New Shapeloop Thread

For discussion of other cellular automata.
Post Reply
pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

New Shapeloop Thread

Post by pi_guy314 » July 7th, 2015, 9:14 pm

The reason why I would want to make a new thread is because the old one is kind of messy and hard to follow. The old thread had patterns from many different rule variant that would have been unnecessary if I added a barrier state.

In this rule, there are loops that can come in different shapes. The interesting part about this rule is that there's mutation that can change the loop's shape, creating a new species. Each loop has to use up a food particle for every time it replicates. How much food it will get depends on both the loop's size and the food density. For an example, a small loop in a low density area will starve and won't be able to reproduce, while a larger loop will be able to get food and reproduce.

If you have any questions (or any old ones that I didn't answer), suggestions on how to improve this thread, or any important bugs that need to be fixed, PM me.

Here's the rule

Code: Select all

@RULE foodshapeloop
version 9.0
01 wire: carries turn signals, needs state 8
02 left signal
03 right signal
04 forward signal
05 absorb/right signal: used to absorb state 15, changes to state 18 after absorbing
06 idle/right signal: doesn't do anything, changes to state 5 after it hits state 7
07 converter:
   used to restart reproducing process, changes state 6 to 5 and activates state 18
08 wire back: controls the direction signals move
09 arm edge 1: used to move arm around
10 arm edge 2: created when arm turns, checks if loop arm turned left at least once
11 arm starter: used to create starter arm
12 arm delete: deletes starter arm and sometimes used as food movers
13 delete all: deletes most non-food cells in most conditions
14 food particle: 
   needed for loops to reproduce, moves when in strict conditions to prevent food deletion 
   or duplication
15 food/state 8
16 food/state 9
17 food/state 10 
18 food/starter signal: used to start replication process, idle until hits state 7
19 boundary: indestructible nor constructable state, cells around it are also unchangeable
#/ shows where edits/additions were made since last update
#* shows where cuts and paste were made
@TABLE
n_states:20
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}
var b={1,2,3,4,5,6}
var c={9,10}
var d={1,2,3,4,5,6,7,11,12}
var e={1,2,3,4,5,6,11}
var f={0,7,8,9,10,12,13}
var g={8,9,10}
var h={0,8}
var i={0,11,12,18}
var j={3,5,6}
var k={1,2,3,4,5,6,7,8,9,10}
var l={0,7,8,9,10,12,13,14,15,16,17}
var m={0,14}
var n={9,16}
var o={10,17}
var p={9,10,16,17}
var q={0,1,2,3,4,5,6,8,9,10,12,14,15}
var r={0,8,12,13,14,15}
var s={16,17}
var t={8,15}
var u={8,9,10,15,16,17}
var v={1,2,3,4,5,6,8,9,10,15,16,17}
var w={0,12,13}
var x={1,4}
var y={2,4}
var z={0,12}
var A={0,12,14}
var B={0,13}
var C={14,15}
var D={8,9,10,15,16,17,12}
var E={0,1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18}
var F={0,13,14}
var G={0,7,8,9,10,11,12,14,15,16,17}
var H={0,7,12,14}
var I={0,8,14,15}
var J={1,2,3,4,5,6,18}
var K={0,7,8,9,10,12,13,14}
var L={12,14,18}
var M={14,16}
var N={0,8,9,10,11,12,14,15,16,17,18}
var O={0,7,8,11,12,13,14,15}
var P={0,12,13,14}
var Q={0,1,2,3,4,5,6,7,10,12,13}
var R={0,8,9,10}
var S={1,2,3,4,5,6,7,11,12,13,14,18}
var T={0,1,2,3,4,5,6,7,11,12,13,14,18}
var U={0,7,11,12,13,14}
var V={1,2,3,4,5,6,8,9,10,15}
var W={0,12,15,16,17}
var X={1,2,3,4,6,7,8,9}
var Y={0,1,2,3,4,5,6,12,14}
var Z={5,6}
#variables never used more than once in a transition
var AA={8,10}
var AB={11,15,16,17,18}
var AC={12,15}
var AD={0,7,8,9,10,13,14,15,16,17}
var AE={12,18}
var AF={7,11}
var AG={14,18}
var AH={12,14}
var AI={0,8,9,10,15,16,17}
var AJ={5,18}
var AK={0,1,2,3,4,7,11,12,14,15}
Var AL={0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18}
var AM={0,12,14,15,17}
#variables used multiple times
var a2={a}
var a3={a}
var a4={a}
var a5={a}
var a6={a}
var a7={a}
var a8={a}
var b2={b}
var b3={b}
var b4={b}
var b5={b}
var c2={c}
var c3={c}
var c4={c}
var d2={d}
var f2={f}
var f3={f}
var g2={g}
var h2={h}
var l2={l}
var l3={l}
var l4={l}
var l5={l}
var l6={l}
var l7={l}
var l8={l}
var n2={n}
var m2={m}
var m3={m}
var m4={m}
var m5={m}
var m6={m}
var p2={p}
var p3={p}
var p4={p}
var s2={s}
var t2={t}
var t3={t}
var u2={u}
var u3={u}
var u4={u}
var u5={u}
var u6={u}
var v2={v}
var z2={z}
var z3={z}
var z4={z}
var A2={A}
var A3={A}
var A4={A}
var A5={A}
var A6={A}
var B2={B}
var E2={E}
var E3={E}
var F2={F}
var G2={G}
var H2={H}
var H3={H}
var H4={H}
var H5={H}
var I2={I}
var J2={J}
var P2={P}
var M2={M}
var M3={M}
var T2={T}
var U2={U}
#arm/food movement
14,0,t,p,4,n,a3,m,m2,9
14,0,t,p,4,o,a3,m,m2,10
14,0,t,p,2,p2,a3,m,m2,10
14,0,t,n,4,a,a2,m,m2,9
14,0,t,o,4,a,a2,m,m2,10
14,0,t,p,j,a,a2,m,m2,10
14,0,t,p,a,n,4,m,m2,9
14,0,t,p,a,o,4,m,m2,10
14,0,t,p,a,p2,j,m,m2,10
14,0,t,p,p2,4,p3,m,m2,1
14,0,t,p,p2,2,p3,m,m2,8
14,0,8,s,m3,a,a2,m,m2,12
14,0,t,p,a,a2,a3,m,m2,0
0,14,m,m2,a,n,4,t,p,16
0,14,m,m2,a,o,4,t,p,17
0,14,m,m2,a,p,j,t,p2,17
0,14,m,m2,4,n,a3,t,p,16
0,14,m,m2,4,o,a3,t,p,17
0,14,m,m2,2,p,a3,t,p2,17
0,14,m,m2,a,a2,a3,t,p,14
#
14,0,p,4,a,a2,a3,F,F2,1
14,0,p,b,a,a2,a3,F,F2,0
0,14,F,F2,a,a2,a3,n,4,16
0,14,F,F2,a,a2,a3,o,4,17
0,14,F,F2,a,a2,a3,p,j,17
0,14,F,F2,4,n,a3,p,b,16
0,14,F,F2,4,o,a3,p,b,17
0,14,F,F2,2,p,a3,p2,b,17
0,14,F,F2,a,n,4,p,b,16
0,14,F,F2,a,o,4,p,b,17
0,14,F,F2,a,p,j,p2,b,17
0,14,F,F2,a,a2,a3,p,b,14
#s movement
12,s,b,b2,a,a2,a3,m,m2,14
s,12,m,m2,a,u,b,b4,b2,8
s,12,m,m2,p,b3,p2,b,b2,0
16,12,m,m2,a,a2,a3,1,b,9
17,12,m,m2,a,a2,a3,1,b,10
s,12,m,m2,a,a2,a3,4,b2,0
s,12,m,m2,a,a2,a3,b,b2,8
#
16,9,b,1,a,a2,a3,12,m2,9
17,9,b,1,a,a2,a3,12,m2,10
s,9,b,j,a,a2,a3,12,m2,4
s,9,b,b2,a,a2,a3,12,m2,8
9,s,12,m2,a,a2,a3,b,j,s
9,s,12,m2,a,a2,a3,b,b2,15
#
16,8,b,1,a,a2,a3,t,t2,9
17,8,b,1,a,a2,a3,t,t2,10
16,8,b,b2,b3,0,15,t,t2,9
17,8,b,b2,b3,0,15,t,t2,10
s,8,b,b2,a,a2,a3,t,t2,8
8,s,t,t2,a,a2,a3,b,b2,15
8,16,t,t2,a,a2,a3,b,b2,9
8,17,t,t2,a,a2,a3,b,b2,10
#
0,s,b,b2,a,a2,a3,12,15,14
s,0,12,15,a,a2,a3,b,b2,12
#/
#state 18 movement
18,b,v,u,a,b2,a2,H,AK,b2
18,b,v,u,a,a2,a3,H,AK,1
b,18,H,12,A,A2,A3,v,u,15
b,18,H,AK,a,a2,a3,v,u,18
#
18,b,u,b2,a,a2,a3,H,H2,b2
18,b,u,v,a,a2,a3,H,H2,1
b,18,H,12,A,A2,A3,u,v,15
b,18,H,H2,a,a2,a3,u,v,18
#
18,b,u,u2,a,b2,a2,A,b3,b2
18,b,u,u2,a,a2,a3,A,b2,1
b,18,A,b2,a,a2,a3,u,u2,18
#
18,b,u,u2,a,a2,a3,b2,A,b2
b,18,b2,A,a,a2,a3,u,u2,18
#15 to 18 movement
15,b,b2,X,a,a2,a3,o,5,8
b,15,o,5,a,a2,a3,b2,X,18
#
15,b,8,0,a,a2,a3,10,5,8
b,15,10,5,a,a2,a3,8,0,18
#/
#15 to 11 movement
15,12,A,A2,a,a2,a3,b,o,b
15,12,A,A2,a,a2,a3,b,o,1
12,15,b,o,a,a2,a3,A,A2,11
#11 to 15 / 11 to 14 movement
11,8,AE,Z,a,a2,a3,x,t,6
8,11,x,t,a,a2,a3,AE,Z,15
#
11,8,AE,b,a,a2,a3,12,t,7
8,11,12,t,a,a2,a3,AE,b,14
#starter obstruction movement
14,0,8,11,a,a2,a3,m,m2,1
0,14,m,m2,a,a2,a3,8,11,16
#special 15 movement
8,15,0,p,a,a2,a3,b,b2,15
15,8,b,b2,a,a2,a3,0,p,8
#
15,12,0,8,b,b2,12,15,12,12
15,12,0,8,a,a2,a3,15,12,8
12,15,15,12,a,a2,a3,0,8,14
#food clump movement
14,0,12,14,a,n,4,0,0,9
14,0,12,14,a,o,4,0,0,10
14,0,12,14,a,c,j,0,0,10
14,0,12,14,2,p,a3,0,0,10
14,0,12,14,p,4,p2,0,0,1
14,0,12,14,a,a2,a3,0,0,0
0,14,0,0,a,n,4,12,14,16
0,14,0,0,a,o,4,12,14,17
0,14,0,0,a,c,j,12,14,17
0,14,0,0,4,n,a,12,14,16
0,14,0,0,4,o,a,12,14,17
0,14,0,0,2,p,a,12,14,17
0,14,0,0,p,2,p2,12,14,15
0,14,0,0,a,a2,a3,12,14,14
#/
#
16,12,12,M,4,a,a2,z,14,9
16,12,12,M,a,a2,a3,z,14,0
12,16,z,14,a,n,4,12,M,16
12,16,z,14,a,o,4,12,M,17
12,16,z,14,a,p,j,12,M,17
12,16,z,14,a,a2,a3,12,M,14
12,16,z,14,a,a2,a3,12,M,14
#special 14 movement
14,0,t,15,a,n,4,m,m2,9
14,0,t,15,a,o,4,m,m2,10
14,0,t,15,a,p,j,m,m2,10
14,0,t,15,a,a2,a3,m,m2,0
0,14,m,m2,4,n,a3,t,15,16
0,14,m,m2,4,o,a3,t,15,17
0,14,m,m2,2,p,a3,t,15,17
0,14,m,m2,a,a2,a3,t,15,14
#
14,0,b,12,a,n,4,m,m2,9
14,0,b,12,a,o,4,m,m2,10
14,0,b,12,a,p,j,m,m2,10
14,0,b,12,p,4,a,m,m2,1
14,0,b,12,p,2,a,m,m2,8
14,0,b,12,a,a2,a3,m,m2,0
0,14,m,m2,a,a2,a3,b,12,14
#
14,0,b,b2,a,5,a3,12,m,12
14,0,b,b2,a,a2,a3,12,m,0
0,14,12,m,a,9,2,b,b2,16
0,14,12,m,a,10,2,b,b2,17
0,14,12,m,a,a2,a3,b,b2,14
#
14,0,t,t2,a,n,4,12,m,9
14,0,t,t2,a,o,4,12,m,10
14,0,t,t2,a,p,j,12,m,10
14,0,t,t2,a,a2,a3,12,m,0
0,14,12,m,4,n,a3,t,t2,16
0,14,12,m,4,o,a3,t,t2,17
0,14,12,m,2,p,a3,t,t2,17
0,14,12,m,a,a2,a3,t,t2,14
#15 to 18 mover
8,I,a,a2,5,b,b2,15,I2,10
10,I,a,a2,b,5,b2,15,I2,8
15,I,a,a2,5,b,b2,15,I2,17
17,h,a,a2,b,b2,b3,15,I2,15
8,5,b2,15,a,a2,a3,m,t,10
AA,m,m2,17,u,b,b2,15,m3,10
10,A,A2,A3,A4,u,b,8,A5,0
17,A,A2,A3,A4,u,b,8,A5,14
#
10,b,b2,15,a,a2,a3,R,t,10
10,b2,5,15,a,a2,a3,R,8,8
15,5,b2,15,a,a2,a3,R,t,17
17,b2,5,15,a,a2,a3,10,8,15
#11 to 15 mover
8,a,a2,u,11,b,b2,12,a3,8
z,a,a2,A,b,b2,11,8,a3,12
AG,a,a2,A,b,b2,11,8,a3,18
18,a,a2,A,J,b2,b3,15,a3,14
#completed reproducton
8,0,a,a2,a3,a4,a5,12,b,0
#s mover
8,A,a,t,b,b2,b3,s,P,9
9,A,a,t,b,b2,b3,s,0,9
c,4,b,A,a,a2,a3,14,l,12
12,s,b,b2,b3,A,A2,A3,A4,12
#special 15 mover
0,4,p,f,8,15,t,f2,p2,0
