Gems (B3457/S4568)

For discussion of other cellular automata.
Post Reply
muzik
Posts: 3774
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Gems (B3457/S4568)

Post by muzik » August 24th, 2017, 8:45 am

The rule contains the famous c/5648 spaceship, currently the slowest known non-adjustable-speed spaceship in any range-1 Life-like rule.

Code: Select all

x = 12, y = 14, rule = B3457/S4568
4bo2bo$4b4o$2b8o$2b2ob2ob2o$obobo2bobobo$2ob6ob2o$ob3o2b3obo$3ob4ob3o$
2ob6ob2o$b3o4b3o$b3o4b3o$3b2o2b2o$3bo4bo$5b2o!
This rule also supports high-period oscillators, such as this p62:

Code: Select all

x = 10, y = 10, rule = B3457/S4568
4bo$2bobobo$2b7o$b7o$2b8o$8o$2b7o$b7o$3bobobo$5bo!
p52:

Code: Select all

x = 8, y = 8, rule = B3457/S4568
3bobo$bob3o$2b3ob2o$4ob2o$2bob4o$2ob3o$2bobobo$2bobo!
p64:

Code: Select all

x = 9, y = 10, rule = B3457/S4568
4bo$4b3o$2b5o$2bob5o$5o2bo$bo2b5o$5obo$2b5o$2b3o$4bo!
p30:

Code: Select all

x = 8, y = 8, rule = B3457/S4568
4bo$2b3obo$2b4o$ob6o$b6o$7o$2b2o$2bobo!
I don't even know what period this one is:

Code: Select all

x = 9, y = 11, rule = B3457/S4568
5bo$3bo$3b5o$b4o2bo$bo2b2o2bo$ob2o3bo$bo2b2o2bo$b4o2bo$3b5o$3bo$5bo!
This rule has dynamics similar to LongLife if searched on one-cell-thick soups, although I highly doubt this will result in any interesting patterns showing up:
http://catagolue.appspot.com/census/b3457s4568/1x256

Unfortunately this rule is explosive and cannot be conventionally soup searched.

Research has been conducted into seeing if any lower-period spaceships exist in this rule. Could any higher-period spaceships exist?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
BlinkerSpawn
Posts: 1942
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Gems (B3457/S4568)

Post by BlinkerSpawn » August 24th, 2017, 9:53 am

muzik wrote:I don't even know what period this one is:

Code: Select all

x = 9, y = 11, rule = B3457/S4568
5bo$3bo$3b5o$b4o2bo$bo2b2o2bo$ob2o3bo$bo2b2o2bo$b4o2bo$3b5o$3bo$5bo!
Talked to my good friend oscar.lua and he told me pretty much right away it was p706:

Code: Select all

x = 9, y = 11, rule = B3457/S4568
5bo$3bo$3b5o$b4o2bo$bo2b2o2bo$ob2o3bo$bo2b2o2bo$b4o2bo$3b5o$3bo$5bo!
[[ STOP 706 ]]
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

muzik
Posts: 3774
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Gems (B3457/S4568)

Post by muzik » August 24th, 2017, 12:45 pm

An oscillator which closely resembles the spaceship:

Code: Select all

x = 15, y = 32, rule = B3457/S4568
5bobo$5b2ob2o$3b2obob2o$3b2obo3b2o$b5o5bo$bob6obo2bo$bob6obo2bo$b5o5bo
$3b2obo3b2o$3b2obob2o$5b2ob2o$5bobo5$8bo$6b3o$6b2ob2o$4b2o4bo$4b2o3b4o
$2b2o2bo3bobo$2b4o7b2o$7o3b5o$7o3b5o$2b4o7b2o$2b2o2bo3bobo$4b2o3b4o$4b
2o4bo$6b2ob2o$6b3o$8bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

muzik
Posts: 3774
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Gems (B3457/S4568)

Post by muzik » August 24th, 2017, 2:29 pm

p258 and p434:

Code: Select all

x = 25, y = 61, rule = B3457/S4568
2$10b4o$10b4o$8b8o$8b8o$6b12o$7b2ob4ob2o$7b2ob4ob2o$9b6o$9b6o2$11b2o
33$10b4o$10bo2bo$8b8o$8bo2b2o2bo$6b2o3b2o3b2o$7b10o$7b3o4b3o$9b6o$9b6o
2$11b2o!
p72:

Code: Select all

x = 7, y = 7, rule = B3457/S4568
2bobo$2b3o$o4b2o$bo2b2o$3ob2o$2b2o$2b2o!
p98:

Code: Select all

x = 9, y = 9, rule = B3457/S4568
3bobo$b2ob2o$3b5o$8o$bo3b4o$8o$3b5o$b2ob2o$3bobo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

muzik
Posts: 3774
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Gems (B3457/S4568)

Post by muzik » August 26th, 2017, 2:28 pm

Possibly the happiest p26 I have ever seen:

Code: Select all

x = 20, y = 9, rule = B3457/S4568
3b2o10b2o$15b2o$b6o6b6o$b6o6b6o$ob4obo4bo2b2o2bo$b6o6b6o$2ob2ob2o4b2ob
2ob2o$2bo2bo8bo2bo$2b4o8b4o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
Layz Boi
Posts: 71
Joined: October 25th, 2018, 3:57 pm

Re: Gems (B3457/S4568)

Post by Layz Boi » December 28th, 2019, 10:38 pm

Have there been any new ships found in this rule yet?



Some osc because I'd feel weird necro-ing this thread without posting something:

Code: Select all

x = 236, y = 221, rule = B3457/S4568
42bo14bo42bobo$31bobobo4b5o53bobobobo$5bo25bobobo5b3o3bo2bo6b3o15bobo
20b7o8bobo11bobo$5b3o16bobo3b5ob2o2b5o3b3o3bob3o7bobo7b2o12bo5b4obob4o
6b2o12b5o6bo32bo$3b4o4bobo5bo4b3o4bo4bo4b3o3b5o4b4o6b3o6bo2bo9bobobo6b
5o7b5o4bobo2b3obobo15bo9bo12b4o$4b5o3bob2o7bobobo2b5ob2o3bobo5bo6bobo
5b7o5b2o11b4o3b4obob4o4bob2o3b2obo4b2ob4o3b2ob2o6bobo7b3o11b3o27bo$3b
4o4bo2bo3b3o3bobo4bobobo28b2obob2o4b4o2bobo3b3o3bo4b7o4b7o3b4o2bobo3b
o13b4o6b5o10b2ob2o14b2o8bo2b2o$5b3o4b3o8bobobo3bobobo26b3ob3ob3o3b2o4b
2o5b4o5bobobobo4b2o7b3o5bob5o2b2o4bo4bob3o4b4obo10bobo4bobo19b3o$5bo6b
o33bobo7bo6b9o3b4o2b4o3bobobo7bobo8b5o4bo5b2ob2o13bo2b2o4b3obo12bobob
o3b3o6b2o2b2o5bob4o15b4o$46b5o3bo3bo3b3ob3ob3o3b2o4b2o6bo20b2o15bobo6b
2ob2o3b4o6b6o16b2ob2o5b2o2b2o6b5o15b4o$24bobo4bobo4bo5b2o3bo5b3o6b2ob
ob2o4b4o2bo2bo28bo30b3o6b3obo19b2obo4b4o2b4o3b4o15b8o$6bo6bo4bobo3b3o
4b3o3b2obo3bo5bo2b2obob2o4b7o5b2o4b2o39bo15bo6bo8b4obo9bobo6b3o5bob2o
bo6b3o15b8o$4b4o3b3o3b3o3b2ob2o2bobobo3b2o3bo5bo5b3o8b3o6bob2o2bob2o15b
obo18b3o6bo24b5o8bo2bo2bo4bo4b2ob6ob2o3bo15b2o3b2o3b2o$5b3o4b3o3b3o3b
3o4b3o3b2obo3bo3b2o4bo3bo7bobo8bo5bo8bo7bobo6bobo9bob3o2bob3o24b3o8b3o
b3o12bob2obo22b2o8b2o$4b4o4bo4bobo4bobo4bobo4bo4b5o8bo33b3o5bo3bobo3b
3o8b4obo3b2obo4bobobo16bo8b2ob5ob2o8b4o2b4o18bob12obo$6bo38bobo42bob3o
4bo2b3o5b4o6b5o5b3o3b2ob2o4b3o18b2ob5ob2o10b2o2b2o5bobobo10bob12obo$69b
o8bo9b2obobo4b8o2b5o4b2ob3o7bo4b2o2bobo2b2obobo18b3ob3o12b2o2b2o3b7o12b
2o8b2o$18bo7bo7bobo32b3o4b2ob2o7bobob2o6bobobo5b4o4bo3bo14b4o4bobo9b2o
9bo2bo2bo21bob3o2b2o10b2o3b2o3b2o$7b2o7b5o3b5o3bob4o3bobo5bobo5bobobo
5b5o4bobobo5b2obobo8b5o4bobo6b3o16b4o4bobo9b2o11bobo6bobobo5b2o4b7obo
13b8o$7b2o7b5o5bo7b3o4b5o3b3o5b2obo6bobob2o2b2obob2o4b3ob2o10bo17bo7b
obo8bo16bob3o16bobobobobo10b9o5bobo4b8o$5b2o2b2o4b7o2b5o2b7o2b5o3b2ob
3o2bob2obo3b5obo3b7o2b6o37b4o26bobo3bo15bobobobobo7b9o4b2obo7b4o7bo$5b
6o5b5o4bobo4bobo6b5o3bob2o4bob2o5b6o5bobo5b5o18bobo17b4o15bobobo4b2ob
2o3b2o7bo7bobobo10bob7o3bob3obo4b4o5b3o$3b10o3b5o4bobo4b3obo4bobo4b3o
bo4b2ob2o3b5o7bobo5b3o12bo8b2o10bobo3b4o7bobo6b3obo5b3o3b2o6b5o19b2o2b
3obo3bobobobo14b2ob2o$5b6o7bo15bo15bo8bo7b3o17bo10bo7b2ob3o8b3obo3bob
o5b2ob3o3b3ob5o3b4o3b2o5b2ob2o21b7o4b4o14b2o2b3o$5b2o2b2o56bo30bobobo
3b5o3b3o5b2o4bo8b4o5b7o6bo4bo4b9o8bobobo6bobobo5bobo2b2o12b3obob3o$7b
2o19bobo12bobo27bo6bobo13b7o5bo2bo8bob3o10b5obo2b10o15b9o8b2obo20bobo
6bo6b3obob3o$7b2o17bobobo5bo6bob3o11bo11b5o5bo5bobobo5b7o4b3o4b3o3b2o
13bob3o4b7o15b3ob5ob3o5b4obo18bo16b2o2b3o$16bobo7b6o2bobobo3b4o4b4o3b
5o3bobo5b3o4bobo5b5o4b4obo7bo9bobo6bobo4b3obo3b5ob3o8bo5b3ob5ob3o6b2o
bo5bobobo17b5o6b2ob2o$14b5o6b3ob2o4b4o6b3o3bobo3b4o4b4o2b3ob3o9b5o8bo
b2o25b3o6bo7bob3o8b3o7b9o8b5o2b4ob2o28b3o$6bo7b2ob4o6b3obo3bobobo2b4o
4b3o3b3ob2o3b3o5b4o11bob3o6bobo26bobobo13bobobo8b2ob2o5b9o10bo4b4ob2o
5bobobobo3b3o3b3o6bo$6bo6bob3ob2o6bobo7bo5bob3o4bo4b3o5b4o4bobobo5bo3b
5o20bobo7bo6b3o25b6o8b2ob2o6b2o4bobo4bobobo5b3ob4o$4b5o6b3obobo21bobo
11bobo15bo5bobo4bobobo19b3o7b3o3bobobo6bobobo13bob2ob2o7b5o6b2o19b7ob
o3b2o5b2o$4bobobo4bob3ob2o60bob2o20bo5b2o2b2o3b5o4b3o7b4o13b7o10bo6b6o
18b2o4b3o$4bobobo5b2ob4o12bobo15bo28b3o14bo7b3o4b4o5b4o3b2ob2o4b7o3bo
bo8b2ob2o18bo2bo8bobobo5b3o4bo4b3o3b3o$4b5o5b5o12b3ob3o4bo6b5o5bobobo
6bobo8b3o4bo8b3o3b5o3b5o4b5o5bo6b2obo7b2o8b3o17b2obo2bob2o5b5o7bo4b3o
$6bo9bobo14bobo4b3o6bo2b2o3b2obob2o6b3o8bo6bobo4b5o5b4o4bo7b2o12b3ob3o
3b2o3b2o8bo6bobo9b3o2b3o4b3ob5o3b3o4b2o5b5o$6bo24b7o3b4o2b8o3b8o2bobo
bobo13b2o6bob3o3b3o13bobo13bob2o5b2ob4o15b2o8b2o2b4o2b2o3bob2ob2o5bob
7o$33bobo4b4o4bo3bo4b2obob2o5b2ob2o15bobo3b4o7bo20bobo5bobobo8bob2o13b
