Eppstein's Most Wanted

For discussion of other cellular automata.
Post Reply
User avatar
velcrorex
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Eppstein's Most Wanted

Post by velcrorex » August 5th, 2015, 10:58 pm

Here's a topic to collect found spaceships in Eppstein's Most Wanted list. Spaceships may not be possible in all of these rules. I thought it would be fun to try to find as many as possible.

B35/S234578
B345/S5
B01345/S01234
B017/S1 Found. Here.
B02/S
B3/S23456
B3/S45678 Found. See below.
B34/S03456
B345/S456
B345/S4567
B34567/S0678
B34567/S348
B345678/S15678
B345678/S014578
B345678/S458
B345678/S47
B345678/S478
B348/S4 Found. See below.
B34678/S23578 Known: http://fano.ics.uci.edu/ca/rules/b34678s23578/g1.html
B3478/S24568 Known: http://fano.ics.uci.edu/ca/rules/b3478s24568/g1.html
B35/S46
B36/S1567 Found.
Last edited by velcrorex on October 30th, 2016, 6:02 pm, edited 4 times in total.
-Josh Ball.

User avatar
velcrorex
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Eppstein's Most Wanted

Post by velcrorex » August 5th, 2015, 10:59 pm

Here's what I've found from before:
B348/S4

Code: Select all

x = 176, y = 23, rule = B348/S4
14bo$12bobob2o$10bob2obob2o9bobobobo40bo4bo4bobo$8bo3bo3b2obo3b2obobo
2bo3b2ob3obo30bobob2obob3obob2o3bo$6bobob5o3bo2bo6b2ob2o3bo2bo2b2obo3b
obobo6bobobob2obobobobo3b2o4bo2b2obo2b3obobo4bo10bo8bo3bobobo$6bo2b2ob
2ob4obo2bo2bo2bobobo13bobobobo2bobobobo2bobo2bo2bobo3bo7bo2bobo4bo4b3o
3bobob3obobo4bob3ob2obo2bobobo17bobobo$4bob2o2bobobob2o2b2o7bo3bobob2o
2bobo5bobob2o2bobob4o2b2o2bobobob2o2bo3b3obob2o2b3o3bo4b3obo2b2o2b2ob
2obo8bobob2obobo9bobobobo2bo2bobobo$4bob3ob4obo2bo4bo5bobobobo3bo2b2ob
o3bo5b4o10bo3bobo5bo6bo3bo5b3ob2o2bo3b2obo5bobobobo6bo2bo7bo5bo2b3o2b
2o2b2o2bob2o$4bo2bo6bo2bo5bobo3bo2b2obo3b2o4bobob2o2bob3o4b4o2bob2obob
o2b2obo2bo5bobobo7b3o2b2o6bo3bo5bobobobobobob3o2bo2bobobob2o5bo9bobo2b
o$2bobo2bo3bo2bob3o2bo4bobob2o2bobo2bob2o4b3obobob2o2b2obob5o2bobobo2b
obobobo5b4ob2ob3obobo3bo2b2o2bo3bo7bo3bobobo5b2o6b3ob3obo3bobo3bobo2bo
2bo$2bo6bobo4bo2bo3bo2bo3bo3bo4b2obo12bo2bo3b2o3bo3bo3b2obobo2bo9bo2bo
2bobobo4bo2bo2bo4bo7bo5bo4b2ob3obob4o3b3o3b2obob3ob5o$o10bo4bobo6b2o4b
o2bo6bobo11bobob2o2bobo5bo2bo3bobo3bo7b2obo3bo4bo2bo3b2o2bo3bo7bobo3bo
10b3o6bo4b2o3bobo2b2o3bobo$2bo6bobo4bo2bo3bo2bo3bo3bo4b2obo12bo2bo3b2o
3bo3bo3b2obobo2bo9bo2bo2bobobo4bo2bo2bo4bo7bo5bo4b2ob3obob4o3b3o3b2obo
b3ob5o$2bobo2bo3bo2bob3o2bo4bobob2o2bobo2bob2o4b3obobob2o2b2obob5o2bob
obo2bobobobo5b4ob2ob3obobo3bo2b2o2bo3bo7bo3bobobo5b2o6b3ob3obo3bobo3bo
bo2bo2bo$4bo2bo6bo2bo5bobo3bo2b2obo3b2o4bobob2o2bob3o4b4o2bob2obobo2b
2obo2bo5bobobo7b3o2b2o6bo3bo5bobobobobobob3o2bo2bobobob2o5bo9bobo2bo$
4bob3ob4obo2bo4bo5bobobobo3bo2b2obo3bo5b4o10bo3bobo5bo6bo3bo5b3ob2o2bo
3b2obo5bobobobo6bo2bo7bo5bo2b3o2b2o2b2o2bob2o$4bob2o2bobobob2o2b2o7bo
3bobob2o2bobo5bobob2o2bobob4o2b2o2bobobob2o2bo3b3obob2o2b3o3bo4b3obo2b
2o2b2ob2obo8bobob2obobo9bobobobo2bo2bobobo$6bo2b2ob2ob4obo2bo2bo2bobob
o13bobobobo2bobobobo2bobo2bo2bobo3bo7bo2bobo4bo4b3o3bobob3obobo4bob3ob
2obo2bobobo17bobobo$6bobob5o3bo2bo6b2ob2o3bo2bo2b2obo3bobobo6bobobob2o
bobobobo3b2o4bo2b2obo2b3obobo4bo10bo8bo3bobobo$8bo3bo3b2obo3b2obobo2bo
3b2ob3obo30bobob2obob3obob2o3bo$10bob2obob2o9bobobobo40bo4bo4bobo$12bo
bob2o$14bo!
B3/S45678

Code: Select all

x = 25, y = 55, rule = B3/S45678
12bo$8bob5obo$6b2o3b3o3b2o$8bo2b3o2bo$6bo3bo3bo3bo$4bo5bo3bo5bo
$5bobob3ob3obobo$5bob5ob5obo$4b2o3b3ob3o3b2o$3b4ob4ob4ob4o$5b2o2b
3ob3o2b2o$10b2ob2o$7bo9bo$o2bo17bo2bo$b3o3b2o7b2o3b3o$4obob3o5b3o
bob4o$bo5b2o7b2o5bo$4bo3bo7bo3bo$9b2o3b2o$2bobobob3o3b3obobobo$3b
2o3b4ob4o3b2o$2b3obob3o3b3obob3o$5bo2bo7bo2bo2$3bobo13bobo$3b2ob
obobo3bobobob2o$2b4o3bo5bo3b4o$3b2o2b3o5b3o2b2o$7b4o3b4o$9bo5bo$
7bo9bo$4b3o11b3o$3obo3b2o5b2o3bob3o$b4o15b4o$2b2o3bobo5bobo3b2o$
8b2o5b2o$2b2o2b5o3b5o2b2o$3bo2b4o5b4o2bo$2b2obobo9bobob2o$2b2obo
13bob2o$2b3obo11bob3o$5bo5bobo5bo$7bo2b5o2bo$5b3o4bo4b3o$5b4o2bo
bo2b4o$4b4o4bo4b4o$8bo2b3o2bo$10b5o$8bo2b3o2bo2$8bobo3bobo$9bo5b
o$8b3o3b3o$8b3o3b3o$8b9o!
-Josh Ball.

User avatar
Alexey_Nigin
Posts: 323
Joined: August 4th, 2014, 12:33 pm
Location: Ann Arbor, MI
Contact:

Re: Eppstein's Most Wanted

Post by Alexey_Nigin » August 6th, 2015, 2:57 am

A clean puffer in one of the rules:

Code: Select all

x = 39, y = 10, rule = B017/S1
4bobo6bo2bo11bobo5bobo$4bobo9bo11bobo5bobo2$2o6b2o12bo$3o5b3o5b3o5bo$
3o5b3o5b3o5bo$2o6b2o12bo2$4bobo9bo11bobo5bobo$4bobo6bo2bo11bobo5bobo!
I don't see a way to turn it into a spaceship.
There are 10 types of people in the world: those who understand binary and those who don't.

User avatar
velcrorex
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Eppstein's Most Wanted

Post by velcrorex » August 7th, 2015, 6:17 pm

B3478/S24568 is apparently already known: http://fano.ics.uci.edu/ca/rules/b3478s24568/g1.html

Code: Select all

x = 34, y = 19, rule = B3478/S24568
3b2o24b2o$2bobo24bobo$2b2o2bo20bo2b2o$4b3o20b3o$4bo24bo$4bo24bo
$2b3o24b3o$bobo26bobo$ob2obo22bob2obo$2o6bo6b4o6bo6b2o$5bo2bobo3b
ob2obo3bobo2bo$b3obo4bo2bob4obo2bo4bob3o$b3ob3o3bo3b4o3bo3b3ob3o
$6b2o2b2obob4obob2o2b2o$2b4ob2obob2ob4ob2obob2ob4o$2bo2b2obob4ob
o2bob4obob2o2bo$3bob4o3b3ob2ob3o3b4obo$2b5o20b5o$3b2o24b2o!
As is B34678/S23578 http://fano.ics.uci.edu/ca/rules/b34678s23578/g1.html

Code: Select all

x = 29, y = 62, rule = B34678/S23578
10bo7bo$3ob3ob2o3bobo3b2ob3ob3o$b9obo5bob9o$2obo3bobob7obobo3bob2o$b3o
b2ob3o3bo3b3ob2ob3o$6ob2ob3obob3ob2ob6o$2b2o4b5obob5o4b2o$2b2obobo2b2o
bobob2o2bobob2o$2bo2b3o2bobobobobo2b3o2bo$4b2ob2obobobobobob2ob2o$4b2o
b6obob6ob2o$b2ob21ob2o$2b25o$b4ob17ob4o$2b2o2b17o2b2o$2b2obob15obob2o$
4bob17obo$4bob17obo$3bob3ob11ob3obo$5bob15obo$3b3ob15ob3o$6b17o$4bo3b
13o3bo$5bo2b3ob5ob3o2bo$6b2ob3o5b3ob2o$5b2o2bob7obo2b2o$4bobobo11bobob
o$5bobobobob3obobobobo$7b3o3bobo3b3o$4b2ob3obo5bob3ob2o$5b2obobob5obob
ob2o$4b2o3bo2bobobo2bo3b2o$4b6obob3obob6o$5bobobo9bobobo$7b3o9b3o$9bob
2o3b2obo$9b3o5b3o$7bob4o3b4obo$8b3o7b3o$3bo2b5o7b5o2bo$5bobo2bo7bo2bob
o$3bob2obo11bob2obo$3b4ob2o9b2ob4o$5b2ob3ob2ob2ob3ob2o$5b2ob13ob2o$5bo
2bob2obobob2obo2bo$7b3ob3ob3ob3o$6b3ob4ob4ob3o$6b6ob3ob6o$9bo4bo4bo$9b
2o7b2o$7b4o7b4o$7b6o3b6o$8b3o3bo3b3o$9bob7obo$8b13o$8b2ob7ob2o$11bo5bo
$9bo4bo4bo$10b2ob3ob2o$11b3ob3o$12bo3bo!
-Josh Ball.

User avatar
velcrorex
Posts: 339
Joined: November 1st, 2009, 1:33 pm

Re: Eppstein's Most Wanted

Post by velcrorex » August 8th, 2015, 4:55 pm

Big c/3 ship in B36/S1567

Code: Select all

x = 65, y = 44, rule = B36/S1567
27bo5bo$27bo6b2o$25bo6bobo$26bo3bobo$12bo2bo8bo4b6o$10bo2b3o4bo5b2o3bo
bo$4bo4bo2b3o2bo4b2o7bobo$3b2ob3o9bobo4bob2o$3b4obo13bo4bo5b2o$bo5b4o
8bo4bo3bobob2obo$bo5b3o9bo5bo6bob2o$o3bobob2o7b2o$obobo4b4ob2o3bo14bob
o$o11bo3bo20bo5bo$3bo10bob2o2bo14bo2bo3bo8bo5bo$o5bo4bobo3bo2bo13bo2bo
bobo2bo4bobobobob3o$bo2bo2b2o2bobo9bo11bobobo7bo2bo$obo3bo2bobo8bo3bo
12bob2o2bo9bobo2b3obo$obo3b2obo10bobo12b3ob3ob3ob2o6bob2o3bo$o6b3o2bo
7b2o12bo7bob2o11b2o$8bob2obo4b2o22bo13bo6b2o$o8b3o2b3o3bo14bob4o3bo18b
o$o8b3o2b3o3bo14bob4o3bo18bo$8bob2obo4b2o22bo13bo6b2o$o6b3o2bo7b2o12bo
7bob2o11b2o$obo3b2obo10bobo12b3ob3ob3ob2o6bob2o3bo$obo3bo2bobo8bo3bo
12bob2o2bo9bobo2b3obo$bo2bo2b2o2bobo9bo11bobobo7bo2bo$o5bo4bobo3bo2bo
13bo2bobobo2bo4bobobobob3o$3bo10bob2o2bo14bo2bo3bo8bo5bo$o11bo3bo20bo
5bo$obobo4b4ob2o3bo14bobo$o3bobob2o7b2o$bo5b3o9bo5bo6bob2o$bo5b4o8bo4b
o3bobob2obo$3b4obo13bo4bo5b2o$3b2ob3o9bobo4bob2o$4bo4bo2b3o2bo4b2o7bob
o$10bo2b3o4bo5b2o3bobo$12bo2bo8bo4b6o$26bo3bobo$25bo6bobo$27bo6b2o$27b
o5bo!
-Josh Ball.

