Code: Select all
@RULE B2o45_S2o45H
@TABLE
n_states:2
neighborhood:hexagonal
symmetries:rotate6reflect
var r={0,1}
var s={0,1}
var t={0,1}
var u={0,1}
var v={0,1}
var w={0,1}
var x={0,1}
var y={0,1}
var z={0,1}
w,1,1,0,0,0,0,1
w,0,0,1,1,1,1,1
w,0,1,0,1,1,1,1
w,0,1,1,0,1,1,1
w,0,1,1,1,1,1,1
t,u,v,w,x,y,z,0
@COLORS
0 48 48 48
1 255 255 255
Gliders are extremely common. The natural gliders I have seen, all speed (1/3, 1/3, 0):
Code: Select all
x = 22, y = 6, rule = B2o45/S2o45H
2o6b2o6b2o$3bo15bo$b2o6b3o5b4o$b3o5b3o5b3o$b3o5b3obo3b3obo$5bo7bo7bo!
Code: Select all
x = 81, y = 19, rule = B2o45/S2o45H
65bo2$66bo2$67bo$67b2o6bo$3o29b3o32b3o4bo$4o29b2o31bo6bo$b3o26bo3bo3bo
12bo3bo9bo6bo$2b2o18bo7b2o6b2o8b3o4bobo$21bo8b3o2bo2b3o6bob2o4b4o$3b2o
8b2o6bobo10bo2bo9b2o5bob3o7b2o6bo$3b3o7b3o6b3o22b2o6bo2bo7b3o5b2o$3b4o
6b4o6bobo9bo2bo7bo10bo8b4o4b3o$4b3o7b3o8bo6b3o2bo2b3o24b3o3bo4bo$24bo
8b2o6b2o15bo13bo7bo$34bo3bo3bo$38b2o$38b3o!
Code: Select all
x = 39, y = 42, rule = B2o45/S2o45H
31bo3bo$bo12b2o15bob2obo$o2bo13bo13bobobobo$2ob2o10b4o14bo2bo$15b3o16b
3o$bobobo9b3obo$3b2o14bo15b3o27$30bo7bo$32bo4bo$34b3o$35b2o$36bo2$37bo
2$38bo!
Code: Select all
x = 13, y = 13, rule = B2o45/S2o45H
7b2o$10bo$8b4o$8b3o$8b3obo$12bo$3o2$b3o$bo2bo$obobobo$bob2obo$2bo3bo!
Code: Select all
x = 5, y = 5, rule = B2o45/S2o45H
bo$4o$bobo$b4o$3bo!