Page 3 of 4

Re: Requests for Searches - Non-apgsearch

Posted: June 16th, 2020, 12:51 am
by FWKnightship
GUYTU6J wrote:
June 9th, 2020, 5:40 am
1) Can someone make a SMOS with this counterfeit LWSS:

Code: Select all

x = 11, y = 11, rule = B3aijr4nw/S2-cn3ijnr6an
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 11, y = 11, rule = B3acijr4iknrtwz5jky6en7e/S02-n3-ack4cnqry5-jnqy6-ck7e
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 10, y = 10, rule = B2i3-ckny4einqrw5jnqy6c/S23ijnqr4enqz5ac6cn
6b2o$5b2ob2o$6b3o$7b2o2$bo$3o$ob2o$b3o$bo!

Re: Requests for Searches - Non-apgsearch

Posted: June 16th, 2020, 8:02 am
by yujh
FWKnightship wrote:
June 16th, 2020, 12:51 am
GUYTU6J wrote:
June 9th, 2020, 5:40 am
1) Can someone make a SMOS with this counterfeit LWSS:

Code: Select all

x = 11, y = 11, rule = B3aijr4nw/S2-cn3ijnr6an
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 11, y = 11, rule = B3acijr4iknrtwz5jky6en7e/S02-n3-ack4cnqry5-jnqy6-ck7e
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 10, y = 10, rule = B2i3-ckny4einqrw5jnqy6c/S23ijnqr4enqz5ac6cn
6b2o$5b2ob2o$6b3o$7b2o2$bo$3o$ob2o$b3o$bo!
How can you find this?

Re: Requests for Searches - Non-apgsearch

Posted: June 16th, 2020, 8:08 am
by lemon41625
yujh wrote:
June 16th, 2020, 8:02 am
FWKnightship wrote:
June 16th, 2020, 12:51 am
GUYTU6J wrote:
June 9th, 2020, 5:40 am
1) Can someone make a SMOS with this counterfeit LWSS:

Code: Select all

x = 11, y = 11, rule = B3aijr4nw/S2-cn3ijnr6an
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 11, y = 11, rule = B3acijr4iknrtwz5jky6en7e/S02-n3-ack4cnqry5-jnqy6-ck7e
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 10, y = 10, rule = B2i3-ckny4einqrw5jnqy6c/S23ijnqr4enqz5ac6cn
6b2o$5b2ob2o$6b3o$7b2o2$bo$3o$ob2o$b3o$bo!
How can you find this?
You can find stuff like this with LLS but whether or not FWKnightship found these with LLS is a seperate question.
If you are interested in LLS, you can ask Saka who uses LLS quite frequently.

Re: Requests for Searches - Non-apgsearch

Posted: June 16th, 2020, 8:19 am
by LaundryPizza03
lemon41625 wrote:
June 16th, 2020, 8:08 am
yujh wrote:
June 16th, 2020, 8:02 am
FWKnightship wrote:
June 16th, 2020, 12:51 am

Code: Select all

x = 11, y = 11, rule = B3acijr4iknrtwz5jky6en7e/S02-n3-ack4cnqry5-jnqy6-ck7e
8b2o$7b3o$6b2ob2o$7b2o3$2bo$b3o$2obo$3o$2bo!

Code: Select all

x = 10, y = 10, rule = B2i3-ckny4einqrw5jnqy6c/S23ijnqr4enqz5ac6cn
6b2o$5b2ob2o$6b3o$7b2o2$bo$3o$ob2o$b3o$bo!
How can you find this?
You can find stuff like this with LLS but whether or not FWKnightship found these with LLS is a seperate question.
If you are interested in LLS, you can ask Saka who uses LLS quite frequently.
It's much easier to use rulesrc.

Re: Requests for Searches - Non-apgsearch

Posted: June 17th, 2020, 8:10 am
by yujh
@laundrypizza03, which version of rulesrc is the best?(it seems that I can’t find it)

Re: Requests for Searches - Non-apgsearch

Posted: June 17th, 2020, 9:04 am
by Hunting
yujh wrote:
June 17th, 2020, 8:10 am
@laundrypizza03, which version of rulesrc is the best?(it seems that I can’t find it)
matchPatt, of course.

Re: Requests for Searches - Non-apgsearch

Posted: August 30th, 2020, 5:32 pm
by LaundryPizza03
Big bump.

Some promising (2,1)c/5 partials for ikpx2:

Code: Select all

#C One transition away from a known (2,1)c/5.
x = 14, y = 168, rule = B3578/S346
11bo$9b2obo$9b2obo$8bo2bo$7b5o$6b2o2b2o$6bob3o$6b2obo$10bo$7b2o$7b3obo
$8b3o$8bo2$4bob4o$3b6ob2o$3b7obo$3b2o3bob3o$2b4obo2b2o$2b2o3bob2obo$3b
2o4bobo$6b4o2bo$4bo2bo2bobo$3b4obobobo$3b3o$3b2o2b2obo$3b3ob4o$8b2o2bo
$3b2obo2bob2o$5b2o3b3o$4bo5b2o$3bo5b4o$3b4o5bo$5b2o2bo$9bo$5bo2bo$4b3o
b4o$6bob4o$4bo3b3o$3b3o2b2obo$4b4o$4bo3bobo$4bo4bo$3b4o2b2o$3b3ob5o$3b
ob8o$2bob2o2b2obo$2bo4bobo$2b3o3bobo$3bo5bo$2b2ob5o$bobo3bobo2bo$b5o$o
5b2o$o2bo2b4o$bobo2bob2o$2bo3b3o$6b3o$6b3o$5b3o$5b4o$5bobo$8b2o$7b3o$
8b5o$10b2o$9b2obo$5b6o$5b2obo$5b2o2b2o$7b2obo$6b7o$8b3o$9b3o$11bo$9bo
2bo$8b5o$8b2o2bo$10bo$9b2obo$5bobob2o$4b3obobo$3b2o3b5o$2bob4obo2bo$2b
obobobo3bo$2bo2b4o3bo$3bo3b2ob2o$3bob4obo$3b2ob5o$4b2o2b5o$2bob8o$b2ob
2o5bo$b2obo2b2o$b3obo$2bobo3bo$4bo2b2o$5bob2o$3b2o3b2o$5b3obo$3bob4o$
4bo3b2o$3b4obobo$3bo3bobobo$5bobo2b2o$3b3o5bo$2bo2b2o$b4obo$bo4bo$2bo
2bo$2b2o4bo$3b2ob2obo$2b2obo2b2o$bob3ob4o$bo2b2ob4o$o3b4ob2o$b5o$3b5ob
obo$4b5o2bo$4bob2o3b2o$5b4o$4bo2bo2b2o$5bob2o$5bob2o$4bob2o$5b2ob3o$3b
o4b3o$4b5ob2o$3b2o2bob2o$4b4o2b2o$5bo2b2o$5bo2b2obo$6bobobo$3b7o2bo$2b
3obo3bo$2b2o3b2o2bo$4bo4b2o$3b4o2bo$4b3obobo$3bo4bobo$3b4ob2o$3b2o3b3o
$3b2obobobo$3b5ob2o$b2obob3o$bobob4obo$bob2ob3o3bo$2b2ob2obobo$3b4ob2o
bo$2b2o2b2ob2o$b2o2b3obo2bo$bo6b2o2bo$bo3bob2o2bo$2bobo3bo2bo$2b2obo2b
3o$2b3ob3obo$2bo2b2obo$bo5bobo$2o$2bo2b6o$3bobob2obo$2bo5b2o$b2o2bob5o
$b4ob3ob2o$2obobo2b3o$b3o4bo3bo$2bobobo3b4o$bo2b2obo2bobo$2ob3ob2obobo!

