Page 19 of 23

Posted: August 12th, 2019, 6:42 pm
EvinZL wrote:I have 2 from scratch. Also here is the latest...
Okay, here's a quick rebuild. Not sure I have it quite right yet, but at least state 1 isn't affected by state 2, but state 2 is highly affected by state 1:

Code: Select all

``````x = 13, y = 5, rule = LifeLayersPatched
10.2B\$9.B2.B\$A9.A.B\$A.A7.A.A\$2A8.2AB!``````
A key trick is that you can put the high-priority rule lines first, and then lower-priority rules with overlapping conditions. The lower-priority rules are only applied in the cases where the high-priority rule didn't match.

Code: Select all

``````@RULE LifeLayersPatched

@TABLE
n_states: 3
neighborhood: Moore
symmetries: permute

var a = {0, 2}
var b = a
var c = a
var d = a
var e = a
var f = a
var z = a
var g = {1, 2}
var h = g
var i = g
var j = g
var k = {0, 1, 2}
var p = k
var q = k
var r = k
var s = k
var t = k
var u = k
var v = k
var w = k
var x = {0, 1}

# Life birth rule for state 1 takes priority
a, 1, 1, 1, b, c, d, e, f, 1

# Life survival rules for state 1 take priority
1, 1, 1, 1, b, c, d, e, f, 1
1, 1, 1, b, c, d, e, f, z, 1

# Life birth rule for state 2
x, h, i, j, 0, 0, 0, 0, 0, 2

# Life survival rules for state 2
g, h, i, j, 0, 0, 0, 0, 0, 2
g, h, i, 0, 0, 0, 0, 0, 0, 2

# all other cells die
k, p, q, r, s, t, u, v, w, 0

@COLORS
0 0 0 0
1 255 0 0
2 255 255 0``````

Posted: August 12th, 2019, 8:37 pm
dvgrn wrote:Not sure I have it quite right yet, but at least state 1 isn't affected by state 2, but state 2 is highly affected by state 1
That's right. Also, the code seems right also.

Posted: August 12th, 2019, 8:46 pm
dvgrn wrote:

Code: Select all

``````@RULE LifeLayersPatched

@TABLE
n_states: 3
neighborhood: Moore
symmetries: permute

var a = {0, 2}
var b = a
var c = a
var d = a
var e = a
var f = a
var z = a
var g = {1, 2}
var h = g
var i = g
var j = g
var k = {0, 1, 2}
var p = k
var q = k
var r = k
var s = k
var t = k
var u = k
var v = k
var w = k
var x = {0, 1}

# Life birth rule for state 1 takes priority
a, 1, 1, 1, b, c, d, e, f, 1

# Life survival rules for state 1 take priority
1, 1, 1, 1, b, c, d, e, f, 1
1, 1, 1, b, c, d, e, f, z, 1

# Life birth rule for state 2
x, h, i, j, 0, 0, 0, 0, 0, 2

# Life survival rules for state 2
g, h, i, j, 0, 0, 0, 0, 0, 2
g, h, i, 0, 0, 0, 0, 0, 0, 2

# all other cells die
k, p, q, r, s, t, u, v, w, 0

@COLORS
0 0 0 0
1 255 0 0
2 255 255 0``````

Code: Select all

``````x = 56, y = 33, rule = LifeLayersPatched
34.2B\$3.2A29.2B\$2.2A.2A7.2B5.2B\$3.4A7.B.B3.4B20.B\$4.2A8.B.B2.2B2.B.2B
17.B\$15.B7.B20.B\$2.8A2B\$.10A.B9.B\$2A.8AB9.2B\$.2A8.2B8.2B4.B\$10.2B11.
3B.B2.2B\$8.A.3B13.B3.2B\$8.A3.B\$3.2A20.2B27.B\$2.2A.2A18.2B17.3B6.B.B\$
3.4A47.2B\$4.2A14\$44.B.B\$44.2B\$45.B!
``````
This take a while to stabilize:

Code: Select all

``````x = 7, y = 3, rule = LifeLayersPatched
3B.3A\$2.B.A\$.B3.A!
``````

Posted: August 16th, 2019, 7:02 am
a rule where this works

Code: Select all

``````x = 4, y = 8, rule = B3/S23
2bo\$b3o\$b3o3\$2o\$bo\$b2o!
``````

Posted: August 16th, 2019, 9:54 am
Gustone wrote:a rule where this works

Code: Select all

``````x = 4, y = 8, rule = B3/S23
2bo\$b3o\$b3o3\$2o\$bo\$b2o!
``````
How do you want it to work?

Posted: August 16th, 2019, 9:58 am
LaundryPizza03 wrote:
Gustone wrote:a rule where this works

Code: Select all

``````x = 4, y = 8, rule = B3/S23
2bo\$b3o\$b3o3\$2o\$bo\$b2o!
``````
How do you want it to work?
As a spaceship I assume.

Posted: August 16th, 2019, 8:29 pm
Related:
A rule where this works (as a ship)

Code: Select all

``````x = 15, y = 7, rule = B3/S23
3b3o3b3o\$2bo3bobo3bo\$2bo3bobo3bo\$2bo3bobo3bo\$o2b3o3b3o2bo\$o13bo\$o13bo!``````

Posted: August 17th, 2019, 1:21 am
Gustone wrote:a rule where this works

Code: Select all

``````x = 4, y = 8, rule = B3/S23
2bo\$b3o\$b3o3\$2o\$bo\$b2o!
``````

Code: Select all

``````@RULE FWKS-2c7Test
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#2c/7
1,1,0,1,0,0,0,0,0,2
1,1,1,0,1,0,0,0,0,2
2,2,1,0,1,0,0,0,0,2
0,2,1,0,0,0,0,0,0,1
0,2,2,1,1,1,1,1,0,2
0,1,0,0,2,2,0,0,0,0
0,2,2,0,1,0,0,0,0,0
0,2,2,1,1,0,0,0,0,1
2,2,1,0,0,0,0,0,0,0
2,2,0,1,0,0,0,0,0,0

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0``````

Code: Select all

``````x = 4, y = 8, rule = FWKS-2c7Test
2.A\$.3A\$.3A3\$2A\$.A\$.2A!``````
Moosey wrote:Related:
A rule where this works (as a ship)

Code: Select all

``````x = 15, y = 7, rule = B3/S23
3b3o3b3o\$2bo3bobo3bo\$2bo3bobo3bo\$2bo3bobo3bo\$o2b3o3b3o2bo\$o13bo\$o13bo!``````

Code: Select all

``````@RULE FWKS-3c14Test
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
1,1,0,0,1,1,0,0,0,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
0,2,2,1,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0
``````

Code: Select all

``````x = 15, y = 7, rule = FWKS-3c14Test
3.3A3.3A\$2.A3.A.A3.A\$2.A3.A.A3.A\$2.A3.A.A3.A\$A2.3A3.3A2.A\$A13.A\$A13.A
!``````
EDIT:A 4-state rule where both of them works:

Code: Select all

``````@RULE FWKS-2c7and3c14Test
@TABLE
n_states:4
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2,3}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
1,1,0,0,1,1,0,0,0,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
0,2,2,1,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0
#2c/7
1,1,0,0,1,0,1,0,0,3
1,1,3,1,0,0,0,0,0,3
1,3,0,1,0,0,0,0,0,3
3,1,0,1,1,0,0,0,0,3
1,3,1,0,1,0,0,0,0,3
0,3,3,0,0,0,0,0,0,1
0,1,3,1,1,1,1,1,0,3
0,3,3,3,1,0,0,0,0,1
3,3,3,0,0,0,0,0,0,0
3,3,0,3,0,0,0,0,0,0
0,3,3,0,1,0,0,0,0,0
0,3,3,0,0,1,0,0,0,0
#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
0,0,3,0,3,0,Aa,0,0,1
0,0,3,0,Aa,0,3,0,0,1
0,0,Aa,0,3,0,3,0,0,1
0,3,0,3,0,Aa,0,0,0,1
0,3,0,Aa,0,3,0,0,0,1
0,Aa,0,3,0,3,0,0,0,1
0,3,0,3,0,0,Aa,0,0,1
0,3,0,Aa,0,0,3,0,0,1
0,Aa,0,3,0,0,3,0,0,1
0,3,3,Aa,0,0,0,0,0,1
0,3,Aa,3,0,0,0,0,0,1
0,Aa,3,3,0,0,0,0,0,1
0,3,3,0,0,0,0,0,Aa,1
0,3,Aa,0,0,0,0,0,3,1
0,Aa,3,0,0,0,0,0,3,1
0,3,3,0,Aa,0,0,0,0,1
0,3,Aa,0,3,0,0,0,0,1
0,Aa,3,0,3,0,0,0,0,1
0,3,0,0,3,0,Aa,0,0,1
0,3,0,0,Aa,0,3,0,0,1
0,Aa,0,0,3,0,3,0,0,1
0,3,3,0,0,0,Aa,0,0,1
0,3,Aa,0,0,0,3,0,0,1
0,Aa,3,0,0,0,3,0,0,1
0,3,3,0,0,0,0,Aa,0,1
0,3,Aa,0,0,0,0,3,0,1
0,Aa,3,0,0,0,0,3,0,1
0,3,3,0,0,Aa,0,0,0,1
0,3,Aa,0,0,3,0,0,0,1
0,Aa,3,0,0,3,0,0,0,1
3,0,Aa,0,Ab,0,0,0,0,1
3,Aa,0,Ab,0,0,0,0,0,1
3,Aa,0,0,Ab,0,0,0,0,1
3,Aa,Ab,0,0,0,0,0,0,1
3,Aa,0,0,0,Ab,0,0,0,1
3,0,Aa,0,0,0,Ab,0,0,1
3,0,Aa,0,Ab,0,Ac,0,0,1
3,Aa,0,Ab,0,Ac,0,0,0,1
3,Aa,0,Ab,0,0,Ac,0,0,1
3,Aa,Ab,Ac,0,0,0,0,0,1
3,Aa,Ab,0,0,0,0,0,Ac,1
3,Aa,Ab,0,Ac,0,0,0,0,1
3,Aa,0,0,Ab,0,Ac,0,0,1
3,Aa,Ab,0,0,0,Ac,0,0,1
3,Aa,Ab,0,0,0,0,Ac,0,1
3,Aa,Ab,0,0,Ac,0,0,0,1
#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0
``````