5obo6b10o3b4ob4o3b4ob3o8bo$25bo5b3ob3o3b3o4bobobo6bobobo4bo5bo5bo8bo6b
obo18b2o6b2ob4o15bobobo6b2o6bob3o6b2o2b4o2b2o3b2ob2obo5bobobobo$7bo5b
ob2o6bob3o5bobo5bo8bo18b2ob2o4b2ob2o34b2o7bo2b2o18bo8b2o5b7o7b3o2b3o4b
5ob3o21b4o$5b3obo3b4o7b4o40bobobobo3b5o32b6o4b2o2b2o8bo16b3ob2o4bobob
o7b2obo2bob2o5b5o23b4o$5b4o3b2obob2o2b8o31bo9b3o4bobobobo3bo5bo7b4o10b
2ob3o6b2o10bo17b5o19bo2bo8bobobo6bobo12bob4obo$3b2obobo4b3obo4b5o5bob
o7bobo7bo7b3o7bobo6bobo11bobo5b4o8b4ob4o5b2o8b5o3bobobo7bob3o18b6o16b
5o12b8o$5bo6b4ob2o2b5obo4bob3o3b2ob2o5b2ob2o3b2obo17bobo4b3o2b2ob2o4b
3ob2o3bo4b3ob2o18b3o3b2ob4o8b3o20b2o18bo2bob2o8b2obo4bob2o$4bobo7b3o6b
3o5b4o5bo2b4o4bobo5b3o24b3o4bob3o3bob2o4b2o3b6o17bobobo3b3obo9bo22b2o
11bo5b2obob2o9bob8obo$14bobo6bobo7b4o2b4ob2o3b2o3b2o3bo9bobo15bo4b5o3b
ob3o3b2o6b2o13bobo4b3o3bobob2o23bobo19b3o4b2obob2o8bob8obo$31b3obo4b4o
2bo4b3o13b3obo6bo7b3o5b3o5bo7bo5b2o4bobo4bo2bo4b2ob2o4b2o23b2ob2o17b5o
3b2obo2bo9b2obo4bob2o$4bobo26bobo4bob2obo5bobo13b2obob2o4b3o13bo27b3o
4b6o4bo5bobo8b4o4bobo4b7o7bobo6b5o4b5o4bobo4b8o$3b4o8bobo8bobo12b5o14b
o4b2ob2obo4bo3bo40b2ob2o2b4o24b3o5b4o2bob5o8b2ob2o3b2o2bo5bobo6b2o5bo
b4obo$4bob3o6b3o6b2ob2o14bo14bobo4b6ob2o3bob4o21bobo5bobobo5b3o3b3obo
21b2o2b2o2b5o4b5obo7b2ob2o5b4o11b3obo6b4o$3b6o4b4ob2o5b2ob2o22bo5bobo
3b2ob6o3bob3obo6bo6bo5b7o3b3obo4b5o4bo9bobo7bo4b4o4b5o2b7o8b3ob2o3b3o
14bobo7b4o$5b2ob2o3b3obobo5bobo4b4o16b3o5bo5bob2ob2o4bobo2b2o3b5o3b3o
5bobobo3b4ob3o4bo14bob4o4b4o3b5o2b5o5b2ob2o10b3o6bo13bobobo$5b4o3b2ob
2ob4o10b4o6bobo5b5o9b2obob2o6b2obo6b2ob2o4bo5b7o3b3ob2o3b5o12b2ob3o4b
3o6bo5b5o4bobo5bobo4bob2o14bo22bo$7bobo3b3obobo11b2obob2o2b3ob3o3b6o10b
ob3o8bobo4bob3obo3bobo5bobo5bobobobo3b3o6bo5b4o2b2o2b5o10b4o14b3o6bo13b
5o8bo9b5o$13b4ob2o7bo5b4o4b2ob2o4bob3o5bo5bobo18b5o4bobo22b2ob2o3b2ob
2o5b5o5bo13bobo12b7o11b2o5b3obo8bobo7b5o$15b3o7b3o5b4o4b2ob2o4bob3o3b
2o26bobobobo5bo23b3o4b5o5bob3o3bo3bo5bo20b7o20bob3o4bob2o6b3obob3o$6b
obo6bobo7b2ob2o13bo8bo7b2o17bo24bobo5bobo7bobo4b2ob2o7bo6b3o4b5o16b2o
b5ob2o7b6o5b5o4b3obo5bob5obo$6b2ob2o13b6o29bo10bo6bobo24b3obo3b3o16bo
15bobobo3b2ob2o8bo7b3ob3ob3o7b6o7bo5b3o6b3ob5ob3o$4b5obo14b6o40b2o4bo
3bo14bobo4b3obo3b5o32b3o3bob6o4b3o5b6obob6o3b2o2b2o2b2o12b3o5b3ob5ob3o
$4b2obobobo4bobo5bo3b2o7bo7bo7bo16b2o3bo5bo4bo8b4o6b4o3b3o6bobo20bo3b
obo4b7o7b2o4b13o4b2o2b2o2b2o12bo9bob5obo$2b3obob3o5b3o6b2ob2o5b5o5b3o
3b3o9bobo6bo4bo3bo4bobo7b2o2bo4b3o3b4o4b5o11bobo6bo9bob4ob2o3b2ob2o3b
6obob6o3b2o2b2o2b2o5bobo14b3obob3o$3bobobob3o2b4ob2o4bobo7b3obo3b4o4b
2ob2o5b7o9bobo5b4o6b3o2bo6bo11b2ob3o2b4o4b3o4b4o9bob5o6b2obo4b3ob3ob3o
5b2o2b2o2b2o5b3o16b5o$bo2bobob2o5b3ob2o12b3ob4o3b4o2b2o2b2o6b3ob2o11b
o7b4o5b3o19bobo2bo4b2o3bo4b2o4bo10b2obob2o6b3o5b2ob5ob2o7b6o5b2obob2o
5b4o5b5o$3bobob3o4b2o2bob2o11b2obob2o3bobo5b2obob2o3b8o3bo13b2o2bo5bo
bo20b6o2bo2bo3b2o2bo18bobo10bo7b7o9b6o5b6o6b4o7bo$b4ob2o8b2ob2o11b4ob
3o5bo5b2obob2o4b2ob3o4b3o13bob3o14bo10bobo2bo4b2o3bo3b3o24bo13b7o19b8o
3b3o2b2o$3bo3bo8b6o11bob3o15b2o2b2o3b7o2b2obo5b2o6b2obo13b3o11b2ob3o2b
4o4b4o9bobo13b3o13b3o13b2o7b2o2b2o4b2o2b2o$3bobo12bobo6bo5b5o15b2ob2o
6bobo5bob3o6bo6bobo4b2o6b5o3bo5b5o11bobo10b3o4bo6b3obo13bobo21b4ob2o3b
2o2b3o7bobo$27b3o5bo10bobo6b3o13b5o3b2o2bo11b4o4b6o3b4o5bobo22b6o4b2o
5bobob2o20bobo14b3o6b4o7b5o$25b5o16bobo6bo17bobo5bobo11b2ob2o3b4o2bo3b
o32bo3bo3b3o6b2obobo18b5o6bo7bobo6b4o7bob5o$6bo8bo10b5o13b7o13bo29b4o
4b4o2bo3b2ob2o13bo13b2ob4o4b2ob2o5bob4o7bobo6bob4o3b5o23b7obo$6b3o6b3o
6b4o8bobo6b6o13b3o29b2o6b2ob2o11bobo5bobobo4bobo5b2obo5b6o5b4obo5b2ob
o6b4obo5b2obo24b9o$4b2ob2o4b2ob2o8b5o3b7o4b7o4bobo3b5o5bobobo7bo19bob
o5b5o3b4o2bobobo6bobo4b2ob2o7b2ob3o5bob3o4bo2b4o4b2ob3o2b7o22b9o$4b2o
bob2o3b5o6b5o4b2obob2o6bobo6b3o5b2ob2o3b5o5bo2b2o5bo20bobo4bobo5bobo4b
