o5bo$bo3bo$7o$b5o$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$bo3bo$o5bo$2b3o$bo3bo$3bo!
I have also completed searches for c/5 orthogonal ships with odd and even symmetry of search width 8 in all B3 rules for which no spaceships are known (edit: that is, no spaceships of any type are known).
Rocknlol wrote:
June 18th, 2020, 11:48 pm
I've been running sweeps of OT rules for some time now
Nice work! Do you have your statistics in a format other than an image?
-Matthias Merzenich

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » July 15th, 2020, 9:23 pm

Would you like to help me surf the forums for already-known ships?

For example, I found in the B3/S345 thread several ships found by Josh Ball in 2013, including three unrepresented speeds in that rule. They are:

Code: Select all

:Josh Ball, 2013:B3/S345:B38/S3458:5:0:-2:16:13:6bo2bo$5b2o2b2o$5b6o3$5bo4bo$6b4o$4bo6bo$o3b8o3bo$o2bo2bo2bo2bo2bo$o2bo2b4o2bo2bo$4o2b4o2b4o$bo12bo!
:Josh Ball, 2013:B3/S345:B3/S3458:7:0:-3:18:20:4bobo4bobo$bobobo2b2o2bobobo$3b3o6b3o$bobob8obobo$2bo2bo6bo2bo$b5o6b5o$2obob2o4b2obob2o$2b2obob4obob2o$b2o2bo6bo2b2o$b3ob8ob3o$3bobo6bobo$3bobo6bobo$2b2ob2o4b2ob2o$bobobo6bobobo$2b2obo6bob2o$o2bob2o4b2obo2bo$5bo6bo$3bobobo2bobobo$bob4ob2ob4obo$6ob4ob6o!
:Josh Ball, 2013:B3/S345:B378/S3458:4:-1:-1:19:19:14bo$14bobo$12b2obobo$12bobobo$2bo8bobobob2o$obo7bobobobo$2o7bobobob2o$bo6bobobobo$6b2obobobo$3o3bobobobo$2o5bobobo$4b3obobo$4b2obob2o$6b2o$6b2o2$9bo3b2o$8b2ob2o$8b2o2b2o!
:Josh Ball, 2013:B3/S345:B3/S345:7:0:-2:15:29:5bo3bo$5b2ob2o$6bobo$2bo2b2ob2o2bo$ob2o2bobo2b2obo$3b3o3b3o$4bo5bo2$b3ob2ob2ob3o$2o3b2ob2o3b2o$2bobo5bobo$2b3o5b3o$3b4ob4o$bo3b2ob2o3bo$2o2bobobobo2b2o$o2bob2ob2obo2bo$6bobo$3b4ob4o$2bo3bobo3bo$2obob2ob2obob2o$b3o2bobo2b3o$2b2o2ob2ob2o$3b4ob4o$4b2o3b2o$3b2o5b2o$3b2o5b2o$2b4o3b4o$2b4o3b4o$3b2o5b2o!
:Josh Ball, 2013:B3/S345:B3/S3458:7:0:-2:18:51:7b4o$8b2o$6b6o$6b2o2b2o$7bo2bo$6b2o2b2o$7b4o$5bob4obo$bob2obo4bob2obo$b2o3bo4bo3b2o$2b3o8b3o$5b2o4b2o$4b2o6b2o$b2o2b2o4b2o2b2o$2b2obo6bob2o$o2bo2o4b2obo2bo$b3obo6bob3o$bo3b2o4b2o3bo$2o3bo6bo3b2o$bo3b2o4b2o3bo$2ob3o2b2o2b3ob2o$b3ob8ob3o$2ob2o2b4o2b2ob2o$b2o12b2o$2o2b2o6b2o2b2o$b4o8b4o$2ob2o8b2ob2o$2b2o10b2o$bob4ob2ob4obo$2b2ob2o4b2ob2o$3bobo2b2o2bobo$b2obo8bob2o$2b14o$b2ob4o2b4ob2o$2b2o2bo4bo2b2o$b2o5b2o5b2o$2b2o4b2o4b2o$b2o12b2o$2b2o3b4o3b2o$b2o5b2o5b2o$2b2o10b2o$2bo12bo$4o2bob2obo2b4o$2o4b2o2b2o4b2o$3b3ob4ob3o$4b2o2b2o2b2o$3b2o8b2o2$b2o2b2o4b2o2b2o$3b2o8b2o$3b2o8b2o!
It is the same thread where he first posted the (2,1)c/6 in the database.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » July 15th, 2020, 10:49 pm

I found an old thread where the p5 knighships were first described. A user named eran911 found a (14,9)c/165 puffer in B368/S237 and wonders if it could be corderized. It is:

Code: Select all

x = 19, y = 22, rule = B368/S237
13bo$12bobo$12bobo$13bo$8b2o6b3o$8b2o3$16bo$15bob2o$13bo4bo$o5b2o5bo4b
o$obobo3bo2b2o3b2o$2o2b2obo3b2o$2bo3bo7bo$2bo12b2o$b2o$2b2o2b4o$3bo2b
3obo$5bobo2b2o$6b5o$6b2o!
A (4,2)c/44 wickstretcher in B36/S24567 is also mentioned, but a spaceship at that speed is unlikely to exist. I'm interested in seeing if we could find more like them. More recently, AforAmpere and I found a strong (2,1)c/7 partial in B36/S23. I was going to search the next width (margin 15) in LSSS, but got sidelined by other searches like the c/4o one I'm currently running in Seeds.

Ikpx's source code specifies CGoL exactly once, but an attempt to adapt it to other rules ran into a roadblock. Details here.

EDIT: More partials, all found by Sokwe in 2010 (see here):

Code: Select all

x = 12, y = 76, rule = B35/S0246
b2ob3o3bo$bo4bobobo$bobobo2b2o$5bo2b2o$o2b3o2b3o$2o4bo$bo2b6o$2b2ob3o
2bo$5b3ob2o$bob2ob6o$b4o2bo2bo$bobo3b2obo$ob2o3b3o$2o3bo2b2o$2bo2b2obo
$bobob4o$2b3o2b2o$5b2o$3bo2bo2bobo$5b2o$3b2o2b2obo$3bob2ob2o$4b2o2bo$
2b2obo$2bo2bo$3b2obobo$4b2o4bo$3bo5bo$2b2ob2o2b2o$7b2o$2b2obobo$2bo4b
2obo$b2obobobo$2bobobob2o$2b5o$3b2ob2obo$3b2ob3o$4bob2o$4bo2bo$2obobob
o$b2obob3o$bo2bo2bo$b6o$5bobobo$o4b2obo$o4b2o2bo$2bo$4ob4o$4b3ob2o$4b
2o2b3o$ob4obo$o4bo2bo$b2o5bo$2bob4o$4bobo$3bobo$2bo8bo$b2obobobo$2b3ob
obobo$b6o3b2o$o5bobobo$ob3o$2b2obo$6bo$bobo2b2o$3bob2o$2b2o2bo$2bo4bo$
2bobo3bo$3b3o$2b2obobo$bob2o3bo$b2o2bobobo$b2o2bobobo$2b5o$3b3o!

Code: Select all

x = 12, y = 40, rule = B35/S1246
2bobo5b2o$3ob2o4bo$10bo$b2obo2bob3o$2b3obo2b2o$2bo2b4o2bo$2bob2ob3o$bo
2bo$bobo5bo$bo3bo2b2o$bobo3b2o$2b2o2b6o$2bo3b4o$2bobo3bo$2b2ob2o$6bo$
2bo4b2o$2b2ob2ob4o$3bobobob3o$o5bobo$3o2b2obo$b2obo2b4o$3bob2o$b2o4b3o
$bo4bobobo$3o2bob2o$ob2ob2ob2obo$b2ob3o$2bo2b2o2bo$2obo5bo$obobob2ob2o
$bobo3bobo$bobo3b2o$4ob2obo$2b2o$bo4b2o$3bob2obo$2bobobo$b5ob2o$2b4o!

Code: Select all

x = 10, y = 24, rule = B357/S1358
bobobobobo$2ob5obo$bobo2b2o$o6bobo$bob3o$b3o4bo$obo2bo$b5o$3bobobobo$
2b8o$b2ob2obo$b2o$2b3o2bo$2bobob2o$bo4bo$bo3bobo$bob2o2bo$bob4o$2bobob
2o$3bobo$b2o4bo$bobo2bo$bobobo$2b3o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

Sokwe
Moderator
Posts: 1674
Joined: July 9th, 2009, 2:44 pm

Re: Spaceships in Life-like cellular automata

Post by Sokwe » July 15th, 2020, 11:56 pm

LaundryPizza03 wrote:
July 15th, 2020, 9:23 pm
Would you like to help me surf the forums for already-known ships?
I'm not sure what you've already looked through. The obvious thing is to search through each of the Life-like threads and check any posted spaceships against those in the database. The other thing to do is use the advanced search feature to find all posts by Josh Ball (Velcrorex) in the Other Cellular Automata board. Most of them will contain spaceships or discussions of spaceships. For example, this post by Josh Ball contains a 2c/5 ship not currently found in the database. There are probably a handful of additional spaceships in the Thread for Your Accidental Discoveries that Aren't in CGOL and Miscellaneous Discoveries in Other Cellular Automata.

Also, Glider 21575 was found by Nicolay Beluchenko, not Artem Dergachev. See this post.