Code: Select all

#C a.k.a. "Virus"
x = 14, y = 60, rule = B36/S235
3bo$2b2o3bo$b3o2b4o$4bob2obo$bobo3b2o$b2o2bobo$2b5obo$2bo2b2obo$2b2ob
2o$bob2ob2o$2b4o$bobo2bo$b3o3b2o$7bobo$6b2o$2b2ob3o$3bob2o$4o2bobo$2bo
5bo$2bo5bo$4bobob2o$3b2ob2o2bo$2b2ob2obo$3b2o4b3o$5b4obo$4bo7bo$4bo3bo
2b2o$3bo3bo3b2o$2b2o2bo$b2ob3o$2bo5b2o$2b2ob3o$2bo$2bo2b3o$2bo2bobob2o
$6bob3o$4b2o2b4o$3bobob2ob2o$4bo7bo$4b5o3b2o$4bobo2bo2bo$4bo3b2ob2o$3b
2ob2o2b2o$9b3obo$8bo2bo$7bob2o$2b2o2b2obob2o$2b2obobo2b3o$bo2b2obo3bo$
o5b6obo$2o3b2o3bo$obo2bobo4b2o$o4b2obo2bo$bob3o2bob2obo$o2b4o2b2o2bo$b
3o4b2obo$6o2bob2obo$2o2b2o2b5o$2o5b2obob2o$b2o3bobo3b2o!

Code: Select all

x = 12, y = 38, rule = B36/S0235
2bo$b2o$3obo$2bo$3bobo$3bobo2$4bo2$3bo2bo$3b2o$3b2obo$3b3o$2b2o$2b3obo
$3bobobo$3b2ob2o$8bo$5bobobo$4bo$3bo2bob2o$3bob2o$4bob2o$5b3o$8b4o$6b
2o2b2o$6b2ob2o$10bo$5bo$4b3o2bo$4bobobo$3bobobo$3bo2bo$2bo2bo$b3ob2o$
2bob3o$3b2o$3ob2o!

Code: Select all

x = 9, y = 28, rule = B36/S02357
2bo$b2o$3obo$2bo$3bobo$3bobo2$4bo2$3bo2bo$3b2o$3b2obo$3b3o$2b2o$2b3obo
$3bobobo$2bobo$2bobo2bo$bo5bo$o3b2ob2o$b3o3b2o$4o3bo$4bobobo$2b2o$b4o
3bo$bobobobo$2bo2b4o$o2b2obobo!

Code: Select all

#The best (2,1)c/5 partials I've found in a B2 rule.
x = 34, y = 20, rule = B26/S02
7bo17bo$23bobobo$5bo4bo11b2ob2o$4bo18bo$4bobo16b2o$3bo8bo11bo4bo$4bo6b
o9b2ob5o$2bobo7bo7bo5bob3o$2bo7b2o8bo2bo4bob2o$6b2o12bo$2b3obo3b2o8b2o
7bob2o$bo11bo6bobob2o3bo$2bo3bo3b2o9bo2b2o$5bo5bo9b2obobo5bo$5b4o4bo7b
2obob5obo$6bobo2bo9b2obo5bo2bo$2bobo4b3o11b2ob3o$b2o2b2o2bo2bo10bobob
5o$6bo2bo11bo3b2o2bo$6o3bo20b2obo!
I'll post more rules as I find them.

Re: Requests for Searches - Non-apgsearch

Posted: August 31st, 2020, 6:06 am
by wildmyron
LaundryPizza03 wrote:
August 30th, 2020, 5:32 pm
Big bump.

Some promising (2,1)c/5 partials for ikpx2:
<snip>
I'm currently running a search in B36/S0235 and another in B26/S02 (slow going).

I'm also running a separate search in Amoeba, inspired by the partial in the OCA spaceships thread.

Re: Requests for Searches - Non-apgsearch

Posted: August 31st, 2020, 12:40 pm
by cvojan
Can somebody search Tubular for c/7o odd-bilateral for width 9 and higher? So far, I've gotten some large partials:

Code: Select all

x = 44, y = 47, rule = B2c3aeij4krtyz5cij6-ak7/S2-ik3-aek4aeiknw5a6ikn7
4b2o5b2o18b2o5b2o2$2bo4bobo4bo14bo4bobo4bo$5b2o3b2o20b2o3b2o$2bo2bo2bo
2bo2bo14bo2bo2bo2bo2bo$4b2obobob2o18b2obobob2o$3b4o3b4o16b4o3b4o$4bob
2ob2obo18bob2ob2obo$3bo2bobobo2bo16bo2bobobo2bo$2bob3obob3obo14bob3obo
b3obo$3b4o3b4o16b4o3b4o$8bo26bo$6b5o22b5o$7bobo24bobo$3b2ob5ob2o16b2ob
5ob2o$4bo7bo18bo7bo$b2o11b2o12b2o11b2o$bo3bo2bo2bo3bo12bo3bo2bo2bo3bo$
o3bo2b3o2bo3bo10bo3bo2b3o2bo3bo$4b2obobob2o18b2obobob2o$3bo3b3o3bo16bo
3b3o3bo$4bo2bobo2bo18bo2bobo2bo$4b9o18b9o2$3b11o16b11o$b3o3b3o3b3o12b
3o3b3o3b3o$bobo2bo3bo2bobo12bobo2bo3bo2bobo$4b2o5b2o18b2o5b2o$3bo9bo
16bo9bo$5b2o3b2o20b2o3b2o$5b7o20b7o$6bo3bo22bobobo$5bob3obo20b2o3b2o$
3b3o5b3o15b2ob2obob2ob2o$2b4ob3ob4o13bob5ob5obo$2bob4ob4obo13b5o5b5o$
3b3ob3ob3o15b2o9b2o$3o2bobobobo2b3o15b7o$o2b3o5b3o2bo15b3ob3o$bob2o7b
2obo12b4o2b3o2b4o$6b5o17bo2b3obob3o2bo$6bobobo18b4ob3ob4o$2b4o2bo2b4o
15b3o2bo2b3o$b3o2bobobo2b3o12b2obo7bob2o$o5bobobo5bo11bo2bo2b3o2bo2bo$
ob2o2b2ob2o2b2obo14bo7bo$4bo3bo3bo14b2o5bobo5b2o!
I've been only using zfind and qfind; it might be necessary to switch to another program.