Code: Select all

``````x = 15, y = 23, rule = FWKS-2c7and3c14Test
7.A\$6.3A\$6.3A3\$5.2A\$6.A\$6.2A9\$3.3A3.3A\$2.A3.A.A3.A\$2.A3.A.A3.A\$2.A3.A
.A3.A\$A2.3A3.3A2.A\$A13.A\$A13.A!
``````

Posted: August 17th, 2019, 4:16 am
Moosey wrote:Related:
A rule where this works (as a ship)

Code: Select all

``````x = 15, y = 7, rule = B3/S23
3b3o3b3o\$2bo3bobo3bo\$2bo3bobo3bo\$2bo3bobo3bo\$o2b3o3b3o2bo\$o13bo\$o13bo!``````
9c/42o:

Code: Select all

``````x = 15, y = 7, rule = B3-ky4y/S23-cq4kt5jknr
3b3o3b3o\$2bo3bobo3bo\$2bo3bobo3bo\$2bo3bobo3bo\$o2b3o3b3o2bo\$o13bo\$o13bo!
``````

Posted: August 17th, 2019, 6:38 am
FWKnightship wrote:
Gustone wrote:a rule where this works

Code: Select all

``````x = 4, y = 8, rule = B3/S23
2bo\$b3o\$b3o3\$2o\$bo\$b2o!
``````

Code: Select all

``````@RULE FWKS-2c7Test
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#2c/7
1,1,0,1,0,0,0,0,0,2
1,1,1,0,1,0,0,0,0,2
2,2,1,0,1,0,0,0,0,2
0,2,1,0,0,0,0,0,0,1
0,2,2,1,1,1,1,1,0,2
0,1,0,0,2,2,0,0,0,0
0,2,2,0,1,0,0,0,0,0
0,2,2,1,1,0,0,0,0,1
2,2,1,0,0,0,0,0,0,0
2,2,0,1,0,0,0,0,0,0

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0``````

Code: Select all

``````x = 4, y = 8, rule = FWKS-2c7Test
2.A\$.3A\$.3A3\$2A\$.A\$.2A!``````
Moosey wrote:Related:
A rule where this works (as a ship)

Code: Select all

``````x = 15, y = 7, rule = B3/S23
3b3o3b3o\$2bo3bobo3bo\$2bo3bobo3bo\$2bo3bobo3bo\$o2b3o3b3o2bo\$o13bo\$o13bo!``````

Code: Select all

``````@RULE FWKS-3c14Test
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
1,1,0,0,1,1,0,0,0,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
0,2,2,1,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0

#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1

#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0
``````

Code: Select all

``````x = 15, y = 7, rule = FWKS-3c14Test
3.3A3.3A\$2.A3.A.A3.A\$2.A3.A.A3.A\$2.A3.A.A3.A\$A2.3A3.3A2.A\$A13.A\$A13.A
!``````
EDIT:A 4-state rule where both of them works:

Code: Select all

``````@RULE FWKS-2c7and3c14Test
@TABLE
n_states:4
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2,3}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
1,1,0,0,1,1,0,0,0,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
0,2,2,1,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0
#2c/7
1,1,0,0,1,0,1,0,0,3
1,1,3,1,0,0,0,0,0,3
1,3,0,1,0,0,0,0,0,3
3,1,0,1,1,0,0,0,0,3
1,3,1,0,1,0,0,0,0,3
0,3,3,0,0,0,0,0,0,1
0,1,3,1,1,1,1,1,0,3
0,3,3,3,1,0,0,0,0,1
3,3,3,0,0,0,0,0,0,0
3,3,0,3,0,0,0,0,0,0
0,3,3,0,1,0,0,0,0,0
0,3,3,0,0,1,0,0,0,0
#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
0,0,3,0,3,0,Aa,0,0,1
0,0,3,0,Aa,0,3,0,0,1
0,0,Aa,0,3,0,3,0,0,1
0,3,0,3,0,Aa,0,0,0,1
0,3,0,Aa,0,3,0,0,0,1
0,Aa,0,3,0,3,0,0,0,1
0,3,0,3,0,0,Aa,0,0,1
0,3,0,Aa,0,0,3,0,0,1
0,Aa,0,3,0,0,3,0,0,1
0,3,3,Aa,0,0,0,0,0,1
0,3,Aa,3,0,0,0,0,0,1
0,Aa,3,3,0,0,0,0,0,1
0,3,3,0,0,0,0,0,Aa,1
0,3,Aa,0,0,0,0,0,3,1
0,Aa,3,0,0,0,0,0,3,1
0,3,3,0,Aa,0,0,0,0,1
0,3,Aa,0,3,0,0,0,0,1
0,Aa,3,0,3,0,0,0,0,1
0,3,0,0,3,0,Aa,0,0,1
0,3,0,0,Aa,0,3,0,0,1
0,Aa,0,0,3,0,3,0,0,1
0,3,3,0,0,0,Aa,0,0,1
0,3,Aa,0,0,0,3,0,0,1
0,Aa,3,0,0,0,3,0,0,1
0,3,3,0,0,0,0,Aa,0,1
0,3,Aa,0,0,0,0,3,0,1
0,Aa,3,0,0,0,0,3,0,1
0,3,3,0,0,Aa,0,0,0,1
0,3,Aa,0,0,3,0,0,0,1
0,Aa,3,0,0,3,0,0,0,1
3,0,Aa,0,Ab,0,0,0,0,1
3,Aa,0,Ab,0,0,0,0,0,1
3,Aa,0,0,Ab,0,0,0,0,1
3,Aa,Ab,0,0,0,0,0,0,1
3,Aa,0,0,0,Ab,0,0,0,1
3,0,Aa,0,0,0,Ab,0,0,1
3,0,Aa,0,Ab,0,Ac,0,0,1
3,Aa,0,Ab,0,Ac,0,0,0,1
3,Aa,0,Ab,0,0,Ac,0,0,1
3,Aa,Ab,Ac,0,0,0,0,0,1
3,Aa,Ab,0,0,0,0,0,Ac,1
3,Aa,Ab,0,Ac,0,0,0,0,1
3,Aa,0,0,Ab,0,Ac,0,0,1
3,Aa,Ab,0,0,0,Ac,0,0,1
3,Aa,Ab,0,0,0,0,Ac,0,1
3,Aa,Ab,0,0,Ac,0,0,0,1
#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0
``````

Code: Select all

``````x = 15, y = 23, rule = FWKS-2c7and3c14Test
7.A\$6.3A\$6.3A3\$5.2A\$6.A\$6.2A9\$3.3A3.3A\$2.A3.A.A3.A\$2.A3.A.A3.A\$2.A3.A
.A3.A\$A2.3A3.3A2.A\$A13.A\$A13.A!
``````
Our savior

BUT ONLY SIMILLAR RULE WITH ALMOST KNIGHTSHIP CAN SUSTAIN ME

EDIT

Code: Select all

``````x = 9, y = 11, rule = FWKS-2c7and3c14Test
8.A\$6.3A\$5.A\$5.2A2\$2.3A\$.A3.A2\$A\$3.C.A\$.A2C!
``````

Posted: August 17th, 2019, 6:50 am
What 4-state wolfram rule does this pattern simulate?

Code: Select all

``````x = 4, y = 3, rule = B2ei3-akny4acnqrw5aqy6aen/S1c2-ik3ack4cjknrw5acjk6c7
b2o\$o2bo\$b2o!``````

Posted: August 17th, 2019, 7:07 am

Code: Select all

``````x = 47, y = 16, rule = FWKS-2c7and3c14Test
36.A9.A\$4.A15.A15.3A5.3A\$4.3A11.3A18.A3.A\$7.A9.A20.2A3.2A\$A5.2A9.2A5.
A\$3A19.3A\$3.A17.A\$2.2A17.2A17.3A\$39.A3.A\$8.3A3.3A\$7.A3.A.A3.A20.A\$7.A
3.A.A3.A23.C.A\$7.A3.A.A3.A21.A2C\$5.A2.3A3.3A2.A\$5.A13.A\$5.A13.A!
``````

Posted: August 17th, 2019, 1:04 pm
Two varieties of G- p4 and p12:

Code: Select all

``````x = 16, y = 3, rule = FWKS-2c7and3c14Test
.2A10.3A\$A.C12.A\$2.A11.A!
``````
Given that it rotates but leaves junk, perhaps there are B conduits?

Code: Select all

``````x = 4, y = 3, rule = FWKS-2c7and3c14Test
.A\$3A\$A.2A!
``````
Pulsar=p6:

Code: Select all

``````x = 13, y = 13, rule = FWKS-2c7and3c14Test
2.3A3.3A2\$A4.A.A4.A\$A4.A.A4.A\$A4.A.A4.A\$2.3A3.3A2\$2.3A3.3A\$A4.A.A4.A\$
A4.A.A4.A\$A4.A.A4.A2\$2.3A3.3A!
``````
Whee!

Code: Select all

``````x = 15, y = 5, rule = FWKS-2c7and3c14Test
12.2A\$12.A.A\$.A10.A\$.2A\$A.A!
``````

Posted: August 17th, 2019, 2:00 pm
Same but with only 1 auxiliary state (and more redundant and overridden transitions):

Code: Select all

``````@RULE 2c7and3c14
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
1,1,0,0,1,1,0,0,0,2
2,0,1,0,0,0,0,0,2,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0
#2c/7
1,1,0,0,1,0,1,0,0,2
1,1,2,1,0,0,0,0,0,2
1,2,0,1,0,0,0,0,0,2
2,1,0,2,1,0,0,0,0,2
2,1,1,0,0,0,1,0,0,2
1,2,2,0,1,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
0,1,2,2,1,1,1,1,0,2
0,2,2,2,1,0,0,0,0,1
2,2,2,0,0,0,0,0,0,0
2,2,0,2,0,0,0,0,0,0
0,2,2,0,1,0,0,0,0,0
0,2,2,0,0,1,0,0,0,0
#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0``````

Code: Select all

``````x = 28, y = 10, rule = 2c7and3c14
2.A\$.3A\$.3A\$16.3A3.3A\$15.A3.A.A3.A\$2A13.A3.A.A3.A\$.A13.A3.A.A3.A\$.2A
10.A2.3A3.3A2.A\$13.A13.A\$13.A13.A!
``````
It's slightly less interesting but LOM is a (15,1)c/45 1D replicator:

Code: Select all

``````x = 3, y = 4, rule = 2c7and3c14
.2A\$A.A\$A.A\$2A!
``````
Now all we need to add is the c/6 engine.

Posted: August 17th, 2019, 2:24 pm
toroidalet wrote:Now all we need to add is the c/6 engine.
What engine?

Posted: August 17th, 2019, 2:29 pm

Code: Select all

``````x = 10, y = 7, rule = B3/S23
bo6bo\$obob2obobo\$2o2b2o2b2o\$4b2o2\$2b2o2b2o\$2b2o2b2o!``````
Someone (PHPBB12345?) made a rule with 2 alive states that supported this a while ago.