Finally, here are three new 2c/4 spaceships:

Code: Select all

:Matthias Merzenich, 2020:B38/S12367:B38/S12367:4:0:-2:17:88:2bobo7bobo$7bobo$o2bo2bo3bo2bo2bo$5b3ob3o$obob3obob3obobo$4bo7bo$2o3b2o3b2o3b2o$3b2o3bo3b2o$2o2bo7bo2b2o$7b3o$4obo5bob4o$5b2o3b2o$4obo5bob4o$4b2obobob2o$3o3bo3bo3b3o$4b3obob3o$4ob3ob3ob4o$2bo3b2ob2o3bo$2o3bo5bo3b2o$2bo2b3ob3o2bo$2o2bo7bo2b2o$4bob2ob2obo$2obo2bo3bo2bob2o$6b2ob2o$5obo3bob5o$4bobo3bobo$4o9b4o$3bo4bo4bo$3o3b5o3b3o$5b2obob2o$2obo9bob2o$2b2ob2o3b2ob2o$2obo9bob2o$2b2o9b2o$3ob9ob3o$3bobo5bobo$4o2bo3bo2b4o$6bo3bo$2obo4bo4bob2o$8bo$3o3b5o3b3o$8bo$4o4bo4b4o$6b5o$4o2b5o2b4o$4bo2b3o2bo$4o2b2ob2o2b4o$4b2o5b2o$6o2bo2b6o2$5o7b5o$3b2o7b2o$2o5b3o5b2o$2bo11bo$5o7b5o$3b2o3bo3b2o$3o3bobobo3b3o$3b11o$7o3b7o2$3o3bobobo3b3o$5bo2bo2bo$4ob2o3b2ob4o$7b3o$6o5b6o$5bob3obo$5o7b5o$5bob3obo$7o3b7o$7b3o$6o2bo2b6o$5b3ob3o$5o7b5o2$2o13b2o$3bo9bo$2o4bo3bo4b2o$2b2o4bo4b2o$2o13b2o$2b5obob5o$2o6bo6b2o$3bo2b2ob2o2bo$2o6bo6b2o$bob2ob5ob2obo$bo3b2o3b2o3bo$2b2o2bo3bo2b2o$3b3o5b3o$4bo7bo!
:Matthias Merzenich, 2020:B38/S123678:B38/S123678:4:0:-2:17:91:4bo7bo$4bob5obo$8bo$6b5o$3b3o5b3o$2b3ob2ob2ob3o$bobo3bobo3bobo$3bo3b3o3bo$3b11o$4bobobobobo$bob4obob4obo$bo6bo6bo$2b13o$3bo2bo3bo2bo$4bo7bo$3b2o2bobo2b2o$2b2obo5bob2o$2b2obo5bob2o$3bo2bo3bo2bo$3bob2o3b2obo2$2bo11bo$5b7o$2bo11bo$3b4o3b4o$2b2o3b3o3b2o$bob2ob2ob2ob2obo$2bo3b2ob2o3bo$b2o3b2ob2o3b2o$b2o3b2ob2o3b2o2$3bo2b2ob2o2bo$o2b2o2bobo2b2o2bo$4bob2ob2obo$5o2bobo2b5o$2b2o3b3o3b2o$2o6bo6b2o$4bobobobobo$2o2b2o2bo2b2o2b2o$5b2o3b2o$2o2bobo3bobo2b2o$5bo5bo$2o4b2ob2o4b2o$6bo3bo$2o5b3o5b2o$7b3o$2o13b2o2$2o13b2o2$2o3b3ob3o3b2o$2b2o2bo3bo2b2o$2obo2bobobo2bob2o$2b2o2bobobo2b2o$2obo9bob2o$5b3ob3o$4o2b5o2b4o2$5obobobob5o$6bo3bo$5ob2ob2ob5o$4bobobobobo$3o3b5o3b3o2$17o$8bo$2o4b2ob2o4b2o$3bo2bo3bo2bo$2ob2obo3bob2ob2o$3bo3bobo3bo$2ob2o2bobo2b2ob2o$7bobo$2o2b4ob4o2b2o2$2obobo5bobob2o$3bobo5bobo$2obobo5bobob2o$3bobo5bobo$2obobob3obobob2o$3bobob3obobo$2obobo2bo2bobob2o$3bobob3obobo$2obob7obob2o$3bo4bo4bo$2obob2o3b2obob2o$3bo4bo4bo$2obob2obob2obob2o$bobo2bo3bo2bobo$bo2b2o5b2o2bo$2b3o7b3o$3bo9bo!
:Matthias Merzenich, 2020:B3457/S1238:B3457/S1238:4:0:-2:15:20:7bo$b2o2bo3bo2b2o$o2bobo3bobo2bo$o2bo2b3o2bo2bo$b3o7b3o$7bo$6b3o$o2b9o2bo$5bo3bo$4bobobobo$o5bobo5bo$b4obobob4o$5bobobo$4bo5bo$3bo3bo3bo$5bobobo$3b2o2bo2b2o$7bo$5bo3bo$6b3o!

Code: Select all

x = 17, y = 88, rule = B38/S12367
2bobo7bobo$7bobo$o2bo2bo3bo2bo2bo$5b3ob3o$obob3obob3obobo$4bo7bo$2o3b
2o3b2o3b2o$3b2o3bo3b2o$2o2bo7bo2b2o$7b3o$4obo5bob4o$5b2o3b2o$4obo5bob
4o$4b2obobob2o$3o3bo3bo3b3o$4b3obob3o$4ob3ob3ob4o$2bo3b2ob2o3bo$2o3bo
5bo3b2o$2bo2b3ob3o2bo$2o2bo7bo2b2o$4bob2ob2obo$2obo2bo3bo2bob2o$6b2ob
2o$5obo3bob5o$4bobo3bobo$4o9b4o$3bo4bo4bo$3o3b5o3b3o$5b2obob2o$2obo9bo
b2o$2b2ob2o3b2ob2o$2obo9bob2o$2b2o9b2o$3ob9ob3o$3bobo5bobo$4o2bo3bo2b
4o$6bo3bo$2obo4bo4bob2o$8bo$3o3b5o3b3o$8bo$4o4bo4b4o$6b5o$4o2b5o2b4o$
4bo2b3o2bo$4o2b2ob2o2b4o$4b2o5b2o$6o2bo2b6o2$5o7b5o$3b2o7b2o$2o5b3o5b
2o$2bo11bo$5o7b5o$3b2o3bo3b2o$3o3bobobo3b3o$3b11o$7o3b7o2$3o3bobobo3b
3o$5bo2bo2bo$4ob2o3b2ob4o$7b3o$6o5b6o$5bob3obo$5o7b5o$5bob3obo$7o3b7o$
7b3o$6o2bo2b6o$5b3ob3o$5o7b5o2$2o13b2o$3bo9bo$2o4bo3bo4b2o$2b2o4bo4b2o
$2o13b2o$2b5obob5o$2o6bo6b2o$3bo2b2ob2o2bo$2o6bo6b2o$bob2ob5ob2obo$bo
3b2o3b2o3bo$2b2o2bo3bo2b2o$3b3o5b3o$4bo7bo!

Code: Select all

x = 17, y = 91, rule = B38/S123678
4bo7bo$4bob5obo$8bo$6b5o$3b3o5b3o$2b3ob2ob2ob3o$bobo3bobo3bobo$3bo3b3o
3bo$3b11o$4bobobobobo$bob4obob4obo$bo6bo6bo$2b13o$3bo2bo3bo2bo$4bo7bo$
3b2o2bobo2b2o$2b2obo5bob2o$2b2obo5bob2o$3bo2bo3bo2bo$3bob2o3b2obo2$2bo
11bo$5b7o$2bo11bo$3b4o3b4o$2b2o3b3o3b2o$bob2ob2ob2ob2obo$2bo3b2ob2o3bo
$b2o3b2ob2o3b2o$b2o3b2ob2o3b2o2$3bo2b2ob2o2bo$o2b2o2bobo2b2o2bo$4bob2o
b2obo$5o2bobo2b5o$2b2o3b3o3b2o$2o6bo6b2o$4bobobobobo$2o2b2o2bo2b2o2b2o
$5b2o3b2o$2o2bobo3bobo2b2o$5bo5bo$2o4b2ob2o4b2o$6bo3bo$2o5b3o5b2o$7b3o
$2o13b2o2$2o13b2o2$2o3b3ob3o3b2o$2b2o2bo3bo2b2o$2obo2bobobo2bob2o$2b2o
2bobobo2b2o$2obo9bob2o$5b3ob3o$4o2b5o2b4o2$5obobobob5o$6bo3bo$5ob2ob2o
b5o$4bobobobobo$3o3b5o3b3o2$17o$8bo$2o4b2ob2o4b2o$3bo2bo3bo2bo$2ob2obo
3bob2ob2o$3bo3bobo3bo$2ob2o2bobo2b2ob2o$7bobo$2o2b4ob4o2b2o2$2obobo5bo
bob2o$3bobo5bobo$2obobo5bobob2o$3bobo5bobo$2obobob3obobob2o$3bobob3obo
bo$2obobo2bo2bobob2o$3bobob3obobo$2obob7obob2o$3bo4bo4bo$2obob2o3b2obo
b2o$3bo4bo4bo$2obob2obob2obob2o$bobo2bo3bo2bobo$bo2b2o5b2o2bo$2b3o7b3o
$3bo9bo!

Code: Select all

x = 15, y = 20, rule = B3457/S1238
7bo$b2o2bo3bo2b2o$o2bobo3bobo2bo$o2bo2b3o2bo2bo$b3o7b3o$7bo$6b3o$o2b9o
2bo$5bo3bo$4bobobobo$o5bobo5bo$b4obobob4o$5bobobo$4bo5bo$3bo3bo3bo$5bo
bobo$3b2o2bo2b2o$7bo$5bo3bo$6b3o!
I have also completed searches for 2c/4 orthogonal ships with odd and even symmetry of search width 8 for all B3 rules in which no spaceships of any type are known.
-Matthias Merzenich

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » July 15th, 2020, 11:58 pm

Sokwe wrote:
July 15th, 2020, 11:56 pm
Also, Glider 21575 was found by Nicolay Beluchenko, not Artem Dergachev. See this post.
Which one is that? What year was it found?

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

Sokwe
Moderator
Posts: 1674
Joined: July 9th, 2009, 2:44 pm

Re: Spaceships in Life-like cellular automata

Post by Sokwe » July 16th, 2020, 12:08 am

LaundryPizza03 wrote:
July 15th, 2020, 11:58 pm
Sokwe wrote:
July 15th, 2020, 11:56 pm
Also, Glider 21575 was found by Nicolay Beluchenko, not Artem Dergachev. See this post.
Which one is that? What year was it found?
It's the c/3 diagonal ship in seeds (B2/S) found in 2007. Run David Eppstein's database program with 21575 as the only parameter.
-Matthias Merzenich

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » July 16th, 2020, 5:56 am

I've exhausted all the Accidental Discoveries posts for new ships. I forgot to record what exactly I found, but aside from the one you mentioned, one of them is a smaller c/2o in B3478/S24578.