Re: Requests for Searches - Non-apgsearch

Posted: September 2nd, 2020, 1:56 am
by LaundryPizza03
wildmyron wrote:
August 31st, 2020, 6:06 am
LaundryPizza03 wrote:
August 30th, 2020, 5:32 pm
Big bump.

Some promising (2,1)c/5 partials for ikpx2:
<snip>
I'm currently running a search in B36/S0235 and another in B26/S02 (slow going).

I'm also running a separate search in Amoeba, inspired by the partial in the OCA spaceships thread.
I'm running B3578/S346, Morley, and B34678/S13578.

Code: Select all

x = 27, y = 11, rule = B34678/S13578
17bob2obo2bo$16b2o2b4obo$9b5o4bob2ob3o$8b2o3bob3ob2o4bo$5b3ob2ob2ob2ob
3ob2o$7b5ob5ob2ob3o$b2ob2o2b2ob2ob2obob3o2b3o$b2ob4o3b6ob4ob3o$ob3o2bo
4bobo2bobo3b2o$2b2o3b2ob2o4b2o2bobo3bo$3bo17bo2b2o!
I wonder if ikpx2 can find the elusive c/5d in B34567/S348.

Re: Requests for Searches - Non-apgsearch

Posted: September 3rd, 2020, 8:48 pm
by LaundryPizza03
p5 knightship partials, part 2:

Code: Select all

#C a.k.a. "Geology"
x = 9, y = 27, rule = B3578/S24678
5bo$3bo2b2o$2b5obo$b2ob3obo$bob3o$bob3o$bobo2bo$b4obo$3bo2bo$3b4o$4bob
obo2$2b2o2b2o$3b2ob2o$b2ob3o$2ob2o2bo$2o$bobobo$obo2bo$o2bob3o$4bobobo
$b2obo2bo$4b3o$6bobo$6b2o$2b6o$2b2o!

Code: Select all

x = 8, y = 14, rule = B3468/S3468
6bo$5b2o$4b2o$4b4o$5bo$b5obo$4ob2o$2ob4o$2o2b2o$2o$bo2b2o$bob5o$4ob2o$
o4b3o!

Code: Select all

x = 7, y = 9, rule = B34/S3467
3bo$b2obo$3o2bo$2o3bo$obob2o$2b3o$2o3b2o2$2b2ob2o!

Code: Select all

#C a.k.a. Logarithmic replicator rule
x = 9, y = 12, rule = B36/S245
4b2o$3b2obo$ob3obo$o4bo2bo$o2b5o$bobo3bo$obo2bo$2obobo$7bo$b2o2bobo$2b
obobobo$2b2obo!

Code: Select all

#C This rulespace (B35/S124:B3578/S124678) has many good knightship partials, but these are the best from ntzfind
x = 9, y = 17, rule = B3578/S124678
3bo$b2o$4obo$b3obo$ob2obo$2b3o$3b2o$3bob2o$5b2o$3bob3o$5b3o$2b3ob3o$2b
obo3bo$2b2o$2bobobobo$3bobobo$b3o2bo!

Code: Select all

x = 9, y = 21, rule = B357/S124
4bo$2b2obo$ob2obo$o2bo2b2o$2b2ob3o$2obo2bo$6bo$4bobo$b3ob3o$6b2o$2bo$
3b2o2bo$2b2o2bobo$3b2obobo$5b2o$b2o3b2o$bobo2b2o$b2ob2o$4bo2b2o$b3o3b
2o$2b3ob2o!

Code: Select all

x = 9, y = 23, rule = B3578/S12468
5bo$4b3o$2bob2o$2b2obo$2bo3bo$4bo2bo$2b3obo$2b5o$2bo$b2o5bo$3ob2o$obob
2o$bo2bo$2bob2o$bo2b3o$bobo3b2o$3o2b4o$obo2bobo$bo2b4o$bo3bo$2bo2b4o$
2b2o3b2o$obobo!

Code: Select all

x = 9, y = 24, rule = B35/S12468
4bo$2bobo2bo$2b2o2bobo$2b2o2b2o$3b5o$4bo$3b4o$2bo2b3o$2bobo$2b3o$b4obo
$3b3o2bo$2b3obo$2bobobo$4b3obo$4b2obo$3b2ob3o$2b2o2b2o$b2o3bo$5b2o$o2b
obob2o$o2bo2b2o$bo2bobobo$2ob2obo!

Code: Select all

x = 9, y = 13, rule = B368/S134678
5bo$4b4o$2b2ob3o$2bob3o$b2o3bo$b2o3bo$2b2ob2o$5b3o$bobobo$3bob2o$b2o$b
2obo$ob3obobo!

Code: Select all

#C An unnamed, but well-apgsearched rule
x = 8, y = 11, rule = B35/S34
5bo$3b3o$2b2o2bo$bo3bo$2b2obo$b2o$2b2o$b5o$bobobo$4b2o$2o2bo2bo!

Code: Select all

x = 9, y = 14, rule = B357/S34
7bo$5b3o$4b2o2bo$3bo3bo$4b2obo$2bobo$2b2o2bo$2b2ob2o$2bob3o$2b3ob2o$3o
3b2o$2o4bo$3b3o$b4o!

Code: Select all

x = 9, y = 11, rule = B3578/S12578
3bo$bo2bo$2o2b2o$b2o$4bo$bob2o$4bobo$b4obo$2o3bobo$2b2o$5bob2o!
The fourth-to-last rule also has a strong p6 knightship partial:

Code: Select all

x = 9, y = 20, rule = B368/S134678
4bo$2b3o$2b3o$2b4o$b2o3bo$2b2obo$4ob2o$o4bo$b2ob2o$2bo2b2o$4bobo$2obo$
2b2ob2o$2b4obo$4bobo$3b2obo$2b6o$2bo2b3o$b2o2bob2o$4b2obo!
I am also now searching B36/S13578; here's the best partial so far:

Code: Select all

x = 14, y = 25, rule = B36/S13578
2b3o$2b3obo$2b3obo$5bo$4b2o$b3o$3bobo$bo3bo$o2bob2o$4bo$2bo2b2o$4b
o$2bo$2bo2b3o$2bobo2bo$3bo$2bo3bo$4bobobo$3b2obo2b2o$5bo3bobo$5b4o
bo$6b2ob2o$7bo4bo$11bo$13bo!