Posted: August 17th, 2019, 2:33 pm

Code: Select all

``````x = 79, y = 69, rule = 2c7and3c14
4.B2A2.BA2.A2B.B2A.A.BA.B.AB2.2B.A3.B3.3B.2AB.B5.A.2A3B4.B3.5A.B\$.2A
2BA.A2.A2.AB2.B.AB.3A4.2A2B.ABA.A.B2.4A2B.B4.2A2.2BA.B4.A2B2.B.A.AB\$
4.A.A.B2A.A.2A3.2BAB2AB.A.2B.B3.A.B.A.2A.B.B.BA2.2A3.B2AB3AB3.B3.3BA.
B\$BA.2A.A.BA.B.A4.2A.B2.2B2.AB2A2.B.2B2.B3A.A.A2BA.A3.A3.B4.3BA.A2.A
4.B\$B.BA.B2.B.B3.B3.2A.2A3.AB.A4.B3.ABA.2B3.AB.ABA.A3.2ABAB.AB.AB2.B.
A.A2BA\$B2.A5.2A.B.A.A.B.B3.A3BA.2B3.BABA.B5.A.BA.B2.B2A2.A.B3.A.A.ABA
2BA2.B\$2A2.AB.A6.A.ABA3.AB.4A3B3.BA.A.AB3.B.B2A2.2B2A.BABA3B2AB3.B3.A
BAB\$A.BA.A2.AB.3B2.3ABA3.3B4.BAB.BA2B2A.B2A6.BA2.3A.2B3.A2B2.A.B5.BA\$
A2B3.2A2.AB2.A2.B.A3B.2AB.A3.A.BAB.2BA5.B.ABA3.A2.B4.BAB4.A2.3B.B.A\$
3.4B3.B2A2.B3A.B.B.B.B2.A.B5.A2.2A.B7.B.A3.A2.A2B2.A2B.B.3A.BA\$2A3.B
2.B2.4AB2.A.B2.A.2A.A3.3B2.3A3.A3.B2A4.AB2.BAB.B2.B2.A.2B.B2.A.B\$BA2B
.B2.A2.A5.2A2.3A.B6.AB.A.2B.ABA2.3A2BA2.2AB.B.A.A3BAB6.B2A2.B\$BA.B.A
2.2BA.2BA4.B.B2.B7.2ABAB2.A2.B.B.B.BABAB.A5.2B2.BA2.A.2B3.2B\$.A.2B.3A
.B.B.2BAB.BA.A3.2B2.AB.2B4A3.2AB2.2B.A2B3.2A.B2.A2BA.2ABA.AB3.2B\$A2.B
.BA.3B3.ABABA2.B3A3.B.A.2A.B.3A2BA4.3AB.A2B2.B3AB3.A3.A3B.BA.2B\$A3.A.
3A.BA2.BAB.A5.2A.B2.B.ABA2.B2A.4A5.2AB.A3B2.A.BA2.3B2.A.B.A2B\$.B3.A.B
.3A4.3ABA.BA.A2.B2.B2.B.B.A.B2.B2.B4.B.A3.A2.2B3.B.B.AB.B2.B2.B\$3AB4.
BA2B.B2.B2.BAB2.2BA.AB.B.B2A2.3A.2B2.B2.AB.2AB.2B3.B.A.2B2A.B4.AB.A\$
4.A.2BA3.3A5.B.B.B2AB.BA4BA2B.A.B2.A2.BA3.B.A2.2B.B2.A.A.A.A2BA2B3.A\$
.2A.BAB.2B2.B.B3.B3.A2B3.AB4.ABA.A.AB8.AB.B.3AB2.AB.A3.3A2.2A2.BA\$2.B
.AB3.B.B3.B.BA.A5.2B6.3A.2AB2.AB5.2AB.B5.A2B2.B3.A3.B\$B.2A2.2BAB.AB.A
BA7.2A3.B2A2.BA2.B2.2B3.4BA.B2.BA.A2B3.B3.B.B3A.B.BA\$2B3.B2.3A.A5.2A
2.BA.A.A2.B.2A2.A2.BAB5.2B2A3.A2.BAB2.A2B2.AB2A3.A.B.A\$2BAB3.A.2A3.B.
A.2A2.3BA.AB.2B.BA.B5.B3.3B.B.BABA8.A3.2A.A.AB2ABA\$B2.B5.B6.A.BAB3.B.
2A2.2A2BAB2A.B4.2B2.3BA.A.AB.A2.A5.BA.A3.2B.A\$B.B4.2B2A3B2.B3A.A.B2A.
2ABA.A.B2A5.3BA.A.A.B2A2.B2.B2A2.A.A2.B2.B.A.BA\$.A3.AB3.3A4.AB2.B2.B
2AB.BA2.2B3.A.2B.2B.A.BA.B6.B2.B.BA.3B3.2AB.BA\$A.A5.2A.B2.A.A.2B.3AB.
B3.4B.B.A.2A.B2A2.2BA3.B.4B.A2B.A3B2A2.B.B.B.A\$3.A3.A2.B2.B2.A3.A.B2.
A3.2BA2.A2.BA.A.B2.2AB4.BA4.BA3.AB.B.A.A2.B2A.A\$2B2.B.B2.BA.2A2.A.BA
2.B2.3A.A6.AB2.B4.A.A.BAB2.AB2.B3.2B2.3A2B.A.A\$.A3B.B4.ABA.B.B.2BAB.B
2.B2A2BAB2.2A.B2AB3.A5.B.A.B.B.AB2.A.B4.BA.A2.A\$2.A.B.2A.B3.A2.A3.A.A
BA2.A4.A.2B2.BA2.2BA.BA.A4.4A.2B.BA.B2ABA.BABAB2.A\$.AB2.B2AB2.2B.AB.A
BABAB2.BAB5.2A.2A.BA.A2.AB2.2A2.B.B.B2A6.A.B2A3BA.B.A\$2.2BA4.A.B2A.B.
B2.A5.A.B.BA2.4A3.2B3.BA4.A2.B.B.BA6.BA.ABA2.B2AB\$.2BA2.BA.B.2B.B2.2A
2.A2.2A.BAB.AB.B3.A2.ABA3.B.2B2.A4.B2.AB2.B2A2B.B3.2A.B\$.BAB3.A2.B.B
2.BAB5.B4.A.B.B.B.2A.2A3B.A3B.A6.B7.B.2B.B2AB.BA.A\$BA.B2.2B4.A.A5.B.B
A.B.B3.B.ABA.A2.3A2.B.A2.2B2.3ABABA.A.A.B.A3.B4.A\$2.BA.B2.BAB4.BA3B.A
B7.A3.AB4A2.B2.A9.A3.B2A.ABA.B.2A3.A.B\$2B5.B.B3.BA.B.B.B2.2B.A.BA2.B
2.B.A2.A.B2.A2B3.2A4.2AB.B.AB4.AB2.B.B2.B\$B2.2B2.B2A2.2A.B.A3.B2.A.2A
.A.B2.2AB.A.BA2.AB4A.B.B.A2.B2.2A.B2.2A.AB.BA.A\$2B.A.AB2.BA3.B6.A.AB.
3B2.3B.B3.BAB3.2B2A.BA.A6.B2AB6.BA.2BA2.A\$B2A2.B4.2B.A3.2A2.A.BA3.A3.
BABA.A3.B.B2A.B2.3AB.3B.B.AB3.BAB.ABA2.A\$A3.2AB3A.B2A.A.B2.AB.A2.3B6.
A3.2A.A.BA.2B.B.A5.B.B.B.BABABA.A.A.ABA\$3.A.A.B4.A.2A.B4.4B2.BA.AB.A.
2AB.A.B.AB.B2A.A2.BA.B.2A2.B7.AB.A.3A\$.3A.2A.A3.A2.A7.B2.A2B.2AB.A.A
2BA2B2.B.B3.B.B.2A2.AB.A3.A4.ABABA2B\$.B.B.BA2.B.B.B2.A3B.A2BA2BAB.2AB
2.A3B.A5.B.B2.AB.A2.A2.3A2.3A.B2.BA3.B\$.A4.B2.B.B2A.A2.3A.A3.B.2B.AB.
BA.A.2AB3.A5.A3.B2.A2.3B.B.A.2A.3A.B.A\$.A.4A4.A3.B.2A.A2.B2.B.A.2BA.A
B.2B3.A2.2B3.3B2A.B.2B2.A.B.A6.ABA.BA\$A.3BAB.AB2.BA2B2A.A.2AB.B2.B2.B
.A3.2A3.B2.3B.B4.B3.4BA.A2.2A.BA2.B3.B\$B5.2B4.2AB.BA3.2A5.A.B2.3AB.B
5.2B.A.B.3B.B2A.2B.AB.B.BAB.B2A3.B\$2.2A2.2BA3.A2B4.4A3.B.B.2BAB.B2.A
2.2A2.ABA2B.A4.A2.2BA.B2.B.A.3B2.BABA\$AB3.2A2.ABAB2.A3.A2.B2.B.A4B.B.
A3.2A.B2A.A.2BABA.AB.2BAB2.3BA2.B2.3B3A\$2.BA7.B.A.A.B.A.A.A.B2.2AB.A
2B3.3BAB2.B.A.BA2.AB3.2B.BAB.AB.B.2A2B.AB\$2.2A.2AB6.B3.B.4B2.ABA5.B6.
2A.B.2A2.AB.A.AB.B3.A4.B.AB2.A2.B\$3.BAB2.A2.2B3.A3.2B.A2.A2BA.B2.2B.A
.2B.B.B2A2.A.B.A.2BABA.AB2.B2AB.BA2.AB.B\$B4.A.AB2.BA.B3.B2.BA.A2B.A.B
.3A6.AB.A.AB3.AB.2AB6.3A.A.B.3ABA2.A\$A4.B.B.B.B3.B.BA3.BA3.B3.2A.A.AB
AB2.2B3.A3.2A2BAB3.2ABA2B.2A3.A3.B.B\$A2.B.2BA2.B.2B.A5.A.B.AB.2A2.A.A
B.B2.A4.AB.B2.3A2.BAB.B2.B.B3.2A2.A3B2A\$A3B.BAB2.3B3.BA2.B.2A3.A.2BA
5.A.2BA.3BA.BA4.BA.B2A5.4B3.B4.A\$2AB2.B2.A.2A.A.2BA3.BA3.B.A.AB6.BA.B
.A7.B.B2.2A.AB6.2BA.3A2.A.B\$2A8.2A.A6.2A.B.2A2.B.3BAB2.B.B2.BA.2A.2A.
2A3.AB2.B5.A.A3.A2.B\$4.B2.A.2B2.2B2.A.2A.2A.2A.AB.B3.A4.A4.B.AB5.3BA.
A.A2.A.ABA.A.B.2B.A\$A3.B.2A.B2.A6.2A4.A3.4A.B2A2.3AB3.AB.B4.2A2.4A10.
BA.A.B\$4.B3A2.A2B.A.B3.B3A.2B5.A.A.AB.2A.2B.A2.2A2.3AB6.A2B2.BA7.2BA\$
A.BA.B.A.A2.AB2.B3AB.B.AB.2A2.B.3B2A7.B.3B.B3.B.A.B5.B.B.3A4.B.A\$3.A
2.B.B.2AB2.BAB.2AB4A.AB.BABA.A.B2A3.BA2BA3.2B4.B.A.A3.2B.B.B2.AB2A2B\$
AB2.AB4.B.4B.BA.B6.A2B3.BA4.B2.A3.B.AB.A2B4.B.ABA2B5.BAB.B2.B\$2.AB.AB
.A2.2A.A3.B3.AB2.AB2.2B.2A.A2.A.A5.2BA.A3.A.B.BA2.B2.2B.2B.AB2.BA\$BA.
4B.2BA.B.A.2B3.B.A2B.ABA3.B.B.BABAB2.B.BA.ABA2B2AB.BA5B.A2.A.B.B.A!
``````
Explosive
We need a lomship
(Should we call these rules "ExtraLife"?)