Sokwe
Moderator
Posts: 1646
Joined: July 9th, 2009, 2:44 pm

Re: Eppstein's Most Wanted

Post by Sokwe » August 9th, 2015, 6:13 pm

I found a couple of spaceships in B017/S1 back in 2010 (see here):

Code: Select all

x = 16, y = 51, rule = B017/S1
obo$obo$9bo2$11bo$2bobo$2bobo3$2bobo$2bobo$11bo2$9bo$obo$obo15$o7bo$o
7bo$12bo2$14bo$2bo7bo$2bo2bobo2bo3$2bo7bo$2bo7bo2$10bobobo$2bo2bobo5bo
bo$2bo$10bo2$8bo$o$o12bo$8bo!
By the way, nice work on those new spaceships. If you ever get the chance, post your new ships in the life-like spaceships topic.
-Matthias Merzenich

User avatar
Scorbie
Posts: 1451
Joined: December 7th, 2013, 1:05 am

Re: Eppstein's Most Wanted

Post by Scorbie » April 30th, 2016, 11:07 am

Good news for Eppstein; Not really a spaceship, but there exists some drifters in a farmland background as he expected in one of his favorites, Land Rush:

Code: Select all

x = 75, y = 75, rule = B35/S234578:T75,75
bobobob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob2obo
$bobobobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2obobobobobobo2b
o$3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobobob
4o$ob2obobobobobobob2obobobobob4o3bobobob3obob2obobobobobobo2bobobobob
o$obob2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bobobo
b2o$obobob2obobobobob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obob
obo$obobobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2ob
obo$obobob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob
2obo$obobobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2obobobobobob
o2bo$2bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobo
bob4o$b2obobobobobobob2obobobobob4o3bobobob3obob2obobobobobobo2bobobob
obo3bo$bob2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bo
bobob3o$bobob2obobobobob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2o
bobobobo$bobobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bobobob3obo
b2obobobo$bobob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobob
obob2obobo$bobobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2obobobo
bobobo2bobo$bobobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob2o
bobobobob4o$2obobobobobobob2obobobobob4o3bobobob3obob2obobobobobobo2bo
bobobobo3bo$ob2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobobob
4o3bobobob3o$obob2obobobobob4o3bobobob3obob2obobobobobobo2bobobobobo3b
ob2obobobobo$obobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bobobob
3obob2obobobo$obob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobo
bobobob2obobo$obobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2obobo
bobobobo2bobo$obobob3obob2obobobobobobo2bobobobobo3bob2obobobobobobob
2obobobobob4o$obobobobobobob2obobobobob4o3bobobob3obob2obobobobobobo2b
obobobobo3bobo$b2obobobobobobo2bobobobobo3bob2obobobobobobob2obobobobo
b4o3bobobob3obo$bob2obobobobob4o3bobobob3obob2obobobobobobo2bobobobobo
3bob2obobobobobo$bobo2bobobobobo3bob2obobobobobobob2obobobobob4o3bobob
ob3obob2obobobobo$bob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2obob
obobobobob2obobobo$bobo3bob2obobobobobobob2obobobobob4o3bobobob3obob2o
bobobobobobo2bobobo$bobob3obob2obobobobobobo2bobobobobo3bob2obobobobob
obob2obobobobob4o3bo$bobobobobobob2obobobobob4o3bobobob3obob2obobobobo
bobo2bobobobobo3bob2o$2obobobobobobo2bobobobobo3bob2obobobobobobob2obo
bobobob4o3bobobob3obo$ob2obobobobob4o3bobobob3obob2obobobobobobo2bobob
obobo3bob2obobobobobo$obo2bobobobobo3bob2obobobobobobob2obobobobob4o3b
obobob3obob2obobobobo$ob4o3bobobob3obob2obobobobobobo2bobobobobo3bob2o
bobobobobobob2obobobo$obo3bob2obobobobobobob2obobobobob4o3bobobob3obob
2obobobobobobo2bobobo$obob3obob2obobobobobobo2bobobobobo3bob2obobobobo
bobob2obobobobob4o3bo$obobobobobob2obobobobob4o3bobobob3obob2obobobobo
bobo2bobobobobo3bob2o$obobobobobobo2bobobobobo3bob2obobobobobobob2obob
obobob4o3bobobob3obobo$b2obobobobob4o3bobobob3obob2obobobobobobo2bobob
obobo3bob2obobobobobobo$bo2bobobobobo3bob2obobobobobobob2obobobobob4o
3bobobob3obob2obobobobobo$b4o3bobobob3obob2obobobobobobo2bobobobobo3bo
b2obobobobobobob2obobobobo$bo3bob2obobobobobobob2obobobobob4o3bobobob
3obob2obobobobobobo2bobobobo$bob3obob2obobobobobobo2bobobobobo3bob2obo
bobobobobob2obobobobob4o3bobo$bobobobobob2obobobobob4o3bobobob3obob2ob
obobobobobo2bobobobobo3bob2obo$bobobobobobo2bobobobobo3bob2obobobobobo
bob2obobobobob4o3bobobob3obob2o$2obobobobob4o3bobobob3obob2obobobobobo
bo2bobobobobo3bob2obobobobobobo$o2bobobobobo3bob2obobobobobobob2obobob
obob4o3bobobob3obob2obobobobobo$4o3bobobob3obob2obobobobobobo2bobobobo
bo3bob2obobobobobobob2obobobobo$o3bob2obobobobobobob2obobobobob4o3bobo
bob3obob2obobobobobobo2bobobobo$ob3obob2obobobobobobo2bobobobobo3bob2o
bobobobobobob2obobobobob4o3bobo$obobobobob2obobobobob4o3bobobob3obob2o
bobobobobobo2bobobobobo3bob2obo$obobobobobo2bobobobobo3bob2obobobobobo
bob2obobobobob4o3bobobob3obob2o$obobobobob4o3bobobob3obob2obobobobobob
o2bobobobobo3bob2obobobobobobobo$2bobobobobo3bob2obobobobobobob2obobob
obob4o3bobobob3obob2obobobobobobo$3o3bobobob3obob2obobobobobobo2bobobo
bobo3bob2obobobobobobob2obobobobobo$3bob2obobobobobobob2obobobobob4o3b
obobob3obob2obobobobobobo2bobobobobo$b3obob2obobobobobobo2bobobobobo3b
ob2obobobobobobob2obobobobob4o3bobobo$bobobobob2obobobobob4o3bobobob3o
bob2obobobobobobo2bobobobobo3bob2obobo$bobobobobo2bobobobobo3bob2obobo
bobobobob2obobobobob4o3bobobob3obob2obo$bobobobob4o3bobobob3obob2obobo
bobobobo2bobobobobo3bob2obobobobobobob2o$bobobobobo3bob2obobobobobobob
2obobobobob4o3bobobob3obob2obobobobobobo$2o3bobobob3obob2obobobobobobo
2bobobobobo3bob2obobobobobobob2obobobobob2o$2bob2obobobobobobob2obobob
obob4o3bobobob3obob2obobobobobobo2bobobobobo$3obob2obobobobobobo2bobob
obobo3bob2obobobobobobob2obobobobob4o3bobobo$obobobob2obobobobob4o3bob
obob3obob2obobobobobobo2bobobobobo3bob2obobo$obobobobo2bobobobobo3bob
2obobobobobobob2obobobobob4o3bobobob3obob2obo$obobobob4o3bobobob3obob
2obobobobobobo2bobobobobo3bob2obobobobobobob2o$obobobobo3bob2obobobobo
bobob2obobobobob4o3bobobob3obob2obobobobobobo$o3bobobob3obob2obobobobo
bobo2bobobobobo3bob2obobobobobobob2obobobobob3o$bob2obobobobobobob2obo
bobobob4o3bobobob3obob2obobobobobobo2bobobobobo$2obob2obobobobobobo2bo
bobobobo3bob2obobobobobobob2obobobobob4o3bobobobo$bobobob2obobobobob4o
3bobobob3obob2obobobobobobo2bobobobobo3bob2obobobo$bobobobo2bobobobobo
3bob2obobobobobobob2obobobobob4o3bobobob3obob2obobo!