7o4bo9b3ob2o5b4o3bobobo3bo3b5o6b2obo4b4o8b2o6bob7o$2b8o4bobo10b3o3b4o
b4o5bobo4bobob2o3b2ob2o3b4ob3o3bob2o4b3o28b3o12bob3o17b5o6bobo3b2ob3o
2bo4bobo5b5o4bo2bo16b5obo$3b8o16bo7bobobo15b2o8b3o4b6o3b6o3b2ob2o5bob
o32b2ob3o17b3o13bo2b3ob2o15bo4b2ob2ob2o4b6o6b5o$2b2obob2o46bobo7bo5b3o
b4o3b3o4b2o2b2o3b5o7bo19bo6b2o21bo14bo3bobobo19bob4obo4b6o6bobo$4b2ob
2o39bo24b5o3b4o6b3o4b3ob2o24b3o6b2o6bo6b3o14bobo3b4o2bo21bob4obo3b8o$
4b3o7b4o5bobobo4bobo6bo4b4o23bobobo4bo8b3o3b6o5b2ob2o7bobo5b2ob2o12b3o
4b3o12b6o5bob2o5bo2bo12b2ob2ob2o4b6o$6bo7b4o5b5o4b3o7b2o3b2o5bobo9bob
o29bob4o16b3o3bo4bo11bob3o3b6o3bo6b5o5bobo7b4o14bo2bo6b6o6b2o$12b8o2b
3ob3o2b6o3b2o4bobo5b3o9bob3o26b5o4b9o4b2ob2o3bob2obo4bobo3bob3o4b4o3b
4o3b6o13b8o6b2o4b4o7bo2bo7b2o$13b6o4b5o5b4o4bobo8b7o5b2ob3o5bobo6bo14b
obo19bo4bob2obo5b3o5b3o4b4o4bobo4bobo15b2ob2ob2o6b4o13b4o5b2ob3o$4bo7b
8o3bobobo4b4obo15bob2obo7bob2o5b3o4b5o20b6o2b2o3b3o4bo4bo2b6o4bo13bob
4o8bo9b12o3b3obo8bo13b4obo$2bob3o7b4o16b3o16b7o2b3o8b6o3b2ob2o5b4o30b
2ob2o5bob2o20bob3o8bobo8bob2o2b2obo5bob3o5b3o11b3ob6o$4bo9b4o16bobo5b
o12b3o6bob2o6b4o4b2ob2o5bob2o13b2o3b2o12b3o5b5o19b3o8bobobo7b12o4b4o6b
5o9bob3obob2o$4b3o17bobo15b3o10bobo5bobo8bobo5b2ob2o3b4ob2o31bo9b2o6b
o7bo7bo9bobo10b2ob2ob2o8b2o4b2ob2obo7b5ob5ob2o$24b3o14b4o39bo5bo2b3o7b
o7b3o6bobo15bobo5b3o3b5o13bo3bo10b8o14b4ob4o5b2ob5ob5o$22b2obob2o7bo6b
obo5bobo38bob3o6b3o14b3o21b4o4b2obo10bo3bobo14b4o15b4ob4o8b2obob3obo$
11bobo8bob3obo5b5o10b2ob2o5bo17bobo12bobo6b4o14b6o7bobo9b5o2b2o2b2o11b
obobo5b2o7bo2bo10bo6bob2ob2o8b6ob3o$11bobo7b3o3b3o4b5o10b3o2bo4bobo5b
4o4b7o12bo6b7o14b3o5bobobo7b5o5b4o9b3o2bo7b2o19bobo6b5o12bob4o$9b2o3b
2o6bob3obo3b2obob3o8b2o3bo3b2o2bo5b4o4bob3obo17b2ob5o5b2o6b7o3bobobob
o6b4o4b2ob2o14bo5b6o18b4o6b3o12b3ob2o$9bob3obo6b2obob2o5b5o11bob3o3b6o
2b5o3b9o4bobo10b5ob2o4b2o8bob2o4bobobobo5b3o8bo5b4o4b3o6b6o16b3o2bo6b
o5bo10b2o$7b3o2bo2b3o6b3o5b2obob2o11bobo4b2ob3o5b3o4b7o6bob2o7b7o4b3o
b2o6bob3o3bobobo9bo29b2o2b2o2b2o8b3o5bo2b3o8bobobo8b2o$7bo2b5o2bo6bob
o7bobo21b6o4bo5b9o2b2o2bobo10b4o5b2o2bo8bo7bobo22b2o2b2o11b2o2b2o2b2o
6b5o5b4o10b4o$5b2obob5obob2o14bobo6bobo11b2o2bo13bob3obo4bob3obo8b3o6b
7o32bo22b14o4b6o6bobo9b5o$8b9o24b5o6bobo4bobo13b7o4b4obo11bo7bobobo31b
5o3b2o3b2o10b14o2b2obo2bo7bo5bo5b4o$5b2obob5obob2o4bo17bo2b2o3b2obo5b
o7bobo7bobo8bo3bo29bo8bo5b4o7b3o15bo7b2o2b2o2b2o6bob3o13b3o5b2o$7bo2b
5o2bo6b3o5bobobo4b2ob2o4bobobo11b4o18b3o6bobo20b5o4b3o6b2o5b2o2bobo2b
2o2b2o4b2ob2o5b2o2b2o2b2o4b2ob2o13bo2b2o$7b3o2bo2b3o4bobobo6b6o3b5o2b
obobo13b2ob2o18bo4b4o4bobo14bob2o5b2ob2o2b2o2b2o3b6o13b5o7b6o7b2obo13b
2ob3o$9bob3obo7b6o3b4obo4bobo5bob2o7b2o3b5o6bobo15b5o3b5o3b4o4b7o2b3o
bo5b2o4bobo2b2o3b4o4b9o5b6o6bobo7b3o4b5o5bo$9b2o3b2o7b2o2b2o4bobob2o10b
obo5b3o7bo2b2o5b2o18bo4b6o4b2o6b4o5b5o2b6o3b3o15b7o8b2o18b3o6bobo$11b
obo11b2o5b5o23b4o3b4o4b7o22b5o2b4o5bobobo4bobo6bobo3b5o13b4ob4o7b2o16b
6o12b3o$5bo5bobo11b2o7bobo6bo14bo10bobo3b3ob2o4b4o15b4o14bo23bo16bob3o
bo16bobo8b3o18bobobo$3b3o38b2o5bobo20b2obob2o13bo11bo55b9o14b6o6b3o6b
obo9b4ob2o$4b4o35b3o3b2obo23b3o5b2ob2o3bobo4bobo29bobo6bo16bo6b2ob2o17b
5o13b7o9b4o$2b6o3bobo5bobo23bo4b2obo5bo9bo6bobo9bo3bobo4bobo11bobobo5b
obobo3b3o12bobo8b3o4b5o8b4o4b5ob2o11b3o2b2o9b6o$4b2o4b6o3b3o6bobo18b4o
4b4o6b3o16bobobobo5b5o4bo5bo3bo3b6o3b3ob2o2b4o5bob2o4b5o6bo11b3o5b3ob
3o10b7ob2o9b3o$2b4o5b3o4b2ob3o4b2ob2o6bo10bobo4b2ob2o6b4o16bobobo7bo4b
2ob2o3bobobo4b5o4b4o11b2ob2o4b2obob2o10bo4b5o4b2ob5o3bo6bob7o9bobo$3b
o6b6o2b3obo3b7o6bobo13b2ob3o4bob3obo5bobo25b2ob2o11b4o5b6o2b2o2b2o5bo
bo2b7o17b3o7b5o3b4o3b2ob5ob2o$11b3o6b3o4b2ob4o3bobobo14bob3o4b3ob4o4b
3o24b2ob2o13bobo6b3o12b2ob2o5b5o9b5o3bobo7b6o3b3o4b7obo$11bobo6bo5bob