EDIT

No lomship yet, but we have a (breeder?)

Code: Select all

``````x = 2861, y = 418, rule = 2c7and3c14
564.AB\$563.A.A\$565.B17\$390.B\$390.AB\$389.A.A21\$776.AB\$775.A.A\$777.B31\$
575.A\$575.BA\$574.A.A5\$272.2AB15.2A\$272.B16.2A\$273.A17.A45\$419.B2A\$
421.B\$420.A30\$2858.2A\$2855.2A.2A\$2855.2A3.A\$2854.A3.2A\$2798.2A55.2A.
2A\$2795.2A.2A55.2A\$2795.2A3.A\$2794.A3.2A\$2795.2A.2A\$2795.2A3\$2678.2A\$
2675.2A.2A\$2675.2A3.A\$2674.A3.2A\$2618.2A55.2A.2A\$2615.2A.2A55.2A\$
2615.2A3.A\$2614.A3.2A\$2558.2A55.2A.2A\$2555.2A.2A55.2A\$2555.2A3.A\$
2554.A3.2A\$2555.2A.2A\$2555.2A3\$2438.2A\$2435.2A.2A\$2435.2A3.A\$2434.A3.
2A\$2378.2A55.2A.2A\$2375.2A.2A55.2A\$2375.2A3.A\$2374.A3.2A\$2375.2A.2A\$
2375.2A7\$2198.2A\$2195.2A.2A\$2195.2A3.A\$2194.A3.2A\$339.B1798.2A55.2A.
2A\$338.BA1795.2A.2A55.2A\$338.A.A1794.2A3.A\$2134.A3.2A\$2135.2A.2A\$
2135.2A11\$1898.2A\$1895.2A.2A\$1895.2A3.A\$1894.A3.2A\$1895.2A.2A\$1895.2A
3\$1778.2A\$1775.2A.2A\$1775.2A3.A\$1774.A3.2A\$1718.2A55.2A.2A\$1715.2A.2A
55.2A\$1715.2A3.A\$1714.A3.2A\$1658.2A55.2A.2A\$1655.2A.2A55.2A\$1655.2A3.
A\$1654.A3.2A\$1655.2A.2A\$1655.2A3\$1538.2A\$1535.2A.2A\$1535.2A3.A\$1534.A
3.2A\$1478.2A55.2A.2A\$1475.2A.2A55.2A\$1448.2A25.2A3.A\$1445.2A.2A24.A3.
2A\$1418.2A25.2A3.A24.2A.2A\$227.A20.3A1164.2A.2A24.A3.2A25.2A\$227.A
1160.2A25.2A3.A24.2A.2A\$227.A18.A5.A1132.2A.2A24.A3.2A25.2A\$246.A5.A
1132.2A3.A24.2A.2A\$246.A5.A1131.A3.2A25.2A\$1385.2A.2A\$248.3A1134.2A\$
1298.2A\$1295.2A.2A\$1295.2A3.A\$1294.A3.2A\$336.2A150.A749.2A55.2A.2A\$
336.2A149.A.A7.A181.A555.2A.2A55.2A\$245.A22.2A38.A178.A2.A5.A.A178.A
2.A527.2A25.2A3.A\$244.A.A21.2A38.A5.A173.BA7.A179.A2.A524.2A.2A24.A3.
2A\$244.A.A15.2A44.A5.A359.4A.A498.2A25.2A3.A24.2A.2A\$235.A9.A16.2A50.
A359.2A499.2A.2A24.A3.2A25.2A\$234.A.A911.2A25.2A3.A24.2A.2A\$234.2A
438.2B469.2A.2A24.A3.2A25.2A\$489.A184.BA3.2A437.2A25.2A3.A24.2A.2A\$
256.3A5.A223.A.A188.2A6.A427.2A.2A24.A3.2A25.2A\$264.A223.2A196.A.2A
398.2A25.2A3.A24.2A.2A\$264.A50.2A368.B3.A395.2A.2A24.A3.2A25.2A\$315.
2A176.2A190.A.A2.A367.2A25.2A3.A24.2A.2A\$493.2A175.2A10.2A6.A364.2A.
2A24.A3.2A25.2A\$327.A26.A313.2A.A2.2A5.A8.A337.2A25.2A3.A24.2A.2A\$
326.A.A25.A313.A4.A2.A4.A.2A340.2A.2A24.A3.2A25.2A\$316.A10.2A25.A313.
2AB3.2A6.A2.A3.A335.2A3.A24.2A.2A\$242.2A66.A5.A369.3A335.A3.2A25.2A\$
242.2A2.2A62.A5.A336.B371.2A.2A\$246.2A62.A341.2A26.A.A342.2A\$500.2A
42.3A105.2A29.A\$499.A2.B19.A21.A2.A15.A87.2A.A28.B17.A.A\$486.2A12.2A
19.A.A18.A4.A6.4A5.3B87.A2B46.AB139.A\$485.B2.B32.2A19.A2.A8.B3.A2.A.A
86.A4.2A27.2B16.B138.2A\$486.2A54.A5.A6.A.4A.2A86.2ABA.2A24.BA.2A156.A
.A33.2A\$543.A4.2A5.B2.A92.A3.A22.2A3.A131.2A25.A.2A5.2A22.2A.2A\$544.A
10.B96.A.A21.2A.BA131.A2.2A25.A.A3.3A.A.2A19.2A3.A\$235.B288.A8.ABA9.
3A6.2A95.A2.A21.2A.AB131.A2.2A27.A.2A.A2.A.A.A17.A3.2A\$234.BA287.AB2A
6.A.A17.2A95.B24.2A.A132.A5.A2.2A3B15.A5.2A3.A.A3.2A16.2A.2A\$234.A.A
286.A2.A6.ABA19.A92.A5.A21.3A131.A8.A.2AB2A13.A3.A3.4A3.2A2.A16.2A\$
266.A47.A207.2A.B122.A28.2A109.2A21.2A3.BA3.A.B.BA11.2A.2A5.2A8.A37.
2A\$265.A.A9.2A34.A.A84.3A121.A.A119.A6.A7.A16.A106.2A.2A26.2A.A4.2A
28.A2.A38.2A\$264.A2.A9.2A33.A2.A7.2A198.A3.A118.3A.A9.A.A122.2A3.A27.
A.2A.2A31.A43.2A11.AB\$265.2A46.2A7.A2.A199.A3.A.A115.A.A2.A2.2A2.AB.A
B120.A3.2A28.B.BA.B28.A41.B5.AB10.B3A\$322.A.A200.A.B.A.2A117.A5.3A.2A
.A121.2A.2A59.BA.A41.BA3.2A9.A5.B\$323.A205.A.A118.2A5.3A125.2A25.A33.
3A41.2B.2A4.A11.B2ABA\$264.2A85.3A29.3A155.2A110.2A3.A150.B3.A32.2A.2A
38.AB3A20.B\$263.B2.B47.A68.A2.A12.3A139.2A110.2A19.2A28.2A102.2B.A2.A
35.2B10.3A10.3A10.B5.AB\$222.A41.2A47.A.A66.A3.A281.2A3.A2.A26.A2.A
101.2A.3A35.2A38.2AB2A16.A\$222.A78.2A9.A2.A66.B3.A281.2A3.A2.A27.A.A
98.2A17.2A23.A12.A27.BA17.A\$222.A77.A2.A9.2A68.3A166.2A74.2A44.2A29.A
98.A2.A16.2A13.2A8.2A11.A47.2A\$301.2A80.3A164.AB2A73.A2.A58.A26.A17.
3A6.2A59.A.A32.2A8.3A11.A2.A\$282.A265.AB.A.A74.A.A57.A.A25.A28.A17.AB
40.A3.2A51.A.A.B\$281.A.A80.B94.3A86.3B4.2A23.A48.A23.2A33.2A26.A27.A
17.B3A43.2A51.2A.2A\$223.A9.A47.A2.A78.A.A164.3A15.BAB.2A25.A.A71.2A
21.2A82.A5.B96.3A\$223.A9.A3.2A43.2A79.A.A15.A100.2A37.A8.B2.A15.2A19.
B8.A.A11.A82.2A62.B20.B2ABA98.B\$223.A9.A3.2A76.A37.A10.B16.2A98.A.A
37.A8.A3.3A.2A29.A.A8.A4.2A5.A.A40.A103.AB2AB20.B\$314.A.A36.A28.B97.A
.A37.A2.A5.2A.A.ABAB2A29.A.A13.2A5.2A41.A102.B5.A\$214.2A66.B31.A2.A
85.3A75.A25.2A14.2A5.2A2.B.A2B.A29.B64.A103.3AB17.A\$213.A2.A19.2A43.A
.2A30.2A36.2A152.2A9.2A5.A3.2A3.2A3.2A199.BA17.A\$214.2A20.2A42.2A56.
2A14.B46.A5.A109.3A4.2A9.A3.2A219.2A\$280.BA.B2.A51.2A24.2A35.A5.A109.
AB5.A101.2A4.B8.2A\$279.2A5.A19.A57.2A21.A13.A5.A48.2A60.2A68.A36.B2.B
2.A.A7.2A51.B\$305.A.A42.BA2.B9.A.A20.A4.A62.B2.B60.A44.2A22.A37.2A3.A
2.A58.A.A\$218.3A15.2A68.2A56.A.BA19.A4.A10.3A50.2A60.A.3A41.2A22.A43.
2A59.A.A\$236.2A75.2A21.2A12.A4.2A7.A.A25.A123.3AB.A135.3A13.2A19.B\$
71.A241.2A20.A2.A11.2AB2.B.A7.A5.A142.2A.A2.A2.A60.3A3.3A80.2A\$71.A
264.2A13.2B2.A2.A11.A.A15.3A81.2A42.A.2A.A2.A86.A34.A\$71.A184.2A26.2A
68.AB2.A11.A.A56.B8.2A32.2A40.A2.A2.4A64.A21.A.A32.A.A48.A\$218.3A35.A
