Finally a breeder!And here is an MMS breeder which utilises that reaction:
I would add it to the wiki immediately.
Two p4 eaters:wildmyron wrote:A third(?) crawler eater - using the p26:Code: Select all
code
Code: Select all
x = 7, y = 8, rule = B36/S125
bo$2bobo2$3o$5b2o$4bobo$3b2o$3bo!
Code: Select all
x = 11, y = 8, rule = B36/S125
5bo$6bobo2$4b3o$2o7b2o$o2bo4bobo$2b2o3b2o$7bo!
The second pattern doesn't work when the crawler is pulled back - it interacts with the carrier prior to reaching the p4.A for awesome wrote:Two p4 eaters:Code: Select all
x = 7, y = 8, rule = B36/S125 bo$2bobo2$3o$5b2o$4bobo$3b2o$3bo!
A stable eater might be possible if a catalyst is found that can take the place of the p4 in the second eater.Code: Select all
x = 11, y = 8, rule = B36/S125 5bo$6bobo2$4b3o$2o7b2o$o2bo4bobo$2b2o3b2o$7bo!
APGsearch is probably your best bet, especially with some kind of symmetry setting. Although I suppose it depends on what sorts of things you're looking for. The C1 symmetry setting is just starting to uncover unusual oscillators (periods 8, 11, 17), so if someone ran, say D4_+2 long enough it'd probably turn up some interesting oscillators too. And maybe a spaceship/infinite growth mechanism; I'm not sure how thoroughly this rule has been searched for small-ish ships.Yimmy wrote:I've been interested in this rule for a while and was wondering what ways I could assist in the research of this rule.
Code: Select all
x = 32, y = 32, rule = B36/S125
6b4o$4bob2o2bo$3b2o2bobobo$2bobo3bo$b3o6bo$10b3o$2o8b2o$3o5bo4bo$o2bo
3bo5bo$obo9bob4o$bo2b3o4b3ob3o$2bo2b2o3b2o4bo3bo$5bo3b2o5bob2o$7b2obo$
9bo7bo$9b2o7bob3o$9b4o6b2o3bo$9b2o3bo5b3o2bo$12bo2bo4b2o4bo$12bo3bo4bo
bo2bo$11bo3b4o2b3o$15bob4obo2bobo$15bobo2b3o5b2o$19b2o5b2ob2o$16bo9bo
3bo$17bo3bo4bobo$18b2o3b3ob3o$21bobo2bo4bo$22bo2b2o3bo$22b2o2bo$23b2o
3bo$27bo!
Code: Select all
x = 44, y = 44, rule = B36/S125
6b4o$4bob2o2bo$3b2o2bobobo$2bobo3bo$b3o6bo$10b3o$2o8b2o$3o5bo4bo$o2bo
3bo5bo$obo9bob4o$bo2b3o4b3ob3o$2bo2b2o3b2o4bo3bo$5bo3b2o5bob2o$7b2obo$
9bo7bo$9b2o7bob3o$9b4o6b2o3bo$9b2o3bo5b3o2bo$12bo2bo4b2o4bo$12bo3bo4bo
bo2bo$11bo3b4o2b3o3b2o$15bob4obo2bo3bo$15bobo2b3o3bo2bo$19b2o6bo$16bo
10bo$17bo3bo4bo$18b2o2bo2bo4bo$20bo2b2o4bo$20bo11bo$21b2o4bo4bo$26bo$
33b2o$28b2o4bo$31bo3bo$31b2o2bo$33b2o$37bo$36bo$38bo$39bo2$41bo$42bo$
43bo!
Code: Select all
x = 17, y = 6, rule = B36/S125
2bo11bo$o2bo9bo2bo$2o6bo6b2o$7b3o$2bo2bob3obo2bo$3b2o7b2o!
