Rule request thread

For discussion of other cellular automata.
User avatar
Gustone
Posts: 613
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Post by Gustone » August 18th, 2019, 2:40 pm

Is this

Code: Select all

x = 676, y = 319, rule = LifeHistory
124.A13.3A22.3A13.A$109.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$93.2A.A10.A
.4A9.A4.2A7.A2.3A.2A14.2A.3A2.A7.2A4.A9.4A.A10.A.2A$63.A13.3A.2A8.2A.
4A8.2A5.A6.A3.3A.A6.3A28.3A6.A.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$47.3A
11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A
6.A3.2A.A7.A.A4.A11.A.2A10.2A.2A11.3A$46.2A2.2A8.A3.2A.A7.2A6.A7.A.2A
2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A
7.A.2A3.A8.2A2.2A$45.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A9.2A.A11.2A
2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A$44.3A12.A.
A5.2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A
8.A2.A.2A8.2A.A.2A4.2A5.A.A12.3A$46.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$43.2A.A11.2A.A
2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.A17.2A12.A
2.A2.A8.A2.A.2A11.A.2A$43.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A
11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$47.2A.A8.
4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.A4.
A6.3A12.A.2A12.A3.4A8.A.2A$43.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.
2A8.3A2.2A4.A3.A2.3A.2A10.2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.
2A3.A12.A2.A10.3A.2A$44.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.
2A6.3A6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.
A3.A$48.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A.A2.A
22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.A6.A3.4A7.2A.A$43.A3.
A4.A5.3A4.2A2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.
2A5.A.A5.A2.A3.A.A3.A2.A2.3A2.A2.2A2.2A4.3A5.A4.A3.A$43.A3.A2.3A.2A3.
3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A10.A4.A
2.2A4.2A2.A4.3A3.2A.3A2.A3.A$43.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.
4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$44.A.A2.A
14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C15.4A11.A3.A10.2A.3A
14.A2.A.A$48.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$49.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.2A16.2A.A$
49.CA2.A9.C5.AC8.A4.A10.3A108.3A10.A4.A8.CA5.C9.A2.AC$54.C9.A15.A16.A
108.A16.A15.A9.C$82.A138.A17$9.2A.A2.3A$7.A.2A.2A4.A$6.2A$5.A.3A2.A5.
A$4.2A2.A.3A2.2A$4.A.A3.5A4.A$4.A.A3.A7.A.AC$5.2A4.A.2A.A4.A$5.A7.2A.
A3.A$6.A.A6.2A3.A$6.A.A12.A$16.A2.A2.C$16.A2.A3$9.A5.A$7.A.4A.3A$5.2A
4.A.5A$4.A2.3A.A.2A.2A$4.A6.4A$3.A4.A12.C$4.2A3.2A6.3A2.A252.3A2.A.2A
$4.2A7.A.A2.2A254.A4.2A.2A.A$11.A.7A265.2A$5.3A9.A256.A5.A2.3A.A$6.2A
10.A257.2A2.3A.A2.2A$15.7A251.A4.5A3.A.A$15.2A3.AC249.CA.A7.A3.A.A$
271.A4.A.2A.A4.2A$272.A3.A.2A7.A$7.A.A4.2A256.A3.2A6.A.A$7.A2.A2.A
257.A12.A.A$5.A4.A.A3.A253.C2.A2.A$4.7A2.A.2A256.A2.A$3.2A3.A.A2.A.A$
3.A3.A2.A2.3A4.C$3.2A2.A.4A.A.2A3.A255.A5.A$10.3A.A2.2A3.A253.3A.4A.A
$3.A6.A3.2A259.5A.A4.2A$3.A2.A4.A5.A5.A251.2A.2A.A.3A2.A$5.2A10.A260.
4A6.A$13.A.2A.2A.A249.C12.A4.A$14.A5.C249.A2.3A6.2A3.2A$273.2A2.A.A7.
2A$273.7A.A$7.2A6.A259.A9.3A$6.3A3.3A259.A10.2A$8.A3.4A255.7A$3.6A3.A
.A256.CA3.2A$3.A5.A$2.A2.A3.A2.3A$2.2A.A.2A4.A.A3.C257.2A4.A.A$3.A6.
2A4.2A2.2A257.A2.A2.A$2.3A5.2A.2A.A.4A254.A3.A.A4.A$3.A.A4.2A2.3A.5A
253.2A.A2.7A$4.2A6.3A.A.2A257.A.A2.A.A3.2A$12.3A3.A.A251.C4.3A2.A2.A
3.A$19.C251.A3.2A.A.4A.A2.2A$270.A3.2A2.A.3A$277.2A3.A6.A$7.A6.2A253.
A5.A5.A4.A2.A$5.2A.A.2A.A261.A10.2A$5.A6.A.2A255.A.2A.2A.A$3.2A.A265.
C5.A$2.2A3.2A.A.A$4.4A5.A$.2A.A.A4.A2.A2.A.C257.A6.2A$2.A7.A2.2A4.A
258.3A3.3A$2.A6.2A.2A.A.A2.A256.4A3.A$2.A2.A4.A4.3A2.A257.A.A3.6A$3.
2A6.2A4.A2.A262.A5.A$12.A.A2.A260.3A2.A3.A2.A$18.CA253.C3.A.A4.2A.A.
2A$271.2A2.2A4.2A6.A$271.4A.A.2A.2A5.3A$13.A256.5A.3A2.2A4.A.A$5.3A.
2A2.2A258.2A.A.3A6.2A$3.2A.2A.2A2.2A257.A.A3.3A$7.4A262.C$.2A3.2A.A$.
A3.A5.2A$2A.2A5.3A3.2A259.2A6.A$.A.2A2.A4.A3.2AC260.A.2A.A.2A$.A.A5.
3A2.A.A.A258.2A.A6.A$2.A.A4.2A2.2A2.2A267.A.2A$2.2A7.3A3.2A261.A.A.2A
3.2A$12.2A3.AC260.A5.4A$17.A255.C.A2.A2.A4.A.A.2A$273.A4.2A2.A7.A$
272.A2.A.A.2A.2A6.A$272.A2.3A4.A4.A2.A$5.2A.A2.3A258.A2.A4.2A6.2A$3.A
.2A.2A4.A260.A2.A.A$2.2A269.AC$.A.3A2.A5.A$2A2.A.3A2.2A$A.A3.5A4.A
263.A$A.A3.A7.A.AC260.2A2.2A.3A$.2A4.A.2A.A4.A260.2A2.2A.2A.2A$.A7.2A
.A3.A265.4A$2.A.A6.2A3.A266.A.2A3.2A$2.A.A12.A262.2A5.A3.A$12.A2.A2.C
256.2A3.3A5.2A.2A$12.A2.A258.C2A3.A4.A2.2A.A$274.A.A.A2.3A5.A.A$274.
2A2.2A2.2A4.A.A$274.2A3.3A7.2A$274.CA3.2A$275.A4$279.3A2.A.2A$278.A4.
2A.2A.A$12.A2.A273.2A$12.A2.A2.C259.A5.A2.3A.A$2.A.A12.A262.2A2.3A.A
2.2A$2.A.A6.2A3.A260.A4.5A3.A.A$.A7.2A.A3.A258.CA.A7.A3.A.A$.2A4.A.2A
.A4.A257.A4.A.2A.A4.2A$A.A3.A7.A.AC258.A3.A.2A7.A$A.A3.5A4.A260.A3.2A
6.A.A258.69F$2A2.A.3A2.2A262.A12.A.A252.6F69.8F$.A.3A2.A5.A259.C2.A2.
A256.6F83.8F$2.2A273.A2.A246.10F97.8F$3.A.2A.2A4.A503.9F115.6F$5.2A.A
2.3A499.5F130.6F$509.4F141.17F$506.3F162.2F$504.2F167.3F$17.A485.F
171.F$12.2A3.AC484.F171.F$2.2A7.3A3.2A484.F171.F$2.A.A4.2A2.2A2.2A
484.F171.F$.A.A5.3A2.A.A.A484.F171.F$.A.2A2.A4.A3.2AC258.A2.A222.F
170.F$2A.2A5.3A3.2A256.C2.A2.A222.F170.F$.A3.A5.2A262.A12.A.A212.F
170.F$.2A3.2A.A266.A3.2A6.A.A212.F170.F$7.4A265.A3.A.2A7.A211.F170.F$
3.2A.2A.2A2.2A260.A4.A.2A.A4.2A211.F170.F$5.3A.2A2.2A260.CA.A7.A3.A.A
210.F169.F$13.A263.A4.5A3.A.A210.F169.F$280.2A2.3A.A2.2A210.F169.F$
278.A5.A2.3A.A211.F169.F$18.CA269.2A212.F169.F$12.A.A2.A260.A4.2A.2A.
A213.F168.F$3.2A6.2A4.A2.A258.3A2.A.2A215.F168.F$2.A2.A4.A4.3A2.A482.
F168.F$2.A6.2A.2A.A.A2.A482.F168.F$2.A7.A2.2A4.A483.F168.F$.2A.A.A4.A
2.A2.A.C255.A227.F168.F$4.4A5.A260.CA3.2A222.F168.F$2.2A3.2A.A.A261.
2A3.3A7.2A212.F167.F$3.2A.A267.2A2.2A2.2A4.A.A211.F168.F$5.A6.A.2A
258.A.A.A2.3A5.A.A210.F168.F$5.2A.A.2A.A260.C2A3.A4.A2.2A.A210.F168.F