0,b,A,p,8,15,t,p2,u,b
z,a,a2,0,8,15,15,0,a3,12
0,a,a2,12,15,15,a3,a4,a5,12
##special oc42sion
c,15,u,t,b,j,P,P2,u2,0
0,b,A,p,u,15,u2,p2,b2,4
#
0,A,p,4,p2,A2,u,15,u2,0
#special del6te immunity
p,l,l2,1,e,A,a,a2,a3,p
p,a,a2,t,b,1,13,15,a3,p
f,12,b,b2,b3,A,a,p,b4,f
#special arm destruction
9,A,A2,u,b,b2,b3,b4,b5,0
10,A,A2,u,b,b2,b3,b4,b5,12
16,A,A2,u,b,b2,b3,b4,b5,11
17,A,A2,u,b,b2,b3,b4,b5,18
#special bended arm destruction
g,a,a2,u,b,b2,b3,b4,12,12
#special state 7
12,L,D,b2,A,A2,A3,b3,b4,7
12,L,D,b2,A,A2,b5,b3,b4,7
b,b2,b3,12,12,b4,b5,A,A2,7
b,b2,b3,18,u,b4,b5,A,A2,7
18,b,b2,A,A2,u,b3,7,b4,14
#special arm destruction
b,g,g2,b2,A,A2,A3,12,12,b2
g,a,a2,u,b,b2,b3,12,a3,12
12,12,u,b2,A,A2,a,a2,a3,12
#special state 8/wire back transiton
g,a,a2,u,b,b2,b3,S,a3,8
g,u,a,p,3,u2,b,b2,b3,8
15,u,a,p,3,u2,b,b2,b3,15
10,b,b2,15,a,a2,a3,a4,u,10
15,a,a2,a3,b,7,a4,a5,a6,14
#/
#special 18 mover / 15 to 11 mover
#(probably a temp fix until corner wire bug is fix)
b,b2,A,A2,A3,15,b3,u,u2,b2
b,b2,15,A,A2,b3,u,u2,b4,b2
b,b2,A,15,A2,A3,A4,J,u,b2
b,b2,A,12,10,15,b3,u,u2,b2
b,b2,A,o,12,15,b3,u,u2,b2
#arm collision recovery
##food
b,A,p,14,p2,u,u2,b2,A2,12
b,A,p,14,p2,u,b2,b3,A2,12
#
l,a,A,A2,15,f,4,p,a,l
##starter arm
A,A2,b,b2,11,g,4,p,A3,A
g,A,b,11,b2,u,p,4,p2,g
u,g,11,b,b2,u2,a,p,4,u
#
g,A,b,11,b2,g2,4,p,A2,8
u,g,11,b,b2,u2,p,4,p2,u
##broken arm exception
b,A,p,0,p2,u,u2,b2,A2,b2
b,A,p,0,p2,u,u2,b2,b3,b2
b,A,p,0,p2,b2,A2,A3,A4,b2
##broken arm
b,8,u,b2,E,G,E2,G2,E3,12
b,u,u2,b2,E,O,E2,G,E3,12
b,A,u,b2,A2,u2,G,G2,l3,12
b,A,u,b2,A2,A3,u2,G,G2,12
b,u,A,A3,u2,b2,A4,b3,A5,12
#
b,u,u2,b2,u3,u4,u5,b3,u6,12
b,p,u,12,u2,p,l,l2,l3,12
#
b,A,u,b2,A3,l,l2,l3,l4,12
##boundary
b,l,p,u,b2,b3,l3,l4,l5,12
##2 arms (both facing eachother)
B,A,p,4,p2,A2,p3,b,p4,12
B,A,p,b,p2,A2,p3,4,p4,12
A,a,a2,p,b,B,4,p2,a3,A
A,a,a2,p,4,B,b,p2,a3,A
#
B,P,b,p,A,A2,p2,4,p3,12
B,A,p,b,p2,B2,4,p2,a,0
P,A,p,b,p2,B2,b2,p2,a,P
#
b,12,p,15,u,b2,A,u2,u3,12
#special construct
l,l2,3,p,4,p2,a,a2,a3,l
l,b,b2,a,a2,p,4,p2,3,l
#
c,3,b,l,p,1,p2,l2,l3,13
l,l2,4,p,1,p2,a,a2,a3,l
#/
##state 18
f,l,AI,18,l2,a,a2,a3,a4,12
18,AI,v,J,A,l,a,AH,l2,14
#construct l6ft
c,l,a,t,b,2,l2,l3,l4,8
c,2,b,l,l2,l3,l4,l5,l6,4
f,l,2,c,l2,l3,a,a2,a3,10
f,b,b2,l,a,a2,l2,c,2,c
f,l,p,2,c2,l2,a,a2,a3,8
##14 to s
14,l,2,p,l2,l3,a,a2,a3,17
14,b,b2,l,a,a2,l2,9,2,16
14,b,b2,l,a,a2,l2,10,2,17
14,b,b2,l,a,a2,l2,s,2,s
14,l,p,2,c2,l2,a,a2,a3,15
##s to 15
s,l,a,t,b,2,l2,l3,l4,15
#/
#construct right
c,l,l2,t,b,j,P,P2,l3,4
c,j,b,14,a,a2,a3,P,P2,0
c,j,b,h,a,a2,a3,P,P2,h
8,a,a2,t,b,b2,j,c,a3,c
c,l,l2,t,b,b2,b3,4,l3,8
f,l,l2,p,j,l3,a,a2,a3,10
f,a,a2,f2,8,4,p,f3,a3,1
c,j,b,12,a,a2,a3,P,P2,0
##14/15 to s
14,l,l2,p,j,l3,a,a2,a3,17
15,a,a2,u,b,b2,j,9,a3,16
15,a,a2,u,b,b2,j,10,a3,17
15,a,a2,u,b,b2,j,s,a3,s
##s to 14/15
s,l,l2,t,b,b2,b3,4,l3,15
s,j,b,14,a,a2,a3,l,l2,14
s,j,b,0,a,a2,a3,P,P2,14
s,j,b,8,a,a2,a3,P,P2,15
#construct forward
c,r,a,t,e,4,l,l2,a2,8
c,4,e,15,a,a2,a3,l2,l3,8
c,4,e,q,a,a2,a3,l2,l3,0
f,l,p,4,p2,l2,a,a2,a3,1
f,a,r,c,4,l,a2,a3,a4,c
f,l,4,c,a,a2,a3,a4,a5,c
##C to s
C,a,r,9,4,l,a2,a3,a4,16
C,a,r,10,4,l,a2,a3,a4,17
C,a,r,s,4,l,a2,a3,a4,s
C,l,4,9,a,a2,a3,a4,a5,16
C,l,4,10,a,a2,a3,a4,a5,17
C,l,4,s,a,a2,a3,a4,a5,s
##s to 15
s,r,a,t,e,4,l3,l,l2,15
s,4,e,15,a,a2,a3,l2,l3,15
s,4,e,8,a,a2,a3,l2,l3,15
s,4,e,q,a,a2,a3,l2,l3,14
##s to c
f,a,r,16,4,l,a2,a3,a4,9
f,a,r,17,4,l,a2,a3,a4,10
f,l,4,16,a,a2,a3,a4,a5,9
f,l,4,17,a,a2,a3,a4,a5,10
##16 to 17
16,o,4,l,a,a2,a3,l2,l3,17
#special instable signal remover
1,4,A,p,u,u2,u3,p2,u4,4
1,b,A,p,u,u2,u3,p2,u4,1
#*
##starter
f,A,b,11,l,l2,a,a2,a3,8
#
f,8,11,f2,l,l2,a,a2,a3,9
14,8,11,f2,l,l2,a,a2,a3,16
#
f,11,A,l,a,l2,l3,l4,8,1
#
f,A,a,a2,a3,l,AD,b,11,9
14,A,a,a2,a3,l,AD,b,11,16
#delete immunity
p,b,P,P2,a,a2,a3,V,e,p
b,p,a,a2,a3,p2,V,b2,A,b2
1,p,a,a2,a3,p2,V,11,A,4
4,p,a,a2,a3,p2,V,11,A,1
b,b2,b3,p,a,13,a2,p2,V,b2
#
u,b,b2,u2,13,P,P2,u3,e,u
u,b,b2,u2,P,13,P2,u3,e,u
u,b,b2,u2,P,P2,13,u3,e,u
u,b,b2,u2,13,P,P2,0,t,u
u,b,b2,u2,P,13,P2,0,t,u
u,b,b2,u2,P,P2,13,0,t,u
u,b,b2,u2,13,P,t,t2,b3,u
u,13,m,m2,b,11,b3,u2,m3,u
u,m,m2,m3,b,11,b3,u2,13,u
#arm destruction
b,i,u,b2,A,A2,A3,b3,b4,12
b,i,u,b2,A,A2,b5,b3,b4,12
12,A,A2,u,b,b2,b3,b4,b5,12
18,A,A2,u,b,12,b3,b4,b5,14
11,A,A2,u,b,12,b3,b4,b5,14
#
b,u,u2,b2,A,A2,A3,12,N,12
g,a,a2,u,b,b2,12,N,a3,12
#
g,a,a2,a3,a4,b2,b3,12,a5,12
b,12,u,b2,A,A2,A3,12,N,12
#bended arm destruction
#g,A,A2,u,b,b2,b3,b4,12,12
b,12,u,b2,b3,H,H2,12,H3,12
#
b,15,H,u,u2,b2,H2,12,E,12
b,g,H,15,u,b2,H2,12,E,12
12,15,H,u,u2,b2,H2,H3,H4,12
g,H,H2,H3,H4,u,b,12,15,12
12,14,H,12,u,b2,H2,H3,H4,12
#
12,15,g,b,H,H2,a,a2,a3,12
g,H,H2,H3,g2,b,12,12,H4,12
#
b,15,u,b2,b3,H,H2,12,K,12
g,H,H2,H3,g2,b,12,15,H4,12
#
b,12,15,u,b2,b3,H,H2,H3,12
b,12,u,b2,H,H2,H3,H4,H5,12
g,12,H,H2,H3,g2,b,b2,b3,12
#8,12,H,E,H2,8,b,b2,b3,12
#
b,12,H,15,b2,b3,H2,H3,H4,12
g,12,H,H2,u,u2,b,b2,12,12
g,H,u,u2,b,b2,12,15,H2,12
b,12,u,b2,H,H2,H3,b3,12,12
#forward arm obstruction
b,A,b2,p,A2,b3,u,b4,A3,13
b,A,p,A2,m,b2,u,b3,A3,13
#special arm obstruction
8,Q,b,11,b2,t,a,p,1,13
Q,A,b,b2,b3,15,p,1,p2,13
#arm obstruction
Q,P,d,a,a2,P2,p,1,p2,13
Q,P,a,d,a2,P2,p,1,p2,13
Q,P,a,a2,d,P2,p,1,p2,13
Q,P,a,a2,d,P2,A3,p,1,13
Q,P,d,a,a2,P2,1,p,A3,13
Q,P,a,d,a2,P2,p,1,p2,13
#/
#state 7
b,15,m,b2,b3,A,A2,12,a,7
7,a,18,a2,a3,a4,a5,a6,a7,0
#s mover
w,a,a2,A,8,s,l,a3,a4,12
#0,m,t,15,s,m2,m3,m4,m5,12?
#/
#18 mover / 15 to 11 mover
0,AM,a,a2,a3,12,b,18,b2,10
14,AM,a,a2,a3,12,b,18,b2,17
10,11,b,b2,b3,A,a,a2,a3,0
17,11,b,b2,b3,A,a,a2,a3,14
17,A,18,b,b2,A2,a,a2,a3,14
12,14,A,J,J2,14,a,a2,a3,0
0,b,12,14,m,12,M,M2,b2,12
15,a,a2,a3,A,AJ,b,A2,a4,14
#/
#
z,a,a2,a3,a4,a5,b,5,7,12
14,a,a2,a3,a4,a5,b,5,7,15
0,5,b,7,a,a2,a3,A,b2,12
14,5,b,7,a,a2,a3,A,b2,15
z,AC,a,a2,a3,A,b,AJ,b2,12
14,AC,a,a2,a3,A,b,AJ,b2,15
z,AC,a,A,b,b2,b3,AJ,b4,12
12,A,a,A2,b,b2,AJ,b3,b4,12
12,A,a,A2,b,AJ,b2,b3,b4,12
15,A,a,a2,a3,A2,AJ,b,7,14
15,A,a,a2,a3,A2,AJ,b,A3,14
14,AJ,b,12,a,a2,a3,A,A2,15
0,a,a2,A2,b,AJ,15,A3,a4,12
14,a,a2,A2,b,AJ,15,A3,a4,15
15,18,b,A,a,a2,a3,A2,A3,14
15,b,b2,A,a,a2,a3,A2,AJ,14
#/
#
12,14,M,z,a,a2,l,b,b2,0
b,18,12,u,u2,b2,A,A2,11,13
b,15,m,m2,a,a2,a3,t,b2,6
z,AC,a,a2,a3,a4,A,J,b2,12
12,14,a,a2,a3,a4,A,J,J2,12
12,0,a,a2,a3,AL,A,b,J,12
#/
#food clump mover
0,M,M2,z,a,g,s,a4,a5,0
0,M,M2,z,a,a2,a3,AJ,b,0
0,M,M2,J,J2,m,a,a2,a3,0
0,M,M2,0,a,a2,a3,a4,a5,12
0,M,a,a2,a3,z,M2,M3,a4,12
14,z,14,12,12,M,A,A2,A3,16
16,z2,14,z3,z4,M,A,A2,A3,16
#special s transition
s,l,l2,l3,l4,l5,l6,l7,l8,14
#special 14 mover
0,A,a,a2,a3,14,A2,b,J,12
z,b,p,A,A2,14,A3,A4,p2,12
0,o,A,A2,0,14,A3,A4,l,12
#special turning arm obstruction
12,p,A,A2,b,b2,Y,A3,9,13
#state 12
12,a,a2,a3,a4,a5,a6,a7,a8,0
#square loop destruction
#b,b2,b3,9,8,b4,0,10,b5,13
#state 8 transition
g,a,a2,u,b,b2,b3,u2,a3,8
s,a,a2,u,b,b2,b3,u2,a3,15
g,a,a2,u,b,b2,u2,S,a3,8
s,a,a2,u,b,b2,u2,S,a3,15
g,a,a2,S,u,b2,b3,u2,a3,8
s,a,a2,S,u,b2,b3,u2,a3,15
g,b,b2,u,a,u2,b3,b4,b5,8
s,b,b2,u,a,u2,b3,b4,b5,15
g,a,a2,a3,u,b,J,u2,a4,8
s,a,a2,a3,u,b,J,u2,a4,15
9,8,b,b2,b3,14,A,A2,A3,8
#turning arm obstruction
w,o,A,A2,Y,b,b2,A3,A4,13
w,p,A,A2,b,b2,Y,A3,t,13
b,b2,u,b3,A,p,b4,A2,A3,13
#delete
k,13,a,a2,a3,a4,a5,a6,a7,13
k,a,13,a2,a3,a4,a5,a6,a7,13
k,a,a2,13,a3,a4,a5,a6,a7,13
13,a,a2,a3,a4,a5,a6,a7,a8,0
#/
#state 5/6
b,b2,u,6,m,7,a,A,m2,5
b,u,u2,6,A,7,A2,b2,u3,5
15,a,a2,m,b,b2,12,W,a3,14
15,9,a,a2,A,A2,b,7,1,14
#starter growth
1,A,A2,A3,A4,p2,8,11,A5,1
1,p,A,A2,A3,p2,g,11,A4,4
1,A,a,b,a2,u,u2,11,A2,4
4,A,a,b,a2,u,u2,11,A2,1
#
1,A,a,b,a2,u,u2,11,a2,13
#instable signal remover
1,1,p,u,b,j,A,A2,p2,4
1,2,b2,A,p,1,p2,u,u2,4
b,f,A,p,b2,j,A2,p2,A3,4
b,2,b2,p,A,f,A2,p2,u,4
c,b,b2,A,A2,A3,p,A4,b3,0
#/
#special signal movement
b,b2,n,b3,A,A2,A3,b4,o,1
b,b2,o,b3,A,A2,A3,b4,n,1
b,p,b2,b3,t,t2,t3,b4,m,b4
b,b2,m,t,b3,b4,b5,t2,t3,b2
b,t,t2,b2,p,b3,p2,t3,a,b2
b,p,b2,b3,A,p2,l,l2,l3,b3
b,A,p,b2,p2,p3,t,b3,A2,b3
b,A,A2,b2,u,5,A3,b3,15,6
b,18,b2,A,A2,b3,u,15,A3,6
#merge
b,b2,t,1,0,1,0,b3,t2,b2
b,1,t,b2,0,1,0,b3,t2,b2
b,b2,t,b2,0,1,0,b3,t2,b2
#nand gate
b,b2,t,1,0,b3,0,b4,t2,b3
b,1,t,b2,0,b3,0,b4,t2,b3
b,b2,t,b3,0,b4,0,b5,t2,1
#/
#special junk wire remover
b,AI,l,l2,l3,l4,A,b2,u2,13
b,b2,b3,u,l,l2,l3,A,A2,13
b,12,A,l,A2,l2,A3,b2,u,13
b,b2,A,A2,l,l2,l3,u,b3,12
#signal movement
b,U,a,T,T2,b2,a3,u2,a4,1
b,U,a,T,T2,b2,u2,U2,a4,1
#
b,U,a,T,a2,b2,u,u2,a3,1
b,U,a,a2,T,b2,u,u2,a3,1
#
b,b2,T,T2,a,a2,a3,a4,u2,b2
b,b2,T,T2,a,a2,a3,u2,a4,b2
#
b,b2,a5,T,a,a2,a3,a4,u2,b2
b,b2,T,a5,a,a2,a3,u2,a4,b2
#*
#food reversion
AB,13,a,a2,a3,a4,a5,a6,a7,14
AB,l,l2,l3,l4,l5,l6,l7,l8,14
#junk state 8
g,l,l2,l3,l4,l5,l6,l7,l8,0
g,A,b,b2,b3,A2,A3,u,12,0
g,A,b,b2,b3,A2,a,a2,a3,0
#junk state 7
7,l,l2,l3,l4,l5,l6,l7,l8,0
#junk wire remover
b,a,a2,a3,a4,a5,a6,a7,a8,12
@COLORS
0 0 0 0
1 255 128 0
2 255 0 0
3 0 255 0
4 0 0 255
5 0 180 0
6 0 100 0
7 255 255 255
8 80 80 80
9 95 95 95
10 128 128 128
11 0 64 0
12 255 165 0
13 255 255 0
14 64 0 164
15 64 32 64
16 75 75 100
17 110 110 125
18 128 255 128
19 180 180 90
Here's an example pattern. Notice a new loop at 52k generations. (the pattern has changed)