.A25.3A68.A15.3A54.A.A7.2A15.2A56.2A2.2A.2A66.A21.A.A31.2A.BA20.2A24.
A.A\$257.A24.A63.2A7.A.A3.A.A13.A.A48.A.A24.2A35.2A19.2A5.A67.A22.A32.
2A.BA19.A2.A23.A.A\$216.A65.3A4.A56.2A8.2A13.2A.2A.A2.A48.A43.A17.A2.A
20.A130.A.A20.2A25.A\$176.A39.A64.A.A4.3A70.A.A6.4A6.2A52.2A36.A.A6.A
9.A.A21.A3.A22.2A62.2A7.2A30.2A\$86.A89.A39.A45.A18.A.2A.2A2.A79.3A5.A
B2.2A50.2A36.A.A6.A10.A23.3A23.A.A60.A2.A5.A2.A30.A\$86.A89.A84.A.A18.
2AB4.A56.A23.3A5.AB2.A59.3A28.A7.A124.2A7.2A28.2A\$86.A28.2A101.3A41.
2A22.3A56.A.A31.ABA161.A101.2A\$115.2A80.3A14.2A67.A.3A56.A2.A26.2A4.A
114.2A45.A68.A\$214.2A22.2A44.2A59.2A12.2A13.3A117.B2.B45.A66.A.A\$79.A
58.3A46.2A49.2A7.A37.A73.2A14.BA117.A2.A61.A50.A.A\$78.A.A106.2A30.2A
26.A165.2A26.2A52.2A3.2A55.A2.A50.A40.2A\$78.A2.A137.2A26.A164.B2.B11.
2A12.2A57.2A55.A3.A3.B86.2A\$52.2A25.2A40.2A83.3A49.3A152.2A11.A2.A
127.A2.A4.A.A\$51.A2.A66.2A102.A93.2A106.2A123.2A3.A2.A7.A\$52.2A76.A
59.2A32.A.A29.A5.A56.2A44.A32.A34.B117.A.A3.A.A5.A2.A\$14.A114.A.A19.A
37.B2.B8.BA21.2A30.A5.A102.A32.A33.A.A8.B107.3A3.A6.2A.2A\$13.A.A113.A
.A18.A.A3.2A32.2A8.B2.A52.A5.A49.2A51.A32.A33.A.A7.A.A109.AB2.A2.2A.A
B.A\$13.A2.A113.A19.2A4.2A42.A.A102.A6.2A119.B8.A.A109.A2.3A5.2A\$14.2A
185.A103.A55.3A3.3A73.B39.3A67.AB.3A.3A96.B\$305.A96.3A21.2A127.A90.2A
10.A.A\$96.2A214.2A51.A60.2A129.AB86.A.A10.A.A\$96.2A77.2A41.A60.A32.2A
51.A192.A86.2A12.B\$174.B2.B39.A.A8.A49.A.A84.A283.B\$27.3A90.A5.A48.2A
39.A2.B8.A49.A.A272.A2.B91.A.A\$120.A5.A66.A23.2A9.A50.A41.B93.A26.2A
108.A3.A85.3A3.A.A\$21.B17.3A78.A5.A66.A126.A.A58.3A31.A26.A.A92.3A12.
4A93.B\$2.A17.A.A72.2A96.A30.3A3.3A62.A24.A.A38.2A43.2A7.A27.A86.2A21.
2A\$.A.A15.A2.A72.2A25.3A169.A.A20.A3.B38.A2.A42.2A28.2A92.2A\$A2.A16.
2A206.A64.A2.A20.A28.3A12.BA72.A2.A\$.2A125.3A23.B51.2A20.A6.3A56.2A
21.A9.2A106.A2.A\$153.A.A49.A2.A19.A98.2A87.A19.2A\$83.3A67.A.A50.2A
173.3A32.A111.2A\$48.3A103.B164.2A95.A110.A2.A\$127.B191.2A46.2A159.2A\$
126.A.A40.2A137.2A23.2A31.A.A\$74.3A49.A.A39.A2.A136.2A23.2A32.A\$127.B
41.2A45.3A81.2A\$300.2A25.3A206.A\$87.BA4.3A115.2A321.BA\$86.A2.A121.2A
90.2A29.A200.BA14.A\$34.2A25.2A24.BA92.2A120.2A28.A.A215.A\$34.2A25.2A
11.3A104.2A41.A68.B40.A216.A\$3.2A218.A.A24.A35.2A4.3A36.A\$3.2A26.A
191.A.A23.A.A34.2A3.A2.A36.A\$30.A.A191.A24.A.A34.2A4.3A36.A\$2A28.A.A
136.2A17.2A60.A40.A.BA\$2.A6.2A20.A136.B2.B15.A2.A28.2A7.2A55.3A5.2A\$.
A6.A2.A157.2A16.A.A28.A2.A5.A2.A14.2A7.2A28.B3.B3.2A4.AB\$A7.A2.B14.2A
7.2A151.B30.2A7.2A14.A2.A5.A2.A32.A7.A2.B\$9.AB14.A2.A5.A2.A207.2A7.2A
29.A.2A8.A2.A43.A\$26.2A7.2A187.A59.A6.2A5.2A43.A.A54.A\$223.A.A24.A18.
A13.A7.2A50.A2.A52.ABA\$31.A38.3A150.A.A23.A.A21.A8.3A59.2A53.A.A\$30.A
.A46.A144.A24.A.A16.A14.A.A118.2A\$30.A.A41.A4.A128.2A40.A17.B.B.B.B9.
A2.A113.A4.2A11.A\$31.A42.A4.A128.2A25.2A31.A.B2.B11.A2.A107.2A.A19.A\$
74.A159.A2.A31.2A5.A11.2A107.A.A2B2.A6.3A5.A\$235.A.A37.B.2A6.A3.A.A
106.2A\$236.B29.2A6.2A.2A10.2A.A36.3A57.2A9.3A\$266.2A6.A10.A3.A3.A9.2A
21.A62.A.A9.2A\$238.B35.A.A2.A6.2A.4A10.A.A19.A.A62.A26.2A\$237.A.A36.A
.2A8.A13.A3.A18.A2.A4.2A82.2A\$237.A.A5.2A30.A24.A23.2A4.A2.A87.2A\$
238.B6.2A54.A30.A.A63.BA3.B19.2A\$301.2A.A28.A65.A.2A.A\$302.2A.A91.B2A
.2A.A\$306.2A95.B\$305.A4.B\$232.A4.2A64.7A.A\$231.A.A3.2A8.3A52.A4.2AB.A
\$51.2A178.A2.A68.A3.A2.A\$50.A.A179.2A32.2A38.A97.A\$50.2A213.3A.3A30.
2A4.A95.A\$48.2A216.B2.3A8.3A21.A3.BA93.B.B\$47.A.A5.2A206.A2.2A.B.A30.
2A2.A2.A72.A21.A\$40.A6.2A5.A.A205.A3.2A.3A31.6A73.A21.A\$39.A.A12.2A
207.3A4.A2.2A29.A2.A74.A\$39.A2.A9.2A210.5A5.3A289.A.A\$40.2A9.A.A218.
3A2.A26.3A259.2A\$51.2A211.A7.A4.A289.A\$267.3A.A2.AB\$264.A.A3.A4.2A6.B
\$272.AB9.2A\$273.B2.A5.A.BA\$274.A.A6.A\$275.2A6.A\$275.2A\$276.A\$277.A.2A
.A\$278.B!
``````

Posted: August 17th, 2019, 3:00 pm
Removing B3c when all neighbours are state 1 allows for skewed pre-pulsar ships and removes the replicator, but this is getting off-topic:

Code: Select all

``````@RULE 2c7and3c14-b3c
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect

var Aa={1,2}
var Ab=Aa
var Ac=Aa
var Ae=Aa
var Af=Aa
var Ag=Aa
var Ah=Aa

var all={0,Aa}
var bll=all
var cll=all
var dll=all
var ell=all
var fll=all
var gll=all
var hll=all
var ill=all

#3c/14
0,0,1,0,1,0,1,0,0,0
1,1,0,0,1,1,0,0,0,2
2,0,1,0,0,0,0,0,2,2
1,1,2,0,0,0,0,0,0,2
1,2,1,0,0,1,0,0,0,2
1,2,1,0,0,0,0,0,0,2
0,0,2,1,1,0,0,0,0,2
1,2,0,1,0,1,0,0,0,2
2,1,1,0,0,0,0,0,0,2
1,1,1,2,0,0,0,0,0,2
0,2,1,2,0,0,0,0,0,2
2,0,1,0,1,0,0,0,0,2
1,2,0,0,2,0,1,0,0,2
1,1,0,0,2,0,1,0,0,2
0,0,1,2,1,0,0,0,0,2
2,0,1,1,1,0,0,0,0,2
0,2,0,0,1,2,0,0,0,2
1,2,0,0,1,0,0,0,0,2
2,1,0,0,0,1,0,0,0,2
0,2,2,2,0,0,0,0,0,0
2,0,2,2,2,0,0,0,0,0
#2c/7
1,1,0,0,1,0,1,0,0,2
1,1,2,1,0,0,0,0,0,2
1,2,0,1,0,0,0,0,0,2
2,1,0,2,1,0,0,0,0,2
2,1,1,0,0,0,1,0,0,2
1,2,2,0,1,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
0,1,2,2,1,1,1,1,0,2
0,2,2,2,1,0,0,0,0,1
2,2,2,0,0,0,0,0,0,0
2,2,0,2,0,0,0,0,0,0
0,2,2,0,1,0,0,0,0,0
0,2,2,0,0,1,0,0,0,0
#Life
0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
#death
all,bll,cll,dll,ell,fll,gll,hll,ill,0``````

Code: Select all