Code: Select all

#gmc_nxtman, 2015
x = 11, y = 12, rule = B3478/S24578
7bobo$4bo2bo$5b3o2bo$8bobo$4bo3b2o$2bob5o$bo4bo$2b2ob2o$3bob2obo$2bobo
b2o$2obo2b3o$bo!
I can say that the specific spaceship you mentioned will be in the next update. I also found a few oscillators not in the DB; one of them is a reduction of a replicator shuttle in the same post as that 2c/5o.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » July 16th, 2020, 8:43 am

(2,1)c/5 is looking really promising in Amoeba — this partial preserves 85 rows!

Code: Select all

x = 14, y = 88, rule = B357/S1358
2bo$2bobo$bob3o$bo3bobo$bobobobo$2bo$bo2b3o$2b4o2$2ob2o$bo3b2o$o2bobo$
o4bo2bo$4b2obo$8bo$2b2o3b2o$3bobo2b2o$3bo3bob2o$5b4obo$2bo2b4o$3bo5b2o
$4b2o2bo2bo$3b2obob2obo$2bobo2bobobo$2bobo3b3o$4b6o$bo2b2o3b3o$3bo3bob
ob2o$2bo2b3obobo$5b2o2bo2bo$8b3o2bo$6bo2b3o$5bo2b3o$5b2obo2bo$4b2o3bob
o$2b2ob2o4bo$2b3obobo2b2o$bobob3ob2o$b2o5bobo$4b2o2bo$6b2ob2o$3b3obob
2o$2bo6bo$2bo5bo$3bobo3bo$bob3obob2o$2obo3b5o$2ob4o2b3o$9b2obo$3bobo2b
obobo$b2obob3o2b2o$b2obo6bobo$2bo4bo2bo2bo$3bo4bo4bo$6b3o2bo$b4obo2b3o
$2bo3b3ob2o$2bobo2bo2b2o$4b2o2b2o2bo$3bobobobobo$4b2obob2o$4b3obobo$b
4obo2bobo$o2b6o$2b4ob3o2bo$2bobobob2o2bo$obo2b2o2bobo$2b2o2b2ob2obo$2b
3o3b2o$b3o2bob3o$2o3b3o2bo$obo$3bo2bo2b2o$3b3o2bobo$2b3o3b2o2bo$2b3o2b
2o3bo$b2o8b2o$bobobo3bo$bob4ob2o$4obob2ob3o$obob2ob4o$4bo4bobo$2b2o3bo
bo2b2o$6b2ob4o$3bob2o2bo3bo$bobobobo2bob2o$3b3o3bobobo$bo2b4o3b3o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

User avatar
A for awesome
Posts: 2098
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Spaceships in Life-like cellular automata

Post by A for awesome » July 16th, 2020, 11:56 am

Sokwe wrote:
July 15th, 2020, 11:56 pm
Finally, here are three new 2c/4 spaceships:
[...]

Code: Select all

x = 15, y = 20, rule = B3457/S1238
7bo$b2o2bo3bo2b2o$o2bobo3bobo2bo$o2bo2b3o2bo2bo$b3o7b3o$7bo$6b3o$o2b9o
2bo$5bo3bo$4bobobobo$o5bobo5bo$b4obobob4o$5bobobo$4bo5bo$3bo3bo3bo$5bo
bobo$3b2o2bo2b2o$7bo$5bo3bo$6b3o!
Impressive! Of all the rules I would think might have spaceships, B3457/S1238 would not be one of them.
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

Sokwe
Moderator
Posts: 1674
Joined: July 9th, 2009, 2:44 pm

Re: Spaceships in Life-like cellular automata

Post by Sokwe » July 17th, 2020, 12:35 am

A for awesome wrote:
July 16th, 2020, 11:56 am
Impressive! Of all the rules I would think might have spaceships, B3457/S1238 would not be one of them.
Random patterns in that rule expand quickly with blotchy internal chaos. 2c/4 ships are often the easiest ships to find in such rules. That particular ship was the only thing found in my width-8 2c/4 sweep of B3 rules without any known ships.

I have been examining a few rules with B3456 and without any of S123. Such rules often favor odd-period ships with displacement 1. I recently found c/7 ships in B3456/S45 and B345678/S47. It turns out, they also have relatively small c/9 and c/11 ships:

Code: Select all

x = 33, y = 142, rule = B3456/S45
26b4o$24bo2b2o2bo2$24b8o$25b6o$24b8o$25b6o$24b2ob2ob2o2$24b3o2b3o$26b
4o$24b3o2b3o$25b6o$24bobo2bobo$25b2o2b2o$24bobo2bobo$25b6o$24bo2b2o2bo
2$24bo6bo$25bob2obo$24b8o$26bo2bo$25b6o2$24b2o4b2o$25bo4bo$24bo2b2o2bo
$25b6o3$24bob4obo$24b8o$23bo8bo$24bo6bo$24bo6bo2$25b6o$26b4o$25bo4bo$
24bobo2bobo$24bo6bo$24b8o$25bob2obo$24bo6bo2$24bo6bo$27b2o$24b8o$24b3o
2b3o$26b4o$24b3o2b3o$25bo4bo$24bo6bo$25bo4bo$24b8o4$24b2o4b2o$25b6o$
25b2o2b2o$24b2ob2ob2o$25bo4bo$24bo6bo$25bo4bo$24b3o2b3o$25b2o2b2o$24b
8o$25b2o2b2o$24b8o$25b6o$24b2ob2ob2o$25bo4bo$24bo6bo$25bo4bo$24bob4obo
$24b2ob2ob2o2$24bo6bo$25bo4bo$24b8o$26b4o$24bo6bo$25bo4bo$23bobo4bobo
2$24b2ob2ob2o$23b3o4b3o$26b4o$23b3o4b3o$26b4o$23bo2b4o2bo$24b8o$23b10o
2$23b3o4b3o$24bo6bo$23b3o4b3o$25b6o$24b8o$26b4o$24b8o2$23b2o6b2o$25bo
4bo$23b10o$24b8o$23b3o4b3o$24bobo2bobo$23b3o4b3o$24b2o4b2o$23bo8bo$24b
o2b2o2bo$23b10o$24b8o$23b10o$24bob4obo$23bo8bo$25b6o$23b4o2b4o$25bo4bo
$23b3o4b3o$24b2o4b2o$24bo6bo2$23b2o6b2o$24bo2b2o2bo$23bo2b4o2bo$26b4o$
23b10o$4bo3bo15b3o2b3o$2bo7bo$3b2o3b2o$3o3bo3b3o10bob6obo$2bobobobobo
14b6o$3ob2ob2ob3o11bo6bo$2b3o3b3o14bo4bo$b2o3bo3b2o11b2o6b2o$6bo17b2o
4b2o$3bo5bo14b8o$5b3o18b4o!

Code: Select all

x = 33, y = 70, rule = B345678/S47
5b3o$6bo$2b3obob3o$2bo3bo3bo$bo2b5o2bo$2b4ob4o$2b4ob4o$3bob3obo$4bo3bo
$2bo3bo3bo$3b2obob2o$2b4ob4o$2bobobobobo$2bo2b3o2bo$bobob3obobo$bo2bo
3bo2bo$4b5o$bob3ob3obo$2bob5obo$bob3ob3obo$2bo2bobo2bo$bobobobobobo$2b
2ob3ob2o$bo2b2ob2o2bo$2bo2b3o2bo$2b4ob4o$bobobobobobo$b2o7b2o$2ob2obob
2ob2o$bo3b3o3bo$2b3obob3o$b3o2bo2b3o15bobo$3bob3obo18bo$bob2o3b2obo14b
5o$4bo3bo18bobo$bo2b5o2bo13bobobobo$bo2bobobo2bo14b2ob2o$4bo3bo16b2obo
b2o$bo3b3o3bo13bobobobo$2b2obobob2o15b5o$2b3obob3o14b2obob2o$b2ob5ob2o
16bo$3bobobobo15bo2bo2bo$o2bobobobo2bo12b7o$2bob5obo$o2bob3obo2bo12b2o
bob2o$b2obo3bob2o16bo$bobob3obobo15b3o$2obo5bob2o12b7o$2b2obobob2o17bo
$4o5b4o12b2o3b2o$ob2o2bo2b2obo15bo$3bo2bo2bo15bob3obo$3o3bo3b3o13b5o$
2b2o2bo2b2o14b3ob3o$2obo5bob2o13b2ob2o$b2ob2ob2ob2o13bo2bo2bo$5obob5o$
bo9bo13b2obob2o$2bo2b3o2bo15bobobo$b3ob3ob3o13b2obob2o$3b2o3b2o16b5o$b
11o12bobobobobo$2bob5obo13bob2ob2obo$2b3obob3o$b3ob3ob3o12b2obobob2o$
2bobo3bobo15b2ob2o$2bo2b3o2bo16b3o$5b3o$4bobobo19bo!
I also took another look at B345678/S48, in which I failed to find a c/7 ship earlier (searched up to search-width 8). This rule has a reasonably-sized c/9 ship, which is the first known ship in this rule:

Code: Select all

x = 13, y = 57, rule = B345678/S48
2b3o3b3o$bo2bobobo2bo$bob7obo$bobo2bo2bobo$bob7obo$2b2o5b2o$4bo3bo$2b
4ob4o$bobob3obobo$4bo3bo$b2o7b2o$5b3o$bo3bobo3bo$2bo2bobo2bo$b3ob3ob3o
$3b7o$3bo2bo2bo$4b2ob2o$4bo3bo$3bo2bo2bo2$3bob3obo$2bo2bobo2bo2$2bo2b
3o2bo$3b2o3b2o$2bob2ob2obo2$2b2o5b2o$bo2b5o2bo$3bo5bo$o2b7o2bo$b3ob3ob
3o$2o9b2o$4b5o$4o5b4o$4b2ob2o$2bo7bo$5bobo$3b7o$3b3ob3o$3b2obob2o$2b4o
b4o$3b3ob3o$2b2obobob2o$4b5o$2b3o3b3o$5b3o$2b4ob4o$obobobobobobo$ob9ob
o$2b2ob3ob2o$2b3o3b3o$4bo3bo$4b2ob2o2$6bo!
Here are the database entries for these five new ships:

Code: Select all

:Matthias Merzenich, 2020:B345678/S48:B345678/S48:9:0:-1:13:57:2b3o3b3o$bo2bobobo2bo$bob7obo$bobo2bo2bobo$bob7obo$2b2o5b2o$4bo3bo$2b4ob4o$bobob3obobo$4bo3bo$b2o7b2o$5b3o$bo3bobo3bo$2bo2bobo2bo$b3ob3ob3o$3b7o$3bo2bo2bo$4b2ob2o$4bo3bo$3bo2bo2bo2$3bob3obo$2bo2bobo2bo2$2bo2b3o2bo$3b2o3b2o$2bob2ob2obo2$2b2o5b2o$bo2b5o2bo$3bo5bo$o2b7o2bo$b3ob3ob3o$2o9b2o$4b5o$4o5b4o$4b2ob2o$2bo7bo$5bobo$3b7o$3b3ob3o$3b2obob2o$2b4ob4o$3b3ob3o$2b2obobob2o$4b5o$2b3o3b3o$5b3o$2b4ob4o$obobobobobobo$ob9obo$2b2ob3ob2o$2b3o3b3o$4bo3bo$4b2ob2o2$6bo!
:Matthias Merzenich, 2020:B3456/S45:B34568/S45:9:0:-1:13:11:4bo3bo$2bo7bo$3b2o3b2o$3o3bo3b3o$2bobobobobo$3ob2ob2ob3o$2b3o3b3o$b2o3bo3b2o$6bo$3bo5bo$5b3o!
:Matthias Merzenich, 2020:B345678/S47:B345678/S47:9:0:-1:13:70:5b3o$6bo$2b3obob3o$2bo3bo3bo$bo2b5o2bo$2b4ob4o$2b4ob4o$3bob3obo$4bo3bo$2bo3bo3bo$3b2obob2o$2b4ob4o$2bobobobobo$2bo2b3o2bo$bobob3obobo$bo2bo3bo2bo$4b5o$bob3ob3obo$2bob5obo$bob3ob3obo$2bo2bobo2bo$bobobobobobo$2b2ob3ob2o$bo2b2ob2o2bo$2bo2b3o2bo$2b4ob4o$bobobobobobo$b2o7b2o$2ob2obob2ob2o$bo3b3o3bo$2b3obob3o$b3o2bo2b3o$3bob3obo$bob2o3b2obo$4bo3bo$bo2b5o2bo$bo2bobobo2bo$4bo3bo$bo3b3o3bo$2b2obobob2o$2b3obob3o$b2ob5ob2o$3bobobobo$o2bobobobo2bo$2bob5obo$o2bob3obo2bo$b2obo3bob2o$bobob3obobo$2obo5bob2o$2b2obobob2o$4o5b4o$ob2o2bo2b2obo$3bo2bo2bo$3o3bo3b3o$2b2o2bo2b2o$2obo5bob2o$b2ob2ob2ob2o$5obob5o$bo9bo$2bo2b3o2bo$b3ob3ob3o$3b2o3b2o$b11o$2bob5obo$2b3obob3o$b3ob3ob3o$2bobo3bobo$2bo2b3o2bo$5b3o$4bobobo!
:Matthias Merzenich, 2020:B3456/S45:B3456/S45:11:0:-1:10:142:3b4o$bo2b2o2bo2$b8o$2b6o$b8o$2b6o$b2ob2ob2o2$b3o2b3o$3b4o$b3o2b3o$2b6o$bobo2bobo$2b2o2b2o$bobo2bobo$2b6o$bo2b2o2bo2$bo6bo$2bob2obo$b8o$3bo2bo$2b6o2$b2o4b2o$2bo4bo$bo2b2o2bo$2b6o3$bob4obo$b8o$o8bo$bo6bo$bo6bo2$2b6o$3b4o$2bo4bo$bobo2bobo$bo6bo$b8o$2bob2obo$bo6bo2$bo6bo$4b2o$b8o$b3o2b3o$3b4o$b3o2b3o$2bo4bo$bo6bo$2bo4bo$b8o4$b2o4b2o$2b6o$2b2o2b2o$b2ob2ob2o$2bo4bo$bo6bo$2bo4bo$b3o2b3o$2b2o2b2o$b8o$2b2o2b2o$b8o$2b6o$b2ob2ob2o$2bo4bo$bo6bo$2bo4bo$bob4obo$b2ob2ob2o2$bo6bo$2bo4bo$b8o$3b4o$bo6bo$2bo4bo$obo4bobo2$b2ob2ob2o$3o4b3o$3b4o$3o4b3o$3b4o$o2b4o2bo$b8o$10o2$3o4b3o$bo6bo$3o4b3o$2b6o$b8o$3b4o$b8o2$2o6b2o$2bo4bo$10o$b8o$3o4b3o$bobo2bobo$3o4b3o$b2o4b2o$o8bo$bo2b2o2bo$10o$b8o$10o$bob4obo$o8bo$2b6o$4o2b4o$2bo4bo$3o4b3o$b2o4b2o$bo6bo2$2o6b2o$bo2b2o2bo$o2b4o2bo$3b4o$10o$b3o2b3o3$ob6obo$2b6o$bo6bo$2bo4bo$2o6b2o$b2o4b2o$b8o$3b4o!
:Matthias Merzenich, 2020:B345678/S47:B345678/S47:11:0:-1:9:39:3bobo$4bo$2b5o$3bobo$bobobobo$2b2ob2o$b2obob2o$bobobobo$2b5o$b2obob2o$4bo$bo2bo2bo$b7o2$b2obob2o$4bo$3b3o$b7o$4bo$b2o3b2o$4bo$bob3obo$2b5o$b3ob3o$2b2ob2o$bo2bo2bo2$b2obob2o$2bobobo$b2obob2o$2b5o$obobobobo$ob2ob2obo2$2obobob2o$2b2ob2o$3b3o2$4bo!
Edit: I completed searches for period-6 c/6 orthogonal ships with odd and even symmetry of search-width 7 for all rules in which no spaceships of any type are known. Unfortunately, I didn't find any ships.

Edit 2: Here are c/5 ships in two adjacent rules. The B3456/S4578 ship is the first known ship in this rule.

Code: Select all

x = 20, y = 228, rule = B3456/S4578
6bo6bo$7bo4bo$5bobob2obobo$3bo2b8o2bo$4b3ob4ob3o$3b3ob6ob3o$5b10o$2bo
2b4o2b4o2bo$2bo2b10o2bo$4bobob4obobo$3b14o$4b12o$3bobob6obobo$4bo3b4o
3bo$3b14o$4b12o$3bo4b4o4bo$5b4o2b4o$4bo2b2o2b2o2bo$6bo6bo$5b3ob2ob3o$
6bo2b2o2bo$5bob2o2b2obo$6b3o2b3o$5b10o$8b4o$5b2ob4ob2o$6bo2b2o2bo$5bob
o4bobo$6bo2b2o2bo$8b4o$3b2o3b4o3b2o$4bo2b6o2bo$3bo4bo2bo4bo$4bob8obo$
3b2obo2b2o2bob2o$4bo2bob2obo2bo$3b3ob2o2b2ob3o$4b4ob2ob4o$3b14o$4b2o2b
o2bo2b2o$3b14o$4b3o6b3o$3b2ob8ob2o$4b3o6b3o$3b2o2b6o2b2o$4bo2b2o2b2o2b
o$3bobo2b4o2bobo$4b5o2b5o$3bo2b2ob2ob2o2bo$4b5o2b5o$3b5o4b5o$4bobob4ob
obo$3b14o$4b12o$3b14o$4bo4b2o4bo$5b2o6b2o$3bob2o6b2obo$5b10o$3b14o$4bo
bob4obobo$3bo2b2ob2ob2o2bo$4b4ob2ob4o$3b3o3b2o3b3o$4b3ob4ob3o$3b2obob
4obob2o$4bob3o2b3obo$3b5ob2ob5o$4b12o$3b4ob4ob4o$4b3ob4ob3o$3b6o2b6o$
4b5o2b5o$4b12o$3b5o4b5o$5b2ob4ob2o$3b6o2b6o$4b2ob2o2b2ob2o$3b2ob8ob2o$
4bob8obo$3b2ob8ob2o$4b12o$3bob2o2b2o2b2obo$3b6o2b6o$5b2ob4ob2o$3b14o$
4bo4b2o4bo$5b2ob4ob2o$2b5o6b5o$3b6o2b6o$2bobo2b2o2b2o2bobo$2b2ob10ob2o
$2bob2obob2obob2obo$b3ob2ob4ob2ob3o$b5o2b4o2b5o$5obo6bob5o$bo5bo4bo5bo
$9o2b9o$b3o3b6o3b3o$3ob3ob4ob3ob3o$bob2o2bob2obo2b2obo$6obob2obob6o$b
6ob4ob6o$7o2b2o2b7o$4bobob4obobo$b5obo4bob5o$3b5o4b5o$bob2o10b2obo$20o
$b2ob3o2b2o2b3ob2o$bo3b2obo2bob2o3bo$o4b4o2b4o4bo$b4o3b4o3b4o$2obob10o
bob2o$b3obob6obob3o$obob12obobo$2b2obob2o2b2obob2o$6ob2o2b2ob6o$b18o$o
2b2ob8ob2o2bo$b3ob3ob2ob3ob3o$5ob8ob5o$b4ob2ob2ob2ob4o$ob3obob4obob3ob
o$2b7o2b7o$4ob4o2b4ob4o$b8o2b8o$b4ob8ob4o$4ob4o2b4ob4o$b2ob12ob2o$3obo
2b6o2bob3o$b2obo2bo4bo2bob2o$3o2bobo4bobo2b3o$b2o3bo2b2o2bo3b2o$2b2obo
bo4bobob2o$b4ob8ob4o$2bob12obo$ob4ob6ob4obo$bob4ob4ob4obo$2ob5ob2ob5ob
2o$b2ob4ob2ob4ob2o$8ob2ob8o$bob2obob4obob2obo$2ob2obob4obob2ob2o$b4o2b
o4bo2b4o$2b4ob6ob4o$b6o2b2o2b6o$2b4o3b2o3b4o$b3o2bo2b2o2bo2b3o$2b2o2b
8o2b2o$b3o3b6o3b3o$2b2o2bo2b2o2bo2b2o$b7ob2ob7o$2b5ob4ob5o$b5ob6ob5o$
2b16o$b4ob3o2b3ob4o$3b6o2b6o$b7o4b7o$2bo14bo$b3ob2o6b2ob3o$2bobo2b2o2b
2o2bobo$b18o$2bob3ob4ob3obo$bobobo3b2o3bobobo$2bob4o4b4obo$b3ob3ob2ob
3ob3o$bobob2ob4ob2obobo$4b4o4b4o$b18o$3b4obo2bob4o$bo3b4o2b4o3bo$2b2ob
o2bo2bo2bob2o$b18o$2b4o2bo2bo2b4o$b5obo4bob5o$3b3o8b3o$2bob2o2b4o2b2ob
o$2bo5b4o5bo$2b2ob4o2b4ob2o$3ob4ob2ob4ob3o$4bob8obo$b5o2b4o2b5o$o3b5o
2b5o3bo$b2obob2ob2ob2obob2o$4ob10ob4o$2bob2ob6ob2obo$bob3ob2o2b2ob3obo
$b2ob2obob2obob2ob2o$bob14obo$obob4ob2ob4obobo$b2ob2o3b2o3b2ob2o$2ob3o
b6ob3ob2o$bob2ob8ob2obo$2b5obo2bob5o$b4obob4obob4o$2b16o$bo2b2o2bo2bo
2b2o2bo$2bob4o4b4obo$b7ob2ob7o$2b2ob3ob2ob3ob2o$b4ob2ob2ob2ob4o$2b2ob
10ob2o$ob4obob2obob4obo$obobo4b2o4bobobo$2bob3ob4ob3obo$20o$2bobob8obo
bo$3ob4ob2ob4ob3o$2b5ob4ob5o$2ob3ob6ob3ob2o$4o3b6o3b4o$b4ob8ob4o$3o3b
8o3b3o$3bobo8bobo$4o12b4o$7ob4ob7o$b4ob8ob4o$ob3o4b2o4b3obo$b4ob8ob4o$
o3b12o3bo$2b6o4b6o$3bobo3b2o3bobo$4b12o$6b8o$9b2o$9b2o!