Code: Select all

[M2] (golly 2.7)
#R foodshapeloop
1 0 0 14 0
2 0 1 0 0
3 0 0 2 0
4 0 0 3 3
5 0 0 4 4
4 3 3 3 3
5 6 6 6 6
6 5 5 7 7
6 7 7 7 7
7 8 8 9 9
7 9 9 9 9
8 10 10 11 11
8 11 11 11 11
9 12 12 13 13
9 13 13 13 13
10 0 14 0 15
3 0 0 2 2
1 0 0 0 14
2 18 0 0 0
3 0 0 0 19
4 0 0 17 20
5 0 0 4 21
1 14 0 0 0
2 0 23 0 0
3 0 0 2 24
1 0 14 0 0
2 26 0 0 0
3 0 0 0 27
2 0 0 0 1
3 0 29 2 0
2 0 0 18 0
3 0 31 0 0
4 25 28 30 32
2 0 0 0 23
3 0 34 2 0
2 0 0 26 0
3 0 36 0 0
3 0 2 2 0
3 0 19 0 0
4 35 37 38 39
5 6 33 6 40
6 5 22 7 41
3 0 24 2 29
3 0 27 0 31
3 0 0 2 34
3 0 0 0 36
4 43 44 45 46
4 17 20 25 28
5 6 47 6 48
4 30 32 35 37
4 38 39 43 44
5 6 50 6 51
6 7 49 7 52
7 8 42 9 53
4 45 46 17 20
5 6 55 6 33
5 6 40 6 47
6 7 56 7 57
5 6 48 6 50
5 6 51 6 55
6 7 59 7 60
7 9 58 9 61
8 10 54 11 62
6 7 41 7 49
6 7 52 7 56
7 9 64 9 65
6 7 57 7 59
6 7 60 7 41
7 9 67 9 68
8 11 66 11 69
9 12 63 13 70
2 1 0 0 0
3 0 0 0 72
2 0 18 0 0
3 0 0 74 0
4 0 0 73 75
3 0 0 19 0
4 0 0 3 77
5 0 0 76 78
3 0 0 72 74
3 0 0 0 2
4 0 0 80 81
4 0 0 20 73
5 0 0 82 83
2 23 0 0 0
3 0 0 0 85
2 0 26 0 0
3 0 0 87 0
2 0 0 1 0
3 0 89 0 0
2 0 0 0 18
3 91 0 0 0
4 86 88 90 92
3 0 0 24 0
3 0 0 27 0
3 29 0 0 0
3 31 0 0 0
4 94 95 96 97
2 0 0 23 0
3 0 99 0 0
2 0 0 0 26
3 101 0 0 0
3 0 72 0 0
3 74 0 0 0
4 100 102 103 104
3 34 0 0 0
3 36 0 0 0
3 2 0 0 0
3 19 0 0 0
4 106 107 108 109
5 93 98 105 110
3 0 0 85 87
3 0 0 0 24
3 89 91 0 0
3 0 29 0 0
4 112 113 114 115
4 28 86 32 90
3 99 101 0 0
3 0 34 0 0
3 72 74 0 0
3 0 2 0 0
4 118 119 120 121
4 37 100 39 103
5 116 117 122 123
6 79 84 111 124
4 0 0 75 3
4 0 0 77 80
5 0 0 126 127
4 0 0 81 20
5 0 0 129 76
4 88 94 92 96
4 95 112 97 114
4 102 106 104 108
4 107 118 109 120
5 131 132 133 134
4 113 28 115 32
4 119 37 121 39
5 136 93 137 105
6 128 130 135 138
3 0 85 0 89
3 87 0 91 0
3 0 0 0 99
3 0 0 101 0
4 140 141 142 143
3 24 0 29 0
3 27 0 31 0
3 0 0 34 0
3 0 0 36 0
4 145 146 147 148
4 73 75 86 88
4 3 77 94 95
5 144 149 150 151
3 85 87 89 91
3 0 24 0 29
3 0 0 99 101
3 0 0 0 34
4 153 154 155 156
4 44 140 46 142
4 80 81 112 113
4 20 73 28 86
5 157 158 159 160
4 90 92 100 102
4 96 97 106 107
4 103 104 140 141
4 108 109 145 146
5 162 163 164 165
4 114 115 118 119
4 32 90 37 100
4 120 121 153 154
4 39 103 44 140
5 167 168 169 170
6 152 161 166 171
4 141 145 143 147
4 146 153 148 155
4 75 3 88 94
4 77 80 95 112
5 173 174 175 176
4 154 44 156 46
4 81 20 113 28
5 178 144 179 150
4 92 96 102 106
4 97 114 107 118
4 104 108 141 145
4 109 120 146 153
5 181 182 183 184
4 115 32 119 37
4 121 39 154 44
5 186 162 187 164
6 177 180 185 188
7 125 139 172 189
5 0 0 78 82
5 0 0 83 126
5 98 116 110 122
5 117 131 123 133
6 191 192 193 194
5 0 0 127 129
5 132 136 134 137
6 196 79 197 111
5 149 157 151 159
5 158 173 160 175
5 163 167 165 169
5 168 181 170 183
6 199 200 201 202
5 174 178 176 179
5 182 186 184 187
6 204 152 205 166
7 195 198 203 206
4 142 143 73 75
4 147 148 3 77
5 208 209 93 98
4 155 156 80 81
4 46 142 20 73
5 211 212 116 117
5 105 110 144 149
5 122 123 157 158
6 210 213 214 215
4 143 147 75 3
4 148 155 77 80
5 217 218 131 132
4 156 46 81 20
5 220 208 136 93
5 133 134 173 174
5 137 105 178 144
6 219 221 222 223
5 150 151 162 163
5 159 160 167 168
5 164 165 208 209
5 169 170 211 212
6 225 226 227 228
5 175 176 181 182
5 179 150 186 162
5 183 184 217 218
5 187 164 220 208
6 230 231 232 233
7 216 224 229 234
5 209 211 98 116
5 212 217 117 131
5 110 122 149 157
5 123 133 158 173
6 236 237 238 239
5 218 220 132 136
5 134 137 174 178
6 241 210 242 214
5 151 159 163 167
5 160 175 168 181
5 165 169 209 211
5 170 183 212 217
6 244 245 246 247
5 176 179 182 186
5 184 187 218 220
6 249 225 250 227
7 240 243 248 251
8 190 207 235 252
6 84 128 124 135
6 130 191 138 193
6 161 177 171 185
6 180 199 188 201
7 254 255 256 257
6 192 196 194 197
6 200 204 202 205
7 259 125 260 172
6 213 219 215 222
6 221 236 223 238
6 226 230 228 232
6 231 244 233 246
7 262 263 264 265
6 237 241 239 242
6 245 249 247 250
7 267 216 268 229
8 258 261 266 269
6 111 124 152 161
6 135 138 177 180
6 166 171 210 213
6 185 188 219 221
7 271 272 273 274
6 193 194 199 200
6 197 111 204 152
6 201 202 236 237
6 205 166 241 210
7 276 277 278 279
6 214 215 225 226
6 222 223 230 231
6 227 228 111 124
6 232 233 135 138
7 281 282 283 284
6 238 239 244 245
6 242 214 249 225
6 246 247 193 194
6 250 227 197 111
7 286 287 288 289
8 275 280 285 290
6 124 135 161 177
6 138 193 180 199
6 171 185 213 219
6 188 201 221 236
7 292 293 294 295
6 194 197 200 204
6 202 205 237 241
7 297 271 298 273
6 215 222 226 230
6 223 238 231 244
6 228 232 124 135
6 233 246 138 193
7 300 301 302 303
6 239 242 245 249
6 247 250 194 197
7 305 281 306 283
8 296 299 304 307
9 253 270 291 308
7 9 53 9 58
7 9 61 9 64
8 11 310 11 311
7 9 65 9 67
7 9 68 9 53
8 11 313 11 314
9 13 312 13 315
7 172 189 216 224
7 203 206 240 243
7 229 234 271 272
7 248 251 276 277
8 317 318 319 320
7 256 257 262 263
7 260 172 267 216
7 264 265 292 293
7 268 229 297 271
8 322 323 324 325
7 273 274 281 282
7 278 279 286 287
7 283 284 172 189
7 288 289 203 206
8 327 328 329 330
7 294 295 300 301
7 298 273 305 281
7 302 303 256 257
7 306 283 260 172
8 332 333 334 335
9 321 326 331 336
10 71 309 316 337
5 6 6 165 169
5 6 6 170 183
6 339 340 236 237
5 6 6 184 187
5 6 6 164 165
6 342 343 241 210
7 341 344 286 287
5 6 6 169 170
5 6 6 183 184
6 346 347 213 219
5 6 6 187 164
6 349 339 221 236
7 348 350 300 301
8 345 351 330 334
6 340 342 237 241
6 343 346 210 213
7 353 354 305 281
6 347 349 219 221
7 356 341 282 286
7 284 288 189 203
8 355 357 335 358
8 252 266 280 296
7 224 240 234 248
7 272 276 274 278
8 269 361 299 362
9 352 359 360 363
8 290 304 318 322
7 282 286 284 288
7 189 203 224 240
8 307 366 323 367
8 320 324 328 332
7 234 248 272 276
7 274 278 282 286
8 325 370 333 371
9 365 368 369 372
10 0 364 0 373
7 344 348 287 300
7 350 353 301 305
7 289 302 206 256
7 303 306 257 260
8 375 376 377 378
7 354 356 281 282
3 2 2 0 29
3 0 72 0 89
3 24 0 29 2
4 381 382 383 73
5 6 55 164 384
3 0 29 34 0
3 0 2 2 29
4 386 90 387 382
3 0 0 24 2
3 29 29 0 0
4 389 73 390 90
5 208 388 93 391
6 342 385 241 392
3 34 2 0 29
3 2 0 0 2
4 394 382 395 73
3 24 29 29 0
3 0 2 34 29
4 397 90 398 382
5 105 396 144 399
3 0 29 24 0
4 17 73 401 90
3 29 2 0 29
3 34 0 0 2
4 403 382 404 73
5 150 402 162 405
6 242 400 249 406
7 341 393 286 407
3 2 29 0 0
3 24 2 29 29
4 409 90 410 382
3 0 0 34 2
4 412 73 30 90
5 164 411 208 413
3 0 2 24 29
3 29 0 0 2
4 415 382 416 73
3 34 29 0 0
4 418 90 381 382
5 93 417 105 419
6 250 414 197 420
4 383 73 386 90
4 387 382 389 73
5 144 422 150 423
4 390 90 394 382
4 395 73 397 90
5 162 425 164 426
6 204 424 205 427
7 288 421 203 428
8 380 408 329 429
7 243 262 251 264
7 263 267 265 268
7 277 292 279 294
7 293 297 295 298
8 431 432 433 434
4 398 382 17 73
4 401 90 403 382
5 208 436 93 437
4 404 73 409 90
4 410 382 412 73
5 105 439 144 440
6 241 438 242 441
4 30 90 415 382
4 416 73 418 90
5 150 443 162 444
5 164 384 208 388
6 249 445 250 446
7 240 442 248 447
5 93 391 105 396
5 144 399 150 402
6 197 449 204 450
5 162 405 164 411
5 208 413 93 417
6 205 452 241 453
7 276 451 278 454
8 235 448 275 455
9 379 430 435 456
3 2 0 29 0
3 72 2 89 29
3 0 0 72 2
4 458 459 3 460
4 382 458 73 3
5 208 209 461 462
4 459 382 460 73
5 211 212 464 461
3 89 29 0 0
4 96 466 458 459
4 90 96 382 458
4 3 460 96 466
4 73 3 90 96
5 467 468 469 470
4 466 90 459 382
4 460 73 466 90
5 472 467 473 469
6 463 465 471 474
5 217 218 462 464
5 220 208 461 462
5 468 472 470 473
6 476 477 478 471
5 461 462 467 468
5 464 461 472 467
5 469 470 461 462
5 473 469 464 461
6 480 481 482 483
5 462 464 468 472
5 470 473 462 464
6 485 480 486 482
7 475 479 484 487
5 209 211 464 461
5 212 217 462 464
6 489 490 474 478
5 218 220 461 462
5 208 209 464 461
6 492 493 471 474
6 481 485 483 486
7 491 494 495 484
6 471 474 480 481
6 478 471 485 480
6 482 483 471 474
6 486 482 478 471
7 497 498 499 500
6 474 478 481 485
6 483 486 474 478
7 502 497 503 499
8 488 496 501 504
5 211 212 462 464
5 217 218 461 462
6 506 507 478 471
5 220 208 464 461
5 209 211 462 464
6 509 510 474 478
7 508 511 487 495
5 212 217 461 462
5 218 220 464 461
6 513 514 471 474
5 208 209 462 464
5 211 212 461 462
6 516 517 478 471
7 515 518 484 487
7 498 502 500 503
8 512 519 520 501
7 484 487 497 498
7 495 484 502 497