2obo5bo5bo6bo4b4o5b5ob2o4bobob2o5bo8bobo7b3o6bobo13bobo6b4o4b3o5bobo31b
obo3b6o2b2ob7o$3bobobo19b5o5bo5bo6b3o3bobo7bob2ob2o3b3ob2o5b3o4b2ob4o
5bo6b3obo28b2o17bo4b2o2b3o7bo12b4o5b2o2b3o$3b3obo19b3o7bo5bobo2b5o13b
5o4b8o2bob3o4bob2ob2o12bob5o5bobo13bo6bo14b3o18bobo9b2ob3o4b7o6bo$2b2o
b4o7bo12bo9bo3bobo4b3o15bobo5b3ob2o4b5o2bob3o2b2o9b4o3bo6b3o26bobo6b5o
4b7o3bob2o12b2o8bobo6bo2b2o$4bobo7b5o20bobobo6bo6bobobobo12bobob2o3b2o
b2o4b7o5bo5bo3b4o3b2o2bobo6bobo15b3o4b6o15bo3bo10bobo17bob3o$14bo3bo22b
obo11bob7o13b3o6b5o2b2o2b5o4b3o2b5obo5bo3b2o5b5o5bobo5b2obob2o4b2ob2o
5b6o2bo3bo29b2o2bo2b2o$12b5ob2o3bobobobo11bo13b2ob3o2b2o12bobo5bob3o4b
2ob2obo3b4o5bob3o4bobo4bo4b7o3b5o3b6o5b3o16b2obo19bobo7b3ob4o$3bo8b2o
b2obo4b6ob2o3bobo7bobobo7b7o6bobo14b3o4b7o3b5o4bobo7b2o3bo3b8o3bob3o3b
5ob2o6bo9b3o3bobo21bobo6b4obob3o$3b3o4b3obob3o3b2ob3o2bo4b3o8b4o7bobo
bobo4b5o14bo8bobo7bo15bobo2b2o4bob6o3b5o3b5o26bo5bobo12b6o5b7o$b5o4bo
b2ob2o7b7o3b2ob3o5b5obo16b2o2b3o31bo17b3o5bob6o4b3o4b6o30b5o7bo6b3o6b
5obo$5b2o2b2ob5o7bobobo7bo2bo6b5o16b4o2bo50bobo6b3ob3o6bo5bobo13bo18b
6o4b5o4bobobo6bobo$b5o4bo3bo21b6o3b4ob3o5bo11bob2o4b2o8bo4bobobobobo31b
2ob2o28b5o5bobo6bob4o6b5o6bo$5b2o3b5o23b3o7b3o5b5o8bobo6b2o7b2o5b7o5b
obobo8bobo13bobo30b3o4b4o6b4obo4b2ob3ob2o$b5o6bo11bo5b2obo4bobobo4bob
obo4b5o15b6o4b5o2b2ob3ob2o4bobobo8b3o6bobo17bobo16b6o3b5o2b2ob2o8bobo
bobo20bobobo$3b3o16b5o3b3o7bo8bo6b2obobo14b6o5b2o6b5o4bobo3bobo4b2ob3o
3b5o15b2ob4o6bobo7b3o3b4obo3bo2b2o6bo2b3o2bo19b5o$3bo18b5o4b3o22b2ob2o
8b2o3b10o3b4o4bobobo4bobo3bobo4bob2o5bob5o5b2obo4b2ob4o4b4ob2o5bobo5b
2ob2o2b3o9b2obob2o18b2ob3ob2o$21b2obob2o3bo26b4o4b2o8b2o2b2o24bobobo5b
5o4b5ob2o5b4o3bo2b6o3bobo2b2o13bobo6bo9b7o10bo7bobo3bobo$16bo5b5o23bo
7bobo7bob2o2b10o22bobobo5b3o7b3obob3o3b2obo4b3ob3o3b4ob5o25bo6b3o10b3o
5b5o3b5o$5bobo6bo2b2o2b7o11bo8b5o11b2obo8b6o15bobobo14bobo6b3obob3o11b
6o2bo3bo2b6o25b3o4bobo10b4o6b9o$5b3o6b3o6b3o11bobo8bob2o16b2o6b6o15b5o
25b2ob5o11b4ob2o3bo2b2ob2o2bo14bobo5b3obo16b3obo4b5o3b5o$3b7o2b2ob2ob
o4bobo5b2o6b3o4b7o3bo8b2o11b2o8b4o3b3o2b3o6bo17b5obo6bo5b4ob2o4b6o2bo
13bob4o5bob4o7bobo4bob3o6bobo3bobo$4bob3o4b2ob2o13b2o6bo7bob2o5b3o19b
2o8b4o4bob2obo5b3o8bobo8b5o14bobo6b5ob4o12bob3o6b6o7b4o3b4o7b2ob3ob2o
$3b7o3b2o2b2o10bob4o5b4o2b2ob2o3b3obo27b2ob4o2b2ob2ob2o4bo2b2o4b7o6bo
bo6b2ob2o16b2o2bobo11b7o8b3ob2o4bo2bo5b3o9b5o$4b4o7b2o12b6o4bobobo4bo
5bob4o6bobobobo14b4o5b2o2b2o3b3obobo4b2obob2o36b2ob4o12b4o10b2ob2o6bo
b2o4bo11bobobo$4bob2o7b2o11b3ob3o6bo11bobobo7b4ob3o5b2o4b2ob2obo4b7o4b
o2b3o3b2o2bo2b2o12b7o4bobo11bobo14b4o12b4o4bo2bo$21bobo6b3obo19bob2o8b
5o2b2o3b2o5b4o8bobo5b5obo4b7o4bo19b3o18bobo15bobo5bobo6b4o$21b5o4bobo
20bobo9b5o3bo3b5o2b2ob2o18b3o5b2o2bo2b2o2b4o6b6o3b2obob2o15b4o14b6o12b
obo6bobobobo$14bo4b2o2b2o14bobo5b4o8b2o6b4ob3o2b2obo5bo20bobo6b2obob2o
4b2o17b5o7bobobo5b2o2bo13b5o19b2obob3o$5bo6b3o5bo4bo11b6o4b4o14b3ob4o
6b2o18bobo14b7o4b4o6b3o6b5o7b7o2b4o6bobo5b4ob2o6b4o8bob2ob4o$5b3o5b4o
2b3ob2o12b5o3bob4obo4b2o2b2o3bo3b5o16bobo5b2ob2o14bobo27bo8b7o4bobo7b
o7b2ob2o7bo2bo7bob3ob3o$3b2ob2o3b5o4b2ob2o11b2ob4o3b6o13b2o2b5o17b3o4b
2o2b2o5bobo17bo28b7o10b3ob3o4b6o4b2ob5o6b4o4bo9bo$4bo2b2o3b5o3bobo14b
ob2o5b6o3b2o3b2o5b3ob4o5bobo6b3ob3o4b2ob2o4b5o44bobobo12b2o3b2o6bobo5b
ob2o2b2o5bo4b4o10bobo$3bob3o3bobobo20bobobo7b2o17bobobobo4b3ob3o4b6o5b
3o4b2ob4o5b2o19bobo7bobo14bobo4b2ob3ob2o11b3ob7o5b3ob3obo7b2o2bo$4bo2b
2o20bobo16b2o6b4o18bo5bo3b3ob3o7bo6b6o4b2o8bo10b3o5b5o14b3o5b2obob2o12b
3ob7o4b4ob2obo8b4ob2o$3b2ob2o12bobo6b5o43b2ob3ob2o4b3o14b2ob4o3b2ob3o
6b3o6b7o3b2ob4o3bobobo3b2ob3o2b2ob3ob2o4bobobo4bob2o2b2o6b3obob2o6b4o
b2obo$5b3o6bo5bob3o2b3ob3o37bo6b7o5bobo16b5o4b5o4b2ob2o6b6o3b2o2b3o4b