Code: Select all

x = 20, y = 110, rule = B34568/S4578
bobo12bobo$b5o8b5o$ob4o8b4obo$bobo2b2o4b2o2bobo$ob3obo6bob3obo$bo3bobo
4bobo3bo$6o8b6o$2b2ob3o4b3ob2o$ob2ob3o4b3ob2obo$bo2b3o6b3o2bo$b7o4b7o$
5b2o6b2o$9b2o$6b2o4b2o$o2b4o6b4o2bo$b3ob2o6b2ob3o$o2b4ob4ob4o2bo$2b5ob
4ob5o$2ob2ob8ob2ob2o$bob2obob4obob2obo$2ob2ob3o2b3ob2ob2o$b8o2b8o$ob2o
2b8o2b2obo$bob2o2bo4bo2b2obo$4o2bo6bo2b4o$b5o3b2o3b5o$bo2bo2b6o2bo2bo$
o2bob10obo2bo$b4o3b4o3b4o$5obob4obob5o$b5ob2o2b2ob5o$ob2o2b2ob2ob2o2b
2obo$b2ob5o2b5ob2o$2ob14ob2o$bo3bob6obo3bo$2b2ob10ob2o$ob16obo$bobobo
2b4o2bobobo$2ob2obob4obob2ob2o$bo7b2o7bo$3obob8obob3o$b3ob4o2b4ob3o$ob
3o10b3obo$bobo2b2o4b2o2bobo$obob2o3b2o3b2obobo$bo2b3ob4ob3o2bo$o2b14o
2bo$b3ob10ob3o$obob2ob6ob2obobo$b6ob4ob6o$4o2bob4obo2b4o$ob7o2b7obo$2b
16o$b2o3b8o3b2o$2b2o2b8o2b2o$bobob10obobo$2b5ob4ob5o$b5ob6ob5o$2b16o$b
18o$bobob4o2b4obobo$2bo3bob4obo3bo$bo3b4o2b4o3bo$2ob14ob2o$b4ob8ob4o$o
bobo2b6o2bobobo$bob2ob2ob2ob2ob2obo$3ob3obo2bob3ob3o$bo2bob2ob2ob2obo
2bo$o4b3o4b3o4bo$b5ob6ob5o$7ob4ob7o$b5o2b4o2b5o$3o2b10o2b3o$b2ob12ob2o
$2bob2ob6ob2obo$3ob3ob4ob3ob3o$b2ob12ob2o$4o2b8o2b4o$b18o$ob3ob2ob2ob
2ob3obo$b5ob6ob5o$o3b3o2b2o2b3o3bo$b4obob4obob4o$o4bobob2obobo4bo$b7ob
2ob7o$4ob10ob4o$b2obo2b6o2bob2o$b2o2bo8bo2b2o$7obo2bob7o$2b2ob2o2b2o2b
2ob2o$2obob2o2b2o2b2obob2o$bob6o2b6obo$b3obob6obob3o$4o2b3o2b3o2b4o$bo
2b12o2bo$o2b6o2b6o2bo$b2ob12ob2o$o3b5o2b5o3bo$bob3o8b3obo$3obob3o2b3ob
ob3o$2bobob8obobo$6obob2obob6o$3b4o6b4o$bob2ob8ob2obo$4bob8obo$5b3ob2o
b3o$5b10o$8b4o$8bo2bo!
Inspired by a small c/5 diagonal ship by Rocknlol in a nearby rule, here are two c/5 diagonal ships (found with JLS) in rules with no previously known ships:

Code: Select all

x = 25, y = 25, rule = B3467/S4567
17b4o2$16b2ob4o$14bo7bo$14bo4bo2bobo$12b3o5bobobo$9bo4bo9bo$12b2o8bobo
$8b3o2bo8bo$11bo$7b3obo6b4o$16b2obo$6b2o3b2o4bobo$4bo3bobobob2o$4b4o3b
o4bo$3bo3b3o4bobobo$2b2o4b2obo2bobo$2o7b2obobo$2o2b3o3bobo$b2obobo3bo$
b2ob3o3b2o$2b2o4b2o$2b4o2bo$4b4o$6b2o!

Code: Select all

x = 29, y = 29, rule = B34678/S4567
22bo$22bobo$22bo$18b3obo$16bobo8bo$16bobo3b2o$15bo5bobob4o$14bo2b2ob3o
$14b2o5bo3bo$12bobo10bo$12b3obo4bob3o$21bo$7b3ob2ob2o2bo4b2o$16bo3bobo
$7b3o2b3obob4o$14bo3bo$7bob2obobobob2o$16bo$5b4obobo$4b2obo4bobobo$3bo
3bo2bo3bobo$5bob4obobobo$3b3o4bo$2b3ob2ob2o$2o3b2o2bo$2o3b2obo$b2o2bo$
b4o$3b2o!
Database entries:

Code: Select all

:Matthias Merzenich, 2020:B3456/S4578:B3456/S4578:5:0:-1:20:228:6bo6bo$7bo4bo$5bobob2obobo$3bo2b8o2bo$4b3ob4ob3o$3b3ob6ob3o$5b10o$2bo2b4o2b4o2bo$2bo2b10o2bo$4bobob4obobo$3b14o$4b12o$3bobob6obobo$4bo3b4o3bo$3b14o$4b12o$3bo4b4o4bo$5b4o2b4o$4bo2b2o2b2o2bo$6bo6bo$5b3ob2ob3o$6bo2b2o2bo$5bob2o2b2obo$6b3o2b3o$5b10o$8b4o$5b2ob4ob2o$6bo2b2o2bo$5bobo4bobo$6bo2b2o2bo$8b4o$3b2o3b4o3b2o$4bo2b6o2bo$3bo4bo2bo4bo$4bob8obo$3b2obo2b2o2bob2o$4bo2bob2obo2bo$3b3ob2o2b2ob3o$4b4ob2ob4o$3b14o$4b2o2bo2bo2b2o$3b14o$4b3o6b3o$3b2ob8ob2o$4b3o6b3o$3b2o2b6o2b2o$4bo2b2o2b2o2bo$3bobo2b4o2bobo$4b5o2b5o$3bo2b2ob2ob2o2bo$4b5o2b5o$3b5o4b5o$4bobob4obobo$3b14o$4b12o$3b14o$4bo4b2o4bo$5b2o6b2o$3bob2o6b2obo$5b10o$3b14o$4bobob4obobo$3bo2b2ob2ob2o2bo$4b4ob2ob4o$3b3o3b2o3b3o$4b3ob4ob3o$3b2obob4obob2o$4bob3o2b3obo$3b5ob2ob5o$4b12o$3b4ob4ob4o$4b3ob4ob3o$3b6o2b6o$4b5o2b5o$4b12o$3b5o4b5o$5b2ob4ob2o$3b6o2b6o$4b2ob2o2b2ob2o$3b2ob8ob2o$4bob8obo$3b2ob8ob2o$4b12o$3bob2o2b2o2b2obo$3b6o2b6o$5b2ob4ob2o$3b14o$4bo4b2o4bo$5b2ob4ob2o$2b5o6b5o$3b6o2b6o$2bobo2b2o2b2o2bobo$2b2ob10ob2o$2bob2obob2obob2obo$b3ob2ob4ob2ob3o$b5o2b4o2b5o$5obo6bob5o$bo5bo4bo5bo$9o2b9o$b3o3b6o3b3o$3ob3ob4ob3ob3o$bob2o2bob2obo2b2obo$6obob2obob6o$b6ob4ob6o$7o2b2o2b7o$4bobob4obobo$b5obo4bob5o$3b5o4b5o$bob2o10b2obo$20o$b2ob3o2b2o2b3ob2o$bo3b2obo2bob2o3bo$o4b4o2b4o4bo$b4o3b4o3b4o$2obob10obob2o$b3obob6obob3o$obob12obobo$2b2obob2o2b2obob2o$6ob2o2b2ob6o$b18o$o2b2ob8ob2o2bo$b3ob3ob2ob3ob3o$5ob8ob5o$b4ob2ob2ob2ob4o$ob3obob4obob3obo$2b7o2b7o$4ob4o2b4ob4o$b8o2b8o$b4ob8ob4o$4ob4o2b4ob4o$b2ob12ob2o$3obo2b6o2bob3o$b2obo2bo4bo2bob2o$3o2bobo4bobo2b3o$b2o3bo2b2o2bo3b2o$2b2obobo4bobob2o$b4ob8ob4o$2bob12obo$ob4ob6ob4obo$bob4ob4ob4obo$2ob5ob2ob5ob2o$b2ob4ob2ob4ob2o$8ob2ob8o$bob2obob4obob2obo$2ob2obob4obob2ob2o$b4o2bo4bo2b4o$2b4ob6ob4o$b6o2b2o2b6o$2b4o3b2o3b4o$b3o2bo2b2o2bo2b3o$2b2o2b8o2b2o$b3o3b6o3b3o$2b2o2bo2b2o2bo2b2o$b7ob2ob7o$2b5ob4ob5o$b5ob6ob5o$2b16o$b4ob3o2b3ob4o$3b6o2b6o$b7o4b7o$2bo14bo$b3ob2o6b2ob3o$2bobo2b2o2b2o2bobo$b18o$2bob3ob4ob3obo$bobobo3b2o3bobobo$2bob4o4b4obo$b3ob3ob2ob3ob3o$bobob2ob4ob2obobo$4b4o4b4o$b18o$3b4obo2bob4o$bo3b4o2b4o3bo$2b2obo2bo2bo2bob2o$b18o$2b4o2bo2bo2b4o$b5obo4bob5o$3b3o8b3o$2bob2o2b4o2b2obo$2bo5b4o5bo$2b2ob4o2b4ob2o$3ob4ob2ob4ob3o$4bob8obo$b5o2b4o2b5o$o3b5o2b5o3bo$b2obob2ob2ob2obob2o$4ob10ob4o$2bob2ob6ob2obo$bob3ob2o2b2ob3obo$b2ob2obob2obob2ob2o$bob14obo$obob4ob2ob4obobo$b2ob2o3b2o3b2ob2o$2ob3ob6ob3ob2o$bob2ob8ob2obo$2b5obo2bob5o$b4obob4obob4o$2b16o$bo2b2o2bo2bo2b2o2bo$2bob4o4b4obo$b7ob2ob7o$2b2ob3ob2ob3ob2o$b4ob2ob2ob2ob4o$2b2ob10ob2o$ob4obob2obob4obo$obobo4b2o4bobobo$2bob3ob4ob3obo$20o$2bobob8obobo$3ob4ob2ob4ob3o$2b5ob4ob5o$2ob3ob6ob3ob2o$4o3b6o3b4o$b4ob8ob4o$3o3b8o3b3o$3bobo8bobo$4o12b4o$7ob4ob7o$b4ob8ob4o$ob3o4b2o4b3obo$b4ob8ob4o$o3b12o3bo$2b6o4b6o$3bobo3b2o3bobo$4b12o$6b8o$9b2o$9b2o!
:Matthias Merzenich, 2020:B34568/S4578:B34568/S4578:5:0:-1:20:110:bobo12bobo$b5o8b5o$ob4o8b4obo$bobo2b2o4b2o2bobo$ob3obo6bob3obo$bo3bobo4bobo3bo$6o8b6o$2b2ob3o4b3ob2o$ob2ob3o4b3ob2obo$bo2b3o6b3o2bo$b7o4b7o$5b2o6b2o$9b2o$6b2o4b2o$o2b4o6b4o2bo$b3ob2o6b2ob3o$o2b4ob4ob4o2bo$2b5ob4ob5o$2ob2ob8ob2ob2o$bob2obob4obob2obo$2ob2ob3o2b3ob2ob2o$b8o2b8o$ob2o2b8o2b2obo$bob2o2bo4bo2b2obo$4o2bo6bo2b4o$b5o3b2o3b5o$bo2bo2b6o2bo2bo$o2bob10obo2bo$b4o3b4o3b4o$5obob4obob5o$b5ob2o2b2ob5o$ob2o2b2ob2ob2o2b2obo$b2ob5o2b5ob2o$2ob14ob2o$bo3bob6obo3bo$2b2ob10ob2o$ob16obo$bobobo2b4o2bobobo$2ob2obob4obob2ob2o$bo7b2o7bo$3obob8obob3o$b3ob4o2b4ob3o$ob3o10b3obo$bobo2b2o4b2o2bobo$obob2o3b2o3b2obobo$bo2b3ob4ob3o2bo$o2b14o2bo$b3ob10ob3o$obob2ob6ob2obobo$b6ob4ob6o$4o2bob4obo2b4o$ob7o2b7obo$2b16o$b2o3b8o3b2o$2b2o2b8o2b2o$bobob10obobo$2b5ob4ob5o$b5ob6ob5o$2b16o$b18o$bobob4o2b4obobo$2bo3bob4obo3bo$bo3b4o2b4o3bo$2ob14ob2o$b4ob8ob4o$obobo2b6o2bobobo$bob2ob2ob2ob2ob2obo$3ob3obo2bob3ob3o$bo2bob2ob2ob2obo2bo$o4b3o4b3o4bo$b5ob6ob5o$7ob4ob7o$b5o2b4o2b5o$3o2b10o2b3o$b2ob12ob2o$2bob2ob6ob2obo$3ob3ob4ob3ob3o$b2ob12ob2o$4o2b8o2b4o$b18o$ob3ob2ob2ob2ob3obo$b5ob6ob5o$o3b3o2b2o2b3o3bo$b4obob4obob4o$o4bobob2obobo4bo$b7ob2ob7o$4ob10ob4o$b2obo2b6o2bob2o$b2o2bo8bo2b2o$7obo2bob7o$2b2ob2o2b2o2b2ob2o$2obob2o2b2o2b2obob2o$bob6o2b6obo$b3obob6obob3o$4o2b3o2b3o2b4o$bo2b12o2bo$o2b6o2b6o2bo$b2ob12ob2o$o3b5o2b5o3bo$bob3o8b3obo$3obob3o2b3obob3o$2bobob8obobo$6obob2obob6o$3b4o6b4o$bob2ob8ob2obo$4bob8obo$5b3ob2ob3o$5b10o$8b4o$8bo2bo!
:Matthias Merzenich, 2020:B3467/S4567:B3467/S4567:5:-1:-1:25:25:17b4o2$16b2ob4o$14bo7bo$14bo4bo2bobo$12b3o5bobobo$9bo4bo9bo$12b2o8bobo$8b3o2bo8bo$11bo$7b3obo6b4o$16b2obo$6b2o3b2o4bobo$4bo3bobobob2o$4b4o3bo4bo$3bo3b3o4bobobo$2b2o4b2obo2bobo$2o7b2obobo$2o2b3o3bobo$b2obobo3bo$b2ob3o3b2o$2b2o4b2o$2b4o2bo$4b4o$6b2o!
:Matthias Merzenich, 2020:B34678/S4567:B34678/S4567:5:-1:-1:29:29:22bo$22bobo$22bo$18b3obo$16bobo8bo$16bobo3b2o$15bo5bobob4o$14bo2b2ob3o$14b2o5bo3bo$12bobo10bo$12b3obo4bob3o$21bo$7b3ob2ob2o2bo4b2o$16bo3bobo$7b3o2b3obob4o$14bo3bo$7bob2obobobob2o$16bo$5b4obobo$4b2obo4bobobo$3bo3bo2bo3bobo$5bob4obobobo$3b3o4bo$2b3ob2ob2o$2o3b2o2bo$2o3b2obo$b2o2bo$b4o$3b2o!
I also completed searches for c/11 orthogonal ships of search-width 5 with odd and even symmetry in rules for which no ships of any type were known. I found nothing new in these searches.

Edit 3: A 2c/4 ship in B378/S34568 found with gfind:

Code: Select all

x = 25, y = 40, rule = B378/S34568
8bobo3bobo$b2o5b2obobob2o5b2o$o6bo3b3o3bo6bo$5o3b2obobob2o3b5o$b3o2bo
2b7o2bo2b3o$5o4bobobobo4b5o$bo3b3ob2obob2ob3o3bo$3ob2obo2b5o2bob2ob3o$
bo2b2obo3b3o3bob2o2bo$bob6o2b3o2b6obo$b3ob2o4b3o4b2ob3o$2b8ob3ob8o$3b
2ob4ob3ob4ob2o$6b4ob3ob4o$8b2ob3ob2o$8b2ob3ob2o$9bob3obo$7b3ob3ob3o$5b
o2b2ob3ob2o2bo$6b2obob3obob2o$7bobob3obobo$6b4ob3ob4o$4b2o3bob3obo3b2o
$2obo3b2o2b3o2b2o3bob2o$b4o2b2obo3bob2o2b4o$3ob2ob2o7b2ob2ob3o$bob2o2b
2o3bo3b2o2b2obo$3ob4ob7ob4ob3o$bo2bo2b3obobob3o2bo2bo$2obob5ob3ob5obob
2o$bob7obobob7obo$bo2b3o4b3o4b3o2bo$b6o4b3o4b6o$3b4o11b4o$6b2o9b2o$9bo
5bo$5bobobobobobobobo$5b3ob3ob3ob3o$5b3ob3ob3ob3o$6bo3bo3bo3bo!
Database entry:

Code: Select all

:Matthias Merzenich, 2020:B378/S34568:B378/S34568:4:0:-2:25:40:8bobo3bobo$b2o5b2obobob2o5b2o$o6bo3b3o3bo6bo$5o3b2obobob2o3b5o$b3o2bo2b7o2bo2b3o$5o4bobobobo4b5o$bo3b3ob2obob2ob3o3bo$3ob2obo2b5o2bob2ob3o$bo2b2obo3b3o3bob2o2bo$bob6o2b3o2b6obo$b3ob2o4b3o4b2ob3o$2b8ob3ob8o$3b2ob4ob3ob4ob2o$6b4ob3ob4o$8b2ob3ob2o$8b2ob3ob2o$9bob3obo$7b3ob3ob3o$5bo2b2ob3ob2o2bo$6b2obob3obob2o$7bobob3obobo$6b4ob3ob4o$4b2o3bob3obo3b2o$2obo3b2o2b3o2b2o3bob2o$b4o2b2obo3bob2o2b4o$3ob2ob2o7b2ob2ob3o$bob2o2b2o3bo3b2o2b2obo$3ob4ob7ob4ob3o$bo2bo2b3obobob3o2bo2bo$2obob5ob3ob5obob2o$bob7obobob7obo$bo2b3o4b3o4b3o2bo$b6o4b3o4b6o$3b4o11b4o$6b2o9b2o$9bo5bo$5bobobobobobobobo$5b3ob3ob3ob3o$5b3ob3ob3ob3o$6bo3bo3bo3bo!
-Matthias Merzenich

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » August 3rd, 2020, 5:58 am

Since no new spaceship discoveries have been announced in 17 days, I'll go ahead and post the updated version of the database.
new-gliders.db.txt
33 new spaceships
(7.21 MiB) Downloaded 20 times
oscillators.db.txt
55 new oscillators
(143.84 KiB) Downloaded 16 times
I'm still searching c/4o in B2/S and 3c/8o in B35/S236.