Code: Select all

x = 86, y = 86, rule = B35/S234578:T86,86
obobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobobob
obobobobo$4obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobo
bobob3obobobobob2obobo$bobobobobobobobobob3obobobobob2obob5obobobobobo
bobobobobobobobobobo3bobobo2bobobo$bobobobobobobobobobobo3bobobo2bobob
obobobobobobobobobob3obobobobob2obob5obobobobo$bobobob3obobobobob2obob
5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobo$bobobobobo
3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobob
o$bobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobo
bobobobob3obo$bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobo
bobobobobobobobobobobobo$5obobobobobobobobobobobobobobobo3bobobo2bobob
obobobobobobobobobob3obobobobob2obo$obobobobobobobobobob3obobobobob2ob
ob5obobobobobobobobobobobobobobobo3bobobo2bobo$obobobobobobobobobobobo
3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobo$obobobob3obo
bobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobo$o
bobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobob
obobobobo$obobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobob
obobobobobobobobob3o$2bobobo2bobobobobobobobobobobobob3obobobobob2obob
5obobobobobobobobobobobobobobobo$b5obobobobobobobobobobobobobobobo3bob
obo2bobobobobobobobobobobobob3obobobobob2obo$bobobobobobobobobobob3obo
bobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobo$bobobobobobob
obobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobo$b
obobobob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobo
bobobobobo$bobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2ob
ob5obobobobobobobobobo$bobobobob2obob5obobobobobobobobobobobobobobobo
3bobobo2bobobobobobobobobobobobob3o$3bobobo2bobobobobobobobobobobobob
3obobobobob2obob5obobobobobobobobobobobobobobobo$ob5obobobobobobobobob
obobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2o$obobobobob
obobobobobob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bo
$obobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob
2obob5obobo$obobobobob3obobobobob2obob5obobobobobobobobobobobobobobobo
3bobobo2bobobobobobobo$obobobobobobo3bobobo2bobobobobobobobobobobobob
3obobobobob2obob5obobobobobobobobo$obobobobob2obob5obobobobobobobobobo
bobobobobobo3bobobo2bobobobobobobobobobobobob2o$o3bobobo2bobobobobobob
obobobobobob3obobobobob2obob5obobobobobobobobobobobobobobo$bob5obobobo
bobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2o
$bobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobobobobobobo
bo3bobobo2bo$bobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobob
ob3obobobobob2obob5obobo$bobobobobob3obobobobob2obob5obobobobobobobobo
bobobobobobobo3bobobo2bobobobobobobo$bobobobobobobo3bobobo2bobobobobob
obobobobobobob3obobobobob2obob5obobobobobobobobo$2obobobobob2obob5obob
obobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobobo$bo3bobob
o2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobobobobob
obo$obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobo
bob3obobobobobo$obobobobobobobobobobobob3obobobobob2obob5obobobobobobo
bobobobobobobobobo3bobobo$obobobobobobobobobobobobobo3bobobo2bobobobob
obobobobobobobob3obobobobob2obob5obo$obobobobobob3obobobobob2obob5obob
obobobobobobobobobobobobobo3bobobo2bobobobobobo$obobobobobobobo3bobobo
2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobo$3obobobobob
2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobo$
obo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobo
bobobobobo$2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobo
bobobobobob3obobobobo$bobobobobobobobobobobobob3obobobobob2obob5obobob
obobobobobobobobobobobobo3bobobo$bobobobobobobobobobobobobobo3bobobo2b
obobobobobobobobobobobob3obobobobob2obob5obo$bobobobobobob3obobobobob
2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobo$bobobobobobo
bobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobo$
b3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobob
obobobobobo$bobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obob
obobobobobobobobobobobo$b2obob5obobobobobobobobobobobobobobobo3bobobo
2bobobobobobobobobobobobob3obobobobo$2bobobobobobobobobobobobob3obobob
obob2obob5obobobobobobobobobobobobobobobo3bobobo$obobobobobobobobobobo
bobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5o$obobobobob
obob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobo
$obobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5ob
obobobobobo$ob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo
2bobobobobobobobobobobo$obobo3bobobo2bobobobobobobobobobobobob3obobobo
bob2obob5obobobobobobobobobobobobo$ob2obob5obobobobobobobobobobobobobo
bobo3bobobo2bobobobobobobobobobobobob3obobobo$o2bobobobobobobobobobobo
bob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobo$bobobobobobob
obobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5o$b
obobobobobobob3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo
2bobobobobo$bobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobob
obob2obob5obobobobobobo$bob3obobobobob2obob5obobobobobobobobobobobobob
obobo3bobobo2bobobobobobobobobobobo$bobobo3bobobo2bobobobobobobobobobo
bobob3obobobobob2obob5obobobobobobobobobobobobo$bob2obob5obobobobobobo
bobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobobo$bo2bobobob
obobobobobobobobob3obobobobob2obob5obobobobobobobobobobobobobobobo3bob
o$obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obo
bobobob2obob4o$obobobobobobobob3obobobobob2obob5obobobobobobobobobobob
obobobobo3bobobo2bobobobo$obobobobobobobobobo3bobobo2bobobobobobobobob
obobobob3obobobobob2obob5obobobobobo$obob3obobobobob2obob5obobobobobob
obobobobobobobobobo3bobobo2bobobobobobobobobobo$obobobo3bobobo2bobobob
obobobobobobobobob3obobobobob2obob5obobobobobobobobobobobo$obob2obob5o
bobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobobobob3obobo$
obo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobobobob
obobobo3bo$2obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobob
obobob3obobobobob2obob3o$bobobobobobobobob3obobobobob2obob5obobobobobo
bobobobobobobobobobo3bobobo2bobobobo$bobobobobobobobobobo3bobobo2bobob
obobobobobobobobobob3obobobobob2obob5obobobobobo$bobob3obobobobob2obob
5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobobobo$bobobobo
3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobobobobobobob
obo$bobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobobo
bobobobob3obobo$bobo2bobobobobobobobobobobobob3obobobobob2obob5obobobo
bobobobobobobobobobobobo3bo$3obobobobobobobobobobobobobobobo3bobobo2bo
bobobobobobobobobobobob3obobobobob2obob2o$obobobobobobobobob3obobobobo
b2obob5obobobobobobobobobobobobobobobo3bobobo2bobobo$obobobobobobobobo
bobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobobobo$obobob
3obobobobob2obob5obobobobobobobobobobobobobobobo3bobobo2bobobobobobobo
bobo$obobobobo3bobobo2bobobobobobobobobobobobob3obobobobob2obob5obobob
obobobobobobobo$obobob2obob5obobobobobobobobobobobobobobobo3bobobo2bob
obobobobobobobobobobob3obo!

Code: Select all

x = 33, y = 66, rule = B35/S234578:T33,66
3obobobobobobobobobobobobobob3o$obobobobobobobobobobobobobobo2bo$obobo
bobobobobobobobob6obobo$obobobobobobobobobobo2bobobobobo$obobobobobobo
b6obobobobobobo$obobobobobobo2bobobobobobobobobo$obobob6obobobobobobob
obobobo$obobo2bobobobobobobobobobobobobo$4obobobobobobobobobobobobobob
2o$bobobobobobobobobobobobobobobo2bo$bobobobobobobobobobobob6obobo$bob
obobobobobobobobobo2bobobobobo$bobobobobobobob6obobobobobobo$bobobobob
obobo2bobobobobobobobobo$bobobob6obobobobobobobobobobo$bobobo2bobobobo
bobobobobobobobobo$5obobobobobobobobobobobobobobo$obobobobobobobobobob
obobobobobo$obobobobobobobobobobobob6obo$obobobobobobobobobobobo2bobob
obo$obobobobobobobob6obobobobobo$obobobobobobobo2bobobobobobobobo$obob
obob6obobobobobobobobobo$obobobo2bobobobobobobobobobobobo$6obobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobo$bobobobobobobobobobo
bobob6obo$bobobobobobobobobobobobo2bobobobo$bobobobobobobobob6obobobob
obo$bobobobobobobobo2bobobobobobobobo$bobobobob6obobobobobobobobobo$bo
bobobo2bobobobobobobobobobobobo$b6obobobobobobobobobobobobobo$2bobobob
obobobobobobobobobobobobo$obobobobobobobobobobobobob6o$obobobobobobobo
bobobobobo2bobobo$obobobobobobobobob6obobobobo$obobobobobobobobo2bobob
obobobobo$obobobobob6obobobobobobobobo$obobobobo2bobobobobobobobobobob
o$ob6obobobobobobobobobobobobo$o2bobobobobobobobobobobobobobobo$bobobo
bobobobobobobobobobob6o$bobobobobobobobobobobobobo2bobobo$bobobobobobo
bobobob6obobobobo$bobobobobobobobobo2bobobobobobobo$bobobobobob6obobob
obobobobobo$bobobobobo2bobobobobobobobobobobo$bob6obobobobobobobobobob
obobo$bo2bobobobobobobobobobobobobobobo$obobobobobobobobobobobobobob5o
$obobobobobobobobobobobobobo2bobo$obobobobobobobobobob6obobobo$obobobo
bobobobobobo2bobobobobobo$obobobobobob6obobobobobobobo$obobobobobo2bob
obobobobobobobobo$obob6obobobobobobobobobobobo$obo2bobobobobobobobobob
obobobobo$2obobobobobobobobobobobobobob4o$bobobobobobobobobobobobobobo
2bobo$bobobobobobobobobobob6obobobo$bobobobobobobobobobo2bobobobobobo$
bobobobobobob6obobobobobobobo$bobobobobobo2bobobobobobobobobobo$bobob
6obobobobobobobobobobobo$bobo2bobobobobobobobobobobobobobo!
This (along with lots of junk) is found with randomagar, so one could find something else with dr.
Best wishes to you, Scorbie

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » February 28th, 2020, 6:14 am

Bump.

I think the reason no one has found any spaceships in B34567/S0678 is that there are lots of wickstretchers with odd period, while there are comparatively few, if any, ways for patterns to contract. This results in partials like this c/7o:

Code: Select all

x = 10, y = 286, rule = B34567/S0678
3bo3bo$o4bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo$5ob4o$5b
o$5ob4o$5bo$5ob4o$5bo$5ob4o$5bo!
Fortunately, this very same property may allow us to use LLS to find the few rear ends that may exist, slap it onto a matching wickstretcher, and call it a spaceship. The most thorough search I've done for c/7o, copied below, returns UNSAT in about 13 seconds.

Code: Select all

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af ag ah ai aj
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf bg bh bi bj
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf cg ch ci cj
m0' m1' m2' m3' m4' m5' m6' m7' m8' m9' ma' mb' mc' md' me' mf' mg' mh' mi' mj'
-m0 -m1 -m2 -m3 -m4 -m5 -m6 -m7 -m8 -m9 -ma -mb -mc -md -me -mf -mg -mh -mi -mj
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf xg xh xi xj
y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 ya yb yc yd ye yf yg yh yi yj
z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 za zb zc zd ze zf zg zh zi zj
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
-m0' -m1' -m2' -m3' -m4' -m5' -m6' -m7' -m8' -m9' -ma' -mb' -mc' -md' -me' -mf' -mg' -mh' -mi' -mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
m0' m1' m2' m3' m4' m5' m6' m7' m8' m9' ma' mb' mc' md' me' mf' mg' mh' mi' mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
-m0' -m1' -m2' -m3' -m4' -m5' -m6' -m7' -m8' -m9' -ma' -mb' -mc' -md' -me' -mf' -mg' -mh' -mi' -mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
m0' m1' m2' m3' m4' m5' m6' m7' m8' m9' ma' mb' mc' md' me' mf' mg' mh' mi' mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
-m0' -m1' -m2' -m3' -m4' -m5' -m6' -m7' -m8' -m9' -ma' -mb' -mc' -md' -me' -mf' -mg' -mh' -mi' -mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
m0' m1' m2' m3' m4' m5' m6' m7' m8' m9' ma' mb' mc' md' me' mf' mg' mh' mi' mj'
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af ag ah ai aj
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf bg bh bi bj
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 ca cb cc cd ce cf cg ch ci cj
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 ma mb mc md me mf mg mh mi mj
-m0' -m1' -m2' -m3' -m4' -m5' -m6' -m7' -m8' -m9' -ma' -mb' -mc' -md' -me' -mf' -mg' -mh' -mi' -mj'
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf xg xh xi xj
y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 ya yb yc yd ye yf yg yh yi yj
z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 za zb zc zd ze zf zg zh zi zj
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
Layz Boi
Posts: 121
Joined: October 25th, 2018, 3:57 pm

Re: Eppstein's Most Wanted

Post by Layz Boi » March 1st, 2020, 8:19 pm

B345678/S458
B345678/S47
B345678/S478
These ones behave similarly to Gems. Perhaps they have ships that are similar to the one in Gems.
Maybe one could approach these by generating random even-symmetric diamonds and eliminating them if they expand too far perpendicularly to the axis of reflection. For example:

Code: Select all

x = 80, y = 14, rule = B345678/S47
2bob2obo13b2o15b2o15b4o14b2o$bo6bo10bob2obo11bob2obo12b2o2b2o11bob2ob
o$10o10b4o13b4o31b4o$3b4o47bob2obo10b2o4b2o$ob2o2b2obo6b3obo2bob3o5b3o
bo2bob3o7bo8bo6b3ob4ob3o$b3o2b3o9b8o9b8o10b3o2b3o9b2ob2ob2o$obob2obob
o6b2obob2obob2o5b2obob2obob2o6b2obo4bob2o5b2ob6ob2o$ob6obo9b2o2b2o11b
2o2b2o9b2o2b4o2b2o5bobo2b2o2bobo$bobo2bobo9b3o2b3o8b2obo2bob2o9b8o9b3o
2b3o$2bob2obo9bo2b4o2bo7bo3b2o3bo9bobo2bobo9bo2b2o2bo$3b4o12bob2obo11b
o4bo14b2o13bo4bo$20b4o13b4o15b2o$19b2o2b2o29bob2obo$56b2o!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » April 21st, 2020, 3:30 am

For B35/S46, I think c/5 orthogonal will be easiest to find, and that the result will look similar to Josh Ball's B348/S4. I'm currently running Paul Tooke's gfind mod at level l128. LSSS is probably the best option, knowing that it found a 2c/7 ship in Life that's wider than what can be obtained with gfind, zfind, or qfind, unless there is something smaller at a high period (e.g. Diamoeba's c/16o, 3-4 Life's c/7o) that can be found with zfind, qfind, or gsearch.

Code: Select all

#C Best partials at width 10, via ntzfind
x = 42, y = 20, rule = B35/S46
32bo$9b2o$30bo3bo$8b4o$7b2o2b2o14b3ob3ob3o$6b2o4b2o17bobo$8b4o14b5obob
5o$5b2o6b2o11bob2o5b2obo$5b3ob2ob3o10bobob2o3b2obobo$4bo3bo2bo3bo9bo2b
obo3bobo2bo$5b2o2b2o2b2o12bobo5bobo$5b10o10b3ob3ob3ob3o$4bo2b2o2b2o2bo
10b2obo2bo2bob2o$2b2obo2bo2bo2bob2o7bobo3bobo3bobo$3bobo8bobo10b2o7b2o
$2b2ob4o2b4ob2o7b3o2bobobo2b3o$2bobobobo2bobobobo7b2o2b2o3b2o2b2o$3o
14b3o3bobo3b2obob2o3bobo$2bobobo6bobobo10bobobobobo$o2bobo3b2o3bobo2bo
3b3o4b2ob2o4b3o!
I've also found a second ship in B3478/S24568, a c/3 orthogonal. It neatly illustrates the rule's anti-gutter symmetry.