7 499 500 484 487
7 503 499 495 484
8 522 523 524 525
7 487 495 498 502
7 500 503 487 495
1 1 1 1 8
1 1 1 15 8
1 1 8 6 8
2 529 530 531 0
3 0 0 72 532
4 458 459 3 533
2 0 0 0 529
1 1 4 15 8
1 4 4 8 8
2 0 0 536 537
3 0 72 535 538
1 4 0 2 0
2 0 0 540 1
3 2 0 541 0
1 1 8 1 8
2 0 543 0 543
1 0 8 0 8
2 0 545 0 545
1 1 1 8 8
1 1 8 8 0
2 547 548 0 0
1 0 8 0 0
2 1 550 0 0
3 544 546 549 551
1 4 0 4 0
2 553 0 553 0
1 3 4 8 8
1 4 4 15 8
2 555 556 0 0
1 4 3 8 8
2 558 553 545 553
3 554 0 557 559
4 539 542 552 560
5 469 470 534 561
6 485 480 486 562
7 499 500 484 563
8 527 522 528 564
9 505 521 526 565
7 287 300 289 302
7 301 305 303 306
7 206 256 243 262
7 257 260 263 267
8 567 568 569 570
5 105 419 144 422
5 150 423 162 425
6 242 572 249 573
5 164 426 208 436
5 93 437 105 439
6 250 575 197 576
7 286 574 288 577
5 144 440 150 443
5 162 444 164 384
6 204 579 205 580
6 241 392 242 400
7 203 581 240 582
8 285 578 317 583
7 251 264 277 292
7 265 268 293 297
7 279 294 287 300
7 295 298 301 305
8 585 586 587 588
6 249 406 250 414
6 197 420 204 424
7 248 590 276 591
6 205 427 241 438
6 242 441 249 445
7 278 593 286 594
8 319 592 327 595
9 571 584 589 596
8 501 504 522 523
1 4 8 4 8
1 0 0 8 8
1 4 4 0 0
1 2 4 14 0
2 599 600 601 602
3 89 603 0 0
4 96 604 458 459
1 0 0 8 0
1 4 8 3 8
2 600 606 601 607
2 0 0 1 545
2 0 599 0 599
1 0 8 8 8
2 0 545 600 611
3 608 609 610 612
1 4 4 4 0
1 4 3 14 0
2 600 600 614 615
1 2 0 4 0
1 4 0 0 0
2 611 617 601 618
1 3 0 4 0
2 620 0 553 0
3 616 619 621 0
1 3 4 7 0
2 0 623 0 0
1 4 4 14 0
1 4 2 0 0
2 625 626 0 0
3 624 627 0 89
2 618 1 0 0
3 629 0 29 0
4 613 622 628 630
5 605 631 469 470
6 478 632 485 480
7 497 633 499 500
8 520 634 527 522
8 524 525 501 504
8 528 524 520 501
9 598 635 636 637
10 457 566 597 638
11 16 338 374 639
7 139 195 189 203
7 198 254 206 256
8 641 642 361 431
7 255 259 257 260
4 0 0 81 3
5 0 0 645 4
4 113 3 115 3
4 119 3 121 3
5 647 6 648 6
6 128 646 135 649
4 154 3 156 3
4 81 3 113 3
5 651 6 652 6
4 115 3 119 3
4 121 3 154 3
5 654 6 655 6
6 177 653 185 656
7 125 650 172 657
4 156 3 81 3
5 659 6 647 6
5 648 6 651 6
6 219 660 222 661
5 652 6 654 6
5 655 6 659 6
6 230 663 232 664
7 216 662 229 665
8 644 658 432 666
8 362 433 366 567
6 135 649 177 653
6 185 656 219 660
7 271 669 273 670
6 222 661 230 663
6 232 664 135 649
7 281 672 283 673
8 434 671 568 674
9 643 667 668 675
8 367 569 370 585
7 172 657 216 662
7 229 665 271 669
8 570 678 586 679
8 371 587 358 377
7 273 670 281 672
7 283 673 172 657
8 588 682 378 683
9 677 680 681 684
10 676 14 685 15
6 5 0 7 0
6 7 0 7 0
7 8 687 9 688
7 9 688 9 688
8 10 689 11 690
8 11 690 11 690
9 12 691 13 692
9 13 692 13 692
10 693 0 694 0
5 217 218 464 461
5 220 208 462 464
6 696 697 474 478
5 209 211 461 462
5 212 217 464 461
6 699 700 471 474
7 698 701 495 484
5 218 220 462 464
6 703 463 478 471
6 465 476 474 478
7 704 705 487 495
8 702 706 504 520
6 477 489 471 474
6 490 492 478 471
7 708 709 484 487
6 493 506 474 478
4 459 108 460 145
5 659 6 712 184
4 466 147 459 3
4 460 94 466 96
5 714 218 715 132
6 507 713 471 716
4 459 106 460 108
4 466 145 459 147
5 718 134 719 174
4 460 3 466 94
4 459 96 460 106
5 721 176 722 182
6 480 720 482 723
7 711 717 495 724
4 466 108 459 145
4 460 147 466 3
5 726 184 727 218
4 459 94 460 96
4 466 106 459 108
5 729 132 730 134
6 471 728 480 731
4 460 145 466 147
4 459 3 460 94
5 733 174 734 176
4 466 96 459 106
4 460 108 466 145
5 736 182 737 184
6 482 735 471 738
7 502 732 503 739
8 710 725 501 740
8 523 527 525 528
4 459 147 460 3
4 466 94 459 96
5 743 218 744 132
4 460 106 466 108
4 459 145 460 147
5 746 134 747 174
6 480 745 482 748
4 466 3 459 94
4 460 96 466 106
5 750 176 751 182
5 712 184 714 218
6 471 752 480 753
7 495 749 502 754
5 715 132 718 134
5 719 174 721 176
6 482 756 471 757
5 722 182 726 184
5 727 218 729 132
6 480 759 482 760
7 503 758 495 761
8 522 755 524 762
9 707 741 742 763
8 376 380 378 329
8 432 235 434 275
9 765 352 766 360
8 504 520 523 527
5 730 134 733 174
5 734 176 736 182
6 471 769 480 770
5 737 184 743 218
5 744 132 746 134
6 482 772 471 773
7 502 771 503 774
5 747 174 750 176
5 751 182 712 184
6 480 776 482 777
6 471 716 480 720
7 495 778 502 779
8 501 775 522 780
8 525 528 504 520
6 482 723 471 728
6 480 731 482 735
7 503 783 495 784
6 471 738 480 745
6 482 748 471 752
7 502 786 503 787
8 524 785 501 788
9 768 781 782 789
8 568 285 570 317
8 586 319 588 327
9 791 365 792 369
10 764 767 790 793
6 340 0 237 0
6 239 0 245 0
7 350 795 301 796
6 247 0 194 0
6 200 0 202 0
7 303 798 257 799
8 375 797 377 800
6 237 0 239 0
6 245 0 247 0
7 263 802 265 803
6 194 0 200 0
6 202 0 237 0
7 293 805 295 806
8 431 804 433 807
9 359 801 363 808
7 301 796 303 798
7 257 799 263 802
8 567 810 569 811
7 265 803 293 805
7 295 806 301 796
8 585 813 587 814
9 368 812 372 815
10 809 0 816 0
11 686 695 794 817
3 2 0 2 0
3 19 0 2 0
4 819 820 3 3
3 72 74 2 0
4 822 38 3 3
5 821 823 6 6
3 0 19 2 0
3 0 72 2 0
4 825 826 3 3
3 74 0 2 0
4 828 819 3 3
5 827 829 6 6
6 824 830 7 7
4 820 822 3 3
4 38 825 3 3
5 832 833 6 6
4 826 828 3 3
5 835 821 6 6
6 834 836 7 7
7 831 837 9 9
5 823 827 6 6
5 829 832 6 6
6 839 840 7 7
5 833 835 6 6
6 842 824 7 7
7 841 843 9 9
8 838 844 11 11
6 830 834 7 7
6 836 839 7 7
7 846 847 9 9
6 840 842 7 7
7 849 831 9 9
8 848 850 11 11
9 845 851 13 13
4 3 3 0 0
5 6 6 853 853
6 7 7 854 854
7 9 9 855 855
8 11 11 856 856
9 13 13 857 857
10 0 852 0 858
7 837 841 9 9
7 843 846 9 9
8 860 861 11 11
7 847 849 9 9
3 2 2 2 2
3 0 72 0 19
4 864 865 25 28
5 835 866 6 50
6 834 867 7 60
7 831 868 9 64
8 863 869 11 313
8 11 314 11 62
9 862 870 13 871
3 2 0 0 72
3 72 2 74 0
4 873 874 86 88
3 2 0 19 0
4 826 876 94 95
5 875 877 162 163
3 72 2 72 74
3 0 72 0 2
4 879 880 112 113
3 2 0 0 19
3 72 2 0 72
4 882 883 28 86
5 881 884 167 168
6 878 885 227 228
3 0 72 74 0
4 887 819 88 94
3 72 2 19 0
3 0 72 72 74
4 889 890 95 112
5 888 891 181 182
3 72 2 0 19
4 395 893 113 28
3 0 72 0 72
3 2 0 74 0
4 895 896 86 88
5 894 897 186 162
6 892 898 232 233
7 886 899 271 272
3 72 2 2 0
3 0 72 19 0
4 901 902 94 95
3 2 0 72 74
3 72 2 0 2
4 904 905 112 113
5 903 906 163 167
4 865 873 28 86
4 874 826 88 94
5 908 909 168 181
6 907 910 246 247
4 876 879 95 112
4 880 882 113 28
5 912 913 182 186
4 883 887 86 88
4 819 889 94 95
5 915 916 162 163
6 914 917 250 227
7 911 918 276 277
8 900 919 327 328
4 890 395 112 113
4 893 895 28 86
5 921 922 167 168
4 896 901 88 94
4 902 904 95 112
5 924 925 181 182
6 923 926 228 232
4 905 865 113 28
5 928 875 186 162
5 877 881 163 167
6 929 930 233 246
7 927 931 292 293
5 884 888 168 181
5 891 894 182 186
6 933 934 247 250
5 897 903 162 163
5 906 908 167 168
6 936 937 227 228
7 935 938 297 271
8 932 939 332 333
8 329 330 235 252
8 334 335 266 269
9 920 940 941 942
4 17 20 0 0
5 6 47 853 944
6 7 41 854 945
7 9 61 855 946
8 11 310 856 947
9 13 70 857 948
4 73 75 0 0
4 3 77 0 0
5 144 149 950 951
4 80 81 0 0
4 20 73 0 0
5 157 158 953 954
6 111 124 952 955
4 75 3 0 0
4 77 80 0 0
5 173 174 957 958
4 81 20 0 0
5 178 144 960 950
6 135 138 959 961
7 229 234 956 962
5 149 157 951 953
5 158 173 954 957
6 193 194 964 965
5 174 178 958 960
6 197 111 967 952
7 248 251 966 968
8 317 318 963 969
6 124 135 955 959
6 138 193 961 964
7 264 265 971 972
6 194 197 965 967
7 268 229 974 956
8 322 323 973 975
9 291 308 970 976
10 872 943 949 977
11 859 978 0 0
5 909 912 181 182
5 913 915 186 162
6 980 981 232 233
5 916 921 163 167
5 922 924 168 181
6 983 984 246 247
7 982 985 272 276
5 925 928 182 186
6 987 878 250 227
6 885 892 228 232
7 988 989 277 292
8 986 990 371 587
6 898 907 233 246
6 910 914 247 250
7 992 993 293 297
6 917 923 227 228
4 905 819 113 3
5 996 832 654 6
6 926 997 232 664
7 995 998 271 669
8 994 999 588 682
8 358 377 361 431
8 378 683 432 666
9 991 1000 1001 1002
8 861 863 11 11
9 1004 845 13 13
7 234 248 962 966
7 251 264 968 971
8 367 569 1006 1007
7 265 268 972 974
4 81 3 0 0
5 651 6 1010 853
6 135 649 959 1011
7 229 665 956 1012
8 570 678 1009 1013
9 668 675 1008 1014
10 1003 1005 1015 858
6 830 0 7 0
7 843 1017 9 688
8 860 1018 11 690
9 851 1019 13 692
6 7 0 854 0
7 9 688 855 1021
8 11 690 856 1022
9 13 692 857 1023
10 1020 0 1024 0
11 1016 1025 0 0
12 640 818 979 1026
Here's an extended version of the pattern: http://pastebin.com/P8uwjfM9 (this pattern is very huge, 5k x 5k bounding box)