Code: Select all
x = 21, y = 61, rule = B36/S125
9b3o$7b7o$5bob2o3b2obo$5b3o5b3o$5bo2bo3bo2bo$3b5ob3ob5o$2b5o2bo
bo2b5o$2bobo4b3o4bobo$3b2obo2bobo2bob2o$3b3o4bo4b3o$b2o2bob7obo2b
2o$6bo3bo3bo$b2o6b3o6b2o$8bo3bo$b2o3bo3bo3bo3b2o$7bobobobo$b2o15b
2o$3bo4bo3bo4bo$2b6o5b6o$7bo5bo$3bobobo2bo2bobobo$7b2obob2o$2bob
obo2b3o2bobobo$4bobo2bobo2bobo$4bo11bo$3bo4bo3bo4bo$4b2o2bo3bo2b
2o$5b3o5b3o$3bo4bo3bo4bo$3b4o2bobo2b4o$2b3ob2o5b2ob3o$b6o7b6o$3b
o13bo$3bo13bo$o3bo2bo5bo2bo3bo$bob3o2bo3bo2b3obo$2o2bo3bo3bo3bo2b
2o$bob4o7b4obo$2bo5bo3bo5bo$2bo15bo2$2bo2bo9bo2bo$3bo2bobo3bobo2b
o$7bo5bo$3bob2o7b2obo$4bo4bobo4bo$6b3o3b3o$3b3obo5bob3o$2b2obo9b
ob2o$5b3o5b3o$2b3obobo3bobob3o$2bo2bo9bo2bo$2bo2bo3bobo3bo2bo$3b
o13bo$2b3obo3bo3bob3o$3b4o3bo3b4o$5b3o5b3o$5bob2o3b2obo$2b2o3bo5b
o3b2o$2bo3bo7bo3bo$3b3o9b3o!
Code: Select all
x = 4, y = 15, rule = B36/S125
4o$4o$4o$4o$4o$4o$4o$4o$4o$4o$4o$4o$4o$4o$4o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
#CXRLE Pos=-34,-25
x = 68, y = 49, rule = B36/S125:T70,70
3bo4bo8bo4bo8bo4bo8bo4bo8bo4bo$4bo2bo10bo2bo10bo2bo10bo2bo10bo2bo2$bo
8bo4bo8bo4bo8bo4bo8bo4bo8bo$2b2o4b2o6b2o4b2o6b2o4b2o6b2o4b2o6b2o4b2o$b
2o6b2o4b2o6b2o4b2o6b2o4b2o6b2o4b2o6b2o$3bo4bo8bo4bo8bo4bo8bo4bo8bo4bo
2$o10bo2bo10bo2bo10bo2bo10bo2bo10bo$bo8bo4bo8bo4bo8bo4bo8bo4bo8bo23$bo
bo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo$2bo6bo6bo6bo6bo6bo6bo
6bo6bo6bo$bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo12$bobo4bob
o4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo$2bo6bo6bo6bo6bo6bo6bo6bo6bo
6bo$bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo4bobo!
Code: Select all
x = 70, y = 70, rule = B36/S125:T70,70
67bobo$66bo2bo$65bo2$65b2o$63bo$64bo$60bobo$59bo2bo$58bo2$58b2o$56bo$
57bo$53bobo$52bo2bo$51bo2$51b2o$49bo$50bo$46bobo$45bo2bo$44bo2$44b2o$
42bo$43bo$39bobo$38bo2bo$37bo2$37b2o$35bo$36bo$32bobo$31bo2bo$30bo2$
30b2o$28bo$29bo$25bobo$24bo2bo$23bo2$23b2o$21bo$22bo$18bobo$17bo2bo$
16bo2$16b2o$14bo$15bo$11bobo$10bo2bo$9bo2$9b2o$7bo$8bo$4bobo$3bo2bo$2b
o2$2b2o$o$bo!
Code: Select all
x = 69, y = 69, rule = B36/S125:T70,70
33bo33bo$33bo31b2o$31b3o30bo3bo$30bo33bo3bo$30bo32bo4bo$28b3o34b3o2$
26bo33bo$26bo31b2o$24b3o30bo3bo$23bo33bo3bo$23bo32bo4bo$21b3o34b3o2$
19bo33bo$19bo31b2o$17b3o30bo3bo$16bo33bo3bo$16bo32bo4bo$14b3o34b3o2$
12bo33bo$12bo31b2o$10b3o30bo3bo$9bo33bo3bo$9bo32bo4bo$7b3o34b3o2$5bo
33bo$5bo31b2o$3b3o30bo3bo$2bo33bo3bo$2bo32bo4bo$3o34b3o2$32bo35bo$30b
2o36bo$29bo3bo32b3o$29bo3bo31bo$28bo4bo31bo$30b3o30b3o2$25bo35bo$23b2o
36bo$22bo3bo32b3o$22bo3bo31bo$21bo4bo31bo$23b3o30b3o2$18bo35bo$16b2o
36bo$15bo3bo32b3o$15bo3bo31bo$14bo4bo31bo$16b3o30b3o2$11bo35bo$9b2o36b
o$8bo3bo32b3o$8bo3bo31bo$7bo4bo31bo$9b3o30b3o2$4bo35bo$2b2o36bo$bo3bo
32b3o$bo3bo31bo$o4bo31bo$2b3o30b3o!