$7.A6.2A259.2A3.3A5.2A.2A209.F84.2D82.F$280.2A5.A3.A210.F82.2D84.F$
283.A.2A3.2A210.F81.2D85.F$19.C262.4A216.F79.2D87.F$12.3A3.A.A257.2A
2.2A.2A.2A212.F77.3D88.F$4.2A6.3A.A.2A258.2A2.2A.3A214.F76.2D90.F$3.A
.A4.2A2.3A.5A256.A222.F75.23D70.F$2.3A5.2A.2A.A.4A480.F77.D90.F$3.A6.
2A4.2A2.2A480.F77.2D89.F$2.2A.A.2A4.A.A3.C253.AC227.F79.D88.F$2.A2.A
3.A2.3A260.A2.A.A221.F79.2D87.F$3.A5.A262.A2.A4.2A6.2A212.F80.4D84.F$
3.6A3.A.A257.A2.3A4.A4.A2.A211.F83.2D83.F$8.A3.4A256.A2.A.A.2A.2A6.A
211.F168.F$6.3A3.3A258.A4.2A2.A7.A211.F168.F$7.2A6.A257.C.A2.A2.A4.A.
A.2A210.F168.F$279.A5.4A213.F168.F$280.A.A.2A3.2A211.F168.F$14.A5.C
265.A.2A212.F168.F$13.A.2A.2A.A255.2A.A6.A214.F168.F$5.2A10.A261.A.2A
.A.2A214.F63.A104.F$3.A2.A4.A5.A5.A253.2A6.A216.F35.C9.A15.A16.A89.F$
3.A6.A3.2A486.F30.CA2.A9.C5.AC8.A4.A10.3A89.F$10.3A.A2.2A3.A479.F30.A
.2A16.2A7.C6.C9.3A.A11.3A73.F$3.2A2.A.4A.A.2A3.A251.C228.F29.A5.2A8.
3A2.A14.A9.C.3A.C8.CA4.A71.F$3.A3.A2.A2.3A4.C251.A.A3.3A221.F25.A.A2.
A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C41.F$3.2A3.A.A2.A.A257.2A.A.3A6.2A
213.F24.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.4A9.CA2.A42.F$4.7A2.A.2A
253.5A.3A2.2A4.A.A212.F24.A3.A2.3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A
11.3A13.A.2A43.F$5.A4.A.A3.A254.4A.A.2A.2A5.3A212.F23.A3.A4.A5.3A4.2A
2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A40.F$7.A2.A2.A257.2A2.2A
4.2A6.A213.F28.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A
.A2.A46.F$7.A.A4.2A257.C3.A.A4.2A.A.2A212.F24.A3.A.2A8.3A2.2A7.A.3A5.
A4.2A2.2A.A.2A4.A3.A.2A6.3A6.3A4.A51.F$278.3A2.A3.A2.A212.F23.2A.3A
10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A39.F$283.A5.
A214.F26.2A.A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A42.F$15.2A
3.AC256.A.A3.6A214.F22.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A11.A.
2A43.F$15.7A255.4A3.A219.F22.2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A
7.A3.A.2A43.F$6.2A10.A259.3A3.3A217.F25.2A4.2A7.A.A12.2A10.4A2.A9.A2.
A13.A12.2A.3A46.F$5.3A9.A259.A6.2A218.F23.3A12.A.A5.2A4.2A.A.2A8.2A.A
2.A8.A3.2A10.4A2.A12.2A.A44.F$11.A.7A484.F24.A2.3A.2A6.A6.2A7.A5.2A5.
A.A12.A.A.2A9.2A.A11.2A2.3A45.F$4.2A7.A.A2.2A484.F25.2A2.2A8.A3.2A.A
7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A48.F$4.2A3.2A6.3A2.A249.C5.A
225.F26.3A11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A41.F$3.A
4.A12.C249.A.2A.2A.A224.F42.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A48.F$
4.A6.4A260.A10.2A216.F72.2A.A10.A.4A9.A4.2A7.A2.3A.2A41.F$4.A2.3A.A.
2A.2A251.A5.A5.A4.A2.A214.F88.A12.5A10.2A2.2A43.F$5.2A4.A.5A259.2A3.A
6.A214.F103.A13.3A45.F$7.A.4A.3A253.A3.2A2.A.3A221.F165.F$9.A5.A255.A
3.2A.A.4A.A2.2A214.F165.F$272.C4.3A2.A2.A3.A214.F165.F$277.A.A2.A.A3.
2A214.F165.F$16.A2.A256.2A.A2.7A215.F165.F$16.A2.A2.C253.A3.A.A4.A
216.F164.F$6.A.A12.A257.A2.A2.A218.F164.F$6.A.A6.2A3.A256.2A4.A.A218.
F164.F$5.A7.2A.A3.A483.F164.F$5.2A4.A.2A.A4.A482.F163.F$4.A.A3.A7.A.A
C249.CA3.2A226.F163.F$4.A.A3.5A4.A251.7A226.F163.F$4.2A2.A.3A2.2A257.
A10.2A217.F163.F$5.A.3A2.A5.A256.A9.3A216.F162.F$6.2A265.7A.A222.F
162.F$7.A.2A.2A4.A254.2A2.A.A7.2A214.25F139.F$9.2A.A2.3A252.A2.3A6.2A
3.2A239.4F134.F$271.C12.A4.A242.4F130.F$278.4A6.A247.3F127.F$275.2A.
2A.A.3A2.A250.3F123.F$275.5A.A4.2A254.2F121.F$276.3A.4A.A258.2F119.F$
277.A5.A262.5F113.F$551.2F111.F$553.51F59.F$273.A2.A327.11F48.F$270.C
2.A2.A338.9F36.3F$271.A12.A.A337.11F23.2F$272.A3.2A6.A.A348.23F$272.A
3.A.2A7.A$271.A4.A.2A.A4.2A$271.CA.A7.A3.A.A$273.A4.5A3.A.A$276.2A2.
3A.A2.2A$274.A5.A2.3A.A$285.2A$274.A4.2A.2A.A$275.3A2.A.2A17$71.A138.
A$43.C9.A15.A16.A108.A16.A15.A9.C$38.CA2.A9.C5.AC8.A4.A10.3A108.3A10.
A4.A8.CA5.C9.A2.AC$38.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.
2A16.2A.A$37.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$33.A.A2.A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C
15.4A11.A3.A10.2A.3A14.A2.A.A$32.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A
.4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$32.A3.A2.
3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A
10.A4.A2.2A4.2A2.A4.3A3.2A.3A2.A3.A$32.A3.A4.A5.3A4.2A2.2A2.A2.3A2.A
2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.2A5.A.A5.A2.A3.A.A3.A2.A2.
3A2.A2.2A2.2A4.3A5.A4.A3.A$37.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.
2A3.A4.2A5.2A7.A.A2.A22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.
A6.A3.4A7.2A.A$33.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.2A6.3A
6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.A3.A$
32.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A10.
2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.2A3.A12.A2.A10.3A.2A$36.2A.
A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.
A4.A6.3A12.A.2A12.A3.4A8.A.2A$32.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A
2.A.2A11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$32.
2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.
A17.2A12.A2.A2.A8.A2.A.2A11.A.2A$35.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$33.3A12.A.A5.
2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A8.A
2.A.2A8.2A.A.2A4.2A5.A.A12.3A$34.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A
9.2A.A11.2A2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A
$35.2A2.2A8.A3.2A.A7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.
A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A7.A.2A3.A8.2A2.2A$36.3A11.2A.2A10.2A.A
11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A6.A3.2A.A7.A.A4.
A11.A.2A10.2A.2A11.3A$52.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A28.3A6.A
.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$82.2A.A10.A.4A9.A4.2A7.A2.3A.2A14.2A.
3A2.A7.2A4.A9.4A.A10.A.2A$98.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$113.A
13.3A22.3A13.A!
even possible?
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