Re: Requests for Searches - Non-apgsearch

Posted: September 4th, 2020, 7:10 pm
by LaundryPizza03
The rulespace B35[678]/S1235[678] has many strong c/3 diagonal partials in gfind, but it's running slowly enough that I will likely need help re-running the search for levels greater than l84.

Re: Requests for Searches - Non-apgsearch

Posted: September 15th, 2020, 7:59 pm
by LaundryPizza03
Is there a side component that can stabilize this wave?

Code: Select all

x = 45, y = 45, rule = B03/S23
o$bo$2bo$3bo$4bo$5bo$4b3o$3b2ob2o$3bo3b2o$2bo2bo2b2o$3bo3b2obo$4bob2o
3bo$5bo6bo$13bo$14bo$15bo$14b3o$13b2ob2o$13bo3b2o$12bo2bo2b2o$13bo3b2o
bo$14bob2o3bo$15bo6bo$23bo$24bo$25bo$24b3o$23b2ob2o$23bo3b2o$22bo2bo2b
2o$23bo3b2obo$24bob2o3bo$25bo6bo$33bo$34bo$35bo$34b3o$33b2ob2o$33bo3b
2o$32bo2bo2b2o$33bo3b2obo$34bob2o3bo$35bo6bo$43bo$44bo!

Re: Requests for Searches - Non-apgsearch

Posted: September 19th, 2020, 7:58 am
by yujh
I request someone to engineer a ship based on the replicator in B36n/s23

Re: Requests for Searches - Non-apgsearch

Posted: September 19th, 2020, 1:33 pm
by LaundryPizza03
yujh wrote:
September 19th, 2020, 7:58 am
I request someone to engineer a ship based on the replicator in B36n/s23
It's the same replicator as in Highlife, so we have a variant of the bomber:

Code: Select all

x = 9, y = 13, rule = B36n/S23
bo$o3b3o$7bo$7bo$bo2bo2bo$bo$bo$2b3o3bo$7bo4$3o!

Re: Requests for Searches - Non-apgsearch

Posted: September 19th, 2020, 7:42 pm
by yujh
LaundryPizza03 wrote:
September 19th, 2020, 1:33 pm
yujh wrote:
September 19th, 2020, 7:58 am
I request someone to engineer a ship based on the replicator in B36n/s23
It's the same replicator as in Highlife, so we have a variant of the bomber:

Code: Select all

x = 9, y = 13, rule = B36n/S23
bo$o3b3o$7bo$7bo$bo2bo2bo$bo$bo$2b3o3bo$7bo4$3o!
Interesting...
What about one with another speed?

Re: Requests for Searches - Non-apgsearch

Posted: December 15th, 2021, 9:15 am
by affamatodidio
Hello people of the internet. I am here to request these rules for c/n
B3-e4w6kS234q
B3-e4w6S234q
These two have a rather common c/8 spaceship. I came here to ask/request a tagalong for it, and/or any speed of the form c/N orthogonally. Preferably slower than c/2. I feel as though since a c/8 is so small, there could be other slow speeds there that are small as well.

The reason why I am posting this here instead of doing it myself is that my computer is so slow it cannot run apgsearch, nor ikpx, or anything else.

Thank you for reading/helping.

Re: Requests for Searches - Non-apgsearch

Posted: December 15th, 2021, 9:31 am
by LaundryPizza03
affamatodidio wrote:
December 15th, 2021, 9:15 am
Hello people of the internet. I am here to request these rules for c/n
B3-e4w6kS234q
B3-e4w6S234q
These two have a rather common c/8 spaceship. I came here to ask/request a tagalong for it, and/or any speed of the form c/N orthogonally. Preferably slower than c/2. I feel as though since a c/8 is so small, there could be other slow speeds there that are small as well.

The reason why I am posting this here instead of doing it myself is that my computer is so slow it cannot run apgsearch, nor ikpx, or anything else.

Thank you for reading/helping.
The second rule has already been apgsearched; the results can be viewed at https://catagolue.hatsya.com/census/b3-e4w6s234q. I'm too busy doing other stuff to search the first one.

Re: Requests for Searches - Non-apgsearch

Posted: December 15th, 2021, 3:16 pm
by Ian07
affamatodidio wrote:
December 15th, 2021, 9:15 am
Hello people of the internet. I am here to request these rules for c/n
B3-e4w6kS234q
B3-e4w6S234q
These two have a rather common c/8 spaceship. I came here to ask/request a tagalong for it, and/or any speed of the form c/N orthogonally. Preferably slower than c/2. I feel as though since a c/8 is so small, there could be other slow speeds there that are small as well.

The reason why I am posting this here instead of doing it myself is that my computer is so slow it cannot run apgsearch, nor ikpx, or anything else.

Thank you for reading/helping.
Low-hanging fruit in first rule from ntzfind; didn't find any tagalongs for the c/8 unfortunately:

Code: Select all

x = 311, y = 180, rule = B3-e4w6k/S234q
17bo5bo$3bo11b2ob2ob2ob2o92bo27bo5bo5bo$b2ob2o8bo4bobo4bo13bo4b2o4bo
17bo21bo25b3o24b2ob2ob2ob2ob2ob2o16bo5bo$b2ob2o8bo2bobobobo2bo12b3ob2o
2b2ob3o15b3o19b3o23b5o23b2o2bobo3bobo2b2o14b2ob2ob2ob2o35bo7bo$bo3bo
13bobo16b4o8b4o13b5o17b5o50b3obobobobobob3o14b2o2bobo2b2o34b4o3b4o25bo
5bo38b2o$2o3b2o9b2obobob2o16b2obo2bob2o65b2ob2o22b2o3bobo3bobo3b2o13b
3obobob3o33bo3b2ob2o3bo23bobo3bobo34bob4obo$15b3obobob3o12b2o12b2o13b
2ob2o17b2ob2o21bobobobo26bo2bobo2bo17b2o3bobo3b2o37bobo28bobo3bobo33bo
8bo$15bo3bobo3bo12bo14bo12bobobobo15bobobobo20bobobobo25b2o7b2o21bobo
37bo2b2o3b2o2bo22bo2bo3bo2bo30b3o8b3o$14bo4bobo4bo11b4o8b4o12bobobobo
15bobobobo19b2o5b2o24bobo5bobo21bobo36b2o3bo3bo3b2o21bo2bo3bo2bo30b2o
3bo2bo3b2o$14bob2obobob2obo10b2o2b2o6b2o2b2o10b2o5b2o13b2o5b2o18bobo3b
obo25b3o3b3o21b2ob2o34bo2b2obo3bob2o2bo19bo4bobo4bo29b2obobo2bobob2o$
16b2obobob2o17bo6bo15bobo3bobo13bobo3bobo20b2ob2o26b2obo3bob2o63bob2ob
2obo68bobo2bobo$17bobobobo18b2o4b2o17b2ob2o17b2ob2o21bo5bo24bo4bobo4bo
61b2ob2ob2ob2o22bob2obobob2obo33bo4bo$16bo2bobo2bo41bo5bo15bo5bo22bobo
26bo2bobobobo2bo94bo4bobo4bo30bo10bo$17bobobobo44bobo19bobo19bo3bo3bo
3bo26bobo65bo11bo24b3ob3o35b2ob2ob2o$67b2ob2o17b2ob2o17b3o2bo3bo2b3o
22b2obobob2o60b2ob2o7b2ob2o20bobo5bobo30bo2bob4obo2bo$64b4o3b4o11b4o3b
4o13b5ob5ob5o20b3obobob3o61b3o7b3o20b2ob3o3b3ob2o28bobo2b4o2bobo$63bo
4bobo4bo9bo4bobo4bo18bobobo26bo3bobo3bo62bo9bo21b5o5b5o27bo14bo$63bo4b
obo4bo9bo4bobo4bo12b2ob2obo3bob2ob2o19bo4bobo4bo58bobo11bobo18b2o2bo5b
o2b2o$68bobo19bobo17b2obo2bobobo2bob2o19bob2obobob2obo59bo13bo18b2o3b
2o3b2o3b2o30bob4obo$63b2o9b2o9b2o9b2o50b2obobob2o63b2o7b2o24bo2bobo2bo
31b2ob3o2b3ob2o$65bo7bo10b4o7b4o13b2obo5bob2o24bobobobo61b2ob2o7b2ob2o
23b2ob2o34bo3bo2bo3bo$63bo2bo5bo2bo34b2o13b2o19b3o2bobo2b3o59b3o9b3o
25bobo34b2obob4obob2o$64bo2bo3bo2bo11b2o3bo3b2o16bo3b3o3bo23bobobobobo
bo60bo13bo21b3obobob3o36b2o$67bo3bo14bo2b2ob2o2bo13bo2bo2b2ob2o2bo2bo
20bob2o3b2obo60bo13bo25bobo33b2obob2o2b2obob2o$65bob2ob2obo12b3o5b3o
15bobo7bobo20b2ob2o5b2ob2o91b2o2bo7bo2b2o25bob3obo4bob3obo$64b2obobobo
b2o10b2o3bobo3b2o16bobobobobo21bo4bo5bo4bo56bobo11bobo17b2obo3bobo3bob
2o28bob8obo$63bo3bobobo3bo38bo7bo21bo2bobo5bobo2bo57b2o11b2o22b2obobob
2o33bob6obo$67bo3bo41bob7obo94bob2o7b2obo23bobobobo33b4o4b4o$63b2o3bob
o3b2o36bo5bo5bo21b2ob2o3b2ob2o61bob2o3b2obo21b3o2bo3bo2b3o$112bobo7bob
o20b3ob3ob3ob3o60bo3bobo3bo21bobo9bobo29b3o6b3o$111b2obo2bobo2bob2o25b
obo67bobo3bobo22bo13bo29b3o6b3o$111bobo9bobo21b2obo3bob2o94b2obo7bob2o
$113bobo5bobo21b2o11b2o91b2o3bo5bo3b2o30bo6bo$113b4o3b4o20b2ob2obo3bob
2ob2o93bobo5bobo32bob2o2b2obo$111b2obobo3bobob2o17bo6b2ob2o6bo89b2o13b
2o28bobobo2bobobo$111b2o3b2ob2o3b2o20bob2obobob2obo97bo5bo33bo4b2o4bo$
111bobobo5bobobo17b2o6bobo6b2o89bo4bo5bo4bo31b2o2b2o$110b2o5b3o5b2o20b
3obobob3o98bo5bo$111bo13bo20b2o9b2o92bob2o9b2obo33b2o$110bobo11bobo19b
o11bo93bo2b3o3b3o2bo32bo4bo$111b3o9b3o19b2o5bo5b2o91b2o2b3o3b3o2b2o31b
o4bo$113b2o3bo3b2o27b3o101bo2bobo2bo34b2o4b2o$114bo2b3o2bo27b5o96b4o9b
4o29bo3b2o3bo$111b2obob5obob2o126b3obo5bob3o29bo10bo$111b2obo7bob2o24b
2ob2o99b2obo3bob2o29b3o10b3o$111b2obob2ob2obob2o23bobobobo99bo2bobo2bo
30b2o2b2o4b2o2b2o$110b2ob2obo3bob2ob2o17b3o2bobobobo2b3o90b3o2bobobobo
2b3o26bo2b3o4b3o2bo$114b2obobob2o20bo3bobo5bobo3bo89b5o7b5o30b2o4b2o$
110b3ob3o3b3ob3o16bo3bob2o3b2obo3bo93bo7bo$150b5o96b2ob2obo3bob2ob2o
28b2o8b2o$112b3o7b3o18b2ob2obo5bob2ob2o89b2obo2b2ob2o2bob2o28b2o8b2o$
117b3o23b2ob2obo5bob2ob2o92bob3ob3obo31bo10bo$116bo3bo23b2obobo2bo2bob
ob2o92b2o3bobo3b2o29b2o10b2o$112bo3bo3bo3bo19bo15bo93b2o7b2o28b2obo10b
ob2o$111b2o11b2o17bo2b3o7b3o2bo93bo2bobo2bo32bo10bo$110bo5b2ob2o5bo16b
o2bob2o5b2obo2bo90b2obo7bob2o26bobo12bobo$115b3ob3o29b3o98b2obob2ob2ob
ob2o29bo10bo$110b2o3bo5bo3b2o18b2obo2bobo2bob2o95bob2ob2obo30b6o4b6o$
114bo7bo28bobo101bo7bo30bo14bo$114bob2ob2obo133bo5bo32bob3o4b3obo$116b
2ob2o132bo3bo3bo3bo$117bobo137bo3bo36bo6bo$116bo3bo133b2obo3bob2o33bo
6bo$111b3o2b2ob2o2b3o171b2ob4ob2o$110bo3bobobobobo3bo173b4o$110bo3bobo
bobobo3bo166b6ob4ob6o$116bobobo172b2ob2o2bo2bo2b2ob2o$110b2ob2obo3bob
2ob2o170b2o6b2o$110b2ob3obobob3ob2o$111bob2o7b2obo172bo6bo$111b2o11b2o
173bo4bo$111bob2o3bo3b2obo170bobo6bobo$110b3o3b2ob2o3b3o169bo10bo$112b
3ob2ob2ob3o172bo2bo2bo2bo$114bobobobobo176b6o$114bo7bo177b4o$113b2o7b
2o171b3o2bo2bo2b3o$113bob7obo170b2obo2bo2bo2bob2o$112bob3obob3obo169b
2o2bo6bo2b2o$112bo5bo5bo176b2o$111bo2bo7bo2bo168b2o3bob2obo3b2o$111bob
o9bobo168bobo2bo4bo2bobo$113bob2o3b2obo170bo2bo8bo2bo$112bo3bo3bo3bo
169bo14bo$111b2obo7bob2o169bobo2b4o2bobo$110bo3bob2ob2obo3bo169bo2b6o
2bo2$110b2o6bo6b2o171bo2b2o2bo$112bo5bo5bo173bo6bo$110bo2bo9bo2bo172b
2o2b2o$111bo2bo7bo2bo172b2o4b2o$114bo2b3o2bo$112bobobo3bobobo171bo2bo
4bo2bo$111b2obobo3bobob2o170bobo6bobo$110bo3bo7bo3bo168b2o10b2o$113b2o
b2ob2ob2o171bobo8bobo$110b2o3bo5bo3b2o169bo10bo$117bobo178bo6bo$111bob
2obo3bob2obo170bobo6bobo$296bobo6bobo$113bo4bo4bo$113bo3b3o3bo174bo6bo
$116b5o177bo6bo$111b2o11b2o171b2o6b2o$111b2o3b2ob2o3b2o$111bo3bobobobo
3bo170b3o6b3o$110b2o3bobobobo3b2o170b2o6b2o$114b2o5b2o172bob2obo2bob2o
bo$114bobo3bobo$116b2ob2o174bo4bo2bo4bo$115bo5bo174b4o4b4o$117bobo$
112bo3bo3bo3bo169b2o12b2o$111b3o2bo3bo2b3o168b4o8b4o$110b5ob5ob5o169b
2o8b2o$116bobobo173b4o8b4o$110b2ob2obo3bob2ob2o166bo3bo8bo3bo$110b2obo
2bobobo2bob2o166bob4o6b4obo$294b2o12b2o$112b2obo5bob2o170bob3o4b3obo$
110b2o13b2o169bo2bob2obo2bo$113bo3b3o3bo171bob3o4b3obo$110bo2bo2b2ob2o
2bo2bo169b5o2b5o$112bobo7bobo170bobob6obobo$114bobobobobo170bobo2bo6bo
2bobo$114bo7bo171b2o2bo6bo2b2o$113bob7obo171b4o6b4o$112bo5bo5bo170bobo
8bobo$112bobo7bobo171bo2b2o2b2o2bo$111b2obo2bobo2bob2o173bo4bo$111bobo
9bobo169b2o10b2o$113bobo5bobo169bob3o8b3obo$113b4o3b4o170bobobo6bobobo
$111b2obobo3bobob2o170bobob4obobo$111b2o3b2ob2o3b2o170bo10bo$111bobobo
5bobobo172b2ob2ob2o$110b2o5b3o5b2o169bo4b2o4bo$111bo13bo171bo8bo$110bo
bo11bobo$111b3o9b3o171bo8bo$113b2o3bo3b2o171b2obob4obob2o$114bo2b3o2bo
175bo6bo$111b2obob5obob2o172bo6bo$111b2obo7bob2o168b4o8b4o$111b2obob2o
b2obob2o168b2o2b2ob2ob2o2b2o$110b2ob2obo3bob2ob2o170bo8bo$114b2obobob
2o174bob2o2b2obo$110b3ob3o3b3ob3o169bo10bo$295b2obobo2bobob2o$112b3o7b
3o170b3obob2obob3o2$295bo12bo$294b3o10b3o$294bo2bo8bo2bo$294bo14bo$
297b2o6b2o2$296bo10bo$296bobo6bobo$295bo12bo$295bo12bo$297b2o6b2o$296b
2o8b2o$297bobo4bobo$297bobo4bobo$300bo2bo$297bo8bo$298bo6bo$297bo8bo$
295b3o8b3o$295bo12bo$294b7o2b7o$293bo3bob2o2b2obo3bo$298bo6bo$298bo6bo
2$297b2o6b2o$296bo2bo4bo2bo$295b6o2b6o$295b6o2b6o!
Second rule; again, only the lowest-hanging fruit:

Code: Select all

x = 338, y = 149, rule = B3-e4w6/S234q
7bo$5b2ob2o20bo$5b2ob2o18b2ob2o$3b2obo2bo18b2ob2o$2b2ob2o2b2o15b2obo2b
o19bo4b2o4bo$bo23b2ob2o2b2o17b3ob2o2b2ob3o19bo4b2o4bo$2obo2bo17bo25b4o
8b4o17b3ob2o2b2ob3o25bo24bo24bo$2bo3bo16b2obo2bo23b2obo2bob2o19b4o8b4o
23b3o22b3o22b3o$4bo20bo3bo20b2o12b2o19b2obo2bob2o25b5o20b5o20b5o25bo$
2o3bo21bo22bo14bo16b2o12b2o101b3o22bo4b2o4bo$4o19b2o3bo20bobo12bobo15b
o14bo22b2ob2o20b2ob2o20b2ob2o23b5o20b3ob2o2b2ob3o56b2o6b2o$2bob2o17b4o
23bo14bo14b2obo12bob2o20bo3bo20bo3bo20bo3bo47b4o8b4o55bo2bo2bo2bo27bo$
2b2o21bob2o20bobo12bobo12bo2b2o12b2o2bo17b2obobob2o16b2obobob2o16b2obo
bob2o21b2ob2o22b2obo2bob2o58bo2b4o2bo26bobo$3b2o20b2o22b3o12b3o12bo20b
o17b2obobob2o15bo2b2ob2o2bo14b2obo3bob2o20bo3bo19b2o12b2o55b2o2b2o2b2o
26bobo$3bobo20b2o22bob2o8b2obo15bo2b2o8b2o2bo19bo2bobo2bo15bo9bo13bo4b
3o4bo17b2obobob2o17bo14bo54b2ob6ob2o24b2ob2o$4b2o20bobo19b4ob2o6b2ob4o
13bo4b2o4b2o4bo18b2obobobob2o17bobobo16bobobobobobobo16b2obo3bob2o15bo
bo12bobo58b2o27bobo3bobo$3b2o22b2o19b3ob4o4b4ob3o16bo2bo4bo2bo23b2obob
2o16b2o7b2o12b2obob2ob2obob2o14bo4b3o4bo15bo14bo53bo2bo2b2o2bo2bo21b2o
bobob2o$4b3o19b2o21bob2obo6bob2obo15bo3b2o4b2o3bo19b2o3bo3b2o16bo5bo
14bob2o7b2obo14bobobobobobobo14bobo12bobo52bobo3b2o3bobo23bo3bo$4bo22b
3o20b2o2bo6bo2b2o14b2obobob2o2b2obobob2o19bobobobo16bo2bo3bo2bo15bobob
obobo16b2o2b2obob2o2b2o13b3o12b3o55b2ob2ob2o25bo5bo$7b3o17bo20bo3b2o8b
2o3bo12bo2b3o8b3o2bo43bobo3bobo14b4o5b4o14bobo2b2ob2o2bobo14bob2o8b2ob
o57b2o2b2o23b5o3b5o$9bo20b3o16bo2bobo6bobo2bo15b2obob2o2b2obob2o68b2o
9b2o15bo3bo3bo3bo13b4ob2o6b2ob4o54bo6bo$26bo5bo18bob2o6b2obo14b2obobob
o6bobobob2o42b3o3b3o41bobo9bobo12b3ob4o4b4ob3o52bob2o4b2obo22bo2bobo2b
o$9b2o14b2o55bobobob4obobobo44bo3bobo3bo40b3o9b3o13bob2obo6bob2obo52b
2o2bo4bo2b2o21bob2ob2obo$24b3o5b2o18bo10bo18bo4bo4bo4bo96bob2o5b2obo
15b2o2bo6bo2b2o53b2o10b2o20b2ob5ob2o$25bo27b2o6b2o22bo8bo47b2ob2ob2ob
2o39b4ob2o3b2ob4o11bo3b2o8b2o3bo50b2ob2o6b2ob2o19b2ob2ob2ob2o$25b4o55b
o2bob2obo2bo96b3ob4ob4ob3o12bo2bobo6bobo2bo50bo16bo19b2obobob2o$27bob
2o54b3ob2ob3o98bob2obo3bob2obo15bob2o6b2obo52bo3b3ob2ob3o3bo19b2obobob
2o$31bo54bob4obo100b2o2bo3bo2b2o87b3o2b3o22bo3bo3bo3bo$26b2obob2o53b2o
4b2o98bo3b2o5b2o3bo15bo10bo55bo3b2o2b2o3bo18bobo9bobo$30b4o52b8o99bo2b
obo3bobo2bo17b2o6b2o56bobobo4bobobo21bo7bo$89b2o104bob2o3b2obo17b2o10b
2o53b2ob3o4b3ob2o18b3o7b3o$25bo4b2o54b2o4b2o128bo4b2o2b2o4bo55bobo4bob
o22b3obobob3o$24b3o4bo55b6o103bo7bo16b2obo2b2o2b2o2bob2o51b2o2bo6bo2b
2o24bo$23b5o2bobo53bo6bo103b2o3b2o16b4o3b2o2b2o3b4o53b2o6b2o24bo2bo2bo
$31bo196b4o58b3ob3o2b3ob3o24bo$23b2ob2o2bobo49b3ob2ob2ob2ob3o124b2o4b
4o4b2o51bobo3b2o2b2o3bobo22b3o$24bobo3b3o48bo16bo122bo2bo4b2o4bo2bo50b
obo5b2o5bobo19bob5obo$23bob2o3b3o47bo3bo10bo3bo121bo2bo10bo2bo57b4o25b
obo5bobo$24b3ob3ob2o46bo18bo127b2o2b2o92bobo5bobo$82b2ob2o6b2ob2o123b
2o14b2o55b2o4b2o22b2obobobobob2o$26b3o52bobob2o6b2obobo124bo3bo4bo3bo
57b2o4b2o21bo3b2obob2o3bo$83b3obo4bob3o124bobo3b6o3bobo56b6o22bo4bo3bo
4bo$26bo55bo3b8o3bo131b2o64bo4bo26bo5bo$26b2o53b4o3bo2bo3b4o122b3o3b2o
2b2o3b3o55b8o22bo2bo2bo2bo2bo$25b2o2b3o48bo8b2o8bo120bo3bo10bo3bo53bo
3b2o3bo21bobob5obobo$24bo4bob2o52bo2b4o2bo132b2o2b2o60bo2bo2bo2bo20bo
4bo3bo4bo$24bo2bo5bo46b2o2b4o4b4o2b2o120b2ob2o2bo4bo2b2ob2o56bo2bo$27b
o56b2o8b2o133b2o62b2ob4ob2o27bo$26bob2o2b2o53bob2obo133b2o4b2o61bo4bo