Code: Select all

x = 64, y = 23, rule = B3478/S24568
13b3o22b2o$2o11b2o23b2o$o3bo5bo2b2o22bobo2b2o$b2o2b2o7b4o10bo6bob4ob3o
10b3o$obo3bobo2bobob3o12bo4b4obo13bob2o$2o2bobobobobob4o2b2obo4bobob2o
2bo2b2o2b2o2bo2b2o2b6obo$b2o5b4o3bob2ob3o4bobobob3ob5o4bobob7o2b2o$7bo
11b5obobobob2o4b2ob5ob2obobo2b6ob2o$19bo3b5ob2o2b5ob3o3bo5bob10o$20b2o
2b2ob3o2b3ob3ob5obob2o2bo7bobo$22b8o3b2obobob2o3b2ob2o2b8ob3o$20b3obob
4obob29obo$22b8o3b2obobob2o3b2ob2o2b8ob3o$20b2o2b2ob3o2b3ob3ob5obob2o
2bo7bobo$19bo3b5ob2o2b5ob3o3bo5bob10o$7bo11b5obobobob2o4b2ob5ob2obobo
2b6ob2o$b2o5b4o3bob2ob3o4bobobob3ob5o4bobob7o2b2o$2o2bobobobobob4o2b2o
bo4bobob2o2bo2b2o2b2o2bo2b2o2b6obo$obo3bobo2bobob3o12bo4b4obo13bob2o$b
2o2b2o7b4o10bo6bob4ob3o10b3o$o3bo5bo2b2o22bobo2b2o$2o11b2o23b2o$13b3o
22b2o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
Saka
Posts: 3502
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X
Contact:

Re: Eppstein's Most Wanted

Post by Saka » April 30th, 2020, 2:39 am

Layz Boi wrote:
March 1st, 2020, 8:19 pm
B345678/S458
B345678/S47
B345678/S478
These ones behave similarly to Gems. Perhaps they have ships that are similar to the one in Gems.
Maybe one could approach these by generating random even-symmetric diamonds and eliminating them if they expand too far perpendicularly to the axis of reflection. For example:

Code: Select all

snip
This can be done by using my "solid.py" script, which I recently added a D2 option to. It can be found here: https://conwaylife.com/forums/viewtopic ... 082#p94187
...
or here (Select half of the actual soup size and then enter D2 for the symmetry, I'm working on odd symmetric and diagonal symmetric)

Code: Select all

# Solid.py
# Makes soups and runs oscar until a ship is found
# Seemingly stupid but actually very useful and fast
# Mainly used for searching "Solid" ships in LTL since soups of the right size
# produce only 1 object and separation is not needed so oscar can be run.
# Best fit for solid LTL rules that have lower period oscs that stabilize quicker but can also be used for larger ranges.
# Beeps when a ship is found.
# By Saka with oscar.py code from Andrew Trevorrow.

import golly as g
from glife import rect, pattern
from time import time

if len(g.getselrect()) == 0:
    g.exit("No selection!")
else:
    selection = g.getselrect()
    
g.new("Solid")
g.select(selection)
g.fitsel()
result = "Soup"
symmetry = g.getstring("Symmetry (Select half of the soup size you want): C1, D2","C1")
#maxGen = int(g.getstring("Maximum gens (To avoid expanding soups)")) # Maximum gens and population to avoid expanding soups
maxPop = 300 #(selection[2]*selection[3])*10 #This is much, much better
n = -1

while result != "S": #Old and not used anymore but whatever.
    #g.setgen('0')
    n += 1
    if n % 100==0:
        g.show(str(n)+" soups searched")
        g.update()
    g.reset()
    if symmetry == 'D2':
        g.clear(1)
    g.randfill(50)
    if symmetry=='D2':
        g.putcells(g.getcells(selection),selection[0]*2+selection[2]*2-1,0,-1,0,0,1)
    # The entire code of oscar.py :)
    # Oscar is an OSCillation AnalyzeR for use with Golly.
    # Author: Andrew Trevorrow (andrew@trevorrow.com), March 2006.

    # --------------------------------------------------------------------

    # initialize lists
    hashlist = []        # for pattern hash values
    genlist = []         # corresponding generation counts
    poplist = []         # corresponding population counts
    boxlist = []         # corresponding bounding boxes

    # --------------------------------------------------------------------

    def show_spaceship_speed(period, deltax, deltay):
        # we found a moving oscillator
        if (deltax == deltay) or (deltax == 0) or (deltay == 0):
            speed = ""
            if (deltax == 0) or (deltay == 0):
                # orthogonal spaceship
                if (deltax > 1) or (deltay > 1):
                    speed += str(deltax + deltay)
            else:
                # diagonal spaceship (deltax == deltay)
                if deltax > 1:
                    speed += str(deltax)
            if period == 1:
                g.show("S")
                g.exit("Found ship with speed " + speed + "c"+" after "+str(n)+" soups.")
            else:
                g.show("S")
                g.exit("Found ship with speed " + speed + "c/" +str(period)+" after "+str(n)+" soups.")
        else:
            # deltax != deltay and both > 0
            speed = str(deltay) + "," + str(deltax)
            if period == 1:
                g.show("S")
                g.exit("Found knightship with speed " + speed + "c"+" after "+str(n)+" soups.")
            else:
                g.show("S")
                g.exit("Found knightship with speed " + speed + "c/" + str(period)+" after "+str(n)+" soups.")

    # --------------------------------------------------------------------

    def oscillating():
        # return True if the pattern is empty, stable or oscillating

        # first get current pattern's bounding box
        prect = g.getrect()
        pbox = rect(prect)
        if pbox.empty:
            #g.show("The pattern is empty.")
            return True

        # get current pattern and create hash of "normalized" version -- ie. shift
        # its top left corner to 0,0 -- so we can detect spaceships and knightships

        h = g.hash(prect)

        # check if outer-totalistic rule has B0 but not S8
        rule = g.getrule().split(":")[0]
        hasB0notS8 = rule.startswith("B0") and (rule.find("/") > 1) and not rule.endswith("8")

        # determine where to insert h into hashlist
        pos = 0
        listlen = len(hashlist)
        while pos < listlen:
            if h > hashlist[pos]:
                pos += 1
            elif h < hashlist[pos]:
                # shorten lists and append info below
                del hashlist[pos : listlen]
                del genlist[pos : listlen]
                del poplist[pos : listlen]
                del boxlist[pos : listlen]
                break
            else:
                # h == hashlist[pos] so pattern is probably oscillating, but just in
                # case this is a hash collision we also compare pop count and box size
                if (int(g.getpop()) == poplist[pos]) and \
                   (pbox.wd == boxlist[pos].wd) and \
                   (pbox.ht == boxlist[pos].ht):
                    period = int(g.getgen()) - genlist[pos]

                    if hasB0notS8 and (period % 2 > 0) and (pbox == boxlist[pos]):
                        # ignore this hash value because B0-and-not-S8 rules are
                        # emulated by using different rules for odd and even gens,
                        # so it's possible to have identical patterns at gen G and
                        # gen G+p if p is odd
                        return False

                    if pbox == boxlist[pos]:
                        # pattern hasn't moved
                        if period == 1:
                            pass
                            #g.show("SL")
                        else:
                            pass
                            #g.show("OSC")
                    else:
                        deltax = abs(boxlist[pos].x - pbox.x)
                        deltay = abs(boxlist[pos].y - pbox.y)
                        show_spaceship_speed(period, deltax, deltay)
                    return True
                else:
                    # look at next matching hash value or insert if no more
                    pos += 1

        # store hash/gen/pop/box info at same position in various lists
        hashlist.insert(pos, h)
        genlist.insert(pos, int(g.getgen()))
        poplist.insert(pos, int(g.getpop()))
        boxlist.insert(pos, pbox)

        return False

    # --------------------------------------------------------------------

    def fit_if_not_visible():
        # fit pattern in viewport if not empty and not completely visible
        r = rect(g.getrect())
        if (not r.empty) and (not r.visible()): g.fit()

    # --------------------------------------------------------------------

    #g.show("Checking for oscillation... (hit escape to abort)")

    oldsecs = time()
    while not oscillating():
        g.run(1)
        newsecs = time()
        #if newsecs - oldsecs >= 1.0:     # show pattern every second
            #oldsecs = newsecs
            #fit_if_not_visible()
            #g.update()
        if int(g.getpop()) > maxPop: #If not: Use int(g.getgen()) > maxGen
            break
However, I've had no luck so far. Not sure how many soups I've burned through, but it was a lot. I tried it with 10x10 and 12x12 symmetric soups.
LaundryPizza03 wrote:
April 21st, 2020, 3:30 am
For B35/S46, I think c/5 orthogonal will be easiest to find, and that the result will look similar to Josh Ball's B348/S4. I'm currently running Paul Tooke's gfind mod at level l128. LSSS is probably the best option, knowing that it found a 2c/7 ship in Life that's wider than what can be obtained with gfind, zfind, or qfind, unless there is something smaller at a high period (e.g. Diamoeba's c/16o, 3-4 Life's c/7o) that can be found with zfind, qfind, or gsearch.

Code: Select all

snip
I fired up LSSS for this rule, but have gotten no luck yet as well. I tried all seedcolumns for margin 11 even, here are the final partials

Code: Select all

x = 178, y = 44, rule = B35/S46
37b2o20b6o106b5o$35b3obo18b2o4bo52bo52bo4bo$35bo3bo18bo5bo19bobo23b8o
16bo19b5o11bo4bo$8b7o24bo23b2o18b2obo23bo22b2o23b3o9bo3b2o$7bo6b2o23bo
22b2o18b2o2bo22b2o3b2o17bo25b2o9bo3bo$6bo8bo23bo19b4o18b2o3bo22b8o16bo
25bo10b5o$5b2o8bo23bo21b2o18b8o20b2o5bo15b6o17b7o10b4o$5bo9bo22b2o22bo
23bob2o26bo15bo4bo16b2o2bo12b2o2bo$5b2o7b2o18b5o23bo22b2o29bo15b2o3bo
19b2o11b2o3bo$6b2o5b2o19b2o2b5o19bo22bo30bo16bo2b2o19bo12bo3bo$8b5o48b
2o22bo29b2o16b4o20bo12bo2b2o$10b4o41b7o23bo25b5o40bo13b3o$155b2o$155bo
7$135bo3bo2bo12bo3bobo10bob2o$109bobo3bob3o12bob2o3b2o13b4o2bo12bo2b2o
$20bo43bo24bo21bo5b3o12b3ob2ob4o11bo3bo11b4o2b2o$16bo2b2o44bo17bobob2o
2bo16b2o4b3o14bo4b3obo12bobob2o2bo9b4o2bo$16bob3o16bob4o18bob3o16b3o5b
o16b3o4b2obo13bob3ob4o13b2obo2b2o11b2obo$12bob4obo15bobob2obo16b7o18bo
2bo2bo14bobob2o3bo2b2o13b2o2b2ob4o12b2ob2obo10bobobo$12b3o4bo13bo2bobo
19b2obo3b2o17b7o18b2obo5b2o12b7ob3o13b2obobo10b3o2bo$8bo2bo3bob2o15b3o
3bo16bobo2bo17b5o2bo2b2o15bo7bo2bo14b2o2b2o16b2obo2bo9bo4bo$6b2ob2ob3o
4bo12b2obobobob2o16b2o20b3o2b2ob3o17bob3o4b2o18bob2o15bo3bo11b3obo$4bo
b2ob2o3b2obo17bo2bo3bo12b4obo2bobo16bo3bo2b3o15bo3bobobo19bob2o2bo15bo
3bo9bo2b2o$3b2o2bo2b2o2bo4bo11bob3o2b4o16b2o3bo2bo16bobo4b2o15bo5b4ob
2o13b2o2bob3o15bobo11bo2bob2o$2b2obo2bob3ob2o3bo11b3o3bo3b2o15bo2bo2bo
bo15bob3ob2o17bo5b4ob2o13b2o2bob3o15bobo11bo2bob2o$obo2bobob2o8bo13bob
o2b2obo16bo2bo2bobo15bob3ob2o17bo3bobobo19bob2o2bo15bo3bo9bo2b2o$obo2b
obob2o8bo12bobo3bo2bo16bo2bo2bobo16bobo4b2o17bob3o4b2o18bob2o15bo3bo
11b3obo$2b2obo2bob3ob2o3bo12bobo3bo2bo16bo2bo2bobo15bo3bo2b3o15bo7bo2b
o14b2o2b2o16b2obo2bo9bo4bo$3b2o2bo2b2o2bo4bo13bobo2b2obo16b2o3bo2bo14b
3o2b2ob3o17b2obo5b2o12b7ob3o13b2obobo10b3o2bo$4bob2ob2o3b2obo13b3o3bo
3b2o12b4obo2bobo14b5o2bo2b2o13bobob2o3bo2b2o13b2o2b2ob4o12b2ob2obo10bo
bobo$6b2ob2ob3o4bo11bob3o2b4o17b2o23b7o16b3o4b2obo13bob3ob4o13b2obo2b
2o11b2obo$8bo2bo3bob2o16bo2bo3bo14bobo2bo21bo2bo2bo17b2o4b3o14bo4b3obo
12bobob2o2bo9b4o2bo$12b3o4bo12b2obobobob2o15b2obo3b2o15b3o5bo20bo5b3o
12b3ob2ob4o11bo3bo11b4o2b2o$12bob4obo14b3o3bo18b7o17bobob2o2bo17bobo3b
ob3o12bob2o3b2o13b4o2bo12bo2b2o$16bob3o12bo2bobo22bob3o23bo45bo3bo2bo
12bo3bobo10bob2o$16bo2b2o14bobob2obo22bo$20bo16bob4o21bo!
I tried seedcolumn 00 for higher widths as well, up to width 15, but it doesn't look like it's gonna finish any time soon, they still all look like Christmas trees