Code: Select all
x = 13, y = 13, rule = B36/S125
8b2o$4b2ob2o3bo$3b7o$2bo2bobob2obo$5b2obo$b2o$2o$b2o$5b2obo$2bo2bobob
2obo$3b7o$4b2ob2o3bo$8b2o!
Code: Select all
x = 28, y = 9, rule = B36/S125
8bobo13bo$7bo16b2o$b3ob3o13b6o$6bo2b2o8bo2bobo2bo$5ob5o8bob2o2b2o$5ob
2o9bobob2o$5b2o2b3obo2bob3o$b3o5bo2bo2b6o$10bo3b2o2bo!
Code: Select all
x = 7, y = 1, rule = B36/S125
7o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
A 5x1 line produces the same object:Saka wrote: p10 with undimensional predecesor:Code: Select all
x = 7, y = 1, rule = B36/S125 7o!
Code: Select all
x = 5, y = 1, rule = B36/S125
5o!
Code: Select all
x = 14, y = 7, rule = B36/S125
10bo$10bo2bo$b2ob2o4bobo$o5bo$2obob2o5bo$o5bo$b2ob2o!
Code: Select all
x = 105, y = 102, rule = B36/S125
o4bo6bobobobobo2bobobo5bobobo2bobobo2bobobo2bobobo2bobobobobo2bobobo2b
obobo2bobobo2bobobo2bobobo$o4bo6bobobobobo2bobobo5bobobo2bobobo2bobobo
2bobobo2bobobobobo2bobobo2bobobo2bobobo2bobobo2bobobo$14bo3bo6bo9bo6bo
6bo6bo6bo3bo6bo6bo6bo6bo6bo$2b2o9bo2bobo4bobobo6bo2bo2bobobo4bobo3bo2b
o3bo2bobo4bobobo2bo2bo3bo2bo3bobo4bobobo$12b2o3b2o2b3obo7b2o3bo3bob3o
2b2o4bob2o2b2o3b2o2b3obo3bo3b2o2b2obo4b2o2b3obo$5bo6b2o3b2o2b3obo7b2o
3bo3bob3o2b2o4bob2o2b2o3b2o2b3obo3bo3b2o2b2obo4b2o2b3obo$5bo7bo2bobo4b
obobo6bo2bo2bobobo4bobo3bo2bo3bo2bobo4bobobo2bo2bo3bo2bo3bobo4bobobo$
14bo3bo6bo9bo6bo6bo6bo6bo3bo6bo6bo6bo6bo6bo$5bo6bobobobobo2bobobo5bobo
bo2bobobo2bobobo2bobobo2bobobobobo2bobobo2bobobo2bobobo2bobobo2bobobo$
5bo6bobobobobo2bobobo5bobobo2bobobo2bobobo2bobobo2bobobobobo2bobobo2bo
bobo2bobobo2bobobo2bobobo12$25b2o3b2o$26b2ob2o$24bobobobobo$24bo7bo$
28bo$26bo3bo2$25bob3obo$28bo$2b2o21bo2bo2bo$16b2o21b2o$o13bo6bobo3b3o
3bobo6bo$o13b3o2bo6b5o6bo2b3o$15bo5bo3b3ob3o3bo5bo$2b2o12bobo2b3ob2o3b
2ob3o2bobo$15bo5bo3b3ob3o3bo5bo$5bo8b3o2bo6b5o6bo2b3o$5bo8bo6bobo3b3o
3bobo6bo$16b2o21b2o$2b2o21bo2bo2bo$28bo$25bob3obo2$26bo3bo$28bo$24bo7b
o$24bobobobobo$26b2ob2o$25b2o3b2o11$2b2o$15b2o$o14bo2bo$o12bo2bo$12bo
4bo$2b2o8bo4bo$13bo2bo$o4bo9bo2bo$o4bo9b2o2$2b2o19$19bo$2b2o12bobo$20b
o$o4bo10bo$o4bo8bo2bobobobo$12bo3bo3bo$2b2o9bo9bo$16bo3bo3bo$o4bo7bobo
bobo2bo$o4bo14bo$16bo$2b2o14bobo$17bo!