Here's a variant of the rule where food isn't required to replicate. Unfortunately, smaller loops will dominate larger loops.

Code: Select all

@RULE shapeloop3
version 9.0
Shapeloop3 is a modification of foodshapeloop. All transitions containing food states are removed. New transitions were also added.
01 wire: carries turn signals, needs state 8
02 left signal
03 right signal
04 forward signal
05 starter/right signal: used to create state 11, becomes state 6 after
06 idle/right signal: doesn't do anything, changes to state 15 after hitting a 
   corner,becomes state 5 after it hits state 7
07 converter: used to restart reproducing process, changes state 6 to 5
08 wire back: controls the direction signals move
09 arm edge 1: used to move arm around
10 arm edge 2: created when arm turns, checks if loop arm turned left at least once 
  (probably not necessary with state 15)
11 arm starter: used to create starter arm
12 arm delete: deletes starter arm and sometimes used as food movers
13 delete all: deletes most cells in most conditions
14 boundary: indestructible nor constructable state, cells around it are also unchangeable
15 idle2/right signal: used to check if loop is not a square, changes state 11 to wire
#/ shows where edits/additions were made since last update
#* shows where cuts and paste were made
#. shows changes exclusive to shapeloop3
@TABLE
n_states:16
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,15}
var b={1,2,3,4,5,6,15}
var c={9,10}
var d={1,2,3,4,5,6,7,11,12,15}
var e={1,2,3,4,5,6,11,15}
var f={0,7,8,9,10,12,13}
var g={8,9,10}
var h={0,8}
var i={0,11,12}
var j={3,5,6,15}
var k={1,2,3,4,5,6,7,8,9,10,15}
var l={0,7,8,9,10,12,13}
var m={0}
var n={9}
var o={10}
var p={9,10}
var q={0,1,2,3,4,5,6,8,9,10,12,15}
var r={0,8,12,13}
var t={8}
var u={8,9,10}
var v={1,2,3,4,5,6,8,9,10,15}
var w={0,12,13}
var x={1,4}
var y={2,4}
var z={0,12}
var A={0,12}
var B={0,13}
var D={8,9,10,12}
var E={0,1,2,3,4,5,6,7,8,9,10,11,12,15}
var F={0,13}
var G={0,7,8,9,10,11,12}
var H={0,7,12}
var I={0,8}
var J={1,2,3,4,5,6,15}
var K={0,7,8,9,10,12,13}
var L={12}
var N={0,8,9,10,11,12}
var O={0,7,8,11,12,13}
var P={0,12,13}
var Q={0,1,2,3,4,5,6,7,10,12,13}
var R={0,8,9,10}
var S={1,2,3,4,5,6,7,11,12,13,15}
var T={0,1,2,3,4,5,6,7,11,12,13,15}
var U={0,7,11,12,13}
var V={1,2,3,4,5,6,8,9,10,15}
var W={0,12}
var X={1,2,3,4,6,7,8,9,15}
var Y={0,1,2,3,4,5,6,12,15}
var Z={5,6}
#variables never used more than once in a transition
var AA={8,10}
var AB={11}
var AC={12}
var AD={0,7,8,9,10,13}
var AE={12}
var AF={7,11}
var AH={12}
var AI={0,8,9,10}
var AJ={5}
var AK={0,1,2,3,4,7,11,12,15}
Var AL={0,1,2,3,4,5,6,7,8,9,10,11,12,13,15}
var AM={0,12}
#variables exclusive to shapeloop3
Var AAA={6,15}
var AAB={1,2,3,4,5,6,11,15}
#variables used multiple times
var a2={a}
var a3={a}
var a4={a}
var a5={a}
var a6={a}
var a7={a}
var a8={a}
var b2={b}
var b3={b}
var b4={b}
var b5={b}
var c2={c}
var c3={c}
var c4={c}
var d2={d}
var f2={f}
var f3={f}
var g2={g}
var h2={h}
var l2={l}
var l3={l}
var l4={l}
var l5={l}
var l6={l}
var l7={l}
var l8={l}
var n2={n}
var m2={m}
var m3={m}
var m4={m}
var m5={m}
var m6={m}
var p2={p}
var p3={p}
var p4={p}
var t2={t}
var t3={t}
var u2={u}
var u3={u}
var u4={u}
var u5={u}
var u6={u}
var v2={v}
var z2={z}
var z3={z}
var z4={z}
var A2={A}
var A3={A}
var A4={A}
var A5={A}
var A6={A}
var B2={B}
var E2={E}
var E3={E}
var F2={F}
var G2={G}
var H2={H}
var H3={H}
var H4={H}
var H5={H}
var I2={I}
var J2={J}
var P2={P}
var T2={T}
var U2={U}
#.
#state 11
0,b,5,0,0,0,0,0,m,11
b,b2,g,5,0,0,0,0,0,6
#
11,8,m,15,a,a2,a3,x,t,6
#
8,0,0,0,b,11,b2,12,0,12
#
AAB,D,0,b,b2,0,0,12,R,7
AAB,D,0,b2,b3,0,0,12,z,7
8,a,a2,0,b,7,0,R,a3,0
#
11,12,a,0,0,b,g,g2,A,13
11,12,a,0,9,b,g,g2,A,13
#
11,l,l2,l3,l4,l5,l6,l7,l8,0
#.
#state 5/19 to 6
b,b2,u,AAA,m,7,a,A,m2,5
b,u,u2,AAA,A,7,A2,b2,u3,5
#.
#state 7
7,5,a,a2,a3,a4,a5,a6,a7,0
#completed reproducton
8,0,a,a2,a3,a4,a5,12,b,0
#special delete immunity
p,l,l2,1,e,A,a,a2,a3,p
f,12,b,b2,b3,A,a,p,b4,f
#special arm destruction
9,A,A2,u,b,b2,b3,b4,b5,0
10,A,A2,u,b,b2,b3,b4,b5,12
#special bended arm destruction
g,a,a2,u,b,b2,b3,b4,12,12
#special state 7
12,L,D,b2,A,A2,A3,b3,b4,7
12,L,D,b2,A,A2,b5,b3,b4,7
b,b2,b3,12,12,b4,b5,A,A2,7
#special arm destruction
b,g,g2,b2,A,A2,A3,12,12,b2
g,a,a2,u,b,b2,b3,12,a3,12
12,12,u,b2,A,A2,a,a2,a3,12
#special state 8/wire back transiton
g,a,a2,u,b,b2,b3,S,a3,8
g,u,a,p,3,u2,b,b2,b3,8
#arm collision recovery
##starter arm
A,A2,b,b2,11,g,4,p,A3,A
g,A,b,11,b2,u,p,4,p2,g
u,g,11,b,b2,u2,a,p,4,u
#
g,A,b,11,b2,g2,4,p,A2,8
u,g,11,b,b2,u2,p,4,p2,u
##broken arm exeption
b,A,p,0,p2,u,u2,b2,A2,b2
b,A,p,0,p2,u,u2,b2,b3,b2
b,A,p,0,p2,b2,A2,A3,A4,b2
##broken arm
b,8,u,b2,E,G,E2,G2,E3,12
b,u,u2,b2,E,O,E2,G,E3,12
b,A,u,b2,A2,u2,G,G2,l3,12
b,A,u,b2,A2,A3,u2,G,G2,12
b,u,A,A3,u2,b2,A4,b3,A5,12
#
b,u,u2,b2,u3,u4,u5,b3,u6,12
b,p,u,12,u2,p,l,l2,l3,12
#
b,A,u,b2,A3,l,l2,l3,l4,12
##boundary
b,l,p,u,b2,b3,l3,l4,l5,12
##2 arms (both facing eachother)
B,A,p,4,p2,A2,p3,b,p4,12
B,A,p,b,p2,A2,p3,4,p4,12
A,a,a2,p,b,B,4,p2,a3,A
A,a,a2,p,4,B,b,p2,a3,A
#
B,P,b,p,A,A2,p2,4,p3,12
B,A,p,b,p2,B2,4,p2,a,0
P,A,p,b,p2,B2,b2,p2,a,P
#special construct
l,l2,3,p,4,p2,a,a2,a3,l
l,b,b2,a,a2,p,4,p2,3,l
#
c,3,b,l,p,1,p2,l2,l3,13
l,l2,4,p,1,p2,a,a2,a3,l
#construct left
c,l,a,t,b,2,l2,l3,l4,8
c,2,b,l,l2,l3,l4,l5,l6,4
f,l,2,c,l2,l3,a,a2,a3,10
f,b,b2,l,a,a2,l2,c,2,c
f,l,p,2,c2,l2,a,a2,a3,8
#/
#construct right
c,l,l2,t,b,j,P,P2,l3,4
c,j,b,h,a,a2,a3,P,P2,h
8,a,a2,t,b,b2,j,c,a3,c
c,l,l2,t,b,b2,b3,4,l3,8
f,l,l2,p,j,l3,a,a2,a3,10
f,a,a2,f2,8,4,p,f3,a3,1
c,j,b,12,a,a2,a3,P,P2,0
#construct forward
c,r,a,t,e,4,l,l2,a2,8
c,4,e,q,a,a2,a3,l2,l3,0
f,l,p,4,p2,l2,a,a2,a3,1
f,a,r,c,4,l,a2,a3,a4,c
f,l,4,c,a,a2,a3,a4,a5,c
#special instable signal remover
1,4,A,p,u,u2,u3,p2,u4,4
1,b,A,p,u,u2,u3,p2,u4,1
#*
##starter
f,A,b,11,l,l2,a,a2,a3,8
#
f,8,11,f2,l,l2,a,a2,a3,9
#
f,11,A,l,a,l2,l3,l4,8,1
#
f,A,a,a2,a3,l,AD,b,11,9
#delete immunity
p,b,P,P2,a,a2,a3,V,e,p
b,p,a,a2,a3,p2,V,b2,A,b2
1,p,a,a2,a3,p2,V,11,A,4
4,p,a,a2,a3,p2,V,11,A,1
b,b2,b3,p,a,13,a2,p2,V,b2
#
u,b,b2,u2,13,P,P2,u3,e,u
u,b,b2,u2,P,13,P2,u3,e,u
u,b,b2,u2,P,P2,13,u3,e,u
u,b,b2,u2,13,P,P2,0,t,u
u,b,b2,u2,P,13,P2,0,t,u
u,b,b2,u2,P,P2,13,0,t,u
u,b,b2,u2,13,P,t,t2,b3,u
u,13,m,m2,b,11,b3,u2,m3,u
u,m,m2,m3,b,11,b3,u2,13,u
#arm destruction
b,i,u,b2,A,A2,A3,b3,b4,12
b,i,u,b2,A,A2,b5,b3,b4,12
12,A,A2,u,b,b2,b3,b4,b5,12
#
b,u,u2,b2,A,A2,A3,12,N,12
g,a,a2,u,b,b2,12,N,a3,12