Code: Select all

x = 107, y = 26, rule = B35/S46
10b2o24b2o26b2o27b2o2$9b4o22b4o24b4o25b4o$8b2o2b2o20b2o2b2o22b2o2b2o
23b2o2b2o$7b2o4b2o18b2o4b2o20b2o4b2o21b2o4b2o$9b4o22b4o24b4o25b4o$6b2o
6b2o16b2o6b2o18b2o6b2o19b2o6b2o$6b3ob2ob3o16b3ob2ob3o18b3ob2ob3o19b3ob
2ob3o$5bo3bo2bo3bo14bo3bo2bo3bo16bo3bo2bo3bo17bo3bo2bo3bo$6b2o2b2o2b2o
16b2o2b2o2b2o18b2o2b2o2b2o19b2o2b2o2b2o$6b10o16b10o18b10o19b10o$5bo2b
2o2b2o2bo14bo2b2o2b2o2bo16bo2b2o2b2o2bo17bo2b2o2b2o2bo$3b2obo2bo2bo2bo
b2o10b2obo2bo2bo2bob2o12b2obo2bo2bo2bob2o13b2obo2bo2bo2bob2o$4bobo8bob
o12bobo8bobo14bobo8bobo15bobo8bobo$3b2ob4o2b4ob2o10b2ob4o2b4ob2o12b2ob
4o2b4ob2o13b2ob4o2b4ob2o$3bobobobo2bobobobo10bobobobo2bobobobo12bobobo
bo2bobobobo13bobobobo2bobobobo$b3o14b3o6b3o14b3o8b3o14b3o9b3o14b3o$3bo
bobo6bobobo10bobobo6bobobo12bobobo6bobobo13bobobo6bobobo$2bo2bo10bo2bo
8bo2bo10bo2bo10bo2bo10bo2bo11bo2bo10bo2bo$b4obob6obob4o6b4obob6obob4o
8b4obob6obob4o9b4obob6obob4o$3o16b3o4b3o16b3o6b3o16b3o7b3o16b3o$27b5ob
2o4b2ob5o10b3ob2o4b2ob3o13b3ob2o4b2ob3o$25b2o3b2ob3o2b3ob2o3b2o4b4ob2o
bo6bob2ob4o5b4ob2obo2b2o2bob2ob4o$54b3o4b8o4b3o7b3o4b3o2b3o4b3o$52b2o
6bobo4bobo6b2o3b2o6bobob2obobo6b2o$82b5ob3o6b3ob5o!

Code: Select all

o3b2ob2obo3b2o2b2o$bo3b2obob3o3bo2bo$2bo2b3o5b3ob4o$3o3bo2bo2b3o3b3o$
4bo4bobo4bo$2o2b2o2b4obo2bo3bo$2ob4o3bo2bo2bo2bo$b2o3bobob2o$3bobobo5b
obobobo$3bobobob2o3bo2bobo!
(Check gen 3)
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » April 30th, 2020, 2:03 pm

B02/S
I think I can prove that spaceships are impossible in this rule.

Let (x, y) be a cell that maximizes y — in other words, it rests at the top of its bounding box. We want (x, y+1) or (x, y+2) to be live in generation 2.

In generation 1, all of the cells at y+2 and y+3 must be live. In particular, (x, y+2) must have at least 5 live neighbors. Therefore, in order for this cell to be live in generation 2, at least one of S567 must be on.

Furthermore, (x, y+1) has at least three live neighbors in generation 1. Therefore, in order for it to be live in generation 2, at least one of B345678/S34567 must be on.

Therefore, without at least one of B345678/S34567, no pattern can escape its bounding box in even generations. In other words, none of the rules with B0[12]/S[012] have any spaceships or other growth patterns.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » April 30th, 2020, 7:00 pm

I haven't proved that LongLife is infertile, but I have also resolved one of Eppstein's long-standing conjectures: that no spaceships can exist without at least one of B2/S012345.

Let (x,y) be a cell such that x+y is maximal among live cells in generation 0. We want (x, y+1) and (x+1, y) to be live in generation 2. The case where B4 and B5 are off is already proved by Eppstein, so we will assume that at least one of these transitions is on.

First assume tht (x,y) is dead in generation 2. Then (x-1, y+1), (x-1, y), (x, y), (x, y-1), and (x+1, y-1) must all be live in generation 1. Since all of these cells must be dead in generation 0, (x, y) initially has at most one live neighbor, so it must be dead in generation 1, which is a contradiction.

Code: Select all

#C Fig. 1: Case where (x, y) is dead in generation 2
x = 25, y = 5, rule = B345/SHistory
E4A5.E4D5.5E$AE2DB5.DE2AB5.2E2DB$A2D2B5.D2A2B5.E2DAB$AD3B5.DA3B5.EDA
2B$A4B5.D4B5.E4B!
Now assume that (x,y) is live in generation 2. Note that (x+1, y+1) must be dead in generation 1 because it has at most one live neighbor in generation 0; similarly, (x, y+1) and (x+1, y) must be dead. Then (x, y+2), (x-1, y+2), and (x-1, y) must be live in generation 1 in order for (x, y+1) to be live in generation 1. But in order for (x-1, y+2) to be live in generation 1, all of (x-2, y+2), (x-2, y+1), and (x-1, y+1) must be live in generation 0, the latter of which means that (x-1, y+1) must be dead in generation 1. [Similarly, the state of (x+1, y-1) cannot be determined in generation 0.]

Code: Select all

#C Fig. 2: Case where (x, y) is live in generation 2
x = 30, y = 6, rule = B345/SHistory
3E2AB6.5EB6.5EB$3EC2B6.2EACAB6.2E2D2B$3E3B6.EAD3B6.ED2A2B$AC4B6.EC4B
6.EDA3B$A5B6.EA4B6.E5B$6B6.6B6.6B!
The impossibility of having two diagonally adjacent cells outside of a pattern's bounding diamond means that (x+1, y+1) can never be on. Q.E.D.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » May 4th, 2020, 8:10 pm

B345/S5
I've confirmed Eppstein's long-held suspicion about Longlife. EDIT: Apparently not, see below.

Let (x,y) be a cell such that x+y is maximal among live cells.
I proved previously that with none of B2/S012345, no spaceships can exist. This means that if (x+1, y+1) is live in generation 2, then (x, y) must be live, and so must (x-1, y+1), (x-1, y), (x-1, y-1), (x, y-1), and (x+1, y-1). Then (x, y), (x+1, y), and (x, y+1) will be live in generation 1.

Now suppose that (x+1, y+2) is live in generation 3. Then both (x, y+1) and (x, y+2) must be live in generation 2. If (x, y+2) is live, then (x-1, y+2) and (x-1, y+1) must be live in generation 1, in addition to the three previously mentioned cells. As (x-1, y+1) survives this generation, it must have 5 live neighbors, which means that (x-1, y) is live.

And in order for (x+1, y) to be live in both generations 0 and 1, (x-2, y+2), (x-2, y+1), and (x-2, y) must be alive along with the ones previously mentioned as live. But then (x-1, y) has 6 or 7 live neighbors, so it must be dead in generation 1, and (x, y+1) cannot be live in generation 2 because it has exactly 4 live neighbors. Since this is a contradiction, this means that (x+1, y+2) can never be live [and similarly, neither can (x+2, y+1)].

Code: Select all

#Fig. 1: Assuming that the upper-right cell is on in generation 3 leads to a contradiction.
x = 28, y = 4, rule = LifeHistory
A3B4.EA2B4.EBAB4.E2BA$2A2B4.E2AB4.2E2A4.2E2B$ACAB4.EC2A4.3EB4.3EB$E3A
4.4E4.4E4.4E!
The key takeaway here is that it is impossible to form a live cell with 5 live neighbors outside of the bounding diamond. Therefore, it is impossible for any pattern to move more than 2 cells outside of its initial bounding diamond without any of B2/S0123467, and no spaceships can exist. In particular, B345/S5 has no spaceships.
Last edited by LaundryPizza03 on May 5th, 2020, 2:25 am, edited 1 time in total.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
Layz Boi
Posts: 121
Joined: October 25th, 2018, 3:57 pm

Re: Eppstein's Most Wanted

Post by Layz Boi » May 4th, 2020, 9:53 pm

LaundryPizza03 wrote:
May 4th, 2020, 8:10 pm
B345/S5
I've confirmed Eppstein's long-held suspicion about Longlife.

Let (x,y) be a cell such that x+y is maximal among live cells.
I proved previously that with none of B2/S012345, no spaceships can exist. This means that if (x+1, y+1) is live in generation 2, then (x, y) must be live, and so must (x-1, y+1), (x-1, y), (x-1, y-1), (x, y-1), and (x+1, y-1). Then (x, y), (x+1, y), and (x, y+1) will be live in generation 1.

Now suppose that (x+1, y+2) is live in generation 3. Then both (x, y+1) and (x, y+2) must be live in generation 2. If (x, y+2) is live, then (x-1, y+2) and (x-1, y+1) must be live in generation 1, in addition to the three previously mentioned cells. As (x-1, y+1) survives this generation, it must have 5 live neighbors, which means that (x-1, y) is live.

And in order for (x+1, y) to be live in both generations 0 and 1, (x-2, y+2), (x-2, y+1), and (x-2, y) must be alive along with the ones previously mentioned as live. But then (x-1, y) has 6 or 7 live neighbors, so it must be dead in generation 1, and (x, y+1) cannot be live in generation 2 because it has exactly 4 live neighbors. Since this is a contradiction, this means that (x+1, y+2) can never be live [and similarly, neither can (x+2, y+1)].

Code: Select all

#Fig. 1: Assuming that the upper-right cell is on in generation 3 leads to a contradiction.
x = 28, y = 4, rule = LifeHistory
A3B4.EA2B4.EBAB4.E2BA$2A2B4.E2AB4.2E2A4.2E2B$ACAB4.EC2A4.3EB4.3EB$E3A
4.4E4.4E4.4E!
The key takeaway here is that it is impossible to form a live cell with 5 live neighbors outside of the bounding diamond. Therefore, it is impossible for any pattern to move more than 2 cells outside of its initial bounding diamond without any of B2/S0123467, and no spaceships can exist. In particular, B345/S5 has no spaceships.

I believe the statement about the impossibility of any pattern in B345/S5 moving more than 2 cells outside of its initial bounding diamond is wrong.
The thing is, you aren't forced to go from bounding diamond size (B) on generation 0, to B+1 on generation 1 to B+2 on generation 2 to B+3 on generation 3 etc... You can have any number of generations between say B and B+1.

Here's a pattern I posted earlier this year.