``````x = 15, y = 9, rule = 2c7and3c14-b3c
3.3A\$2.A3.A\$2.A3.A2.3A\$2.A3.A.A3.A\$A2.3A2.A3.A\$A7.A3.A\$A8.3A2.A\$14.A\$
14.A!
``````

Posted: August 18th, 2019, 12:44 am
P90 glider gun:

Code: Select all

``````x = 106, y = 9, rule = 2c7and3c14
97.A\$97.A\$35.2A32.2A\$4.2A28.AB.A30.A.A29.2A\$3.A.A29.A.BA29.A.A29.A.A\$
3.A32.2A30.2A32.A\$.3A98.3A\$A104.A\$2A102.2A!
``````
EDIT:P180 3c/14 gun:

Code: Select all

``````x = 361, y = 403, rule = 2c7and3c14
344.2A10.2A\$343.A.A9.B.A\$343.B11.A\$341.ABA9.B2A\$340.A11.A\$340.2A10.2A
34\$351.3A\$354.A\$354.A\$351.3A\$356.3A\$356.A\$354.3A\$353.A\$355.2A\$340.3A
13.3A\$339.A3.A12.2A\$339.2A.2A\$339.A4.A\$340.2A.2A\$340.A3.A5.2A\$341.3A
5.3A\$351.2A\$354.A\$351.3A\$351.A\$349.3A\$354.3A\$353.A\$134.A218.A\$60.3A7.
2A53.A7.3A218.3A\$2A57.A3.A5.A3.2A46.A3.A7.4A57.2A\$A57.A16.A44.A16.A
57.A\$.B2A53.A6.A3.A6.A43.3A15.2A53.3A\$3.A53.A6.A3.A6.A44.2A15.3A52.A\$
3.B.A51.A16.A46.A16.A51.A.A\$4.2A52.2A3.A5.A3.A48.4A7.A3.A52.2A161.3A\$
61.2A7.3A50.3A7.A222.A\$124.A231.A\$353.3A\$358.3A\$358.A\$356.3A\$355.A\$
67.A72.A216.2A\$65.5A68.A4.A198.3A13.3A\$64.4A.A68.A4.A197.A3.A12.2A\$6.
2A60.A69.AB3.A56.2A139.2A.2A\$6.A58.A2.A11.A.2A39.4A12.2A60.A139.A4.A\$
7.B2A52.A4.A9.A3.A.BA38.B2.A12.3A3.2A51.3A141.2A.2A\$9.A50.AB.A3.A9.A
4.A41.2A3.3A12.A2.B50.A143.A3.A5.2A\$9.B.A49.2A.A11.A2.A50.2A12.4A48.A
.A144.3A5.3A\$10.2A64.A50.A3.BA63.2A155.2A\$75.A.4A46.A4.A223.A\$75.5A
47.A4.A220.3A\$77.A52.A222.A\$351.3A\$356.3A\$128.A226.A\$129.A225.A\$127.
3A226.3A8\$357.A\$356.2A\$355.A.A\$355.A.A\$352.A3.2A\$352.BA3.A2\$353.ABA\$
136.A\$134.A.A207.A8.2A\$135.2A206.3A5.A\$342.A3.A4.A.A\$341.3A.3A\$341.A
4.A\$340.3A.3A\$341.A3.A12.A.A\$342.3A15.A\$343.A13.2A2\$356.ABA2\$354.A3.A
B\$354.2A3.A\$354.A.A\$354.A.A\$354.2A\$354.A4\$355.A\$354.2A\$353.A.A\$310.A
42.A.A\$308.2A40.A3.2A\$173.A135.2A39.BA3.A\$174.A\$172.3A176.ABA2\$315.A
26.A8.2A\$314.A26.3A5.A\$314.3A23.A3.A4.A.A\$339.3A.3A\$339.A4.A\$338.3A.
3A\$339.A3.A12.A.A\$340.3A15.A\$341.A13.2A2\$354.ABA2\$352.A3.AB\$352.2A3.A
\$181.A170.A.A\$179.A.A170.A.A\$180.2A170.2A\$352.A11\$172.2A\$172.A.A\$174.
A\$174.3A\$177.A\$176.2A6\$265.A\$263.2A\$218.A45.2A\$219.A\$217.3A2\$270.A\$
269.A\$269.3A3\$340.2A10.2A\$340.A11.A\$341.B2A9.3A\$343.A11.A\$177.A165.B.
A9.A.A\$176.3A165.2A10.2A\$175.3A.A\$174.A\$173.2A\$172.3A51.A\$173.2A4.2A
43.A.A\$225.2A2\$334.2A\$333.B.A\$333.A\$331.B2A\$330.A17.2A\$173.2A4.2A149.
2A15.A.A\$179.3A165.A\$179.2A164.3A\$179.A164.A\$174.A.3A43.3A119.2A\$175.
3A46.A\$176.A46.A11\$272.2A\$263.2A7.A.A\$262.2A8.A\$264.A29\$177.3A\$179.A\$
178.A166.A\$345.A\$344.2A\$332.B\$331.B.B14.A\$331.B.2A9.2A.2ABA\$331.A.A
11.A5.B\$345.A\$331.A3\$317.2A29.2A\$308.2A7.A.A14.A\$307.2A8.A\$309.A22.A.
A\$331.2A.B\$332.B.B\$333.B10.2A4\$348.A\$342.B5.A\$343.AB2A.2A\$345.A2\$348.
2A\$348.A\$348.A31\$175.3A\$174.A3.A\$174.A4.A\$180.A\$173.A6.A\$173.A6.A166.
3A\$174.A4.A\$176.2A172.A\$332.ABA10.A4.A\$332.A.A8.3A\$332.A9.B4.3A\$176.
2A155.A.A7.B\$174.A4.A\$173.A6.A153.A\$173.A6.A164.A\$173.A157.A12.A\$174.
A4.A164.A\$175.A3.A150.A.A\$176.3A154.A\$331.A.A\$331.ABA15.A\$349.A\$348.A
3\$350.B\$344.3A4.B\$348.3A\$343.A4.A\$343.A2\$344.3A9\$176.2A\$177.A\$174.2AB
\$174.A\$172.A.B\$172.2A30\$330.2A\$330.A\$331.ABA\$333.B\$333.A.A8.2A\$334.2A
8.A\$345.B2A\$347.A\$347.B.A\$348.2A!``````
EDIT2:(15,1)c/45 spaceship:

Code: Select all

``````x = 23, y = 44, rule = 2c7and3c14
8.B\$7.B.B\$6.2A.B8.3A\$7.A.A\$18.A.A\$9.A9.A\$21.A\$20.A.A\$15.A.A2.A.A\$6.A
8.A.A\$16.A\$6.A.A9.A\$6.B.2A7.A.A\$6.B.B\$7.B9.3A12\$3.2A\$2.B2.A6.A\$2.A.A
6.3A\$3.A6.A\$10.AB\$11.A\$15.A\$16.2A\$15.2A.A\$15.A3.A\$15.2A.2A\$14.AB2\$2.
3A\$.A.2A\$2A\$.A.2A\$2.3A!``````

Code: Select all