User avatar
FWKnightship
Posts: 290
Joined: June 23rd, 2019, 3:10 am
Location: China

Re: Rule request thread

Post by FWKnightship » August 19th, 2019, 12:01 am

Gustone wrote:Is this

Code: Select all

x = 676, y = 319, rule = LifeHistory
124.A13.3A22.3A13.A$109.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$93.2A.A10.A
.4A9.A4.2A7.A2.3A.2A14.2A.3A2.A7.2A4.A9.4A.A10.A.2A$63.A13.3A.2A8.2A.
4A8.2A5.A6.A3.3A.A6.3A28.3A6.A.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$47.3A
11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A
6.A3.2A.A7.A.A4.A11.A.2A10.2A.2A11.3A$46.2A2.2A8.A3.2A.A7.2A6.A7.A.2A
2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A
7.A.2A3.A8.2A2.2A$45.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A9.2A.A11.2A
2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A$44.3A12.A.
A5.2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A
8.A2.A.2A8.2A.A.2A4.2A5.A.A12.3A$46.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$43.2A.A11.2A.A
2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.A17.2A12.A
2.A2.A8.A2.A.2A11.A.2A$43.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A
11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$47.2A.A8.
4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.A4.
A6.3A12.A.2A12.A3.4A8.A.2A$43.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.
2A8.3A2.2A4.A3.A2.3A.2A10.2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.
2A3.A12.A2.A10.3A.2A$44.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.
2A6.3A6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.
A3.A$48.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A.A2.A
22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.A6.A3.4A7.2A.A$43.A3.
A4.A5.3A4.2A2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.
2A5.A.A5.A2.A3.A.A3.A2.A2.3A2.A2.2A2.2A4.3A5.A4.A3.A$43.A3.A2.3A.2A3.
3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A10.A4.A
2.2A4.2A2.A4.3A3.2A.3A2.A3.A$43.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.
4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$44.A.A2.A
14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C15.4A11.A3.A10.2A.3A
14.A2.A.A$48.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$49.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.2A16.2A.A$
49.CA2.A9.C5.AC8.A4.A10.3A108.3A10.A4.A8.CA5.C9.A2.AC$54.C9.A15.A16.A
108.A16.A15.A9.C$82.A138.A17$9.2A.A2.3A$7.A.2A.2A4.A$6.2A$5.A.3A2.A5.
A$4.2A2.A.3A2.2A$4.A.A3.5A4.A$4.A.A3.A7.A.AC$5.2A4.A.2A.A4.A$5.A7.2A.
A3.A$6.A.A6.2A3.A$6.A.A12.A$16.A2.A2.C$16.A2.A3$9.A5.A$7.A.4A.3A$5.2A
4.A.5A$4.A2.3A.A.2A.2A$4.A6.4A$3.A4.A12.C$4.2A3.2A6.3A2.A252.3A2.A.2A
$4.2A7.A.A2.2A254.A4.2A.2A.A$11.A.7A265.2A$5.3A9.A256.A5.A2.3A.A$6.2A
10.A257.2A2.3A.A2.2A$15.7A251.A4.5A3.A.A$15.2A3.AC249.CA.A7.A3.A.A$
271.A4.A.2A.A4.2A$272.A3.A.2A7.A$7.A.A4.2A256.A3.2A6.A.A$7.A2.A2.A
257.A12.A.A$5.A4.A.A3.A253.C2.A2.A$4.7A2.A.2A256.A2.A$3.2A3.A.A2.A.A$
3.A3.A2.A2.3A4.C$3.2A2.A.4A.A.2A3.A255.A5.A$10.3A.A2.2A3.A253.3A.4A.A
$3.A6.A3.2A259.5A.A4.2A$3.A2.A4.A5.A5.A251.2A.2A.A.3A2.A$5.2A10.A260.
4A6.A$13.A.2A.2A.A249.C12.A4.A$14.A5.C249.A2.3A6.2A3.2A$273.2A2.A.A7.
2A$273.7A.A$7.2A6.A259.A9.3A$6.3A3.3A259.A10.2A$8.A3.4A255.7A$3.6A3.A
.A256.CA3.2A$3.A5.A$2.A2.A3.A2.3A$2.2A.A.2A4.A.A3.C257.2A4.A.A$3.A6.
2A4.2A2.2A257.A2.A2.A$2.3A5.2A.2A.A.4A254.A3.A.A4.A$3.A.A4.2A2.3A.5A
253.2A.A2.7A$4.2A6.3A.A.2A257.A.A2.A.A3.2A$12.3A3.A.A251.C4.3A2.A2.A
3.A$19.C251.A3.2A.A.4A.A2.2A$270.A3.2A2.A.3A$277.2A3.A6.A$7.A6.2A253.
A5.A5.A4.A2.A$5.2A.A.2A.A261.A10.2A$5.A6.A.2A255.A.2A.2A.A$3.2A.A265.
C5.A$2.2A3.2A.A.A$4.4A5.A$.2A.A.A4.A2.A2.A.C257.A6.2A$2.A7.A2.2A4.A
258.3A3.3A$2.A6.2A.2A.A.A2.A256.4A3.A$2.A2.A4.A4.3A2.A257.A.A3.6A$3.
2A6.2A4.A2.A262.A5.A$12.A.A2.A260.3A2.A3.A2.A$18.CA253.C3.A.A4.2A.A.
2A$271.2A2.2A4.2A6.A$271.4A.A.2A.2A5.3A$13.A256.5A.3A2.2A4.A.A$5.3A.
2A2.2A258.2A.A.3A6.2A$3.2A.2A.2A2.2A257.A.A3.3A$7.4A262.C$.2A3.2A.A$.
A3.A5.2A$2A.2A5.3A3.2A259.2A6.A$.A.2A2.A4.A3.2AC260.A.2A.A.2A$.A.A5.
3A2.A.A.A258.2A.A6.A$2.A.A4.2A2.2A2.2A267.A.2A$2.2A7.3A3.2A261.A.A.2A
3.2A$12.2A3.AC260.A5.4A$17.A255.C.A2.A2.A4.A.A.2A$273.A4.2A2.A7.A$
272.A2.A.A.2A.2A6.A$272.A2.3A4.A4.A2.A$5.2A.A2.3A258.A2.A4.2A6.2A$3.A
.2A.2A4.A260.A2.A.A$2.2A269.AC$.A.3A2.A5.A$2A2.A.3A2.2A$A.A3.5A4.A
263.A$A.A3.A7.A.AC260.2A2.2A.3A$.2A4.A.2A.A4.A260.2A2.2A.2A.2A$.A7.2A
.A3.A265.4A$2.A.A6.2A3.A266.A.2A3.2A$2.A.A12.A262.2A5.A3.A$12.A2.A2.C
256.2A3.3A5.2A.2A$12.A2.A258.C2A3.A4.A2.2A.A$274.A.A.A2.3A5.A.A$274.
2A2.2A2.2A4.A.A$274.2A3.3A7.2A$274.CA3.2A$275.A4$279.3A2.A.2A$278.A4.
2A.2A.A$12.A2.A273.2A$12.A2.A2.C259.A5.A2.3A.A$2.A.A12.A262.2A2.3A.A
2.2A$2.A.A6.2A3.A260.A4.5A3.A.A$.A7.2A.A3.A258.CA.A7.A3.A.A$.2A4.A.2A
.A4.A257.A4.A.2A.A4.2A$A.A3.A7.A.AC258.A3.A.2A7.A$A.A3.5A4.A260.A3.2A
6.A.A258.69F$2A2.A.3A2.2A262.A12.A.A252.6F69.8F$.A.3A2.A5.A259.C2.A2.
A256.6F83.8F$2.2A273.A2.A246.10F97.8F$3.A.2A.2A4.A503.9F115.6F$5.2A.A
2.3A499.5F130.6F$509.4F141.17F$506.3F162.2F$504.2F167.3F$17.A485.F
171.F$12.2A3.AC484.F171.F$2.2A7.3A3.2A484.F171.F$2.A.A4.2A2.2A2.2A
484.F171.F$.A.A5.3A2.A.A.A484.F171.F$.A.2A2.A4.A3.2AC258.A2.A222.F
170.F$2A.2A5.3A3.2A256.C2.A2.A222.F170.F$.A3.A5.2A262.A12.A.A212.F
170.F$.2A3.2A.A266.A3.2A6.A.A212.F170.F$7.4A265.A3.A.2A7.A211.F170.F$
3.2A.2A.2A2.2A260.A4.A.2A.A4.2A211.F170.F$5.3A.2A2.2A260.CA.A7.A3.A.A
210.F169.F$13.A263.A4.5A3.A.A210.F169.F$280.2A2.3A.A2.2A210.F169.F$
278.A5.A2.3A.A211.F169.F$18.CA269.2A212.F169.F$12.A.A2.A260.A4.2A.2A.
A213.F168.F$3.2A6.2A4.A2.A258.3A2.A.2A215.F168.F$2.A2.A4.A4.3A2.A482.
F168.F$2.A6.2A.2A.A.A2.A482.F168.F$2.A7.A2.2A4.A483.F168.F$.2A.A.A4.A
2.A2.A.C255.A227.F168.F$4.4A5.A260.CA3.2A222.F168.F$2.2A3.2A.A.A261.
2A3.3A7.2A212.F167.F$3.2A.A267.2A2.2A2.2A4.A.A211.F168.F$5.A6.A.2A
258.A.A.A2.3A5.A.A210.F168.F$5.2A.A.2A.A260.C2A3.A4.A2.2A.A210.F168.F