The top priority at current is apgsearching all the B3 rules that don't have any hauls yet. (See list.) Other areas of focus include finding knightships and exhaustive searching in the B2 rules. Anyone want to experiment with ikpx in OCA?

Also, if you find any errors or duplicates, report them here.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

400spartans
Posts: 18
Joined: April 28th, 2020, 7:12 pm

Re: Spaceships in Life-like cellular automata

Post by 400spartans » August 3rd, 2020, 2:14 pm

Some photons:

Code: Select all

x = 9, y = 16, rule = B246/S3467
4bo$2bo5bo$2b3obo$b2o2b2o$bobo4bo$3o2bo$3o$b2o$b2o$3o$3o2bo$bobo4bo$b
2o2b2o$2b3obo$2bo5bo$4bo!

Code: Select all

x = 12, y = 18, rule = B25/S135
2bo$2b2o$3b2o$b2ob2o2bo2bo$b2o5b2o$3bob5o$2b4o3bo$bo3bobo3bo$o3bob2o$o
3bob2o$bo3bobo3bo$2b4o3bo$3bob5o$b2o5b2o$b2ob2o2bo2bo$3b2o$2b2o$2bo!

Code: Select all

x = 17, y = 17, rule = B246/S3457
7bo$5bo8bo$5b3obo2bo$6bo5b3obo$4b4o5bo$4b2o5b4o$5b4o2b2o$2bobo3bob2obo
$2b2o6b3o3bo$b5o4b5o$o2bo2b4o4bo$ob6o8bo$bo5b4o$9bo$8b3obo$8bo$10bo!

Code: Select all

x = 13, y = 11, rule = B246/S246
7bo$7bobo2bo$4bo4bobo$3bo5b3o$3b3o2b2obo$5b2o4bo$2b3o2bo2bobo$2bobobob
3o$obo2bobobo$o5bo$7bo!

Code: Select all

x = 16, y = 11, rule = B2457/S578
2b2o8b2o$bo2bo6bo2bo$ob2o3b2o3b2obo$b4obo2bob4o$b5ob2ob5o$b3ob2o2b2ob
3o$b4o6b4o$b2ob2o4b2ob2o$2ob2o6b2ob2o$b3o8b3o$2bo10bo!

Code: Select all

x = 9, y = 11, rule = B2467/S457
2b2o$bo2bo$o4bo$b4o$b2o2b3o$b3ob2obo$b3ob3o$bo3b3o$3o4bo$bo4b3o$7bo!

Code: Select all

x = 16, y = 24, rule = B2456/S14
7bo$6b2o2bo$4bobob2obo$3b2obobobo2bo$bobobobo2bobobo$3o3bo4bobobo$bo3b
o5bobobo$3b2o6b2obo$3bob2o3bo2bo$3bo4bobo$2bobo2bobo$3bobobo$3bobobo$
2bobo2bobo$3bo4bobo$3bob2o3bo2bo$3b2o6b2obo$bo3bo5bobobo$3o3bo4bobobo$
bobobobo2bobobo$3b2obobobo2bo$4bobob2obo$6b2o2bo$7bo!

Code: Select all

x = 19, y = 8, rule = B246/S46
bo$b2o3bo8bo$2o4b2o4bo2b2o$2ob3obobo2b2ob3o$b4o3bob2obo2b3o$bob3o4b3o
3b2o$3b2o5bob3obo$3bo7bo2bo!

Code: Select all

x = 21, y = 12, rule = B245/S2
o$obo7bo2bo$2bobo4bo3bobo2bo$2b2o3bo3b2obo3bobo$4bobo2b2o2bo2b2obo$obo
b2obobo3bo3bobo$obo3bobo6b2obobo$5b2obo7bobo$2b2o3bobo6bo$2bobo2bo$obo
$o!

Code: Select all

x = 14, y = 12, rule = B246/S136
3bo2bo2bo2bo$3b2o4b2o$bobobob2o3b2o$b4o6b2o$2b3o2bo3bo$3o2bo$3o2bo$2b
3o2bo3bo$b4o6b2o$bobobob2o3b2o$3b2o4b2o$3bo2bo2bo2bo!

Code: Select all

x = 15, y = 18, rule = B247/S257
11bo$4bo2bo2bo3bo$3bo3bobobobo$bo3b2obobob2o$bo4bo2bobobo$3bobo4bo3bo$
4b2o5bo$2b2obo$o2b3o$o2b3o$2b2obo$4b2o5bo$3bobo4bo3bo$bo4bo2bobobo$bo
3b2obobob2o$3bo3bobobobo$4bo2bo2bo3bo$11bo!

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » August 4th, 2020, 6:34 am

I've decided to dedicate this week to finding p5 knightships with LSSS. I've noticed that four of the eight known p5 knightships (B3678/S34678, B3/S1346, B3/S0346, and B357/S346) are in rules of the form B3xx/S[01]346yy, so I have chosen to focus there. Here's a strong partial result from one search:

Code: Select all

x = 103, y = 12, rule = B3578/S346
63b2o17b3o2b2o$20bob2o13bo14bo2b3obob5o15b4o2bo6bo5b3o$18bo2b2o8b2o2b
5o12bo2b2obobobobobob2o9bob2obo2b3o2b4ob5o$17b2o2bob2ob2ob2o2bobo3bo6b
4ob4obobo2bo3b4o5bobo2b8o3b2obobobo2b2o$15b2ob2o4b2o2b6obo4b4ob7obobob
2ob7o2b3ob7o2b4obobo3b2o2bo2bo$5b3o7b3o2b2ob4obobo2bobo2b2ob2ob3o2b3o
2bobob2ob8o2b5o8bob2o2b4o2b3o2bo$4b2obob2o4bob3ob3o3bobo2b3o2bob2obo2b
2o8bo2b3obo2bo6b4ob2obobo3bo2bobo6bob3o$3b2obo2b4o3bob2o2b2obobo4b2ob
2o3bo2b2ob4ob4o4bobob8ob5obob2o4b3ob2o2b2ob4obo$b2obob2o2b2o2b6o2bo4b
2o2b2obo6bob3ob3o4bo2b2obo2b4o3b2ob2o3b2o7bobo3bobo2b4o$b2ob3obo2bo2b
4o16bo5b2obobob3o4b2ob6o3bob4o2bo3b4o7b2obob3obobo$o2b3o4bo30b3obo9bo
6bo16bobo6bo7b2ob2obo$b2o77bo16bo4bo!
It's over 8 times as long as it is wide.

EDIT: Partial in B3/S346 that is about 3.42 times as long as it is wide. This rule isn't as promising as this one or Virus, but it can likely be found with LSSS.

Code: Select all

x = 65, y = 19, rule = B3/S346
9bo24bo$9b2o21b2obo$5b2o2b3o5b3o12b3o2b2o2b3ob4o3bo$4b2ob2o3bo3b2obo
11bo4bobo2b2obob2ob3o4b4o3b2o$4bo8bob2ob2o10b2o5b3o2b3obob2ob2o2b3obo
2b2o$3bo4bo5bob2ob2obo4bobobobo2bo2b2o2bo2bo5bo2b2ob2o3bo$3b5obobobo3b
o4bob2o2bo2bo2b2obo3bob2o2b2o5b2obo4bo$2b2o6bo2bobo4b2o2b2o2b2o6b3o5bo
2bo5bob2obob3o$2b3o2bo2b2o2b2obob3ob3o2bob3o3bobob3obobo2b2o2b2o8bo$bo
bo6bobobob2o3b2o10b2o2b3o3bobob3o2b2o2bo$2ob2o5bobo7b4o5b3obobobo6bo4b
ob2o2b2obob3obo$b2o7b2obo10bobo3b2obo7bo4bo3b3o3bo4b3o$bo2b4ob2obobo9b
5o3b3ob4o8bo2bo2b2o2b3o$5b2o2bob2obo19bobo4bo3bo2bobo3b2o2b3o2bo$3bob
2o4bobob2o9b2o6bo3bo4b4o4bob2o4b4o$7bob3o4bo9b4obo2bob2o2bobo2bobo2b2o
bo7bo$9bobo2b4o14bo4bobo6bo14b2obo$12bo2bo13bo10bob2o20bo$43b2ob2o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1001
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Spaceships in Life-like cellular automata

Post by LaundryPizza03 » August 6th, 2020, 12:39 am

Found an old post from 2010 with more candidate p5 knightship partials. It may be a good idea to revive interest in afind and ikpx. I found that the rule can easily be changed in ikpx, but I have had difficulties actually searching with the program.