ob2o5bo2bo5bobobo6b5o4b2ob5o5bobobobo8b4ob3ob2o$5bo6b4o3b4o5bob5o4bob
obobobobo19b3o5b2ob3ob2o14bobo6bobo5b6o4b7o3b2ob5o3b3o2b2o2b4ob2o2b6o
4b2ob2o4b3obob3o4bo2bo20b2obo2b5o$12b4o5b4o2b5obo5b13o8bo8b2ob2o5bobo
bo14b5o15b3obo3b8o4b2ob2o4b4ob2o4b2ob2o4bob2o7bo7bo2bo2bo5b4o4b2o17b5o
2bob2o$10b4ob2o2b3obo4b3ob3o3b2o2b9o7b3o6b5obo5bobobo7bobo5b3ob2o13bo
bo7bob2ob2o3b5o6b5o3b6o3bo2b3o13b9o24bo4b2ob3ob4o$10b2ob2o6bobo4b5o6b
13o6b5o5b4ob2o15b4o5b2ob3o4bo18b5o7bo8bobo6bobo6b3o16b7o11b3ob2o6b3o6b
ob2ob4o$9bob4o15bobo6bobobobobobo7b6o5bobobo18bobobo5b5o2b4o18b3o33b4o
7bo7b9o12bo7b7o4b2ob4o$10b3o45b7o25b2ob2o6bobo5bobo5bo12bo36bo9b3o7b2o
b2o7bo4b6o4b5obo6bo2b2o$10bobo44b2obo2bo16bobo8b4o13b3obo2b3o6bo25bob
o8bo13b2ob4o5b5o7bo16b6o5bobo$18bo8bo9bobo9bobo6b7o6bobo6b2ob2o5bobo17b
2o4b4o3b4o21b4o7b5o12b2ob3o7bo7b5o4b2o8b2o2b2o7bo$16b3o6b5o7b3o7b2ob3o
4b6o6bobobo4b2obobo15bo10bobo2bob3o4bobo22b3obo5b4o6bo5b2obo2b2o14b5o
9bo6b4o$7bo8b3obo4b2o2bo5b3ob3o5b2o2bo6b5o7b3ob2o3b6o12b3o16bobo4b2ob
obo7bobobobo5b5o4b2o2b4o4b3o8b2o13b2o2bo2b2o5b3obo4b3o$5bobobo4b2obo2b
o3b2obo2b2o3bo2bo2bo3b2ob2o2bo5b3o7b3o2bo4bo2b3o6bo6b2ob2o13bobobo5b3o
8b7o7b4o3bo3b2o4b4o6b5o8bo5b7o6b2obo7bo$5bobobobo3b7o3bob4o3b9o2b2ob4o
8bo9bo2b3o3b5o4b3o5b6o7bobo13b5o4b5ob5o5b3o3b3o2b2o5bo2b2o6bo10b3o3b7o
4bob4ob2o$3bo7bo3b5o4bobobobo4b2obob2o5b2ob2o16b2ob3o5bobo6b2ob2o4b2o
bob2o5b5o13bo8b3ob3o9bo5b3o6b5o16b5o5b3o6bob7o7b2o$3bobobobo7bobo15b2o
bob2o5b3o20bobobo12bob2o6b2obob2o3b3ob2o20b2o2b5o2b2o12bobo8bobo16bob
2o2bo3bobo5b2ob2o2b4o6b2o$5bobobo27b3o9bo6bo7bo5bobo17b4o5b6o3bob6o20b
3ob3o37bo5b2o3b3o13bob7o5b2ob3o$7bo19bobobo5b3o14b3o5b3o23b5o6b2ob2o3b
4obobo7bo11b5ob5o33bobobo3b3o3b2o13bob4ob2o5bob4o$17bo7b7o13b2o7b2ob2o
4b3o13bo10bobo8b3o4b4ob4o5bobo11b7o7bobobo8b2o7bo5b2obo3bo2b2obo9bobo
5b2obo6b2ob7o$15bobo8b3ob3o12bo6b7o2bobobo13b3o19bo6bobob5o3b2ob2o11b
obobobo7b2ob2o9bo5b5o2b6o4b5o9bobo5b3obo5b10o$15b5o5b7o11b4obo3b2ob2o
6bobo11b5o28b4ob3o3bobob2o22b2obob2o5b3ob2o3b2ob2o3b2obo5b3o10b2ob2o6b
o9b10o$13bo4b2o7bobobo6bo4b6o5b3o6bo13b3ob3o9bo16bob5o3b2o3bo6bo18bob
o8b4o3b5o3bobobo7bo11b3o17b7ob2o$4bo9b5ob2o14b3o4b4ob2o4bo13bobobo2b6o
b2o7bobobo5bobobo6b5o4b2ob2o6bo26b2o2b4o4b5o19bo4b2ob2o9b4o5b4obo$4b3o
4bobo4bo2bo14b4o3b5o21b3o4b2ob6o6bobobo3b7o8bo6bobo6b5o26b4o6b3o19b3o
5bobo10b4o5b3ob2o$2b2ob2o4bobo4bo2bo6bobo3b5o6bobo18b2obob2o3b3ob3o8b
obobo5b4obo23b5o15bobobo5bobobo8bo9bo9b5o3bobo8b8o5b2o$3b2ob3o5b5ob2o
4b2ob2o4bob3o17b4o6b2ob2o6b5o10bo5b5obo23b2o3b2o12bobob2o27b5o6bob3o15b
8o5b2o$bob4obo4bo4b2o6bo3b2o2b5o18b4o5b4o2bo5b3o20b5o14bobo8b3o5b4o5b
5o2b2o24bob2o8b3obo12b3ob4ob3o$bob4obo6b5o5bo2b3o5bobo16b8o5b3o9bo20b
obo6b3obo5b5o6b3o5bo2bo5b5o2b2o4b2o8bobobo4b3ob2obo4b3obo6bo7b3ob2ob3o
$3b2ob3o6bobo8bob4o13b4o6b2o4b2o5bobo25bo15bobo3b2o3b2o12b8o3bobob2o7b
2o8b5o5b3o9b5o5b3o4b3ob4ob3o$2b2ob2o10bo7b6o14b4o4b3o6b3o20bo8b3o12b3o
2bo4b7o11b8o5bobobo4b2ob3o4b9o3bobo3b3o2b2ob2o4b4o7b8o$4b3o20bobobo3b
obo5b3o2b2o3b3o6b3o11bobo6b3o6b5o3bobo7bo5b2ob4o14bo2bo16bob4o5b2o3b2o
10b2o5b3o4bob5o4b8o$4bo30b5o4b3obo4b3o6b3o9b2ob2o4b5o4b6o4b5o13b5o8bo
bo3b4o15b2obobob2o2b9o5bob5o4bo5bo2b3o8b4o5bobo$17bobobo12b2o2b2o3b2o
3b2o3b3o6b3o9b2o3bo4bob4o2b2obobo3b4obo13bobo8b4o25b4obo5b5o9b3o13b2o
b2obo6b4o5b3o$17b6o5bo6b2obobo3b2ob2o6b2o4b2o10bob4o4b6o4b3o6bob2ob2o
22b2ob2o12b4o8b3ob2o5bobobo9bobo12bob2ob2o14b7o$7b4o4b3ob3o4bobobo4b5o
4b5o6b8o5bo5b3ob2o4bob4o3bobo5b3o2b3o5bobo12b2ob3o13b4o10b2o28bo9b3o2b
o13b3ob3o$7b4o5b3ob3o4b4o6bobo6bo10b4o5b3o4b5o5b5o15b3o2b3o3b3obo11bo
2b2o11b7o9b2o28b3o5b5obo13b7ob2o$5b8o2b6o4bobob4o24b4o7b3o4bo9b3o15b2o
b2obo3b4obo10b4o8bo5bo2bo5bobo11b2o8b4o6b4o9b4o6bobo6b8o$6bob2obo4bob