Code: Select all

x = 32, y = 32, rule = B345/S5
14b4o$13b6o$12b3o2b3o$11b3ob2ob3o$10b4ob2ob4o$9b3o2bo2bo2b3o$8b3ob2ob
2ob2ob3o$7b5ob2o2b2ob5o$6b3o2b3ob2ob3o2b3o$5b3obob2ob4ob2obob3o$4b4o3b
10o3b4o$3b3ob5o2bo2bo2b5ob3o$2b3obob3ob2o4b2ob3obob3o$b4ob3obob2o4b2o
bob3ob4o$3o2bobob3o2b4o2b3obobo2b3o$2ob2obob3o3bo2bo3b3obob2ob2o$2ob2o
bob3o3bo2bo3b3obob2ob2o$3o2bobob3o2b4o2b3obobo2b3o$b4ob3obob2o4b2obob
3ob4o$2b3obob3ob2o4b2ob3obob3o$3b3ob5o2bo2bo2b5ob3o$4b4o3b10o3b4o$5b3o
bob2ob4ob2obob3o$6b3o2b3ob2ob3o2b3o$7b5ob2o2b2ob5o$8b3ob2ob2ob2ob3o$9b
3o2bo2bo2b3o$10b4ob2ob4o$11b3ob2ob3o$12b3o2b3o$13b6o$14b4o!
edit: reworded

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Eppstein's Most Wanted

Post by 77topaz » May 5th, 2020, 12:50 am

Yeah, that pattern expands three cells outside its initial bounding diamond, so it's a definite counterexample to LaundryPizza03's assertion as stated. The question of whether spaceships would be possible in LongLife or not thus remains undetermined.

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » May 5th, 2020, 2:35 am

What about the other two proofs I've provided? I'm definitely fairly confident about the one in B02/S.

I may have a partial proof of impossibility for S345678 without B2, but the case analysis is too involved. The conjectured solution is that no pattern can expand too far out of the bounding diamond without forming an immortal polyplet; in the attatched example, it forms in generation 1 and is the hexomino occurring as generation 1 of prepond.

Code: Select all

x = 4, y = 4, rule = B3/S345678History
B8D$2B7D$3B6D$2B2A5D$3B2A4D$5BA3D$4B2AB2D$8BD$9B!
You may want to sketch this out.

First, if all the cells in a polyplet have 3 or more neighbors, then none of those cells can ever die. Therefore, any moving pattern must have an arrangement of cells that contains no such polyplet. I also note that when a pattern consists entirely of such an object, its evolution becomes identical to Life without Death.

Second, David Eppstein proved that with S234567 and without B2, no spaceships can exist because no pattern can escape its bounding diamond without containing an immortal triangle. Therefore, we will always assume that S2 is off.

Let (x, y) be a live cell that maximizes x+y. We want at least one of (x+1, y) or (x, y+1) to be live in generation 1. The only way for (x, y+1) to be born in generation 1 for (x-1, y) and (x-1, y+1) to be on, and similarly (x+1, y-1) and (x, y-1) must be on for (x+1, y) to be live in generation 1.

If both (x+1, y) and (x, y+1) are on in generation 1, then the five live cells mentioned so far form a "W" shape. But this means that (x-1, y) and (x, y-1) each have at least 3 neighbors and (x, y) has at least 4, so they survive to generation 1 and, together with (x, y+1) and (x+1, y), form an immortal "+" shape where each of these five cells always has at least three neighbors.

Then assume, without loss of generality, that only (x, y+1) is on in generation 1. We can then consider the remaining three possible live neighbors of (x, y). Note that (x-2, y+1) and (x-2, y+2) cannot both be on, or else an immortal + forms around (x-1, y+1). Nor can (x-1, y-1) and (x, y-1) both be on, or else we already have an immortal block. [What happens next?]

First, if (x-1, y-1) is on and (x, y-1) is off, then (x-1, y) and (x, y) are still on in generation 1. None of (x-2, y+2), (x-2, y-1), or (x-2, y) can be on, or else (x-1, y+1) will survive and we get an immortal block. Then (x, y+1) has 2 live neighbors and dies, so (x+1, y+1) has no more than two live neighbors in generation 2.

If (x+1, y-1) is on and (x-1, y-1) is off, then (x+1, y) is off in generation 1 and (x, y) and (x, y+1) are on. (x-2, y+2) and (x-2, y+1) cannot both be on because that makes a W and leads to an immortal +. If (x-2, y+1) or (x-2, y) are both on, then both (x-1, y+1) and (x-1, y) survive and an immortal block is formed. This also happens if (x-2, y+2) and (x-2, y-1) are both on. Therefore, the initial configuration must have only at most one of the latter two, in addition the already-assumed cells. [Again, what happens next?]

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
Layz Boi
Posts: 121
Joined: October 25th, 2018, 3:57 pm

Re: Eppstein's Most Wanted

Post by Layz Boi » May 6th, 2020, 10:54 pm

LaundryPizza03 wrote:
May 5th, 2020, 2:35 am
What about the other two proofs I've provided? I'm definitely fairly confident about the one in B02/S.

-snip-
I might take a look at the one for B02/S after finals, when I have more time.

In the mean time, here's a pattern in B345/S that is a counter example to not being able to reach (x+1, y+1).
Again, you have to take into consideration that when starting with (x,y) such that x+y is maximal, there could be any number of generations between generation 0 and fulfilling the conditions to turn on a location where their coordinates sum to x+y+1 or between that point and turning on a location where their coordinates sum x+y+2 or x+y+n.

Code: Select all

#take a look as generation 127
x = 46, y = 46, rule = B345/SHistory
30.2E$29.D2AD$28.D.2A.D$27.D2.2A2.D$26.D3.2A3.D$25.E10AE$24.DA4.2A4.A
D$23.D.A4.2A4.A.D$22.D7.2A7.D$21.E2A.12A.2AE$20.DA3.A10.A3.AD$19.D.A3.
A10.A3.A.D$18.D2.A3.A10.A3.A2.D$17.D3.A3.A10.A3.A3.D$16.E9A10.9AE$15.
D10A10.9AE$14.EA5.A3.A10.A3.A3.D$13.D2A5.A3.A10.A3.A2.D$12.D.2A5.A3.A
10.A3.A.D$11.D2.2A5.A3.A10.A3.AD$10.D3.2A5.3A.12A.2AE$9.E11A9.2A7.D$8.
DA4.2A4.A4.A4.2A4.A.D$7.D.A4.2A4.A4.A4.2A4.AD$6.D7.2A9.11AE$5.E2A.12A
.3A5.2A3.D$4.DA3.A10.A3.A5.2A2.D$3.D.A3.A10.A3.A5.2A.D$2.D2.A3.A10.A3.
A5.2AD$.D3.A3.A10.A3.A5.AE$E9A10.10AD$E9A10.9AE$.D3.A3.A10.A3.A3.D$2.
D2.A3.A10.A3.A2.D$3.D.A3.A10.A3.A.D$4.DA3.A10.A3.AD$5.E2A.12A.2AE$6.D
7.2A7.D$7.D.A4.2A4.A.D$8.DA4.2A4.AD$9.E10AE$10.D3.2A3.D$11.D2.2A2.D$12.
D.2A.D$13.D2AD$14.2E!
Edit: more words for clarity

Edit: With some modifications to the B345/S pattern above, it can even reach a little farther before collapsing a while later.

Code: Select all

#take a look as generation 274
x = 143, y = 143, rule = B345/SHistory
127.2C$126.D2AD$125.D.2A.D$124.D2.2A2.D$123.D3.2A3.D$122.C10AC$121.DA
4.2A4.AD$120.D.A4.2A4.A.D$119.D7.2A7.D$118.C2A.12A.2AC$117.DA3.A10.A3.
AD$116.D.A3.A10.A3.A.D$115.D2.A3.A10.A3.A2.D$114.D3.A3.A10.A3.A3.D$113.
C9A10.9AC$112.D10A10.9AC$111.CA5.A3.A2.2A6.A3.A3.D$110.D2A5.A3.2A2.A6.
A3.A2.D$109.D.2A5.A14.A3.A.D$108.D2.2A5.A6.A7.A3.AD$107.D3.2A5.A6.9A.
2AC$106.C12A8.2A7.D$105.DA4.2A6.2A6.2A4.A.D$104.D.A4.2A6.2A6.2A4.AD$103.
D7.2A8.12AC$102.C2A.9A6.A5.2A3.D$101.DA3.A7.A6.A5.2A2.D$100.D.A3.A14.
A5.2A.D$99.D2.A3.A6.A2.2A3.A5.2AD$98.D3.A3.A5.3A2.A3.A5.AC$97.C9A5.2A
3.10AD$96.D10A10.9AC$95.CA5.A3.A10.A3.A3.D$94.D2A5.A3.4A7.A3.A2.D$93.
D.2A5.A6.A7.A3.A.D$92.D2.2A5.A6.A7.A3.AD$91.D3.2A5.A6.9A.2AC$90.C11A9.
2A7.D$89.DA4.2A14.2A4.A.D$88.D.A4.2A14.2A4.AD$87.D7.2A9.11AC$86.C2A.9A
6.A5.2A3.D$85.DA3.A7.A6.A5.2A2.D$84.D.A3.A7.A6.A5.2A.D$83.D2.A3.A7.4A
3.A5.2AD$82.D3.A3.A10.A3.A5.AC$81.C9A10.10AD$80.D10A3.2A5.9AC$79.CA5.
A3.A2.3A5.A3.A3.D$78.D2A5.A3.2A2.A6.A3.A2.D$77.D.2A5.A14.A3.A.D$76.D2.
2A5.A6.A7.A3.AD$75.D3.2A5.A6.9A.2AC$74.C12A8.2A7.D$73.DA4.2A6.2A6.2A4.
A.D$72.D.A4.2A6.2A6.2A4.AD$71.D7.2A8.12AC$70.C2A.9A6.A5.2A3.D$69.DA3.
A7.A6.A5.2A2.D$68.D.A3.A14.A5.2A.D$67.D2.A3.A6.A2.2A3.A5.2AD$66.D3.A3.
A6.2A2.A3.A5.AC$65.C9A10.10AD$64.C10A10.9AC$63.CA5.A3.A10.A3.A3.D$62.
CA6.A3.A10.A3.A2.D$61.D2A6.A3.A10.A3.A.D$60.D.2A6.A3.A10.A3.AD$59.D2.
2A6.3A.12A.2AC$58.D3.2A15.2A7.D$57.C11A5.A4.2A4.A.D$56.DA4.2A4.A5.A4.
2A4.AD$55.D.A4.2A4.A5.11AC$54.D7.2A15.2A3.D$53.C2A.12A.3A6.2A2.D$52.D
A3.A10.A3.A6.2A.D$51.D.A3.A10.A3.A6.2AD$50.D2.A3.A10.A3.A6.AC$49.D3.A
3.A10.A3.A5.AC$48.C9A10.10AC$47.D10A10.9AC$46.CA5.A3.A2.2A6.A3.A3.D$45.
D2A5.A3.2A2.A6.A3.A2.D$44.D.2A5.A14.A3.A.D$43.D2.2A5.A6.A7.A3.AD$42.D
3.2A5.A6.9A.2AC$41.C12A8.2A7.D$40.DA4.2A6.2A6.2A4.A.D$39.D.A4.2A6.2A6.
2A4.AD$38.D7.2A8.12AC$37.C2A.9A6.A5.2A3.D$36.DA3.A7.A6.A5.2A2.D$35.D.
A3.A14.A5.2A.D$34.D2.A3.A6.A2.2A3.A5.2AD$33.D3.A3.A5.3A2.A3.A5.AC$32.
C9A5.2A3.10AD$31.D10A10.9AC$30.CA5.A3.A10.A3.A3.D$29.D2A5.A3.4A7.A3.A
2.D$28.D.2A5.A6.A7.A3.A.D$27.D2.2A5.A6.A7.A3.AD$26.D3.2A5.A6.9A.2AC$25.
C11A9.2A7.D$24.DA4.2A14.2A4.A.D$23.D.A4.2A14.2A4.AD$22.D7.2A9.11AC$21.
C2A.9A6.A5.2A3.D$20.DA3.A7.A6.A5.2A2.D$19.D.A3.A7.A6.A5.2A.D$18.D2.A3.
A7.4A3.A5.2AD$17.D3.A3.A10.A3.A5.AC$16.C9A10.10AD$15.D10A3.2A5.9AC$14.
CA5.A3.A2.3A5.A3.A3.D$13.D2A5.A3.2A2.A6.A3.A2.D$12.D.2A5.A14.A3.A.D$11.
D2.2A5.A6.A7.A3.AD$10.D3.2A5.A6.9A.2AC$9.C12A8.2A7.D$8.DA4.2A6.2A6.2A
4.A.D$7.D.A4.2A6.2A6.2A4.AD$6.D7.2A8.12AC$5.C2A.9A6.A5.2A3.D$4.DA3.A7.
A6.A5.2A2.D$3.D.A3.A14.A5.2A.D$2.D2.A3.A6.A2.2A3.A5.2AD$.D3.A3.A6.2A2.
A3.A5.AC$C9A10.10AD$C9A10.9AC$.D3.A3.A10.A3.A3.D$2.D2.A3.A10.A3.A2.D$
3.D.A3.A10.A3.A.D$4.DA3.A10.A3.AD$5.C2A.12A.2AC$6.D7.2A7.D$7.D.A4.2A4.
A.D$8.DA4.2A4.AD$9.C10AC$10.D3.2A3.D$11.D2.2A2.D$12.D.2A.D$13.D2AD$14.
2C!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » May 7th, 2020, 3:15 am

Layz Boi wrote:
May 6th, 2020, 10:54 pm
LaundryPizza03 wrote:
May 5th, 2020, 2:35 am
What about the other two proofs I've provided? I'm definitely fairly confident about the one in B02/S.