#
g,a,a2,a3,a4,b2,b3,12,a5,12
b,12,u,b2,A,A2,A3,12,N,12
#bended arm destruction
#g,A,A2,u,b,b2,b3,b4,12,12
b,12,u,b2,b3,H,H2,12,H3,12
#
g,H,H2,H3,g2,b,12,12,H4,12
#
b,12,u,b2,H,H2,H3,H4,H5,12
g,12,H,H2,H3,g2,b,b2,b3,12
#8,12,H,E,H2,8,b,b2,b3,12
#
g,12,H,H2,u,u2,b,b2,12,12
b,12,u,b2,H,H2,H3,b3,12,12
#forward arm obstruction
b,A,b2,p,A2,b3,u,b4,A3,13
b,A,p,A2,m,b2,u,b3,A3,13
#special arm obstruction
8,Q,b,11,b2,t,a,p,1,13
#arm obstru4tion
Q,P,d,a,a2,P2,p,1,p2,13
Q,P,a,d,a2,P2,p,1,p2,13
Q,P,a,a2,d,P2,p,1,p2,13
Q,P,a,a2,d,P2,A3,p,1,13
Q,P,d,a,a2,P2,1,p,A3,13
Q,P,a,d,a2,P2,p,1,p2,13
#special turning arm obstruction
12,p,A,A2,b,b2,Y,A3,9,13
#state 12
12,a,a2,a3,a4,a5,a6,a7,a8,0
#square loop destruction
#b,b2,b3,9,8,b4,0,10,b5,13
#state 8 transition
g,a,a2,u,b,b2,b3,u2,a3,8
g,a,a2,u,b,b2,u2,S,a3,8
g,a,a2,S,u,b2,b3,u2,a3,8
g,b,b2,u,a,u2,b3,b4,b5,8
g,a,a2,a3,u,b,J,u2,a4,8
#turning arm obstruction
w,o,A,A2,Y,b,b2,A3,A4,13
w,p,A,A2,b,b2,Y,A3,t,13
b,b2,u,b3,A,p,b4,A2,A3,13
#delete
k,13,a,a2,a3,a4,a5,a6,a7,13
k,a,13,a2,a3,a4,a5,a6,a7,13
k,a,a2,13,a3,a4,a5,a6,a7,13
13,a,a2,a3,a4,a5,a6,a7,a8,0
#/
#state 5/6
b,b2,u,6,m,7,a,A,m2,5
b,u,u2,6,A,7,A2,b2,u3,5
#starter growth
1,A,A2,A3,A4,p2,8,11,A5,1
1,p,A,A2,A3,p2,g,11,A4,4
1,A,a,b,a2,u,u2,11,A2,4
4,A,a,b,a2,u,u2,11,A2,1
#
1,A,a,b,a2,u,u2,11,a2,13
#instable signal remover
1,1,p,u,b,j,A,A2,p2,4
1,2,b2,A,p,1,p2,u,u2,4
b,f,A,p,b2,j,A2,p2,A3,4
b,2,b2,p,A,f,A2,p2,u,4
c,b,b2,A,A2,A3,p,A4,b3,0
#.
#corner checker
b,u,l,u2,u3,6,A,b2,u3,15
#/
#special signal movement
b,b2,n,b3,A,A2,A3,b4,o,1
b,b2,o,b3,A,A2,A3,b4,n,1
b,p,b2,b3,t,t2,t3,b4,m,b4
b,b2,m,t,b3,b4,b5,t2,t3,b2
b,t,t2,b2,p,b3,p2,t3,a,b2
b,p,b2,b3,A,p2,l,l2,l3,b3
b,A,p,b2,p2,p3,t,b3,A2,b3
#merge
b,b2,t,1,0,1,0,b3,t2,b2
b,1,t,b2,0,1,0,b3,t2,b2
b,b2,t,b2,0,1,0,b3,t2,b2
#nand gate
b,b2,t,1,0,b3,0,b4,t2,b3
b,1,t,b2,0,b3,0,b4,t2,b3
b,b2,t,b3,0,b4,0,b5,t2,1
#/
#special junk wire remover
b,AI,l,l2,l3,l4,A,b2,u2,13
b,b2,b3,u,l,l2,l3,A,A2,13
b,12,A,l,A2,l2,A3,b2,u,13
b,b2,A,A2,l,l2,l3,u,b3,12
#signal movement
b,U,a,T,T2,b2,a3,u2,a4,1
b,U,a,T,T2,b2,u2,U2,a4,1
#
b,U,a,T,a2,b2,u,u2,a3,1
b,U,a,a2,T,b2,u,u2,a3,1
#
b,b2,T,T2,a,a2,a3,a4,u2,b2
b,b2,T,T2,a,a2,a3,u2,a4,b2
#
b,b2,a5,T,a,a2,a3,a4,u2,b2
b,b2,T,a5,a,a2,a3,u2,a4,b2
#junk state 8
g,l,l2,l3,l4,l5,l6,l7,l8,0
g,A,b,b2,b3,A2,A3,u,12,0
g,A,b,b2,b3,A2,a,a2,a3,0
#junk state 7
7,l,l2,l3,l4,l5,l6,l7,l8,0
#junk wire remover
b,a,a2,a3,a4,a5,a6,a7,a8,12
@COLORS
0 0 0 0
1 255 128 0
2 255 0 0
3 0 255 0
4 0 0 255
5 0 180 0
6 0 100 0
7 255 255 255
8 80 80 80
9 95 95 95
10 128 128 128
11 0 64 0
12 255 165 0
13 255 255 0
14 180 180 90
15 0 80 40
Here's an cross shaped loop.

Code: Select all

[M2] (golly 2.6)
#R shapeloop3
1 4 3 4 8
1 2 8 4 8
2 0 1 0 2
3 0 0 0 3
1 4 4 8 8
1 3 0 4 0
1 0 8 0 8
1 4 0 2 0
2 5 6 7 8
3 0 0 9 0
1 3 4 4 8
1 4 8 2 8
2 0 11 0 12
1 4 3 8 8
1 4 8 8 0
1 0 0 8 8
1 0 0 8 0
2 14 15 16 17
1 4 4 0 0
2 0 19 0 0
1 3 4 0 0
1 4 8 3 8
1 4 8 4 8
2 21 22 0 23
3 13 18 20 24
1 0 8 0 0
2 26 5 0 16
1 1 1 8 8
1 1 0 1 0
1 0 8 8 8
2 28 29 30 29
1 1 1 1 0
2 7 32 30 29
1 1 1 0 0
1 1 0 0 0
2 34 35 0 0
3 27 31 33 36
4 4 10 25 37
5 0 0 0 38
6 0 0 0 39
7 0 0 0 40
1 2 4 0 0
2 0 42 0 0
3 0 43 0 0
1 4 5 0 0
2 45 35 0 0
3 46 0 0 0
4 44 47 0 0
5 0 48 0 0
6 0 49 0 0
7 0 50 0 0
8 41 0 51 0
Here's the old original rule (It has a lot of bugs and it won't ever update)

Code: Select all

@RULE shapeloop
1 wire
2 left signal
3 right signal
4 forward signal
5 trigger right
6 idle right
7 converter
8 lead
9 edge 1
10 edge 2
11 starter
12 tempdel
13 delall
14 barrier
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4
Var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13}
Var b={1,2,3,4,5,6}
var c={9,10}
var d={1,2,3,4,5,6,7,10,11}
var e={1,2,3,4,5,6,11}
var f={0,8,9,10,13}
var g={8,9,10}
var h={0,8,10}
var i={0,9}
var j={3,5,6}
var k={1,2,3,4,5,6,7,8,9,10,11}
var aa={a}
var ab={a}
var ac={a}
var ad={a}
var ae={a}
var af={a}
var ag={a}
var ba={b}
var bb={b}
var bc={b}
var bd={b}
var bd={b}
var ca={c}
var da={d}
var db={d}
var dc={d}
var dd={d}
var fa={f}
var fb={f}
var ga={g}
var gb={g}
var gc={g}
#construct left
c,0,a,8,b,2,0,0,0,8
c,2,b,0,f,fa,fb,0,0,4
c,0,a,aa,8,8,b,4,0,8
0,0,2,c,f,fa,a,aa,ab,10
0,b,ba,0,a,aa,ab,c,2,c
9,b,ba,0,a,f,fa,4,bb,0
0,0,c,2,ca,0,a,aa,ab,8
0,4,f,fa,a,aa,ab,8,b,8
#construct right
c,f,fa,8,b,j,0,0,fb,4
c,j,b,h,a,aa,ab,0,0,h
8,a,aa,8,b,ba,j,c,ab,c
c,f,fa,8,b,ba,bb,4,fb,8
0,f,fa,c,j,0,a,aa,ab,10
f,a,aa,fa,8,4,c,fb,ab,1
f,a,aa,h,8,8,4,fa,ab,9
#construct forward
c,0,a,8,e,4,f,fa,fb,8
c,4,e,h,a,aa,ab,f,fa,h
c,4,e,b,a,aa,ab,f,fa,0
f,fa,c,4,ca,fb,a,aa,ab,1
f,a,h,c,4,fb,aa,ab,ac,c
f,fa,4,c,h,fb,a,aa,ab,c
#tempdel
12,a,aa,ab,ac,ad,ae,af,ag,0
#arm destruction
c,b,ba,bb,bc,0,0,g,bd,12
b,0,0,ba,bb,12,g,bc,0,12
g,b,ba,12,0,0,a,aa,ab,12
b,0,0,12,0,12,g,ba,0,12
#square loop destruction
b,ba,bb,9,8,bc,0,10,bd,13
#special lead transition
c,a,aa,ca,b,ba,bb,8,ab,8
c,a,aa,8,b,ba,bb,ca,ab,8
10,8,b,ba,bb,bc,bd,8,0,8
#delete immunity
g,a,aa,ab,ac,1,b,0,ad,g
g,1,a,aa,ab,ac,ad,8,b,g
b,g,a,aa,ab,ga,8,ba,0,ba
#delete
k,13,a,aa,ab,ac,ad,ae,af,13
k,a,13,aa,ab,ac,ad,ae,af,13
k,a,aa,13,ab,ac,ad,ae,af,13
13,a,aa,ab,ac,ad,ae,af,ag,0
#trigger right
b,5,0,0,i,0,0,ba,g,6
#converter
0,b,ba,12,12,12,10,10,10,7
b,0,0,12,0,ba,bb,10,10,7
b,ba,g,6,0,7,a,0,0,5
7,5,b,0,0,0,a,aa,0,0
b,0,a,7,0,ba,8,6,0,5
7,a,aa,0,0,0,b,5,0,0
0,0,0,b,ba,0,0,12,0,7
b,0,0,12,0,12,0,ba,bb,7
11,0,0,12,0,12,ba,bb,0,7
#starter growth
1,0,a,b,aa,8,8,11,0,4
4,0,a,b,aa,8,8,11,0,1
#special signal movement
b,ba,bb,9,8,bc,0,9,12,bc
b,ba,e,8,0,bb,8,8,bc,ba
b,ba,8,0,0,bb,8,8,8,ba
b,0,0,e,8,ba,8,bb,0,bb
b,0,0,ba,g,bb,g,bc,0,bc
b,ba,9,bb,8,8,8,bc,9,ba
b,9,0,ba,8,8,8,bb,bc,bb
#signal movement
b,ba,a,aa,ab,ac,ad,g,ae,ba
b,a,aa,ab,ac,g,ga,ba,ad,ba
b,a,aa,ab,ac,ad,g,ba,ae,ba
b,0,a,aa,ab,ac,ad,g,ae,1
b,a,aa,ab,ac,g,ga,0,ad,1
b,a,aa,ab,ac,ad,g,0,ae,1
#arm obstruction detection
0,0,d,a,aa,0,g,1,ga,13
0,0,a,d,aa,0,g,1,ga,13
0,0,a,aa,d,0,g,1,ga,13
0,0,d,a,aa,0,1,g,0,13
0,0,a,aa,d,0,0,9,1,13
#starter
0,0,0,0,0,0,i,b,5,11
0,11,0,0,0,0,0,0,6,8
0,0,0,0,0,0,0,8,11,9
0,0,0,0,0,0,8,11,0,1
1,0,0,0,0,9,8,11,0,4
0,0,0,0,0,1,11,0,0,9
11,0,0,b,8,8,0,6,ba,6
@COLORS
0 0 0 0
1 255 128 0
2 255 0 0
3 0 255 0
4 0 0 255
5 0 190 0
6 0 140 0
7 255 255 255
8 80 80 80
9 95 95 95
10 128 128 128
11 0 64 0
12 255 165 0
13 255 255 0
14 180 180 90
Other rules:
2armshapeloop: http://conwaylife.com/forums/viewtopic. ... 560#p13560
Other rule variants can be found in the old thread.