obo5bob2obo18bobo15bo16bo19bob4o3b6o10bobo6b3o5b4o3b2obo12b4o6b4o6bob
ob2o6b3o6b5o6b2ob7o$5b2ob2ob2o12b4obobo7bo9bobo40b4o8b5o4bobobo20bob3o
10bobo2b2o7bo2bobo4b8o3b6o9bo6bo3b2o7b3ob3o$6bob2obo15b4o7b5o5b2o3b2o
20bobobo13b4o10bobo28b3obo10b8o8bob4o3bob4obo4bob3o14b4o2bo8b7o$5b8o4b
o9bobobo6b5o5b2obob2o11bobobo5b6o9b3ob4o41b3o10b2o2bobo8b5o5bob4obo4b
obo17b4ob2o9b3o$7b4o6b3o9bo6b9o3b2obob2o9b3obob3o2b6o10b2ob2ob2o21bob
o9bo7bo8bo6bob2o10bobo5b8o14bobo6b3o2bo11bobo$7b4o4b3obo17b7o4b3ob3o10b
2o3b2o5bobobo9b6ob2o8bobobo7b2ob2o3b3o3b3o10b2ob2o3bobo22b4o16bobobo5b
3obo5bobo$16bob3o15b9o5b3o11b3obob3o12b2o4b3obobo10b5o5b2ob2obo6bo2bo
12b2obo15bo13b4o6bobo5bobobobo5bobo7b3o$16b5o9bobo5b2ob2o14bobo6bobob
o14b2o6b2ob2o9bob3obo4b2ob3obo3b2o4bo10bo3b2o12b2o22b5o5bobo3bobo11b2o
3b2o$4bo13bo11b3o5b5o15b2o23b6o4b3o5bo6b2ob2o3b2o2b5o7b2o6b2o5b4o5bob
o4b4obo7bo11b7o3bo5bo13bo5bo$4b3o21b3ob3o5bo16bob3o21b6o6bo3b5o3bob3o
bo3b5o2b2o20bobobo5b4o4b2obo6bob3o8b4ob2o6bobobo11b11o$2b4o7bo14b4obo
18bo5bobo12bo7b10o9bobo5b5o3bob3ob2o14bob2obo10b7o2bo2bob3o5bobo9b2ob
4o5bobo5bobo5b11o$2b2ob4o2b3obo11b8o15b3o5b6o7b2o8bo2b4o2bo7b3ob3o3bo
bobo4bob2ob2o7bobo4bob2obo10b2o3bo4b6o3b7o7b7o8bo5b3o5b11o$4b4o3b4o6b
3o4b5o18b4o6bobo7b5o5bo2b4o2bo8b2ob2o13b2ob2o9b3o19b7o3b3obo2bo3b3o12b
5o13bobobo4b11o$4b4o4b6o2b5o2b6o4bo2bo7b2obob2o5b3obo4b2ob4o5b10o7b2o
bob2o14bobo7b7o4b2o5b4o4b3o8bob2o3b4obo10bobo16b3o7bo5bo$12bo2bo5b3o4b
obo6b4o7b2ob6o5b2o5b2ob4obo5b6o11bobo8bobo16bobobo20bobo7bob4o3bobo8b
o15bo5b5o6b2o3b2o$14bobo3b2ob2o10b3o2b3o4bo3bob3o6bobo4b2ob4obo5b6o3b
obo5bobo8b3o14b2ob3ob2o10bo2b2o16b2o13b3o13b5o5bo10b3o$21bobo11bob4ob
o5b2ob6o12b2ob4o9b2o6b4o12b3ob3o8bo5bobobo7b2o23bo15b5o3bobo6b4o3b5o8b
obo$5bo14b5o8b3obo2bob3o3b2obob2o16b5o9b2o5b2obo13b2obob2o6bo6b7o4b4o
3b3o24bobo5b5o4b2ob2o3b6o3b3o$3b5o5bobobo4bo10b5o2b5o6b4o5bobo8b2o20b
4o4bo5b3ob3ob3o2b6o5b3o6bob3o27b2o2bobo4b5o2bobob2o5bobo3b5o$bobob2o6b
4o11bo4b5o2b5o5b3o5bob4o9bo4bobobo10bobo4b4o3b3ob3ob3o5bo7bobo4b2ob3o
18bobo7b6o4b5o4bobob2o2b6o3bobo13bo$b2o2bob2o3bobob2o8b3o4b3obo2bob3o
7bo5bo3bo5bo9b5o18b3o5b2obob2o5bo17b2o2b2o6bobo6b5o5b4o2b4o4b3o3b2obo
bo4b4o18bobobo$6o2bo4b4o9b2ob2o4bob4obo14b4obo3b5o5b3o3b3o16b5o3b3ob3o
22bobob2o7bobobo4b3ob3o3b5o2bo6bo6b2obobo3bobobo17bo3bo$bo2b6o3bobobo
6b2ob4o4b3o2b3o3bobo9bobo6b4o5bob5obo18b2o6b3o18bo6b2ob2o5bobobobo3b2o
bo2bo3bobob3obobo11b2ob2o13bo10b9o$b2obo2b2o15b3ob2ob2o4b4o6b4o15b3ob
3o3bob5obo4b4o10bobo5bobo8bo7b2ob2o4bobo7bobobobo5b6o4bo2b5o14bobo13b
3o8bo2b3o2bo$3b2obobo14b2ob2ob3o5bo2bo5b4o18b2obo4b3o3b3o4b4o29bo7b2o
bo15bobobo7b5o3b4o2b4o6bobo12b2o5b3obo6b4ob3ob4o$2b5o7bobobo6b4ob2o15b
5o16bobobo5b5o5b2o3b2o25b5o4bo3b4o14bobo9bobo5b6o8b2ob2o10b2o5bob5o4b
5obob5o$4bo10bob3o5b2ob2o17bob2o8bo18bobobo6bo3b2o6bo9bo8b5o5b7o6b2o6b
o18bobo2b2o7b4obo8b6o2b5obo4b2ob3obob3ob2o$14bo3b3o6b3o19bobo5b5o26b3o
bo6b5o7b3o4b9o3bob4ob2o2b4obo25bobo11bobobo7b3obo5bob3o5b5obob5o$15b2o
b2o7bo9bobobo15b5o8bobo17bobo6b2ob2o5b5o6b5o7b4obo4bobo19bobo19b4o6b7o
5b3o7b4ob3ob4o$15b5o15bobobobo13b4ob4o6b3o6bobobobo11b9o4b6o4b5o7b2o3b
2o16bo6bob3obo19b3o6b4o9bo9bo2b3o2bo$17bo19bobob2o4b2o6bob2ob2obo5b6o
4b2ob4o11bob5obo4b6o6bo11b3o16b3o6b3ob3o6bobobo8bo6b6o19b9o$35b2o2bo13b
2o2b5o2b2o3b6o3bob7o8b13o4b5o5bo11bobo8bo7b2ob2o2b11o4bo2b2o16bobo23b
o3bo$39b4o2bob3o3b2o2b5o2b2o5b5o3b2ob3o5bobo4bob5obo6b3o28b5o4b4o5b9o
3b9o40bobobo$36b2o8b3o3bob4o3b4obo4b3o5bobobobo5b2o4b9o8bo28b5o5b5o2b
11o4bob3o44bo$45bobobo3b2o2b5o2b2o7bo15b6o4b2ob2o39b7o3b3o6b3ob3o4bob
2o4bo$46bobo4b2o2b5o2b2o25b3o5b5o41bobo7b3o4bob3obo5b3o2b2o$46b4o5bob
2ob2obo25b3obo7bo62bobo6b4obob2o$55b4ob4o27bo83bo2b2o$57b5o113bobobo$
57b5o$59bo!