23b3obo3bob3o$26bo54bobo4bo2bo4bobo194b10o23b3o3b3o$29bo50b2o6bo2bo6b
2o126b3o2b3o58b3o2b2o2b3o22bo2bobo2bo$26b2o51b3o16b3o127bo2bo94bo7bo$
80bo8b2o8bo124b2o2bo2bo2b2o58bo6bo23bo9bo$80b3o5b4o5b3o123bo3bo4bo3bo
90b7o$81b3o3b2o2b2o3b3o124bo3bo4bo3bo55b2ob2o2b2ob2o22b2o2bo2b2o$80b2o
bo4bo2bo4bob2o122bo3bobo2bobo3bo54b2o2bo2bo2b2o20b2o2b2ob2o2b2o$79bo4b
o2bob2obo2bo4bo120bo2b2o2bo2bo2b2o2bo54b2o6b2o20bo2b4ob4o2bo$79bo2bobo
2b6o2bobo2bo119bo5b2ob2ob2o5bo53bob2o2b2obo21bo11bo$82bob3obo2bob3obo
123bobo2b2o4b2o2bobo53b2o8b2o23b3ob3o$79b2obo14bob2o123b2obo4bob2o56bo
3bo2bo3bo$81bo5bo4bo5bo126b2o6b2o58bo2bo2bo2bo25b2ob2o$79bo3b2obo6bob
2o3bo124b2o6b2o95bo$80bo18bo125b2o6b2o55b3o10b3o21bo5bo$82b2o12b2o125b
o3bob2obo3bo56bo8bo24bo5bo$81bo16bo124bo4b4o4bo54b4ob4ob4o22bo5bo$80bo
2bo12bo2bo124bobobo2bobobo57b2ob4ob2o24b3ob3o$80bobo14bobo123b2ob2o4b
2ob2o55bo3bo2bo3bo22b2o5b2o$223b3o8b3o57bo6bo23bo3bobo3bo$80b3o14b3o
192b2o8b2o20b2o3bobo3b2o$80bo2bo12bo2bo126bo6bo58b3o6b3o19b3o3bobo3b3o
$79b2obob2o8b2obob2o124bobo4bobo58bo8bo23bo2bobo2bo$83bo2bo2b2o2bo2bo
127bo2b2o2b2o2bo55bo3bob2obo3bo21b2obobob2o$82bo3b3o2b3o3bo127b4o2b4o
55b2o2bo2b2o2bo2b2o23bobo$80b2obob2o6b2obob2o124b2o8b2o54bobo3bo2bo3bo
bo23bobo$81b2o2bo2bo2bo2bo2b2o190b2o3bo6bo3b2o22bobo$81bo2bob2o4b2obo
2bo124b2o2b2o2b2o2b2o55b2o3b2o3b2o21b3obobob3o$84bo10bo126b2o3b2o2b2o
3b2o56bo6bo22b2ob2o3b2ob2o$82bo3b2o4b2o3bo124b2o4bo2bo4b2o54b2ob6ob2o
20b2obobobobob2o$81b2ob2o8b2ob2o126bob6obo56bo2bo6bo2bo18b2o3bo3bo3b2o
$80b5ob2o4b2ob5o121b2obo3b4o3bob2o53bo4b2o4bo23bo2bo2bo$83bo4bo2bo4bo
125bo2b2o2b2o2b2o2bo53b4o6b4o19bo3bobobo3bo$80b2o3bo2bo2bo2bo3b2o190bo
2b3o4b3o2bo18bo2bobobobo2bo$81b2o2bo8bo2b2o121b2o16b2o49bo3bob2o2b2obo
3bo17bo3bo3bo3bo$80bo3bobo6bobo3bo190bo2bo8bo2bo23b3o$81b3o3bo4bo3b3o
194b3o4b3o23bo2b3o2bo$80bobo2bobo4bobo2bobo194b2o4b2o24bob2ob2obo$80b
2o4bo6bo4b2o193b3o4b3o23b3o3b3o$80b2o2bob2o4b2obo2b2o225b2obo3bob2o$
79b2obob2o8b2obob2o192bo8bo21bo11bo$82bobob2o4b2obobo194b2o8b2o24bo3bo
$82bo2bobo4bobo2bo193bobo8bobo20bo2bo3bo2bo$83bob2obo2bob2obo195b4o4b
4o24bo3bo$85bo2bo2bo2bo196bo3bo4bo3bo19b2o9b2o$81b2o2bo8bo2b2o196bo4bo
22bo2bo7bo2bo$81b2o4b2o2b2o4b2o196bo4bo$81bo3b10o3bo194bob2o2b2obo23b
3o3b3o$80b2o4bo6bo4b2o192b2ob2o2b2ob2o23bo2bo2bo$86bobo2bobo198bo10bo
24b2ob2o$291bo12bo$291bob2o6b2obo22bobobobo$293b3o4b3o$294b3o2b3o$290b
o3bo6bo3bo$289b6obo2bob6o$292bo10bo$289b2o2bobo4bobo2b2o$292bo2b6o2bo$
294bobo2bobo$290b3ob2o4b2ob3o$289b2o4bo4bo4b2o2$294b3o2b3o$293b2obo2bo
b2o$293b2obo2bob2o$294b2o4b2o$292bo2b2o2b2o2bo$290b3o10b3o$289bo2bo2bo
4bo2bo2bo$289bo16bo$291b3o8b3o$291b2obo6bob2o$292b4o4b4o$290b4o2bo2bo
2b4o$294bobo2bobo$292b2o8b2o$290b2ob2ob4ob2ob2o$291b4o2b2o2b4o$290b2o
12b2o$294b2o4b2o$294b2o4b2o$295b2o2b2o$294b2o4b2o$294bo6bo$294bo6bo$
294b2ob2ob2o$291b3obo4bob3o$291b6o2b6o$290bobobo6bobobo$290bobob2ob2ob
2obobo2$291b2o2b2o2b2o2b2o$292bo10bo$293b3o4b3o$293bobo4bobo$291b2obob
o2bobob2o$293b2ob4ob2o$290bo3bob4obo3bo$290bobobobo2bobobobo$290bobo2b
2o2b2o2bobo!
LaundryPizza03 wrote:
December 15th, 2021, 9:31 am
The second rule has already been apgsearched; the results can be viewed at https://catagolue.hatsya.com/census/b3-e4w6s234q. I'm too busy doing other stuff to search the first one.
I think you're mistaken - this is the non-apgsearch thread.