$7.A6.2A259.2A3.3A5.2A.2A209.F84.2D82.F$280.2A5.A3.A210.F82.2D84.F$
283.A.2A3.2A210.F81.2D85.F$19.C262.4A216.F79.2D87.F$12.3A3.A.A257.2A
2.2A.2A.2A212.F77.3D88.F$4.2A6.3A.A.2A258.2A2.2A.3A214.F76.2D90.F$3.A
.A4.2A2.3A.5A256.A222.F75.23D70.F$2.3A5.2A.2A.A.4A480.F77.D90.F$3.A6.
2A4.2A2.2A480.F77.2D89.F$2.2A.A.2A4.A.A3.C253.AC227.F79.D88.F$2.A2.A
3.A2.3A260.A2.A.A221.F79.2D87.F$3.A5.A262.A2.A4.2A6.2A212.F80.4D84.F$
3.6A3.A.A257.A2.3A4.A4.A2.A211.F83.2D83.F$8.A3.4A256.A2.A.A.2A.2A6.A
211.F168.F$6.3A3.3A258.A4.2A2.A7.A211.F168.F$7.2A6.A257.C.A2.A2.A4.A.
A.2A210.F168.F$279.A5.4A213.F168.F$280.A.A.2A3.2A211.F168.F$14.A5.C
265.A.2A212.F168.F$13.A.2A.2A.A255.2A.A6.A214.F168.F$5.2A10.A261.A.2A
.A.2A214.F63.A104.F$3.A2.A4.A5.A5.A253.2A6.A216.F35.C9.A15.A16.A89.F$
3.A6.A3.2A486.F30.CA2.A9.C5.AC8.A4.A10.3A89.F$10.3A.A2.2A3.A479.F30.A
.2A16.2A7.C6.C9.3A.A11.3A73.F$3.2A2.A.4A.A.2A3.A251.C228.F29.A5.2A8.
3A2.A14.A9.C.3A.C8.CA4.A71.F$3.A3.A2.A2.3A4.C251.A.A3.3A221.F25.A.A2.
A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C41.F$3.2A3.A.A2.A.A257.2A.A.3A6.2A
213.F24.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A.4A9.CA2.A42.F$4.7A2.A.2A
253.5A.3A2.2A4.A.A212.F24.A3.A2.3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A
11.3A13.A.2A43.F$5.A4.A.A3.A254.4A.A.2A.2A5.3A212.F23.A3.A4.A5.3A4.2A
2.2A2.A2.3A2.A2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A40.F$7.A2.A2.A257.2A2.2A
4.2A6.A213.F28.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.2A3.A4.2A5.2A7.A
.A2.A46.F$7.A.A4.2A257.C3.A.A4.2A.A.2A212.F24.A3.A.2A8.3A2.2A7.A.3A5.
A4.2A2.2A.A.2A4.A3.A.2A6.3A6.3A4.A51.F$278.3A2.A3.A2.A212.F23.2A.3A
10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A39.F$283.A5.
A214.F26.2A.A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A42.F$15.2A
3.AC256.A.A3.6A214.F22.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A2.A.2A11.A.
2A43.F$15.7A255.4A3.A219.F22.2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A
7.A3.A.2A43.F$6.2A10.A259.3A3.3A217.F25.2A4.2A7.A.A12.2A10.4A2.A9.A2.
A13.A12.2A.3A46.F$5.3A9.A259.A6.2A218.F23.3A12.A.A5.2A4.2A.A.2A8.2A.A
2.A8.A3.2A10.4A2.A12.2A.A44.F$11.A.7A484.F24.A2.3A.2A6.A6.2A7.A5.2A5.
A.A12.A.A.2A9.2A.A11.2A2.3A45.F$4.2A7.A.A2.2A484.F25.2A2.2A8.A3.2A.A
7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A48.F$4.2A3.2A6.3A2.A249.C5.A
225.F26.3A11.2A.2A10.2A.A11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A41.F$3.A
4.A12.C249.A.2A.2A.A224.F42.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A48.F$
4.A6.4A260.A10.2A216.F72.2A.A10.A.4A9.A4.2A7.A2.3A.2A41.F$4.A2.3A.A.
2A.2A251.A5.A5.A4.A2.A214.F88.A12.5A10.2A2.2A43.F$5.2A4.A.5A259.2A3.A
6.A214.F103.A13.3A45.F$7.A.4A.3A253.A3.2A2.A.3A221.F165.F$9.A5.A255.A
3.2A.A.4A.A2.2A214.F165.F$272.C4.3A2.A2.A3.A214.F165.F$277.A.A2.A.A3.
2A214.F165.F$16.A2.A256.2A.A2.7A215.F165.F$16.A2.A2.C253.A3.A.A4.A
216.F164.F$6.A.A12.A257.A2.A2.A218.F164.F$6.A.A6.2A3.A256.2A4.A.A218.
F164.F$5.A7.2A.A3.A483.F164.F$5.2A4.A.2A.A4.A482.F163.F$4.A.A3.A7.A.A
C249.CA3.2A226.F163.F$4.A.A3.5A4.A251.7A226.F163.F$4.2A2.A.3A2.2A257.
A10.2A217.F163.F$5.A.3A2.A5.A256.A9.3A216.F162.F$6.2A265.7A.A222.F
162.F$7.A.2A.2A4.A254.2A2.A.A7.2A214.25F139.F$9.2A.A2.3A252.A2.3A6.2A
3.2A239.4F134.F$271.C12.A4.A242.4F130.F$278.4A6.A247.3F127.F$275.2A.
2A.A.3A2.A250.3F123.F$275.5A.A4.2A254.2F121.F$276.3A.4A.A258.2F119.F$
277.A5.A262.5F113.F$551.2F111.F$553.51F59.F$273.A2.A327.11F48.F$270.C
2.A2.A338.9F36.3F$271.A12.A.A337.11F23.2F$272.A3.2A6.A.A348.23F$272.A
3.A.2A7.A$271.A4.A.2A.A4.2A$271.CA.A7.A3.A.A$273.A4.5A3.A.A$276.2A2.
3A.A2.2A$274.A5.A2.3A.A$285.2A$274.A4.2A.2A.A$275.3A2.A.2A17$71.A138.
A$43.C9.A15.A16.A108.A16.A15.A9.C$38.CA2.A9.C5.AC8.A4.A10.3A108.3A10.
A4.A8.CA5.C9.A2.AC$38.A.2A16.2A7.C6.C9.3A.A11.3A76.3A11.A.3A9.C6.C7.
2A16.2A.A$37.A5.2A8.3A2.A14.A9.C.3A.C8.CA4.A72.A4.AC8.C.3A.C9.A14.A2.
3A8.2A5.A$33.A.A2.A14.3A.2A10.A3.A11.4A15.C9.C3AC15.C12.C15.C3AC9.C
15.4A11.A3.A10.2A.3A14.A2.A.A$32.A16.2A2.A.2A.A9.2A.2A11.A13.A.4A9.2A
.4A9.CA2.A14.A2.AC9.4A.2A9.4A.A13.A11.2A.2A9.A.2A.A2.2A16.A$32.A3.A2.
3A.2A3.3A4.A2.2A4.2A2.A4.A10.4A13.A11.3A13.A.2A16.2A.A13.3A11.A13.4A
10.A4.A2.2A4.2A2.A4.3A3.2A.3A2.A3.A$32.A3.A4.A5.3A4.2A2.2A2.A2.3A2.A
2.A3.A.A3.A2.A5.A.A5.2A26.A5.2A10.2A5.A26.2A5.A.A5.A2.A3.A.A3.A2.A2.
3A2.A2.2A2.2A4.3A5.A4.A3.A$37.A.2A7.4A3.A6.A4.4A3.A3.3A.A2.4A3.A.A3.
2A3.A4.2A5.2A7.A.A2.A22.A2.A.A7.2A5.2A4.A3.2A3.A.A3.4A2.A.3A3.A3.4A4.
A6.A3.4A7.2A.A$33.A3.A.2A8.3A2.2A7.A.3A5.A4.2A2.2A.A.2A4.A3.A.2A6.3A
6.3A4.A34.A4.3A6.3A6.2A.A3.A4.2A.A.2A2.2A4.A5.3A.A7.2A2.3A8.2A.A3.A$
32.2A.3A10.A2.A12.A3.2A8.3A.A4.2A5.A.A3.A.2A8.3A2.2A4.A3.A2.3A.2A10.
2A.3A2.A3.A4.2A2.3A8.2A.A3.A.A5.2A4.A.3A8.2A3.A12.A2.A10.3A.2A$36.2A.
A8.4A3.A12.2A.A12.3A6.A4.A3.A9.2A.A.A5.A3.A4.A16.A4.A3.A5.A.A.2A9.A3.
A4.A6.3A12.A.2A12.A3.4A8.A.2A$32.2A2.3A9.A4.A9.8A13.3A6.A2.A2.3A6.3A
2.A.2A11.A.2A18.2A.A11.2A.A2.3A6.3A2.A2.A6.3A13.8A9.A4.A9.3A2.2A$32.
2A.A11.2A.A2.A8.A2.A2.A12.2A17.A7.4A3.2A7.A3.A.2A18.2A.A3.A7.2A3.4A7.
A17.2A12.A2.A2.A8.A2.A.2A11.A.2A$35.2A4.2A7.A.A12.2A10.4A2.A9.A2.A13.
A12.2A.3A24.3A.2A12.A13.A2.A9.A2.4A10.2A12.A.A7.2A4.2A$33.3A12.A.A5.
2A4.2A.A.2A8.2A.A2.A8.A3.2A10.4A2.A12.2A.A20.A.2A12.A2.4A10.2A3.A8.A
2.A.2A8.2A.A.2A4.2A5.A.A12.3A$34.A2.3A.2A6.A6.2A7.A5.2A5.A.A12.A.A.2A
9.2A.A11.2A2.3A22.3A2.2A11.A.2A9.2A.A.A12.A.A5.2A5.A7.2A6.A6.2A.3A2.A
$35.2A2.2A8.A3.2A.A7.2A6.A7.A.2A2.2A5.2A2.A3.A6.A3.A10.2A.A28.A.2A10.
A3.A6.A3.A2.2A5.2A2.2A.A7.A6.2A7.A.2A3.A8.2A2.2A$36.3A11.2A.2A10.2A.A
11.A4.A.A7.A.2A3.A6.A3.2A.A9.2A4.2A14.2A4.2A9.A.2A3.A6.A3.2A.A7.A.A4.
A11.A.2A10.2A.2A11.3A$52.A13.3A.2A8.2A.4A8.2A5.A6.A3.3A.A6.3A28.3A6.A
.3A3.A6.A5.2A8.4A.2A8.2A.3A13.A$82.2A.A10.A.4A9.A4.2A7.A2.3A.2A14.2A.
3A2.A7.2A4.A9.4A.A10.A.2A$98.A12.5A10.2A2.2A18.2A2.2A10.5A12.A$113.A
13.3A22.3A13.A!
even possible?