-snip-
I might take a look at the one for B02/S after finals, when I have more time.

In the mean time, here's a pattern in B345/S that is a counter example to not being able to reach (x+1, y+1).
Again, you have to take into consideration that when starting with (x,y) such that x+y is maximal, there could be any number of generations between generation 0 and fulfilling the conditions to turn on a location where their coordinates sum to x+y+1 or between that point and turning on a location where their coordinates sum x+y+2 or x+y+n.

Code: Select all

#take a look as generation 127
x = 46, y = 46, rule = B345/SHistory
30.2E$29.D2AD$28.D.2A.D$27.D2.2A2.D$26.D3.2A3.D$25.E10AE$24.DA4.2A4.A
D$23.D.A4.2A4.A.D$22.D7.2A7.D$21.E2A.12A.2AE$20.DA3.A10.A3.AD$19.D.A3.
A10.A3.A.D$18.D2.A3.A10.A3.A2.D$17.D3.A3.A10.A3.A3.D$16.E9A10.9AE$15.
D10A10.9AE$14.EA5.A3.A10.A3.A3.D$13.D2A5.A3.A10.A3.A2.D$12.D.2A5.A3.A
10.A3.A.D$11.D2.2A5.A3.A10.A3.AD$10.D3.2A5.3A.12A.2AE$9.E11A9.2A7.D$8.
DA4.2A4.A4.A4.2A4.A.D$7.D.A4.2A4.A4.A4.2A4.AD$6.D7.2A9.11AE$5.E2A.12A
.3A5.2A3.D$4.DA3.A10.A3.A5.2A2.D$3.D.A3.A10.A3.A5.2A.D$2.D2.A3.A10.A3.
A5.2AD$.D3.A3.A10.A3.A5.AE$E9A10.10AD$E9A10.9AE$.D3.A3.A10.A3.A3.D$2.
D2.A3.A10.A3.A2.D$3.D.A3.A10.A3.A.D$4.DA3.A10.A3.AD$5.E2A.12A.2AE$6.D
7.2A7.D$7.D.A4.2A4.A.D$8.DA4.2A4.AD$9.E10AE$10.D3.2A3.D$11.D2.2A2.D$12.
D.2A.D$13.D2AD$14.2E!
Okay. But I still think it proves that fast diagonal growth (>c/4d) is impossible in both cases, but that's still a very weak condition. Maybe there's something in the bounding box? I probably won't be surprised anymore if there is at least a growth pattern in Longlife.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » May 9th, 2020, 11:18 am

Longest partial for B35/S46 at width 18 and seedcolumn 00.

Code: Select all

x = 36, y = 36, rule = B35/S46
29bob2ob2o$25bo3b4o$23bob5o4b2o$24b4o3b2o$21bo2b3obobo4bo$21bobo2bobo
4bobo$21bobo4bo2b2ob2o$20b2o8bo$16bo2b2o2bobo3b2obo2bo$16bob2o5bo2bob
2obo$12bob4obob2ob2obobobob2o$12b3o4bo3b3o7b3o$8bo2bo3bob2o2bo3b2obobo
b2o$6b2ob2ob3o4bobobo4bobo$4bob2ob2o3b2obo7bob3o2bo2bo$3b2o2bo2b2o2bo
4b3obo3bobo4b2o$2b2obo2bob3ob2o3bo11bob3o$obo2bobob2o8b3o9bo3bo$obo2bo
bob2o8b3o9bo3bo$2b2obo2bob3ob2o3bo11bob3o$3b2o2bo2b2o2bo4b3obo3bobo4b
2o$4bob2ob2o3b2obo7bob3o2bo2bo$6b2ob2ob3o4bobobo4bobo$8bo2bo3bob2o2bo
3b2obobob2o$12b3o4bo3b3o7b3o$12bob4obob2ob2obobobob2o$16bob2o5bo2bob2o
bo$16bo2b2o2bobo3b2obo2bo$20b2o8bo$21bobo4bo2b2ob2o$21bobo2bobo4bobo$
21bo2b3obobo4bo$24b4o3b2o$23bob5o4b2o$25bo3b4o$29bob2ob2o!
Longest partial for c/2o B34567/S348 at width 28 and seedcolumn 00. For some odd reason I am unable to try any other seedcolumn.

Code: Select all

x = 17, y = 46, rule = B34567/S348
15bo$14bobo$12b2obo$12bo2bo$9b3o3b2o$8bo3b2o$7b2o2b4o$8b6o$7b4o4b2o$
10b3o2b2o$6b2o2b4o$7b4o2b3o$5b4obo2b4o$7b2obob5o$4b2ob10o$5b3ob2o2b4o$
3b3o4b3o2b2o$2bob5ob3obo$b2ob7o3b2o$2b8o2b2o2bo$b7o4b2o2bo$6b5o5bo$3ob
2ob8o$3ob2ob8o$6b5o5bo$b7o4b2o2bo$2b8o2b2o2bo$b2ob7o3b2o$2bob5ob3obo$
3b3o4b3o2b2o$5b3ob2o2b4o$4b2ob10o$7b2obob5o$5b4obo2b4o$7b4o2b3o$6b2o2b
4o$10b3o2b2o$7b4o4b2o$8b6o$7b2o2b4o$8bo3b2o$9b3o3b2o$12bo2bo$12b2obo$
14bobo$15bo!
c/3o returns an infinite pyramid of stripes.

Currently attempting c/3o in B345678/S014578. Most probably it is at width 15 or 16.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » May 16th, 2020, 5:00 pm

2c/4o looks very promising for B34567/S348:

Code: Select all

x = 47, y = 46, rule = B34567/S348
35bobobobobobo$33bobobob2ob2obo$31b2ob2o2b7o$30bo4b2ob7o$16bobo9b2o3b
3ob5ob2o$14bob3o8bo2bob3o3b7o$12bob2ob2o4bo3bo3bo2bo2b8o$8bobo2bo3b2o
4bob4o2b10o2b4o$5b2ob2ob3o3b2o4bob2ob2obo2bob2ob2o3bo$4b6o8bo4bob2ob2o
b3o3b3o2bo2bo$2b4o2b3o7bo3b5ob2o2b3o2b4o5bo$2b5ob7o3bo5bo4bo2b3o2bobo
2b2o$bo2bob5o3b2o2bo4bo4b4o2bo2bob2o2bo$2b3o2b3obo4b4o6b3ob2o2bo2bob2o
bo$2b8obo4b4ob4ob5o2bo3b2ob6o$5b2ob6ob2o2b4o2b6ob2obo4b2o3b2o$3b11ob2o
2b3o3b9ob3o2b2o3b2o$4bob3o2b9obo5b7o2bo2bob3o2bo$2b2o5b2ob4obob4o4b8o
3bo2bobo$3b4ob3ob4ob2o3b2o2b3ob2ob3o2bo2b4o$b4ob13obo4b2ob8o2bo2bob2o$
3b4o2bo3b3o4b2o2bob9ob2o3bob2obo$3o3b3ob3o3b6obo2bobobo4b2o3bo2b2obo$
3o3b3ob3o3b6obo2bobobo4b2o3bo2b2obo$3b4o2bo3b3o4b2o2bob9ob2o3bob2obo$b
4ob13obo4b2ob8o2bo2bob2o$3b4ob3ob4ob2o3b2o2b3ob2ob3o2bo2b4o$2b2o5b2ob
4obob4o4b8o3bo2bobo$4bob3o2b9obo5b7o2bo2bob3o2bo$3b11ob2o2b3o3b9ob3o2b
2o3b2o$5b2ob6ob2o2b4o2b6ob2obo4b2o3b2o$2b8obo4b4ob4ob5o2bo3b2ob6o$2b3o
2b3obo4b4o6b3ob2o2bo2bob2obo$bo2bob5o3b2o2bo4bo4b4o2bo2bob2o2bo$2b5ob
7o3bo5bo4bo2b3o2bobo2b2o$2b4o2b3o7bo3b5ob2o2b3o2b4o5bo$4b6o8bo4bob2ob
2ob3o3b3o2bo2bo$5b2ob2ob3o3b2o4bob2ob2obo2bob2ob2o3bo$8bobo2bo3b2o4bob
4o2b10o2b4o$12bob2ob2o4bo3bo3bo2bo2b8o$14bob3o8bo2bob3o3b7o$16bobo9b2o
3b3ob5ob2o$30bo4b2ob7o$31b2ob2o2b7o$33bobobob2ob2obo$35bobobobobobo!
Current partial from B345678/S014578:

Code: Select all

x = 66, y = 28, rule = B345678/S014578
62bobo$8bobobobobob2obo2bobobobo23bobob2obobobo$6bob4ob3ob3ob9obobobob
obobobobo8b4obob2ob2o$7b2ob3obobob4ob4ob4ob8obobobobo2bob4ob2ob5o$5bob
11ob3ob8ob6ob6obob5obob5o2b3o$5bobob3o3bobob5ob10o2b4ob2o2b3ob6ob4ob4o
$5bob4ob6obob5obob2obob5ob6ob5ob5ob4o2bo$5bob6ob6ob2ob4ob2ob3ob3ob3ob
5obob14o$7b7ob6ob2ob3ob17o2bob4o3b4ob2o$6b2o3b12ob7ob3o5bo2bo4bobo3b2o
2b2obob2o$5b6obobo2b7ob11obob8obob4obo3b2obobo$2bobob7ob2ob7ob11ob3ob
7obob3o4b2obo$2bob3ob8ob2ob4ob3o2b3ob4ob2ob3ob2ob5ob2o4bo$ob25obob3ob
3obob16o$ob25obob3ob3obob16o$2bob3ob8ob2ob4ob3o2b3ob4ob2ob3ob2ob5ob2o
4bo$2bobob7ob2ob7ob11ob3ob7obob3o4b2obo$5b6obobo2b7ob11obob8obob4obo3b
2obobo$6b2o3b12ob7ob3o5bo2bo4bobo3b2o2b2obob2o$7b7ob6ob2ob3ob17o2bob4o
3b4ob2o$5bob6ob6ob2ob4ob2ob3ob3ob3ob5obob14o$5bob4ob6obob5obob2obob5ob
6ob5ob5ob4o2bo$5bobob3o3bobob5ob10o2b4ob2o2b3ob6ob4ob4o$5bob11ob3ob8ob
6ob6obob5obob5o2b3o$7b2ob3obobob4ob4ob4ob8obobobobo2bob4ob2ob5o$6bob4o
b3ob3ob9obobobobobobobobo8b4obob2ob2o$8bobobobobob2obo2bobobobo23bobob
2obobobo$62bobo!
EDIT: Margin 26 (someone please check seedcolumns other than 00 for me)