muzik
Posts: 3774
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Gems (B3457/S4568)

Post by muzik » January 4th, 2020, 10:26 am

What is the smallest infinite growth pattern in this rule?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
77topaz
Posts: 1467
Joined: January 12th, 2018, 9:19 pm

Re: Gems (B3457/S4568)

Post by 77topaz » January 5th, 2020, 7:01 pm

muzik wrote:
January 4th, 2020, 10:26 am
What is the smallest infinite growth pattern in this rule?
Probably around this size:

Code: Select all

x = 7, y = 7, rule = B3457/S4568
3obobo$o3bobo$o2b3o$5obo$2o$ob2ob2o$ob3obo!
Just from a manual search in Golly, I haven't seen any 6x6 patterns exploding.

User avatar
toroidalet
Posts: 1054
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Gems (B3457/S4568)

Post by toroidalet » January 5th, 2020, 9:11 pm

13-cell explosive growth:

Code: Select all

x = 2, y = 11, rule = B3457/S4568
bo$2o$2o$bo$bo$bo$bo$bo$bo$bo$bo!
EDIT: explosive growth in a 20-cell (2*10) bounding box. I believe both of these are close to minimal.

Code: Select all

x = 10, y = 2, rule = B3457/S4568
5ob4o$10o!
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

User avatar
Hdjensofjfnen
Posts: 1476
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Gems (B3457/S4568)

Post by Hdjensofjfnen » January 20th, 2020, 12:31 am

toroidalet wrote:
January 5th, 2020, 9:11 pm
13-cell explosive growth:

Code: Select all

x = 2, y = 11, rule = B3457/S4568
bo$2o$2o$bo$bo$bo$bo$bo$bo$bo$bo!
EDIT: explosive growth in a 20-cell (2*10) bounding box. I believe both of these are close to minimal.

Code: Select all

x = 10, y = 2, rule = B3457/S4568
5ob4o$10o!
If only we had CoolCreeper back on this site again... :lol:
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

Post Reply