``````x = 268, y = 152, rule = 2c7and3c14
3.A\$.2A.2A\$.AB.2A\$.2A9.A\$3.A8.A\$11.A.A\$12.A\$12.2A\$13.2A5.3A\$13.A.A3.A
3.A\$2.A\$3.2A3.A.A9.A.A\$2A.BA4.2A12.A5.3A\$2A.2A5.2A5.2A4.2A4.3A\$2.A8.A
6.A8.A5.A\$10.A.A6.A.A5.A.A.A.A\$11.A27.A\$11.A6.A3.A3.A.A.A.A4.2A.2A\$
19.3A4.A5.A4.2A.2A\$28.3A\$28.3A5.2A.2A7.A\$36.2A.2A6.ABA\$38.A7.A2.A\$46.
ABA\$47.A9.A\$56.A.2A\$55.2A\$58.2A2\$65.ABA\$64.A2.A\$56.A\$56.B18.B\$64.BA8.
A.B\$64.ABA7.B.A\$60.2A12.A.A7.A\$75.BA7.A\$69.A.A2.B9.2A\$69.2A4.2A\$71.A
9.A11.A\$79.AB2A.2A6.2A\$78.B5.A6.A.A\$84.A6.A.A\$88.A3.2A7.BA\$88.BA3.A6.
A.A\$100.A.A\$80.2A7.ABA9.2A\$96.3A10.2A\$89.2A19.2A\$87.A12.A7.A.A\$87.A.A
5.A3.2A9.A\$98.B2A5.BA2.A8.A\$96.3A5.2A3.A8.3A\$84.A19.2A.3A7.3A.A\$83.B.
A19.3A8.A\$85.A29.2A\$81.A9.2A21.3A10.3A\$81.A3.A7.B21.2A4.2A3.A2.A\$82.A
2.A7.A8.A2.A19.A4.A\$91.3A7.A3.A19.A5.A\$90.2A.3A5.A.A.A19.4A.A6.A\$80.
2A19.A.A25.A5.2A.2A\$102.BA8.3A20.AB.2A\$90.2A10.AB6.3A3.A18.2A9.A\$90.
2A7.2A9.A5.A20.A8.A\$90.A8.A.A7.A2.2A2.A4.2A22.A.A\$99.A.A7.A3.BA6.3A
22.A\$99.AB8.A.A9.2A3.A19.2A\$108.2A11.A3.A.4A16.2A5.3A\$109.2A5.A.3A3.A
5.A16.A.A3.A3.A\$117.3A5.A4.A5.A\$118.A7.A2.A7.2A3.A.A9.A.A\$126.3A5.2A.
BA4.2A12.A5.3A\$134.2A.2A5.2A5.2A4.2A4.3A\$136.A8.A6.A8.A5.A\$144.A.A6.A
.A5.A.A.A.A\$145.A27.A\$145.A6.A3.A3.A.A.A.A4.2A.2A\$153.3A4.A5.A4.2A.2A
\$162.3A\$162.3A5.2A.2A7.A\$170.2A.2A6.ABA\$172.A7.A2.A\$180.ABA\$181.A9.A\$
190.A.2A\$189.2A\$192.2A2\$199.ABA\$198.A2.A\$190.A\$190.B18.B\$198.BA8.A.B\$
198.ABA7.B.A\$194.2A12.A.A7.A\$209.BA7.A\$203.A.A2.B9.2A\$203.2A4.2A\$205.
A9.A11.A\$213.AB2A.2A6.2A\$212.B5.A6.A.A\$218.A6.A.A\$222.A3.2A7.BA\$222.B
A3.A6.A.A\$234.A.A\$214.2A7.ABA9.2A\$230.3A10.2A\$223.2A19.2A\$221.A12.A7.
A.A\$221.A.A5.A3.2A9.A\$232.B2A5.BA2.A8.A\$230.3A5.2A3.A8.3A\$218.A19.2A.
3A7.3A.A\$217.B.A19.3A8.A12.3A\$219.A29.2A11.A2.A\$215.A9.2A21.3A10.A4.A
\$215.A3.A7.B21.2A4.2A4.A5.A\$216.A2.A7.A8.A2.A21.4A.A\$225.3A7.A3.A25.A
\$224.2A.3A5.A.A.A\$214.2A19.A.A\$236.BA8.3A\$224.2A10.AB6.3A3.A\$224.2A7.
2A9.A5.A\$224.A8.A.A7.A2.2A2.A4.2A5.A\$233.A.A7.A3.BA6.3A3.A.4A\$233.AB
8.A.A9.2A3.A5.A\$242.2A11.A5.A4.A\$243.2A5.A.3A7.A2.A\$251.3A8.3A\$252.A
9\$248.2A\$247.A2.A\$247.B.A3.2A\$248.A3.A2.A.A\$253.5A\$254.3A3\$263.2A\$
263.2A\$259.2A\$259.2A!``````
EDIT3:P360 (15,1)c/45 gun:

Code: Select all

``````x = 228, y = 467, rule = 2c7and3c14
6.2A\$6.A.A\$8.A\$8.3A\$11.A\$10.2A38\$34.B\$32.2A.2A\$22.2AB10.2A\$22.B2A10.A
\$32.AB.AB\$23.A11.A3.A\$22.BA4.B11.A\$22.AB4.B10.A\$26.2A12\$34.2A\$32.2A2.
2A\$22.2A7.A2.A.A\$21.B4.BA3.A.A.A2.2A\$21.B4.AB3.2A3.A.2A\$26.A7.AB3A\$
34.B2A\$25.2AB\$25.B2A5\$31.A\$30.5A6.A\$29.7A3.A.A\$27.2A3.A6.A.A\$26.3A4.A
5.2A\$26.2A\$28.2A\$28.2A\$24.2A\$24.2A\$28.2A\$28.2A4\$166.2A\$165.A.A\$165.B\$
163.ABA\$162.A\$162.2A20\$5.A132.A\$4.3A131.A83.2A\$3.3A.A100.A50.2A61.A.A
\$2.A105.A46.A4.B63.A\$.2A75.A50.2A2.A2.BA17.BA3.A63.3A\$3A75.A46.A4.B.A
3.AB17.AB2.A67.A\$.2A4.2A39.A50.2A2.A2.BA17.BA3.A.B4.A88.2A\$48.A46.A4.
B.A3.AB17.AB2.A2.2A\$69.2A2.A2.BA17.BA3.A.B4.A46.A\$65.A4.B.A3.AB17.AB
2.A2.2A50.A\$43.A2.BA17.BA3.A.B4.A46.A\$42.A3.AB17.AB2.A2.2A50.A\$42.B4.
A46.A\$42.2A50.A\$.2A4.2A55.A\$7.3A54.A\$7.2A\$7.A32.B\$2.A.3A31.2A.2A\$3.3A
35.2A\$4.A36.A\$38.AB.AB\$41.A3.A\$46.A\$45.A14\$38.A\$37.A\$38.A3.A\$41.BA.BA
\$42.A\$41.2A\$41.2A.2A\$43.B4\$30.2AB\$30.B2A2\$31.A\$30.BA4.B\$30.AB4.B\$34.
2A14\$30.2A\$29.B4.BA\$29.B4.AB\$34.A2\$33.2AB\$33.B2A4\$32.2AB\$32.B2A2\$33.A
\$32.BA4.B\$32.AB4.B\$36.2A9\$167.3A\$166.A3.B\$166.2A3.A\$167.A2.B\$169.A\$
32.2A\$31.B4.BA\$31.B4.AB\$36.A2\$35.2AB130.A\$35.B2A129.B2.A\$166.A3.2A\$
167.B3.A\$168.3A\$34.2AB\$34.B2A86.2A\$122.AB\$35.A88.A\$34.BA4.B\$34.AB4.B\$
38.2A9\$3.3A\$2.A3.A\$2.A4.A\$8.A\$.A6.A\$.A6.A25.2A\$2.A4.A25.B4.BA\$4.2A27.
B4.AB\$38.A2\$37.2AB\$4.2A31.B2A\$2.A4.A\$.A6.A\$.A6.A\$.A34.2AB\$2.A4.A28.B
2A\$3.A3.A\$4.3A30.A\$36.BA4.B\$36.AB4.B\$40.2A14\$36.2A\$35.B4.BA\$35.B4.AB\$
40.A2\$39.2AB\$39.B2A52\$169.A\$167.2A.2A\$167.AB.2A\$167.2A\$169.A6\$168.A\$
41.2A126.2A\$42.A123.2A.BA\$39.2AB124.2A.2A\$39.A128.A\$37.A.B\$37.2A21\$
10.2A\$11.A\$8.2AB\$8.A\$6.A.B\$6.2A86\$162.2A\$162.A\$163.3A\$165.A\$165.A.A\$
166.2A!``````

Posted: August 18th, 2019, 7:20 am
Less obtrusive (the long way) G gun by replacing eleveners w/ eaters on blocks, a construct which may prove useful sometime.

Code: Select all

``````x = 102, y = 10, rule = 2c7and3c14
95.A\$95.A\$33.2A32.2A\$2.2A28.AB.A30.A.A29.2A\$.A.A29.A.BA29.A.A29.A.A\$.
A32.2A30.2A32.A\$2A98.2A2\$2A98.2A\$2A98.2A!
``````
Eater on block is 1 row taller but two columns shorter:

Code: Select all

``````x = 8, y = 20, rule = 2c7and3c14
A\$A\$A\$2.2A\$2.A.A\$4.A\$4.2A2\$4.2A\$4.2A2\$A\$A\$A\$2.2A\$2.A.A\$4.A\$4.3A\$7.A\$
6.2A!

``````
EDIT:
Here's a rule request--an HROT rule which supports the G.

Posted: August 18th, 2019, 10:24 am
FWKnightship wrote:EDIT3:P360 (15,1)c/45 gun:

Code: Select all

``````x = 228, y = 467, rule = 2c7and3c14
6.2A\$6.A.A\$8.A\$8.3A\$11.A\$10.2A38\$34.B\$32.2A.2A\$22.2AB10.2A\$22.B2A10.A
\$32.AB.AB\$23.A11.A3.A\$22.BA4.B11.A\$22.AB4.B10.A\$26.2A12\$34.2A\$32.2A2.
2A\$22.2A7.A2.A.A\$21.B4.BA3.A.A.A2.2A\$21.B4.AB3.2A3.A.2A\$26.A7.AB3A\$
34.B2A\$25.2AB\$25.B2A5\$31.A\$30.5A6.A\$29.7A3.A.A\$27.2A3.A6.A.A\$26.3A4.A
5.2A\$26.2A\$28.2A\$28.2A\$24.2A\$24.2A\$28.2A\$28.2A4\$166.2A\$165.A.A\$165.B\$
163.ABA\$162.A\$162.2A20\$5.A132.A\$4.3A131.A83.2A\$3.3A.A100.A50.2A61.A.A
\$2.A105.A46.A4.B63.A\$.2A75.A50.2A2.A2.BA17.BA3.A63.3A\$3A75.A46.A4.B.A
3.AB17.AB2.A67.A\$.2A4.2A39.A50.2A2.A2.BA17.BA3.A.B4.A88.2A\$48.A46.A4.
B.A3.AB17.AB2.A2.2A\$69.2A2.A2.BA17.BA3.A.B4.A46.A\$65.A4.B.A3.AB17.AB
2.A2.2A50.A\$43.A2.BA17.BA3.A.B4.A46.A\$42.A3.AB17.AB2.A2.2A50.A\$42.B4.
A46.A\$42.2A50.A\$.2A4.2A55.A\$7.3A54.A\$7.2A\$7.A32.B\$2.A.3A31.2A.2A\$3.3A
35.2A\$4.A36.A\$38.AB.AB\$41.A3.A\$46.A\$45.A14\$38.A\$37.A\$38.A3.A\$41.BA.BA
\$42.A\$41.2A\$41.2A.2A\$43.B4\$30.2AB\$30.B2A2\$31.A\$30.BA4.B\$30.AB4.B\$34.
2A14\$30.2A\$29.B4.BA\$29.B4.AB\$34.A2\$33.2AB\$33.B2A4\$32.2AB\$32.B2A2\$33.A
\$32.BA4.B\$32.AB4.B\$36.2A9\$167.3A\$166.A3.B\$166.2A3.A\$167.A2.B\$169.A\$
32.2A\$31.B4.BA\$31.B4.AB\$36.A2\$35.2AB130.A\$35.B2A129.B2.A\$166.A3.2A\$
167.B3.A\$168.3A\$34.2AB\$34.B2A86.2A\$122.AB\$35.A88.A\$34.BA4.B\$34.AB4.B\$
38.2A9\$3.3A\$2.A3.A\$2.A4.A\$8.A\$.A6.A\$.A6.A25.2A\$2.A4.A25.B4.BA\$4.2A27.
B4.AB\$38.A2\$37.2AB\$4.2A31.B2A\$2.A4.A\$.A6.A\$.A6.A\$.A34.2AB\$2.A4.A28.B
2A\$3.A3.A\$4.3A30.A\$36.BA4.B\$36.AB4.B\$40.2A14\$36.2A\$35.B4.BA\$35.B4.AB\$
40.A2\$39.2AB\$39.B2A52\$169.A\$167.2A.2A\$167.AB.2A\$167.2A\$169.A6\$168.A\$
41.2A126.2A\$42.A123.2A.BA\$39.2AB124.2A.2A\$39.A128.A\$37.A.B\$37.2A21\$
10.2A\$11.A\$8.2AB\$8.A\$6.A.B\$6.2A86\$162.2A\$162.A\$163.3A\$165.A\$165.A.A\$
166.2A!``````
P180 one:

Code: Select all

``````x = 123, y = 211, rule = 2c7and3c14
70.B\$69.A.B16.2A\$12.2A55.A5.2A9.A4.A\$12.A55.2A4.A11.A4.A\$13.B2A70.A4.
A\$15.A49.A4.A\$15.B.A47.A4.A11.A4.2A\$16.2A47.A4.A9.2A5.A\$67.2A16.B.A\$
86.B5\$95.3A\$2A95.A\$A.A93.A\$2.A\$2.3A\$5.A\$4.2A6\$116.B\$115.A.A\$114.BA.2B
\$114.2A.A\$115.B.A\$117.B4.A\$116.A3.A.A\$121.A8\$5.A\$4.3A\$3.3A.A\$2.A\$.2A\$
3A\$.2A4.2A105.A\$113.A.A3.A\$113.A4.B\$118.A.B\$118.A.2A\$117.2B.AB\$118.A.
A\$119.B\$.2A4.2A\$7.3A\$7.2A\$7.A\$2.A.3A43.3A\$3.3A46.A\$4.A46.A40\$119.2A\$
120.A\$117.ABA\$5.3A109.B\$7.A107.A.A\$6.A108.2A59\$3.3A\$2.A3.A\$2.A4.A\$8.A
\$.A6.A\$.A6.A\$2.A4.A\$4.2A4\$4.2A\$2.A4.A\$.A6.A\$.A6.A\$.A\$2.A4.A\$3.A3.A\$4.
3A22\$4.2A\$5.A\$2.2AB\$2.A\$A.B\$2A!``````

Posted: August 18th, 2019, 12:00 pm
This is getting off-topic but I made a 3c/14 p2912 puffer:

Code: Select all

``````x = 341, y = 31, rule = 2c7and3c14
8.3A3.3A307.3A3.3A\$7.A3.A.A3.A305.A3.A.A3.A\$7.A3.A.A3.A305.A3.A.A3.A\$
7.A3.A.A3.A305.A3.A.A3.A\$5.A2.3A3.3A2.A301.A2.3A3.3A2.A\$5.A13.A301.A
13.A\$5.A13.A301.A13.A3\$31.2A\$31.A.A\$31.A13\$3.3A3.3A20.3A3.3A259.3A3.
3A20.3A3.3A\$2.A3.A.A3.A18.A3.A.A3.A257.A3.A.A3.A18.A3.A.A3.A\$2.A3.A.A
3.A18.A3.A.A3.A257.A3.A.A3.A18.A3.A.A3.A\$2.A3.A.A3.A18.A3.A.A3.A257.A
3.A.A3.A18.A3.A.A3.A\$A2.3A3.3A2.A14.A2.3A3.3A2.A253.A2.3A3.3A2.A14.A
2.3A3.3A2.A\$A13.A14.A13.A253.A13.A14.A13.A\$A13.A14.A13.A253.A13.A14.A
13.A!
``````
Smaller oblique ship gun:

Code: Select all

``````x = 108, y = 188, rule = 2c7and3c14
56.2B\$58.A14.AB2.BA\$58.A14.B2A.2A\$77.AB\$52.BA\$52.2A.2AB14.A\$52.AB2.BA
14.A\$2A2.2A67.2B\$2A2.2A2\$2A\$.A\$.A.A79.AB\$2.2A80.AB\$83.A10\$103.B\$102.B
AB\$102.B.A3\$103.A.A\$103.B.A\$104.B14\$5.3A\$4.A3.A\$105.B\$5.A.A96.A.B\$8.A
95.A.A\$2.2A4.2A\$3.A\$4.A.A98.A.B\$105.BAB\$3.A3.A98.B\$4.3A2\$38.AB\$39.AB\$
38.A16\$3.3A\$2.A3.A2\$3.A.A\$6.A\$2A4.2A\$.A\$2.A.A2\$.A3.A\$2.3A15\$106.2A\$
107.A\$104.ABA\$104.B\$102.A.A\$102.2A3\$3.A\$.2A.2A\$.2A.2A\$2.A.A\$.A4.A\$.A.
2B.A\$.A4.A\$3.A.A\$2.2A.2A\$2.2A.2A\$4.A20\$5.A\$3.2A.2A\$3.2A.2A\$4.A.A\$3.A
4.A\$3.A.2B.A\$3.A4.A\$5.A.A\$4.2A.2A\$4.2A.2A\$6.A38\$8.2A\$8.2A!
``````
Rule request: a version of WWEJ3 where it's a lot harder to accidentally create p3 signal factories

Posted: August 18th, 2019, 2:05 pm
Can there be a manual for creating rules or something that explains this

Code: Select all

``````0,0,1,0,1,0,Aa,0,0,1
0,0,1,0,Aa,0,1,0,0,1
0,0,Aa,0,1,0,1,0,0,1
0,1,0,1,0,Aa,0,0,0,1
0,1,0,Aa,0,1,0,0,0,1
0,Aa,0,1,0,1,0,0,0,1
0,1,0,1,0,0,Aa,0,0,1
0,1,0,Aa,0,0,1,0,0,1
0,Aa,0,1,0,0,1,0,0,1
0,1,1,Aa,0,0,0,0,0,1
0,1,Aa,1,0,0,0,0,0,1
0,Aa,1,1,0,0,0,0,0,1
0,1,1,0,0,0,0,0,Aa,1
0,1,Aa,0,0,0,0,0,1,1
0,Aa,1,0,0,0,0,0,1,1
0,1,1,0,Aa,0,0,0,0,1
0,1,Aa,0,1,0,0,0,0,1
0,Aa,1,0,1,0,0,0,0,1
0,1,0,0,1,0,Aa,0,0,1
0,1,0,0,Aa,0,1,0,0,1
0,Aa,0,0,1,0,1,0,0,1
0,1,1,0,0,0,Aa,0,0,1
0,1,Aa,0,0,0,1,0,0,1
0,Aa,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,Aa,0,1
0,1,Aa,0,0,0,0,1,0,1
0,Aa,1,0,0,0,0,1,0,1
0,1,1,0,0,Aa,0,0,0,1
0,1,Aa,0,0,1,0,0,0,1
0,Aa,1,0,0,1,0,0,0,1
1,0,Aa,0,Ab,0,0,0,0,1
1,Aa,0,Ab,0,0,0,0,0,1
1,Aa,0,0,Ab,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,0,1
1,Aa,0,0,0,Ab,0,0,0,1
1,0,Aa,0,0,0,Ab,0,0,1
1,0,Aa,0,Ab,0,Ac,0,0,1
1,Aa,0,Ab,0,Ac,0,0,0,1
1,Aa,0,Ab,0,0,Ac,0,0,1
1,Aa,Ab,Ac,0,0,0,0,0,1
1,Aa,Ab,0,0,0,0,0,Ac,1
1,Aa,Ab,0,Ac,0,0,0,0,1
1,Aa,0,0,Ab,0,Ac,0,0,1
1,Aa,Ab,0,0,0,Ac,0,0,1
1,Aa,Ab,0,0,0,0,Ac,0,1
1,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1
0,0,2,0,2,0,Aa,0,0,1
0,0,2,0,Aa,0,2,0,0,1
0,0,Aa,0,2,0,2,0,0,1
0,2,0,2,0,Aa,0,0,0,1
0,2,0,Aa,0,2,0,0,0,1
0,Aa,0,2,0,2,0,0,0,1
0,2,0,2,0,0,Aa,0,0,1
0,2,0,Aa,0,0,2,0,0,1
0,Aa,0,2,0,0,2,0,0,1
0,2,2,Aa,0,0,0,0,0,1
0,2,Aa,2,0,0,0,0,0,1
0,Aa,2,2,0,0,0,0,0,1
0,2,2,0,0,0,0,0,Aa,1
0,2,Aa,0,0,0,0,0,2,1
0,Aa,2,0,0,0,0,0,2,1
0,2,2,0,Aa,0,0,0,0,1
0,2,Aa,0,2,0,0,0,0,1
0,Aa,2,0,2,0,0,0,0,1
0,2,0,0,2,0,Aa,0,0,1
0,2,0,0,Aa,0,2,0,0,1
0,Aa,0,0,2,0,2,0,0,1
0,2,2,0,0,0,Aa,0,0,1
0,2,Aa,0,0,0,2,0,0,1
0,Aa,2,0,0,0,2,0,0,1
0,2,2,0,0,0,0,Aa,0,1
0,2,Aa,0,0,0,0,2,0,1
0,Aa,2,0,0,0,0,2,0,1
0,2,2,0,0,Aa,0,0,0,1
0,2,Aa,0,0,2,0,0,0,1
0,Aa,2,0,0,2,0,0,0,1
2,0,Aa,0,Ab,0,0,0,0,1
2,Aa,0,Ab,0,0,0,0,0,1
2,Aa,0,0,Ab,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,0,1
2,Aa,0,0,0,Ab,0,0,0,1
2,0,Aa,0,0,0,Ab,0,0,1
2,0,Aa,0,Ab,0,Ac,0,0,1
2,Aa,0,Ab,0,Ac,0,0,0,1
2,Aa,0,Ab,0,0,Ac,0,0,1
2,Aa,Ab,Ac,0,0,0,0,0,1
2,Aa,Ab,0,0,0,0,0,Ac,1
2,Aa,Ab,0,Ac,0,0,0,0,1
2,Aa,0,0,Ab,0,Ac,0,0,1
2,Aa,Ab,0,0,0,Ac,0,0,1
2,Aa,Ab,0,0,0,0,Ac,0,1
2,Aa,Ab,0,0,Ac,0,0,0,1``````