The partials, found by Matthias Merzenich, are as follows:

Code: Select all

x = 31, y = 24, rule = B357/S1358
22bobobobobo$21b2ob5obo$22bobo2b2o$21bo6bobo$22bob3o$22b3o4bo$obo2bo2b
o12bobo2bo$b2o2bo2bo13b5o$2b4o18bobobobo$3o2b3o15b8o$bo3bobo14b2ob2obo
$obo2b2o15b2o$3obobo16b3o2bo$2bo2bo17bobob2o$bob2obo15bo4bo$5b2o15bo3b
obo$b4o17bob2o2bo$3b3o16bob4o$3bo2bo16bobob2o$b4o19bobo$ob2obo16b2o4bo
$5o17bobo2bo$b5o16bobobo$6bo16b3o!

Code: Select all

x = 34, y = 24, rule = B35/S0135
26b2o3bo$24bob3obo$23bo3b2o2b3o$24bobo4bobo$24bo2bobo$24b4obob2o$3b5ob
o16bobo2b2o$3bo4bo16bo3bo$3bo4bo15bo2b2obo$2b2obob2o17bo2bo$3bob2o21bo
b2o$b3o3bo18b4obobo$2b2ob2o18b6obo$bob2o3bo15b2o2bob2o$bo2b2o19b3o$b5o
2bo15b5o$obob2o17bobob2o$b2ob2o18b2ob2o$3o2bo17b3o2bo$2b2o2bo18b2o2bo$
3bo3bo18bo3bo$b6obo15b6obo$2b2o2bo18b2o2bo$4b4o19b4o!

Code: Select all

x = 32, y = 40, rule = B35/S1246
22bobo5b2o$20b3ob2o4bo$30bo$21b2obo2bob3o$22b3obo2b2o$22bo2b4o2bo$22bo
b2ob3o$21bo2bo$21bobo5bo$2ob3o15bo3bo2b2o$2obob3o13bobo3b2o$2b3ob2o14b
2o2b6o$b2o19bo3b4o$4b2o16bobo3bo$b7o14b2ob2o$bo3b2o19bo$2b5o15bo4b2o$
2b2ob3o14b2ob2ob4o$2bob3obo14bobobob3o$b2o2b2obo11bo5bobo$2bob3o13b3o
2b2obo$2bobob2o13b2obo2b4o$2b2o2bobo14bob2o$2bobob3o12b2o4b3o$3b2ob2o
13bo4bobobo$3b2ob2o12b3o2bob2o$bo2bo15bob2ob2ob2obo$bobo17b2ob3o$3o3bo
15bo2b2o2bo$obo3bo13b2obo5bo$3b3o14bobobob2ob2o$2obob2o14bobo3bobo$bob
4o14bobo3b2o$bobo3bo12b4ob2obo$bo4bo15b2o$2b4o15bo4b2o$bob3obo15bob2ob
o$bobobo16bobobo$5ob2o13b5ob2o$b4o17b4o!

Code: Select all

x = 11, y = 48, rule = B35/S02468
3bo2bobo$3bo2b2o$4bo4b2o$2b3obo3bo$3bob2o$bobob3obo$bo5bobo$b2ob3obo$
4bobo$2bob3o$2bobo$2b2o3bo$3b5obo$2bobob2o$o3bobob2o$bobo2b2o$3o6bo$4b
2obo2bo$2bob2o$2b2obob2o$4b2ob2o$3b2obo$3bo$2b2o2bobo$3b6o$6bo$4b3o$3b
obo$3bo$2b3o2b2o$2b4ob2o$3bob3o$3bob3o2$3b3obo$3bo$5bo$b5o$ob3o$o4bo$b
ob3o$2bob3o$bo3bo$bobob2o$2ob3o$bob2o$b2o$4o!

Code: Select all

x = 84, y = 76, rule = B35/S0246
73b2ob3o3bo$73bo4bobobo$73bobobo2b2o$77bo2b2o$72bo2b3o2b3o$72b2o4bo$
73bo2b6o$74b2ob3o2bo$77b3ob2o$73bob2ob6o$73b4o2bo2bo$73bobo3b2obo$72bo
b2o3b3o$72b2o3bo2b2o$74bo2b2obo$73bobob4o$74b3o2b2o$77b2o$75bo2bo2bobo
$77b2o$75b2o2b2obo$75bob2ob2o$76b2o2bo$74b2obo$74bo2bo$75b2obobo$76b2o
4bo$75bo5bo$74b2ob2o2b2o$79b2o$74b2obobo$74bo4b2obo$73b2obobobo$74bobo
bob2o$74b5o$75b2ob2obo$75b2ob3o$76bob2o$76bo2bo$72b2obobobo$73b2obob3o
$73bo2bo2bo$73b6o$42bobo2b3o27bobobo$41bo2bo3b2o22bo4b2obo$42b3obobo
23bo4b2o2bo$41b7o26bo$41b4o27b4ob4o$42bobo3bo27b3ob2o$42b2o5bo26b2o2b
3o$44b2o2b2o22bob4obo$45bo2bo23bo4bo2bo$44b3o2bo23b2o5bo$45b4o25bob4o$
42b5o29bobo$45b4o26bobo$43bo2b2o26bo8bo$43b6o24b2obobobo$43bo30b3obobo
bo$45b2o26b6o3b2o$44bob3o23bo5bobobo$72bob3o$44b3obo25b2obo$44bo33bo$
46bo26bobo2b2o$42b5o28bob2o$41bob3o28b2o2bo$41bo4bo27bo4bo$2bo2bobo6b
2obo24bob3o27bobo3bo$bo3bobo5bob2o26bob3o27b3o$2b3o5bo2b3ob2o23bo3bo
27b2obobo$ob3obo6b4obo23bobob2o25bob2o3bo$3ob2o3b2o2bobo25b2ob3o26b2o
2bobobo$2ob2obobo2b2ob3obo23bob2o27b2o2bobobo$b4o2bob3o2bob3o23b2o30b
5o$12b2o3bo23b4o30b3o!

Code: Select all

x = 83, y = 103, rule = B35/S02467
71b2obo2b3o$73bobo$74bo2b5o$71b2ob3o2b2o$77bob2o$74b2o6bo$72bob2o3bo$
72b6o$72bo2bobob2o$74b2obo2b2o$74bobobobobo$76bobo$73b4obobo$74b3o2b2o
$73b2o3b3o$74b2ob4o$72bo5bo$71bo3b4o$72bobo3bo$72bob2o2bobo$74bobob3o$
72b2obo3bo$73b2obo$71b2obo2bo$73b3o$72b2obo$74b3o$76bob2o$77b5o$77bo3b
o$79bo$79b2o$77b2o3bo$78b4o$78bobo$80b2o$76b2ob2o2$75bo2bobo$80bo$76b
4obo$75b4o2bo$77bo$75b3o$73b3o3b2o$72b2o7bo$73bob3o3bo$76bobobo$75bobo
bo$73bobo3bobo$72b2o4bobo$73b2obobob2o$74b2o$74b4obo$74b2ob2obo$35b3ob
o2b2o31b2o2b2o$38b2o2bo31b3ob2o$36bo5b2o30b2ob3o$37b2obo33bo2bo2b2o$
39bob2o32bob2o$37b2o3b2o31bobob2o$36b5o2bo30bob2obo$36b4obobo29b3o3b3o
$36b2o2bo3bo29bo2bo$35bo6bo31b4o$35b3o2bobo31b3o2bobo$2bob3obo28bob3o
36b3o$2bo2b3o29b2obo2bo29bo2b2obo$2b4o3bo27b2obo2bo29bo2bobo$2o2b2ob2o
28b2o3bo30b5obobo$o3b2ob3o28b4obo34bobo$b2o4b2o28b2obob2o30bob4o$3b2o
2bo28b2obob2o31b3o3bo$4bob2o29b6o31b4ob2o$3b2o2b2o30bobo33b4obo$4b2o2b
o27b2o38bo3bo$5bo30bob2o34b2ob4obo$4b3o29bo4b3o30b2obob4o$3b2ob2o28bo
2bo2bo37bo$4bo2bo28b3o2b2o32b3o2bo$2bo2bob3o27b2ob2o34bo$4bo2bo29bobob
3o33b2o$3bob3o31bo3bo35bo$2bob3o33bobo34b4o$2bobob2o29b3ob2o33b2obo$4b
3o30bo3bo36bo$3b2o32b2o38bobo$5b3o31b3o37bo$6b2o32b2o32b2o3b2o$4bo33bo
34bobo2b2o$4bo2bo30bo2bo32bobo3bo$3b4o2bo27b4o2bo32bobo$3b5obo27b5obo
28b2o2b2obo$5bobo31bobo30bob4o2bo$4bob2o30bob2o29b2ob4o$2bobobobo27bob
obobo30bobo3bo$3b3o2bo28b3o2bo29bo2b3o2bo$3b2obo30b2obo34bo3b2o$2bobo
2b2o27bobo2b2o29bobo3b2o$3bo33bo35bobobob3o$4bo2bo30bo2bo33b3obo$2b5o
29b5o32b2obob2o$3b3o31b3o34bo3b3o!
Aside from those, I found that some rules near B36/S235 have very strong p5 knightship partials. For example, other than B36/S235 itself, I found the following partial:

Code: Select all

x = 29, y = 9, rule = B36/S0235
2bo24b2o$b2o16bo4b3obo$4o9b2ob3obob2ob2obo$4b2o3b7o3bo2b3o2b2o$2bo4bo
2b3obob2o5bo4bo$4b2o6bo2bo3bob5o$9bobo2bo4bobo2b4o$15bo2b2obo5bo$28bo!
An exhaustive search in 2013 using Paul Tooke's mod for gfind found that the p5 knighship in B3578/S235[8] is the only one up to width 10. No other general bounds are known. Maybe try exhaustively searching the B3 rules up to some higher width?

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31150 spaceships and 1205 oscillators from outer-totalistic rules. You are invited to help!

Hunting
Posts: 3466
Joined: September 11th, 2017, 2:54 am

Re: Spaceships in Life-like cellular automata

Post by Hunting » August 6th, 2020, 1:27 am

LaundryPizza03 wrote:
August 6th, 2020, 12:39 am
Found an old post from 2010 with more candidate p5 knightship partials. It may be a good idea to revive interest in afind and ikpx. I found that the rule can easily be changed in ikpx, but I have had difficulties actually searching with the program.
Now I really want ntafind. Is it available anywhere or is it the "no-one-bothered-to-modify-it" case?

Post Reply