Code: Select all

@RULE FWKS-KnightshipTest
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ad=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#Knightship
1,1,0,1,0,0,1,0,0,2
0,1,2,1,0,0,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
1,0,1,1,1,1,1,0,1,2
0,2,0,1,0,1,0,1,0,2
0,2,0,1,1,0,0,0,0,0
1,0,2,0,1,0,0,0,0,0
2,0,1,0,1,0,0,0,0,0
1,2,1,1,0,0,0,0,0,0
2,1,0,1,1,0,0,0,0,2

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0

Code: Select all

x = 13, y = 19, rule = FWKS-KnightshipTest
4.3A$3.2A2.2A$2.A2.3A.2A$.3A$3.2A4.2A$2A.A$2A2.3A$4.2A.A$2A.3A$.A3.A.
2A$5.A.2A$A3.A4.A$A3.A2.3A.2A$A$.A.A2.A$5.A5.2A$6.A.2A$6.2A2.A$11.A!

Code: Select all

x = 45, y = 5, rule = B3aijn4w5nq/S2ae3aijr4irz5y
5o3bobobo5bob3obo4bo3b2obo3bob2o$o3bo3bobobo7bobobo4bo2bo3bo5bobo$3obo
bobob2o2b3obob3ob3ob3o2bo2b2o2bob3o$o3bobobobobobobobo3bobobo2bo4bobob
obobo$o3b5obobobobobob2o2bobo2b2ob2o2bobobobo!

User avatar
Moosey
Posts: 3185
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rule request thread

Post by Moosey » August 19th, 2019, 7:34 pm

A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:

Code: Select all

aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the b cells, and C of the c cells)
Last edited by Moosey on August 21st, 2019, 3:11 pm, edited 1 time in total.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
Hdjensofjfnen
Posts: 1487
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Rule request thread

Post by Hdjensofjfnen » August 20th, 2019, 9:44 pm

Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:

Code: Select all

aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)
I don't think I get what you mean, but this completely random idea marginally related to yours popped into my head.

Code: Select all

1050000000 - 8 0s, 1 1, 1 5
8100010000 - 7 0s, 2 1s, 1 8
7200000010 - 7 0s, 1 1, 1 2, 1 7
7110000100 - 6 0s, 3 1s, 1 7
6300000100 - 7 0s, 1 1, 1 3, 1 6
etc.
With an arbitrarily large number of digits, we can simulate 1xn tori of this cellular automaton, where the 1st digit corresponds to 0s in the last generation, the 2nd digit corresponds to 1s in the last generation, ... the 10th digit corresponds to 9s in the last generation, the 11th digit corresponds to As in the last generation, etc.
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

User avatar
Gustone
Posts: 613
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Post by Gustone » August 21st, 2019, 12:00 pm

Looking into the knightship's rules I wonder if there can be a rule for any (sufficently promising) partial
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

User avatar
Moosey
Posts: 3185
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rule request thread

Post by Moosey » August 21st, 2019, 3:13 pm

Hdjensofjfnen wrote:
Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:

Code: Select all

aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)
I don't think I get what you mean,
For instance, this would mean 10^^^3

Code: Select all

x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!
And this, 5^^^^^5:

Code: Select all

x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
LaundryPizza03
Posts: 618
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rule request thread

Post by LaundryPizza03 » August 21st, 2019, 9:18 pm

Moosey wrote:
Hdjensofjfnen wrote:
Moosey wrote:A CA which calculates A^{B}C (A^^^^^^^^^^C with B arrows) where A, B, and C are represented like this:

Code: Select all

aaaaaaaaaaaaaaaaa bb cccccccccc
(A copies of the a cells, B of the B cells, and C of the c cells)
I don't think I get what you mean,
For instance, this would mean 10^^^3

Code: Select all

x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!
And this, 5^^^^^5:

Code: Select all

x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!
But how do you want to represent it?