Re: Requests for Searches - Non-apgsearch

Posted: January 31st, 2022, 9:08 pm
by affamatodidio
B3-ej5-j/S023-y4jr
Has a p9, p2, and 4c/24. rather interesting because of its beehive behavior. I also have found a beehive fuse:

Code: Select all

x = 15, y = 4, rule = B3-ej5-j/S023-y4jr
3bo5bo$12b2o$11bo2bo$o5bo5b2o!
Chaotic and nonexplosive.
Here for c/n and any oscillators.

Re: Requests for Searches - Non-apgsearch

Posted: February 15th, 2022, 12:49 am
by pzq_alex
B2ce3a4a/S1e2-n3er4ir c/17o please. qfind and w4a (or w5a) should work.

Re: Requests for Searches - Non-apgsearch

Posted: April 27th, 2022, 12:38 pm
by affamatodidio
Bump.
Could anyone find a p9/p11 osc in B3aik4ijr6aci/S1e23-jy4t5eiqry6i8?
Would be very useful to it's omniperiodicity. (currently everything EXCEPT for p9 and p11, and this is just from shift-5 searching in browser)
I had found this rule from an old silversmith post and changed it a bit for easier omniperiodicity accomplishment. (rt12 90deg reflector, every period above 12 possible)

Re: Requests for Searches - Non-apgsearch

Posted: April 28th, 2022, 12:16 am
by FWKnightship
affamatodidio wrote:
April 27th, 2022, 12:38 pm
Could anyone find a p9/p11 osc in B3aik4ijr6aci/S1e23-jy4t5eiqry6i8?

Code: Select all

x = 26, y = 13, rule = B3aik4ijr6aci/S1e23-jy4t5eiqry6i8
2b2o5b2o8b2o3b2o$19bo2bo2bo$o3bobobo3bo9bo$o3bobobo3bo9bo$2b2o5b2o$6bo
$2b2obobob2o9bo3bo$6bo13bobobo$2b2o5b2o11bo$o3bobobo3bo$o3bobobo3bo2$
2b2o5b2o!

Re: Requests for Searches - Non-apgsearch

Posted: June 6th, 2022, 12:00 pm
by affamatodidio
An LLS search on this spaceship and still life collision that results in splitter.

Code: Select all

x = 7, y = 3, rule = B3-n/S1e2-a3-e
4bo$2o2bobo$4bo!

Re: Requests for Searches - Non-apgsearch

Posted: June 6th, 2022, 6:02 pm
by Period1GliderGun
affamatodidio wrote:
June 6th, 2022, 12:00 pm
An LLS search on this spaceship and still life collision that results in splitter.
...
Here is one. As a bonus, the parent rule does not explode.

Code: Select all

x = 6, y = 3, rule = B3-ny5ei6ci/S1e2-ak3-eq5y
5bo$2o2b2o$5bo!