Code: Select all

x = 57, y = 50, rule = B34567/S348
35b2o8bo3b2obobobo$34b4o3bob3o6bob3o$32b5o3b2ob3o2b4o4bo$30b4o2bo2b6o
9b3o$26bob3ob2o4b8o2b5o$12bobo6bobo2b9obob2ob4o2b4o2bobo$9b2ob3o6b8o2b
3ob15o3b3o$7b2o4b2o3b6obobo3b2ob11o2bob2o4bo$5b2obob2ob2o5bob4o5bo3b4o
2bo2b2ob3o6bo$4bob3o4b3o4b4ob2o4b8o2bo3b2ob3o2bo$3b2o2b4ob4o6bo2b2obob
ob3o3b4o7b7o$3b2o3bo2bob11ob2ob11ob3o5b2o2bo$3b2o3bo2bob3ob4o2b2obobob
3ob2ob2o2b3o4b4o4bo$4bob2o3bob3o3b2o2b6o2bo4b5ob3o2bob2obo2bo$4b4ob2o
3bob2obob5o2b2ob2o3b3obobob6o3b3o$6b3o7b2obo6bo2b2o2b2ob14obo2b2o$4b2o
4bo3b4obo2bo2b2o2bo4b2obob2o3b3o2bo4b2o$5b2o2b2o3b4ob3ob3o5b9obo2b3o3b
7o$3b2ob2obo2b2o5b2obo3bo4b5o2b2obob5ob2o2b4o$8bo3b2obobob3o9b8o3b2obo
b3o2b5o$2b2o8b2ob7ob4o4bo3bobo2b4ob2o2bo3bo2bo$3b5o7b5ob2obo2bo2b2o2bo
3bo2bo7b2ob2obo$b4ob3o2b5o2bobo3b2o2b4o2bobob4o3b3o2b3ob3o$3b6obo3b3ob
4o3b2ob2ob11ob5o2b2ob2obo$3o7bo5bob3o5bob5ob2o3b3ob2o2bo2b7o$3o7bo5bob
3o5bob5ob2o3b3ob2o2bo2b7o$3b6obo3b3ob4o3b2ob2ob11ob5o2b2ob2obo$b4ob3o
2b5o2bobo3b2o2b4o2bobob4o3b3o2b3ob3o$3b5o7b5ob2obo2bo2b2o2bo3bo2bo7b2o
b2obo$2b2o8b2ob7ob4o4bo3bobo2b4ob2o2bo3bo2bo$8bo3b2obobob3o9b8o3b2obob
3o2b5o$3b2ob2obo2b2o5b2obo3bo4b5o2b2obob5ob2o2b4o$5b2o2b2o3b4ob3ob3o5b
9obo2b3o3b7o$4b2o4bo3b4obo2bo2b2o2bo4b2obob2o3b3o2bo4b2o$6b3o7b2obo6bo
2b2o2b2ob14obo2b2o$4b4ob2o3bob2obob5o2b2ob2o3b3obobob6o3b3o$4bob2o3bob
3o3b2o2b6o2bo4b5ob3o2bob2obo2bo$3b2o3bo2bob3ob4o2b2obobob3ob2ob2o2b3o
4b4o4bo$3b2o3bo2bob11ob2ob11ob3o5b2o2bo$3b2o2b4ob4o6bo2b2obobob3o3b4o
7b7o$4bob3o4b3o4b4ob2o4b8o2bo3b2ob3o2bo$5b2obob2ob2o5bob4o5bo3b4o2bo2b
2ob3o6bo$7b2o4b2o3b6obobo3b2ob11o2bob2o4bo$9b2ob3o6b8o2b3ob15o3b3o$12b
obo6bobo2b9obob2ob4o2b4o2bobo$26bob3ob2o4b8o2b5o$30b4o2bo2b6o9b3o$32b
5o3b2ob3o2b4o4bo$34b4o3bob3o6bob3o$35b2o8bo3b2obobobo!
EDIT2: Width 56. It may be worthwile to try c/5 diagonal as well, since those speeds are known from the nearby rules. I've ruled out that speed up to level L128 in gfind-pt.

Code: Select all

x = 65, y = 54, rule = B34567/S348
24bo$10b2o10b2o2bo30bob3o$11bo8b2o33b3o$7bob5o5bo3b2o2b2ob2o23bo7bo$8b
3ob2o3bobo2bobo4b4o13bobobobob2o2bo3b2o$6b3ob4obo2b4o2bo4b3o3bo8b3ob2o
2bo2bob3ob4o$3b3o3b7ob2o2b3o4b2o5b3obobob9o4bob7o$3b3ob3o3b2ob6o3bo2b
3obob6ob5ob4o5bob4ob2o$3bob3o2b3o2bo5b2o4b2obobo3b6ob8o4bo3b3obo$3b5o
2bobo2b2o2b4ob2o2b5o4bo2bo2b3o2b3ob9o$3b3ob7obo3bo3b2o3b6obobo3b4o3bob
obobo3bobo$5bob3o2b3ob2obo6b8obobob5o2bob7o6b4o$4b3o4b5obo2b3o3bo2b5ob
obo2b4o6b6o8bo$4b8o3bo2b6obo4b3o4bo2b4o2bo2b3ob3o4bob2o$2b3o2b6o2b2o4b
3ob8o4bob2ob2o2bo2b2ob3o4b2o3bo$2b4ob2o7b2o3b3o2b2o5bo3bob6o4b2ob2o2bo
3bo2b2o$bo2b3o2b3o4b3o2b3o2b3o2bo2bobo2b2ob2ob6ob2o8bo$2b3obo2b3o2b2ob
9ob3o4b3o2b2ob2obo3b3ob5o6bo$2b3o2b4o3b5ob6obo7b2o2b5ob3obobo3bobo2bob
o$3b2o2bob2ob4ob2o2bo2bob2o5b2obo2b3ob3ob5obobob2o2bo2bo$3b4o2b2obo2bo
b2o2b7o2b6o2bob5o3bo2bo3b4o$4b3o2b2ob4o2bo3bobo2bob6o2b12o2bo3bo6b2o$
2b4obobob9o2b8obo7b8obob2ob3o5b4o$2b4o2bo2b2o3bobob3o2b8ob3obobo6b2ob
4o2b4o2bo$b3obo2bo2b3o2b3ob2o4b11obob7o2bo6bo2bo2b3o$2bo3b3o2bobo3bo3b
o2b6o3bob2o2b2ob4o3bo3b2o2b3o3b2o$obo3bobo3b2obobo4b4obo5bob10obob8o2b
obo3bo$obo3bobo3b2obobo4b4obo5bob10obob8o2bobo3bo$2bo3b3o2bobo3bo3bo2b
6o3bob2o2b2ob4o3bo3b2o2b3o3b2o$b3obo2bo2b3o2b3ob2o4b11obob7o2bo6bo2bo
2b3o$2b4o2bo2b2o3bobob3o2b8ob3obobo6b2ob4o2b4o2bo$2b4obobob9o2b8obo7b
8obob2ob3o5b4o$4b3o2b2ob4o2bo3bobo2bob6o2b12o2bo3bo6b2o$3b4o2b2obo2bob
2o2b7o2b6o2bob5o3bo2bo3b4o$3b2o2bob2ob4ob2o2bo2bob2o5b2obo2b3ob3ob5obo
bob2o2bo2bo$2b3o2b4o3b5ob6obo7b2o2b5ob3obobo3bobo2bobo$2b3obo2b3o2b2ob
9ob3o4b3o2b2ob2obo3b3ob5o6bo$bo2b3o2b3o4b3o2b3o2b3o2bo2bobo2b2ob2ob6ob
2o8bo$2b4ob2o7b2o3b3o2b2o5bo3bob6o4b2ob2o2bo3bo2b2o$2b3o2b6o2b2o4b3ob
8o4bob2ob2o2bo2b2ob3o4b2o3bo$4b8o3bo2b6obo4b3o4bo2b4o2bo2b3ob3o4bob2o$
4b3o4b5obo2b3o3bo2b5obobo2b4o6b6o8bo$5bob3o2b3ob2obo6b8obobob5o2bob7o
6b4o$3b3ob7obo3bo3b2o3b6obobo3b4o3bobobobo3bobo$3b5o2bobo2b2o2b4ob2o2b
5o4bo2bo2b3o2b3ob9o$3bob3o2b3o2bo5b2o4b2obobo3b6ob8o4bo3b3obo$3b3ob3o
3b2ob6o3bo2b3obob6ob5ob4o5bob4ob2o$3b3o3b7ob2o2b3o4b2o5b3obobob9o4bob
7o$6b3ob4obo2b4o2bo4b3o3bo8b3ob2o2bo2bob3ob4o$8b3ob2o3bobo2bobo4b4o13b
obobobob2o2bo3b2o$7bob5o5bo3b2o2b2ob2o23bo7bo$11bo8b2o33b3o$10b2o10b2o
2bo30bob3o$24bo!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 841
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Eppstein's Most Wanted

Post by LaundryPizza03 » June 2nd, 2020, 4:14 pm

While attempting to find a c/3o in B345678/S014578, I got stuck on a repeating compenent when searching odd symmetry with seedcolumn 00, yielding an unstabilized wickstretcher instead:

Code: Select all

x = 38, y = 9, rule = B345678/S014578
3bobob2obobobobobobobobobobobobobobo$2b3obob4obob3ob3ob3ob3ob3ob2o$2b
2ob3obo2b2ob2ob3ob3ob3ob3ob4o$b3o2b3ob4o2b22o$ob3ob5obob22obo$b3o2b3ob
4o2b22o$2b2ob3obo2b2ob2ob3ob3ob3ob3ob4o$2b3obob4obob3ob3ob3ob3ob3ob2o$
3bobob2obobobobobobobobobobobobobobo!
Even symmetry on width 14 is backtracking a lot, probably the same problem I experienced in gfind-pt, so I will now attempt to increment the width to 16.

I'm also trying c/3d, like the one in B345678/S14578. Again, nothing so far, but it looks like it may exist at margin 14, or slightly greater.

Code: Select all

x = 86, y = 86, rule = B345678/S14578
76b3o$76b4obo$74b2o2b2obobo$75bob2obobo$72b9o2b2o$72b7ob3o$70b6ob3obob
2o$68bo2b15o$66b5o2b2ob7ob2o$66b2ob10ob2o2b2o$65bob2ob2ob4ob6o$63bob6o
b10obo$66b5o3b8o$61b4ob2ob3o2bobob4o$61b3obobob2obo2b2ob2o$59b5obob11o
bo$59b3obo2b9ob2o$61b3ob3ob2o2b3ob2o$57b2o2b4o2b11o$56bob5ob3ob2o2b3ob
2o$53b2ob4ob2ob3obob2o2b2o$53b7ob7o4bo$51b4o2b8o2b6obo$51b3ob7ob6ob3o$
49bob22o$49b2ob2ob5ob3o2bo2b2o$47b9ob10o2b2o$47bob2ob2ob3ob9o$45b5ob3o
b2ob8obo$45b2ob2ob8ob3ob3o$43bob4o4b10obo$43b5o2b2ob4o2bobob3o$44b5o4b
13o$42bob5obobo3b8o$42b3ob2ob3o2bob2obob3o$43b7ob2obo3b3o$42bob2o2b4o
4b6o$40bobob7ob2ob3obo$40b2o2b3obob6ob3o$42bob5ob8o$38b2ob10ob6o$38b3o
bob11o$36b2ob3obobo4b2o2b2o$36bob5ob3ob2ob2o$33b3obo2bob2obobo$33b7ob
4o2b2o$31b8obob4o$32b9obob2o$29b4ob8obo$30b11ob2o$27b4ob10o$25b7obob7o
$26b11ob4o$22bobob5ob2ob5o$22b2obobob3ob2ob2obo$20bob16o$20b8ob7obo$
21b4ob3obob4o$18b3ob14o$18bob2o2b2ob4ob3o$15b4ob2o2b4ob3o2bo$15b2ob3ob
2ob6obo$13b12o2b5o$14b6obob2o2b6o$12bob10ob2ob2o$12b8obob5ob2o$14bob9o
2bo$10b5obo2b9o$11b2ob2obob5obo$9bob2o3bob8o$7b2o4b3obo2b6o$8bo2b2o2bo
b7o$6bobob4obo2bobo2bo$6b4ob4ob3ob2o$7b4ob3ob3o$4b8obo4bo$4bob7o3bo$2b
6ob7o$2b3o2b6o2bo$ob5ob3ob2o$3b2obobobo$2bo2b6o$3o2b4o$5ob3o$2b2o$2b2o
2bo!
EDIT: No c/3d was found at level L128, but on odd bilateral symmetry (width 27) it reached a depth of nearly 3000. Is there a program that can search diagonal margins greater than 14?

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31117 spaceships and 1150 oscillators from outer-totalistic rules. You are invited to help!

Post Reply