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

User avatar
Moosey
Posts: 3185
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rule request thread

Post by Moosey » August 22nd, 2019, 6:42 am

LaundryPizza03 wrote:
Moosey wrote:<snip>
For instance, this would mean 10^^^3

Code: Select all

x = 18, y = 1, rule = Moosey'sKnuthRule
10ob3ob3o!
And this, 5^^^^^5:

Code: Select all

x = 17, y = 1, rule = Moosey'sKnuthRule
5ob5ob5o!
But how do you want to represent it?
The output? I Don't care
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

muzik
Posts: 3775
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rule request thread

Post by muzik » August 23rd, 2019, 6:27 am

What is the wolfram rule integer for these 3-state, range 1 one-dimensional conditions?

Code: Select all

x = 39, y = 23, rule = Fredkin_mod3_Moore
2.A7.B$.2A6.B.B$2.A8.B$2.A7.B$2.A6.B$.3A5.3B5$2.A4.A4.A7.B4.B4.B5.3B$
.A5.A5.A5.B5.B5.B3$.2A3.A.A3.2A5.2B3.B.B3.2B4.3A$.B5.B5.B5.A5.A5.A3$
2BA3.BAB3.A2B3.2AB3.ABA3.B2A$.B5.B5.B5.A5.A5.A3$AB4.BA5.AB4.BA3.B.A3.
A.B!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
Moosey
Posts: 3185
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rule request thread

Post by Moosey » September 1st, 2019, 7:10 pm

Can I have a rule like shanghai which has some extra states to accommodate diodes? The diodes would just look something like this:

Code: Select all

x = 19, y = 1, rule = Shanghai2
2A2D2B2AEI9A!
Where state 9 is the diode input. Obviously the diode input should be enough-- state five should function as a diode output in the presence of state 9.
Signals are deleted when they go into a diode the wrong way.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

EvinZL
Posts: 139
Joined: November 8th, 2018, 4:15 pm
Location: What is "location"?

Re: Rule request thread

Post by EvinZL » September 6th, 2019, 8:54 pm

83bismuth38 wrote:IS it possible for a single rule to have a baby toad:

Code: Select all

x = 2, y = 3, rule = B3/S2e3
bo$2o$o!
A regular toad:

Code: Select all

x = 2, y = 4, rule = B3/S23
bo$2o$2o$o!
And a big toad:

Code: Select all

x = 2, y = 5, rule = B34-air/S34-ai
bo$2o$2o$2o$o!
and maybe even further? all I really want though is a non-explosive rule with these three toads.
edit: 99% sure impossible for baby toad and regular toad to meet, besides, the baby toad is technically not a toad. :lol:
Toad can't go with the other two, but for those, B3kaij4q/S3qj4r works

Code: Select all

x = 2, y = 10, rule = B3kaij4q/S3qj4r
bo$2o$o$
2$
bo$2o$2o$2o$o!
That rule doesn't have much, but the toads work in any rule with B3kaij4q/S3qj4r and without any of B012ka/S2a5i.
Back after a log vacation!

muzik
Posts: 3775
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rule request thread

Post by muzik » September 13th, 2019, 7:19 pm

What is Life's checkerboard dual, as a MAP string?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
dvgrn
Moderator
Posts: 6522
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Rule request thread

Post by dvgrn » September 13th, 2019, 9:08 pm

muzik wrote:What is Life's checkerboard dual, as a MAP string?
Has that really not been figured out yet? Why as a MAP string and not as a regular Hensel isotropic rule string?

(There's a script to convert a Hensel-format rule to a MAP string, so just getting the Hensel rulestring should be close enough.)

From what I understand, the checkerboard dual is just a matter of finding the obo$bo$obo! XOR of each isotropic neighborhood in this list:

Code: Select all

B3c
B3e
B3k
B3a
B3i
B3n
B3y
B3q
B3j
B3r

S2c
S2e
S2k
S2a
S2i
S2n

S3c
S3e
S3k
S3a
S3i
S3n
S3y
S3q
S3j
S3r
Only 26 isotropic bits to convert -- easy enough to do by hand for this one case, though maybe somebody should just write a script to convert any rule. (EDIT: Oops, no, I misread the article. Seems like you'd have to adjust things first so that a checkerboard was stable -- set the S4 bit, right? -- then modify the isotropic bits for Life. Does someone else understand this better?)

This would be easier for MAP rules, in some ways -- none of these arbitrary letters to deal with. Then again, a lookup table for 102 isotropic bits isn't really all that hard either.

... Wait, hang on, is there a strobing checkerboard dual as well as a non-strobing checkerboard dual? I guess there must be, since there's a standard way to produce a strobing dual from any isotropic rule.

EDIT: Well, this should be a glider in a CheckerboardLife universe, but the rule isn't right yet:

Code: Select all

x = 100, y = 100, rule = B1c2cn3inqy4ny5ajkr6ei7e/S1c3inqy4c5ajkr7e:T100,100
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
obobobobobobobobobobobobobobobobobobobobobob3obobobobobobobobobobobobo
bobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobob
obob3obobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobo
bobobobobobobobobobobobobobobobo2bo2bobobobobobobobobobobobobobobobobo
bobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobo!
I came up with the following isotropic bit conversions, but they aren't producing the right effect yet, there seems to be something missing. Do these kinds of dual rules _only_ apply to self-complementary rules, or what's the deal here? ... I'll probably figure it out by tomorrow.

Code: Select all

B3c = S1c
B3e = S7e
B3k = S5a
B3a = S5k
B3i = S3y
B3n = S3n
B3y = S3i
B3q = S3q
B3j = S5j
B3r = S5r

S2c = B2c
S2e = B6e
S2k = B4n
S2a = B4y
S2i = B6i
S2n = B2n

S3c = B1c
S3e = B7e
S3k = B5a
S3a = B5k
S3i = B3y
S3n = B3n
S3y = B3i
S3q = B3q
S3j = B5j
S3r = B5r

User avatar
dvgrn
Moderator
Posts: 6522
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Rule request thread

Post by dvgrn » September 14th, 2019, 7:21 am

dvgrn wrote: Do these kinds of dual rules _only_ apply to self-complementary rules, or what's the deal here? ... I'll probably figure it out by tomorrow.
Yes, that's the problem: you can't do CheckerboardLife with either a Hensel isotropic rule string or with a MAP rule, because Life isn't a self-complementary rule. On one checkerboard square color, for example, this neighborhood means "B3", so it needs to turn the blue center cell ON:

Code: Select all

x = 11, y = 11, rule = LifeHistory
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.CACAC.C$C.C.CBC.C.C$
.C.CAC.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C!
But if the cell is the other color, that same neighborhood would mean "S5", so according to Life rules the center cell has to stay OFF:

Code: Select all

x = 11, y = 11, rule = LifeHistory
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.CAC.C.C$.C.CABAC.C$C.C.CAD.C.C$
.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C$C.C.C.C.C.C$.C.C.C.C.C!
That doesn't mean that CheckerboardLife is impossible, though, it just needs a four-state rule (or maybe three states, see below):

Code: Select all

local g = golly()
rulename = g.getdir("rules").."CheckerboardLife.rule"
f = io.open(rulename, "w")
if f then
    f:write(
[[
@RULE CheckerboardLife
@TABLE
n_states:4
neighborhood:Moore
symmetries:permute

var all1 = {0,1,2,3}
var all2 = all1
var all3 = all1
var all4 = all1
var all5 = all1
var all6 = all1
var all7 = all1
var all8 = all1

var a = {0,1}
var b = {2,3}

# life on the dark squares of the checkerboard
# dark-square birth / 3-neighbor survival
a,0,1,1,1,3,3,3,3,1
a,0,0,1,1,2,3,3,3,1
a,0,0,0,1,2,2,3,3,1
a,0,0,0,0,2,2,2,3,1