Link to old thread: http://conwaylife.com/forums/viewtopic.php?f=11&t=1440

Links to the older versions (more can be added if requested)

fsl v8.1: http://pastebin.com/cW10p1tA
sl3 v8.1: http://pastebin.com/Wr6mQpXk

Edit: removed the "1." from the version number as it wasn't necessary.
Updated both rule to v9.0 (8/12/15)
Last edited by pi_guy314 on December 7th, 2015, 3:59 pm, edited 7 times in total.

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » July 7th, 2015, 9:30 pm

Interesting patterns from the old thread (may get updated)

An alternating loop with 3 phases found by Extrementhusiast

Code: Select all

x = 22, y = 22, rule = shapeloop3
2$13.G$10.DADA$10.A2HD$10.D2HD$10.A2HD$10.DHJAB2DC2D$6.2AFDAHJ6HC$6.A
4H7.HD$6.AH10.HD$6.A5H3.4HD$6.6AH.HDC2DB$11.AH.HD$11.AH.HC$11.A3HD$
11.A2DBD!
Orderly loop found by Extrementhusiast

Code: Select all

x = 32, y = 32, rule = shapeloop
4.ADADADADADADADADADADADAD$4.D22HD$4.AH20.HC$4.DH20.HD$ADADAH20.HDB2D
A$D4H22.4HA$AH28.HA$DH28.HA$AH28.HA$DH28.HA$AH28.HA$DH28.HA$EH28.HA$A
H28.HA$AH28.HA$AH28.HA$AH28.HA$AH28.HA$AH28.HA$AH28.HF$AH28.HD$AH28.H
A$AH28.HD$AH28.HA$AH28.HD$AH28.HA$A4H22.4HD$A2DBDH20.HADADA$4.DH20.HD
$4.CH20.HA$4.D22HD$4.DADADADADADADADADADADADA!
Spaceship loop found by Scorbie

Code: Select all

x = 24, y = 25, rule = shapeloop3
13.G$9.2D2AB$9.D3HD$9.CH.HA$9.AH.HC$9.DH.HD$6.2AFDH.HD$6.A3H2.HDAB3D$
6.AH5.5HD$6.AH9.HA$6.AH9.H6A$7AH10.5HA$A6H15.HA$AH15.6HA$A5H10.H7A$6A
H9.HA$5.AH9.HA$5.D5H5.HA$5.3DBADH2.3HA$10.DH.HDF2A$10.DH.HD$10.CH.HA$
10.AH.HC$10.D3HD$10.B2A2D!
Smallest non-alternating loop possible found by Scorbie

Code: Select all

x = 6, y = 6, rule = shapeloop3
6A$E4HA$D4HA$D2HD2A$D2HC$CDCB!
Smallest alternating loop (in one phase) possible found by Tezcatlipoca

Code: Select all

x = 4, y = 7, rule = shapeloop
3.G$3DC$FHJA$D2HA$B2HD$D2HD$4D!
Stable two armed loop found by Tezcatlipoca

Code: Select all

x = 9, y = 15, rule = shapeloop
.2AB2A$.A3HA$.AH.HCAD$.FH2.2HD$.D4HJC$.AD4ADG$HD$HF$HD$HA$HD$HA$HD$HA
$IDI!
Last edited by pi_guy314 on July 12th, 2015, 3:09 pm, edited 2 times in total.

c0b0p0
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: New Shapeloop Thread

Post by c0b0p0 » July 10th, 2015, 10:10 pm

pi_guy314 wrote:Smallest loop possible found by Scorbie
Tetzcatlipoca found a much smaller loop, shown below.

Code: Select all

x = 4, y = 7, rule = shapeloop-ltd
3.G$3DC$FHJA$D2HA$B2HD$D2HD$4D!

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » July 29th, 2015, 3:45 am

pi_guy314 wrote: Spaceship loop found by Scorbie

Code: Select all

x = 24, y = 25, rule = shapeloop3
13.G$9.2D2AB$9.D3HD$9.CH.HA$9.AH.HC$9.DH.HD$6.2AFDH.HD$6.A3H2.HDAB3D$
6.AH5.5HD$6.AH9.HA$6.AH9.H6A$7AH10.5HA$A6H15.HA$AH15.6HA$A5H10.H7A$6A
H9.HA$5.AH9.HA$5.D5H5.HA$5.3DBADH2.3HA$10.DH.HDF2A$10.DH.HD$10.CH.HA$
10.AH.HC$10.D3HD$10.B2A2D!
[/code]
It's oblique!!! (13,34c/1473)
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » July 31st, 2015, 8:29 am

A loop that creates a small loop that creates a big loop that creates a small loop...

Code: Select all

x = 30, y = 14, rule = shapeloop3
C2DB2D8A$D12HA$DH10.HA$C4H7.HA$2DB2DH6.H4AO$4.CH7.4HD$4.DH10.HD$4.D4H
4.4HB$4.DC2DBH2.H2DC2D$8.DH2.HD$8.DH2.HC$8.O4HD15.I$8.DC2DBDB2DCDFADA
DADADAD$14.15HI!
Some (natural) stuff:

Code: Select all

x = 57, y = 14, rule = shapeloop3
3DCD$C3HD$A3HC$2DB2DG17.GDC2DB2DC2DCDA$24.D11HA$24.CH6.4HO$24.DH5.H2D
B2D$20.2DC2DH5.HC$20.C4H6.HD$20.D11HD$20.DB2DC2DC2DB2DG17.GAC3D$52.D
3HC$52.D3HD$52.B2DCD!

Code: Select all

x = 25, y = 11, rule = shapeloop3
JDI$.D15H$.DC2DB2DC2DC2DB5DB2DCD$17.D6HD$17.CH.4HC$17.D2H2DB2D$17.D2H
C$17.B2HD$17.D2HD$17.D2HC$17.O3A!
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » July 31st, 2015, 11:40 am

Saka wrote:
pi_guy314 wrote: Spaceship loop found by Scorbie

Code: Select all

x = 24, y = 25, rule = shapeloop3
13.G$9.2D2AB$9.D3HD$9.CH.HA$9.AH.HC$9.DH.HD$6.2AFDH.HD$6.A3H2.HDAB3D$
6.AH5.5HD$6.AH9.HA$6.AH9.H6A$7AH10.5HA$A6H15.HA$AH15.6HA$A5H10.H7A$6A
H9.HA$5.AH9.HA$5.D5H5.HA$5.3DBADH2.3HA$10.DH.HDF2A$10.DH.HD$10.CH.HA$
10.AH.HC$10.D3HD$10.B2A2D!
[/code]
It's oblique!!! (13,34c/1473)
The fact that it's moving oblique isn't what makes it special, unlike in rules like the Game of Life. Oblique would seem like the common direction for spaceship loops because loops aren't likely to align in a grid with it's parent loop nor ancestor.
Saka wrote:A loop that creates a small loop that creates a big loop that creates a small loop...

Code: Select all

x = 30, y = 14, rule = shapeloop3
C2DB2D8A$D12HA$DH10.HA$C4H7.HA$2DB2DH6.H4AO$4.CH7.4HD$4.DH10.HD$4.D4H
4.4HB$4.DC2DBH2.H2DC2D$8.DH2.HD$8.DH2.HC$8.O4HD15.I$8.DC2DBDB2DCDFADA
DADADAD$14.15HI!
That is an alternating loop. They're pretty uncommon. The most common alternating loop would probably be the SL loop and any variant of it.

Code: Select all

x = 26, y = 17, rule = shapeloop3
3$10.ADADADAD$10.D6HD$10.AH4.HC$10.DH4.HD$6.EDADAH4.HD$6.A3H2I4.HB$6.
A10HD$6.9ADCD!

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » July 31st, 2015, 12:45 pm

Saka wrote:A loop that creates a small loop that creates a big loop that creates a small loop...
That's a nice starting pattern showing Shapeloop evolution in action. By T=50,000 I think the original alternating loops are seriously in the minority. Early competitors are the small-loop-only mutants, which later fall victim to even smaller mutants. Looks like a cross-shaped variant shows up several times, too.

There's a good variety of coloration between all these sub-populations. Maybe it's time to think seriously about a slightly slower display option for Golly, that can handle color better at subpixel zoom levels.

Disclaimer: nobody should get their hopes up about that last part too much, because I'm certainly not likely to be able to sort out all the necessary low-level Hashlife code changes by myself, any time soon. The general solution would be to add a color value to every Hashlife tile, calculated from its sub-tiles. That wouldn't slow the display down much at all, it would just take a little more memory.

But it might be interesting to try out a more specific solution that would work just for scales up to 2^5:1 or 2^8:1 or so -- the levels where you might actually want to be looking at this kind of Shapeloop experiment.

It might be fairly straightforward to write a Python script that opens a colorized version of the current pattern in a new temporary layer. Probably it would work by writing a new pattern file based on the pattern's .mc file... hmm, that would be limited to 255 colors, though, and a custom rule would have to be generated each time. Maybe better to just write out a PNG and open it in a browser window.

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » August 1st, 2015, 2:20 am

Im new to shape loop so can somebody tell me what each state does and how to make loops?
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » August 1st, 2015, 1:50 pm

Saka wrote:Im new to shape loop so can somebody tell me what each state does and how to make loops?
Start with the first post of this thread. Copy out the "shapeloop3" rule text and choose File > Open Clipboard in Golly.

Then copy and paste in one of the most recent loop patterns and watch what it does one tick at a time (space bar). Comments at the beginning of the shapeloop3 rule text explain what each of the states is for.

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » August 1st, 2015, 8:13 pm

What does the converter do?
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » August 1st, 2015, 11:00 pm

Here's my first loop!:

Code: Select all

x = 10, y = 11, rule = shapeloop3
5DE4A$D8HA$DH.6HA$C2H7A$D2HA$C2HA$D2HA$D2H7A$DH.6HA$D8HA$B2DB4DCD!
"Hook-loop":

Code: Select all

x = 10, y = 17, rule = shapeloop3
10A$A8HD$AH.6HB$D2H4DB2D$D2HC$D2HD$A2HC$A2H7D$AH.6HO$A6H.HA$7A2HA$G5.
A2HA$6.A2HA$6.A2HA$6.A2HA$6.A2HA$6.4A!
A large loop that does not mutate or produce chaos:

Code: Select all

x = 21, y = 22, rule = shapeloop3
DB2DBDA4DB2DA2DCDCD$C19HD$DH.5H.9H.HD$D2H5D2H8A2HD$D2HD3.D2HA6.A2HD$D
2HC3.D2HA6.A2HD$D2HD3.D2HA6.A2HD$C2HD3.D2H4A3.A2HE$D2HD3.DH.3HA3.A2HA
$C2HD3.D5HA3.4A$D2HD3.4D2HA$D2HD6.D2HA$B2HD6.D2HA$D2HD6.D2HA$C2HD6.4A
$D2HD$D2HD$D2HC$D2HDC8DB$DH.10HD$B12HD$2DB11D!
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » August 4th, 2015, 5:55 am

Simplest loop I have found:

Code: Select all

x = 6, y = 8, rule = shapeloop
CDEA$B2HA$AHI3A$AHI2HA$AH2JHA$A2H3A$AJHA$4A!
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » August 4th, 2015, 4:51 pm

Saka wrote: "Hook-loop":

Code: Select all

x = 10, y = 17, rule = shapeloop3
10A$A8HD$AH.6HB$D2H4DB2D$D2HC$D2HD$A2HC$A2H7D$AH.6HO$A6H.HA$7A2HA$G5.
A2HA$6.A2HA$6.A2HA$6.A2HA$6.A2HA$6.4A!
An interesting thing about that loop is that it seems to be resistant to smaller mutation. I wasn't able to see any L-loops that commonly plagued other loops.