# dark-square 2-neighbor survival
1,0,0,1,1,3,3,3,3,1
1,0,0,0,1,2,3,3,3,1
1,0,0,0,0,2,2,3,3,1

# death for dark squares
1,all1,all2,all3,all4,all5,all6,all7,all8,0

# life on the light squares of the checkerboard
# light-square birth / 3-neighbor survival
b,3,2,2,2,0,0,0,0,2
b,3,3,2,2,1,0,0,0,2
b,3,3,3,2,1,1,0,0,2
b,3,3,3,3,1,1,1,0,2

# light-square 2-neighbor survival
2,3,3,2,2,0,0,0,0,2
2,3,3,3,2,1,0,0,0,2
2,3,3,3,3,1,1,0,0,2
# death for light squares
2,all1,all2,all3,all4,all5,all6,all7,all8,3

@COLORS

1    0  255    0
2    0  192    0
3  100  100  100

@ICONS
circles
]]
    )
    f:close()
end

pattname = g.getdir("temp").."Sir-Robin-on-a-checkerboard.rle"
f = io.open(pattname, "w")
if f then
    f:write(
[[
x = 186, y = 100, rule = CheckerboardLife:T186,100
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAC.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.CAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.CAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAB.C.C.B.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.CACAC.C.BAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.C.BAC.
CAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAB.C.B.B.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.B.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CA
C.B.CAC.C.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABACAB.CABAC.CAC.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.BAC.CAC.BACAC.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.CAB.BACAB.C.BABAC.B.C.B.C.B.C.BAC.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAB.B
.BABAC.CAC.CAC.CAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CABAC.C.B.B.C.C.B.C.C.C.CAB.B.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.CACACAB.C.B.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.CAB.C.B.B.B.C.C.BAB.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAC.B.BACAC.C.CAC.
BAC.CAB.C.C.C.C.C.C.C.CAB.C.B.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CACAC.C.BAB.C.C.BAC.B.C.C.C.CABAB.C.C
.C.BAC.B.CAC.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.CAB.C.BAC.C.B.B.C.C.CAC.B.C.CAC.B.CACACAC.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
ABAC.CAC.BABAC.CACACACAC.B.B.B.C.B.B.CAC.C.B.C.C.C.C.C.C.C$.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.B.B.B.B
AB.CACAC.C.B.BACAB.C.CABAC.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BAB.C.C.BAC.CACABAC.BAC.B.BAC.C.B.C.C.
B.CABAB.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.B.C.CABAC.C.C.C.C.BAB.B.CAB.C.CAB.CAC.CAB.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.BA
C.C.CABAC.C.C.C.CABAB.B.BAB.C.C.CAB.BAC.CAB.C$.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.BAB.C.C.C.C.CAC.
CAC.BAC.CAC.B.C.B.C.B.B.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.B.CABAC.CAC.C.C.C.C.CABAB.CABAB.BACABAC
ACAC$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.CABABABAC.C.C.C.C.C.C.C.C.C.C.C.C.CABAC.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CACAC.C
.C.C.C.C.C.C.CABABABAC.B.BAB.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.CAC.C.C.C.C.C.C.C.B.CAC.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.B.C.C.C.C.C.C.C.C.C.C.C.CAC.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C!
]]
    )
    f:close()
end
g.open(pattname)
g.show("Rule file was created: "..rulename)
It should be possible to add more rule lines to allow CheckerboardLife to escape from even-width toruses -- e.g., expand the checkerboard automatically around the edges of a pattern, or allow Life patterns to make the transition from CheckerboardLand to a regular empty universe.

Or it might be possible to get away with just two ON states, no fourth artificial checkerboard-marking state, by modifying the ideas in the previous post and making each color simulate its part of Life on its own checkerboard (but with supporting interactions between the two checkerboard colors, unlike independent-checkerboards rules.)

I'm not sure any of this is really what was wanted, though, so I'll leave those experiments to be tried by anyone who is interested.

User avatar
PHPBB12345
Posts: 738
Joined: August 5th, 2015, 11:55 pm
Contact:

Re: Rule request thread

Post by PHPBB12345 » September 24th, 2019, 8:48 pm

Code: Select all

@RULE Rule37R

@TABLE

n_states:5
neighborhood:Moore
symmetries:none

# C,N,NE,E,SE,S,SW,W,NW,C'
# 1 = prev = off, curr = off
# 2 = prev = off, curr = on
# 3 = prev = on,  curr = off
# 4 = prev = on,  curr = on

var al = {1,3}
var ar = {1,3}
var bl = {2,4}
var br = {2,4}
var xa = {0,1,2,3,4}
var xb = xa
var xc = xa
var xd = xa
var xe = xa

0,1,ar,xa,xb,xc,xd,xe,al,2
0,3,ar,xa,xb,xc,xd,xe,al,1
0,1,br,xa,xb,xc,xd,xe,al,1
0,3,br,xa,xb,xc,xd,xe,al,2
0,2,ar,xa,xb,xc,xd,xe,al,4
0,4,ar,xa,xb,xc,xd,xe,al,3
0,2,br,xa,xb,xc,xd,xe,al,3
0,4,br,xa,xb,xc,xd,xe,al,4
0,1,ar,xa,xb,xc,xd,xe,bl,1
0,3,ar,xa,xb,xc,xd,xe,bl,2
0,1,br,xa,xb,xc,xd,xe,bl,2
0,3,br,xa,xb,xc,xd,xe,bl,1
0,2,ar,xa,xb,xc,xd,xe,bl,3
0,4,ar,xa,xb,xc,xd,xe,bl,4
0,2,br,xa,xb,xc,xd,xe,bl,3
0,4,br,xa,xb,xc,xd,xe,bl,4

0,0,1,xa,xb,xc,xd,xe,0,2
0,0,0,xa,xb,xc,xd,xe,1,2
0,1,1,xa,xb,xc,xd,xe,0,2
0,1,0,xa,xb,xc,xd,xe,1,2
0,0,2,xa,xb,xc,xd,xe,0,3
0,0,0,xa,xb,xc,xd,xe,2,3
0,2,2,xa,xb,xc,xd,xe,0,3
0,2,0,xa,xb,xc,xd,xe,2,3
0,0,3,xa,xb,xc,xd,xe,0,1
0,0,0,xa,xb,xc,xd,xe,3,1
0,3,3,xa,xb,xc,xd,xe,0,1
0,3,0,xa,xb,xc,xd,xe,3,1
0,4,4,xa,xb,xc,xd,xe,0,4
0,4,0,xa,xb,xc,xd,xe,4,4

@COLORS

1 255 255 255
2 0 0 0
3 255 255 255
4 0 0 0

Code: Select all

@RULE Rule37R-Linear

@TABLE

n_states:5
neighborhood:oneDimensional
symmetries:none

var al = {1,3}
var ar = {1,3}
var bl = {2,4}
var br = {2,4}
var xa = {0,1,2,3,4}
var xb = xa
var xc = xa
var xd = xa
var xe = xa

1,ar,al,2
3,ar,al,1
1,br,al,1
3,br,al,2
2,ar,al,4
4,ar,al,3
2,br,al,3
4,br,al,4
1,ar,bl,1
3,ar,bl,2
1,br,bl,2
3,br,bl,1
2,ar,bl,3
4,ar,bl,4
2,br,bl,3
4,br,bl,4

0,1,0,2
0,0,1,2
1,1,0,2
1,0,1,2
0,2,0,3
0,0,2,3
2,2,0,3
2,0,2,3
0,3,0,1
0,0,3,1
3,3,0,1
3,0,3,1
4,4,0,4
4,0,4,4

@COLORS

1 255 255 255
2 0 0 0
3 255 255 255
4 0 0 0

Code: Select all

@RULE Rule122R

@TABLE

n_states:4
neighborhood:Moore
symmetries:none

# C,N,NE,E,SE,S,SW,W,NW,C'

var al = {0,2}
var ar = {0,2}
var bl = {1,3}
var br = {1,3}
var xa = {0,1,2,3}
var xb = xa
var xc = xa
var xd = xa
var xe = xa

0,0,ar,xa,xb,xc,xd,xe,al,0
0,2,ar,xa,xb,xc,xd,xe,al,1
0,0,br,xa,xb,xc,xd,xe,al,1
0,2,br,xa,xb,xc,xd,xe,al,0
0,1,ar,xa,xb,xc,xd,xe,al,2
0,3,ar,xa,xb,xc,xd,xe,al,3
0,1,br,xa,xb,xc,xd,xe,al,3
0,3,br,xa,xb,xc,xd,xe,al,2
0,0,ar,xa,xb,xc,xd,xe,bl,1
0,2,ar,xa,xb,xc,xd,xe,bl,0
0,0,br,xa,xb,xc,xd,xe,bl,1
0,2,br,xa,xb,xc,xd,xe,bl,0
0,1,ar,xa,xb,xc,xd,xe,bl,3
0,3,ar,xa,xb,xc,xd,xe,bl,2
0,1,br,xa,xb,xc,xd,xe,bl,2
0,3,br,xa,xb,xc,xd,xe,bl,3

@COLORS

0 255 255 255
1 0 0 0
2 255 255 255
3 0 0 0

User avatar
testitemqlstudop
Posts: 1336
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Rule request thread

Post by testitemqlstudop » October 6th, 2019, 10:53 pm

I would like a rule that is basically Life but any state 2 cell never dies and counts as a live cell and any state 3 cell is never born and counts as a dead cell.