On a different topic, I'm probably going to update foodshapeloop. There's something that has bugging me for a long time. It's a bit hard to explain so I'll show you a pattern.

Code: Select all

x = 17, y = 15, rule = foodshapeloop
$7.DC2DC$7.D3HD$7.BH.HD$7.DH.HB$3.C2DCDH.H2D3A$3.D4H3.4HA$3.DH9.HA$3.
B4H3.2HOHA$3.2DC2DH.H5A$7.CH.OA$7.DH.HA$7.D3HA$7.B2DEA!
Notice how the loop replicates in the corner as before. I want to fix it so it will replicate in the next corner instead. I will take my time to fix this bug so it can be stable. I won't update it if it's too difficult to fix.

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » August 4th, 2015, 5:36 pm

pi_guy314 wrote:
Saka wrote: "Hook-loop"...
An interesting thing about that loop is that it seems to be resistant to smaller mutation. I wasn't able to see any L-loops that commonly plagued other loops.
Not at first, anyway. I accidentally left the hook-loop running for a long time, after noticing the same thing. When I got back to it, things had changed quite a bit.

At around T=37000 a new colony is spawned quite a distance outside the main patch. If you can wait until T=59000 to 62000, a really impressive colonization effort appears, a single jump of over 2000 cells westward from the boundary of the original patch.

Anyway, by T=40000 there's a spreading patch of U-shaped mutants near the middle, which can be picked out fairly easily by the bluer color. And before T=50000, L-shaped mutants have invaded the U-shapes, and several more species have cropped up as well, though they seem to be less successful.

User avatar
Saka
Posts: 3608
Joined: June 19th, 2015, 8:50 pm
Location: somewhere
Contact:

Re: New Shapeloop Thread

Post by Saka » August 6th, 2015, 7:12 am

I found this thing while running the Hook-Loop:

Code: Select all

x = 33, y = 18, rule = shapeloop3
G3ADB2DB4DCDC7D8A2D$.A30HD$.A13H10.5H.HA$.7A3D4AH2.5H.H4DB2HA$14.AH.H
ADADA2HC3.D2HA$14.AH.HD3.D2HD3.D2HA$14.AH.HA3.A2HC3.B2HA$8.CD5AH.HD3.
D2HD3.D2HA$8.D6H2.HA3.A2HD3.A2HA$8.C7H.HD3.O2HD3.4A$8.4DB2DB2HA3.4D$
15.D2HA$15.A2HA$15.A2HA$9.7A2HA$9.A6H.HA$9.A8HA$9.A3D6A!
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » August 12th, 2015, 10:59 pm

I updated both rules to version 9.0. Loops in foodshapeloop no longer reproduce randomly in different corners. Instead they will reproduce in the next corner, just like in shapeloop3. The only other changes that was also included in shapeloop3 are showed in these patterns.

Code: Select all

x = 5, y = 3, rule = shapeloop3
I3HA$5A$I!
This is junk left behind. Previously, it wouldn't have died off.

Code: Select all

x = 9, y = 5, rule = shapeloop3
A4H$9A$5.A2HA$5.A2HA$5.4A!
This is an arm with the front part destroyed. It commonly appeared in patterns with barrier states. Previously, loops wouldn't have recovered from it.
Saka wrote:What does the converter do?
Sorry for the late answer. I wasn't sure what you were talking about. It was an old rule table that was used to convert patterns from v7.0 to v7.1 because of the new state added. It was probably unnecessary because the pattern would still work without it. Loops would only get delayed in replicating without it.

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » December 7th, 2015, 4:11 pm

I kinda got interested in shapeloop again after a very long time. I have a question. Would reducing the amount of transitions make patterns run significantly faster? I would like to see patterns run faster so it can take less time to see new loops emerging. There's also a few redundant states such as state 10, 17, and maybe state 7. Would getting rid of those help make the rule run quicker? Thanks.

User avatar
Scorbie
Posts: 1485
Joined: December 7th, 2013, 1:05 am

Re: New Shapeloop Thread

Post by Scorbie » December 7th, 2015, 10:06 pm

I don't have much experience with rule tables, but my little experience tells me that you are right. Possibly the devs might give us a more definite explanation with the relevant code.
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » December 8th, 2015, 11:48 am

Scorbie wrote:I don't have much experience with rule tables, but my little experience tells me that you are right. Possibly the devs might give us a more definite explanation with the relevant code.
I'm kind of an auxiliary hanger-on in the Golly Gang, so I can't give you any hard numbers about the relative efficiency of rules with extra states. But I'd be somewhat surprised if reducing the number of transitions in the Shapeloop rule table would have any measurable effect on simulation speed at all. And I'd be really surprised if the improvement turned out to be more than nominal -- say, over 10%, or even 5%.

The HashLife-based algorithm that handles multistate rules won't even use the rule table or transition list all that much after the first few seconds of a simulation. After that, every combination of small tiles that shows up commonly in a particular pattern will already have appeared, which means that the result will already have been pre-calculated and stored in a hashtable --

Code: Select all

A   B      .   .
       ->    E
C   D      .   .
Whenever the ABCD situation shows up again, Golly immediately knows that the N-tick-later result will be E. After the very first time Golly sees the ABCD combination, it skips straight to E without looking at rule tables or transitions at all... and the first-time calculation is generally a vanishingly small fraction of the total simulation time. You don't even notice it, especially if you're running a highly organized rule like Shapeloop for a large number of ticks. So for the later stages of a long simulation, it won't make any difference at all if the rule has 250 states or the table has a zillion transition rules in it.

You would see a speed difference if you were running a very chaotic rule, where almost every combination of tiles is something new that Golly has never seen before. Simplifying the rule might also have a measurable effect if you reduced the amount of hash-table memory available to Golly down to near-zero.

-- But why would you do that? Much better to go in the opposite direction if you want to speed up a simulation: add more memory, or check your Preferences > Control > Maximum Memory setting to make sure Golly is effectively using the memory you have. The default setting is still 300MB, which is very low for most modern computers. A 4GB machine should run Shapeloop patterns much faster with a setting closer to 3000MB.

User avatar
Scorbie
Posts: 1485
Joined: December 7th, 2013, 1:05 am

Re: New Shapeloop Thread

Post by Scorbie » December 8th, 2015, 1:14 pm

@David thanks for the explanation. That explains what caused the slowdown in my little experiment before. I wrote a script that prints out the rule table given the number of states, but unfortunately the number of transitions grew exponentially, which made it too big for Golly to cache it, I guess.

Anyway, back to the topic, good to know that decreasing the number of transitions won't help, and increasing the RAM for Golly would. That gave ne this thought: I would like to know if there is an effective non-hashing algorithm available.
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » December 8th, 2015, 3:14 pm

Scorbie wrote:I would like to know if there is an effective non-hashing algorithm available.
Effective for simulating Shapeloop experiments? I wouldn't think so. Maybe there's some incredibly fast non-hashing mathematical shortcut that I can't see, of course. But generally a fast algorithm will have to exploit some regularity or predictability in the pattern being simulated.

Shapeloop constantly surprises me with the way initial simple-looking waves of replication break down into chaos and produce new more efficient replicators. In a good Shapeloop experiment, it seems really unlikely that there's any way of finding out what's going to happen, short of buckling down and doing all the hard work of simulating the evolution step by step.

The great advantage of hash-based algorithms is that after you've done the hard work once, you can just look up the results from last time instead of doing the same work over and over. Golly gets a huge speed boost from this one trick, which more than makes up for the fact that its code for handling rule tables and drawing patterns and so forth is not really all that highly optimized. It doesn't need to be, because those parts of the code aren't where Golly spends most of its execution time.

If you imagine a new non-hashing algorithm that can look up and apply transitions blazingly fast, with some super-clever bit-twiddling using 64-bit registers mapping to a binary encodiing of the state representation... well, the first thing to do to speed it up even more would still be to add hash-table lookups to reduce the workload.

There might be some kind of tricky kind of hashing system that could adjust itself to recognize spatial or temporal periods that aren't powers of two -- it could cleverly "tune" itself to match the period of the dominant Shapeloop replicator in the current pattern, let's say -- but that would still be a hash-based algorithm.

User avatar
Scorbie
Posts: 1485
Joined: December 7th, 2013, 1:05 am

Re: New Shapeloop Thread

Post by Scorbie » December 9th, 2015, 10:25 am

Okay. I got your point. So pretty much every efficient algorithm needs to have hashing.
I guess I had some misconceptions. Here's what I thought:
HashLife compared to QuickLife is less efficient in Chaotic patterns. (Right?)
Which gave me the misconception that Hashing algorithms are not efficient in chaotic CAs.
And another misconception was the thought that Shapeloop was chaotic, but I guess this "chaos" is not much compared to, say, Brian's Brain?
Okay. I guess then this would be about the best speed we can get with Shapeloop.

On an unrelated note, I was interested in the idea of making a simpler version of Shapeloop, without any sheaths or with less rules but with the rich diversity of Shapeloop. Not sure if it's possible, though.
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New Shapeloop Thread

Post by dvgrn » December 9th, 2015, 2:31 pm

Scorbie wrote:Okay. I got your point. So pretty much every efficient algorithm needs to have hashing.
Yes, I think so. That is, if an algorithm that's running Shapeloop doesn't use some kind of hashtable, it's missing an awfully good trick. That's not necessarily the case for simulations of other rules, though.
Scorbie wrote:I guess I had some misconceptions. Here's what I thought:
HashLife compared to QuickLife is less efficient in Chaotic patterns. (Right?)
Which gave me the misconception that Hashing algorithms are not efficient in chaotic CAs.
That's not a misconception at all. It's perfectly true that QuickLife outperforms HashLife on chaotic patterns -- even in the ShapeLoop rule, no doubt. Try a large random-fill rectangle in ShapeLoop and you'll see HashLife grinding to a halt, because everything is so random that it can't find enough repetition to exploit. If you want to simulate random-fill soups in ShapeLoop, you'll probably be better off with some custom QuickLife-like bit-twiddling tricks.

Basically HashLife pours a huge amount of memory and initial processing time into the task of memorizing all the patterns it sees -- with the expectation that it will see a lot of those patterns again. In a truly chaotic environment, that bet never pays off... but most of the time it does pay off, really well, simply because people don't spend much time simulating pure chaos. It's just not all that interesting to look at simulations that might as well be TV static.

Conversely, as soon as there's something there that looks interesting to a pattern-finding human mind, there's probably something that HashLife can get hold of also, at least a little bit.
Scorbie wrote:And another misconception was the thought that Shapeloop was chaotic, but I guess this "chaos" is not much compared to, say, Brian's Brain?
Yeah, that's an easy mistake to make, but ShapeLoop is really a very highly organized rule. Think of "chaotic" as "looks like a random-fill pattern", and maybe also "if you change a cell's state, the effects will probably propagate to the cells around it at close to lightspeed". The propagation rate in a standard ShapeLoop experiment is much lower than lightspeed on average, and waves of change tend to die out cleanly when a loop self-destructs, instead of expanding chaotically. That gives HashLife a lot of time and space to find useful shortcuts.
Scorbie wrote:Okay. I guess then this would be about the best speed we can get with Shapeloop.
That's my conclusion, anyway. I could perfectly well be wrong, but I can't think of any other likely tricks to try. HashLife seems just about ideal for this simulation, but unfortunately it can't quite do magic -- there's still a lot of irreducible computation that has to be done, and the only way to do it faster is to throw more processor power at it.

pi_guy314
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: New Shapeloop Thread

Post by pi_guy314 » December 9th, 2015, 10:28 pm

Scorbie wrote: On an unrelated note, I was interested in the idea of making a simpler version of Shapeloop, without any sheaths or with less rules but with the rich diversity of Shapeloop. Not sure if it's possible, though.
I'm not sure how well it will go without the sheaths. The addition of a single sheath allowed both more space for genes and mutations. In fact it would seem almost impossible to prevent mutations with the addition of an inner sheath. Though more space could be added by making the unsignaled wire as a forward signal.

Also if you do make a new loop rule I would suggest adding something so that smaller loops wouldn't dominate larger loops, kinda like with foodshapeloop. Maybe something outside of the box might work. All that potential biodiversity might go to waste if complex loops are no match with simpler loops.

Post Reply