State 2 and state 3 cells are "artificial" and can never be created.

bprentice
Posts: 644
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

Re: Rule request thread

Post by bprentice » October 7th, 2019, 1:56 am

testitemqlstudop,

One of the families of rules supported by Square Cell is called Rule Table which supports your rule directly.

The specification of your rule is:
RT.png
RT.png (127.57 KiB) Viewed 2115 times

Brian Prentice

wildmyron
Posts: 1371
Joined: August 9th, 2013, 12:45 am

Re: Rule request thread

Post by wildmyron » October 7th, 2019, 3:35 am

testitemqlstudop wrote:
October 6th, 2019, 10:53 pm
I would like a rule that is basically Life but any state 2 cell never dies and counts as a live cell and any state 3 cell is never born and counts as a dead cell.

State 2 and state 3 cells are "artificial" and can never be created.
In addition to bprentice's suggestion - the extendedlife rule also directly supports this request with state 5 and 6 cells acting as the desired state 3 and 2 cells, respectively.

Edit: There's also a Rule Generator script which does half of what you want and instructions for doing the other half are included in the post. It probably wouldn't take too long to polish off the 4-state version of the script, but on account of a lack of feedback and many other interesting CA distractions I never completed it.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

EvinZL
Posts: 139
Joined: November 8th, 2018, 4:15 pm
Location: What is "location"?

Re: Rule request thread

Post by EvinZL » October 11th, 2019, 4:55 pm

A for awesome wrote:
July 5th, 2016, 11:22 am
Non-totalistic rules work:

Code: Select all

x = 3, y = 3, rule = B1e5/S247
Obo$3o$3o!
Last time I saw this post it was

Code: Select all

x = 3, y = 3, rule = B1e5/S247
obo$3o$3o!
Back after a log vacation!

User avatar
A for awesome
Posts: 1997
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Rule request thread

Post by A for awesome » October 11th, 2019, 6:48 pm

EvinZL wrote:
October 11th, 2019, 4:55 pm
A for awesome wrote:
July 5th, 2016, 11:22 am
Non-totalistic rules work:

Code: Select all

x = 3, y = 3, rule = B1e5/S247
Obo$3o$3o!
Last time I saw this post it was

Code: Select all

x = 3, y = 3, rule = B1e5/S247
obo$3o$3o!
Absolutely no idea how that would have happened. I definitely didn't edit it, that's for sure. (I do remember the post like you say, so obviously something must have happened.)
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Moosey
Posts: 3185
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rule request thread

Post by Moosey » October 19th, 2019, 9:53 am

Make the Knuth uparrrow Turing machine code, from here:

Code: Select all

0 * * r 0
0 _ _ l 1
1 1 _ l 2
2 ^ _ l 3
2 1 1 l 4
3 ^ _ l 3
3 1 _ l 2
4 1 1 l 4
4 ^ 1 l 4'
4 _ 1 l halt
4' ^ ^ l 5
4' 1 1 r 0
5 ^ ^ l 5
5 1 1 r 6
6 ^ x r 7
6 1 y r 9
6 | ^ l 12
7 * * r 7
7 _ | r 8
7 | | r 8
8 * * r 8
8 _ ^ l 11
9 * * r 9
9 | | r 10
10 * * r 10
10 _ 1 l 11
11 * * l 11
11 x ^ r 6
11 y 1 r 6
12 * * l 12
12 ^ ^ l 12'
12' ^ ^ l 12'
12' * * l 13
12' 1 x r 14
13 * * l 13
13 ^ ^ r 20
13 _ _ r 20
13 1 x r 14
14 * * r 14
14 ^ ^ r 15
15 ^ ^ r 15
15 x x r 16
15 1 x l 12
16 x x r 16
16 1 x l 12
16 ^ x r 17
17 ^ ^ r 17
17 1 ^ r 18
18 ^ 1 r 17
18 1 1 r 18
18 _ 1 l 19
19 * * l 19
19 x x l 12
20 x 1 r 20
20 ^ ^ r 21
21 ^ ^ r 21
21 x x r 22
22 x x r 22
22 1 _ r 23
22 ^ ^ l 30
23 1 _ r 23
23 ^ ^ l 24
24 _ ^ r 25
25 ^ ^ r 25
25 1 1 l 26
26 ^ 1 r 27
27 1 1 r 27
27 _ _ l 28
28 1 _ l 29
29 * * l 29
29 _ ^ r 25
29 x 1 l 30
30 x 1 l 30
30 ^ ^ r 31
31 * * r 31
31 _ _ l 32
32 1 _ l 1
Into a rule table or tree, if possible

EDIT:
found TM interpreter here.
Last edited by Moosey on November 12th, 2019, 7:25 pm, edited 2 times in total.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
Gustone
Posts: 613
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Post by Gustone » October 19th, 2019, 9:56 am

Life but it's two cells in one
like [--]
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

User avatar
dvgrn
Moderator
Posts: 6522
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Rule request thread

Post by dvgrn » October 19th, 2019, 11:09 am

Gustone wrote:
October 19th, 2019, 9:56 am
Life but it's two cells in one
like [--]
Do you mean something like DoubleB3S23 ?

I don't seem to be clever enough to interpret your mysterious "[--]".

Maybe you want icons showing the two cells next to each other? That would just be some trivial but tedious editing of the @ICONS section of the rule.

... Oh, I bet you want two adjacent cells of a single Life universe as a single four-state cell. Sorry, wishful thinking on my part -- I was hoping it might be something that had already been done.

User avatar
Gustone
Posts: 613
Joined: March 6th, 2019, 2:26 am

Re: Rule request thread

Post by Gustone » October 20th, 2019, 7:32 am

Yes the [--] is meant to be what the resulting cell will look like
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

User avatar
dvgrn
Moderator
Posts: 6522
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Rule request thread

Post by dvgrn » October 20th, 2019, 9:00 pm

Gustone wrote:
October 20th, 2019, 7:32 am
Yes the [--] is meant to be what the resulting cell will look like
Okay. This is kind of a weird one; the side-by-side cells mean you can't take shortcuts with "permute" or "rotate" symmetries. So the first attempt ends up as a multi-megabyte rule file:
Life1x2.zip
(273.59 KiB) Downloaded 22 times
It's only been tested on a pi explosion and a glider, but those worked, and the rule lines were generated by a script so it's probably all right. Here's the script:

Code: Select all

import golly as g
lookup = {'00': 0, '01': 1, '10': 2, '11': 3 }

rule = ""
for i in range(2**18,2**19):
  g.show(str(i))
  b = bin(i)[3:]
  states = []
  for j in range(0,18,2):
    states += [lookup[b[j:j+2]]]
  
  neighbors = [states[1],states[2],states[5],states[8],states[7],states[6],states[3],states[0]]

  g.new("test")
  ptr = 0
  for y in range(3):
    for x in range(6):
      if b[ptr]=="1": g.setcell(x,y,1)
      ptr+=1
  g.run(1)
  newstate = lookup[str(g.getcell(2,1)) + str(g.getcell(3,1))]
  if newstate!=0:
    nstr = ','.join(map(str, neighbors))
    rule+=str(states[4]) + "," + nstr + "," + str(newstate) + "\n"

g.setclipstr(rule)
There are some tricks with additional variables that could shorten things down a bit, but it's not clear that it's worth the effort.

If you want to do anything much with this rule, it might be worth writing helper scripts to translate back and forth between Life1x2 and regular Life.

Post Reply