Thanks for checking. I had noticed the narrower p6, but neglected to check catagolue for the wider one. I've even contributed a fair fraction of the symmetrical soups it's been found in! Speaking of which, I took up your idea of running apgsearch with D4_+2 symmetry in the hope of finding oscillators of new periods, but it's not looking very promising so far after 100 million soups. I'm also running dr in the hope of finding new oscillators, but again not very promising. Not sure if I'm on the right track with either of those efforts.Lewis wrote:The p6 (and it's smaller variant) both occur naturally; I (possibly re-)discovered them back in 2011, but they could have been known before that. I've got the p8 saved as well, but no idea who found it and when. The P4 and P5 are definitely new though.
Fantastic! Thanks for the update.Lewis wrote:I've stuck an updated collection in the first post.
Code: Select all
x = 32, y = 15, rule = B36/S125
4b2obo18b2o$8bo13b2obo$3bo5bo17bo2bo$2bo5bobo10bo4bo2bo$bob2o3bo3bo7bo
10bo$o11bo6bob2o6b2o$18bo$o11bo$o3bo3b2obo6bo$2bobo5bo6bo2bo$3bo5bo7bo
bo$4bo$5bob2o11bobo$19bo2bo$21bo!
Code: Select all
x = 117, y = 15, rule = B36/S125
91b3o7bo$15bo7b3o37b3o21b3ob3ob3obobobo$13bobobob3ob3ob3o21b3o5b3ob3ob
3o13b3ob3obo3b3o6bo$12bo6b3o3bob3ob3o13b3ob3ob3ob3obobob3ob3o5b3ob3obo
7bobo3bobboo$11boobbo3bobo7bob3ob3o5b3ob3obo3b3obo4bo4bob3ob3ob3obo9bo
4bob4oboo$10boob4obo4bo9bob3ob3ob3obo7bo8bo8bob3obo14boboobbo4boo$10b
oo4bobboobo14bob3obo9bo9bobbo9bo13bobobob3o4boo3bo$8bo3boo4b3obobobo
13bo13bobo5boboo8b5o7bobobo5b3oboobobobb4o$5b4obboboboob3o5bobobo7b5o
8boboo6bo5bo5bo3boo3bobobo6bobo6bob3obo$8bob3obo6bobo6bobobo3boo3bo4b
4o4bo4bo3bo14bobo6bo3bo4bo5bobbooboobo$3bobooboobbo5bo4bo3bo6bobo15bo
3b7o10bobo9bo11boo14b4o$4o14boo11bo9bobo4bo10boobboo16bo20boboobo4bo$
4bo4boboobo20bo14bobo3bobb4o41boo10bo$o10boo45boo44boo6bobo$bbobo6boo
45boo3bo!
Code: Select all
x = 15, y = 9, rule = B36/S125
2bo4bo4bo$2bo4bo4bo$obobo5bobobo$obobo5bobobo$4bob3obo$obobo2bo2bobobo
$obobo5bobobo$2bo4bo4bo$2bo4bo4bo!
I thought I had completed a few gfind searches but can't find anything recorded. So only thing I've seriously investigated is the c/10 diagonal wave posted above. Attached is a c/10 JLS search which I've run to completion with no solution found. Unfortunately I didn't include don't care cells so if there's a longer solution at that width I missed it. I'm currently continuing a similar search for supports of width 11.velcrorex wrote:Has anyone had any luck searching for other spaceship velocities? Various partials looks promising.
Code: Select all
x = 15, y = 45, rule = B36/S125
7bo$7bo$7bo$7bo2$4b3ob3o$5bo3bo$5bo3bo$5b5o$3bobo3bobo$5bobobo$7bo$4b
2obob2o$7bo2$5b2ob2o$6bobo$bo11bo$bobobo3bobobo$5bo3bo$3bob2ob2obo$2o
3bo3bo3b2o$o13bo$bob2o5b2obo$2bo2bo3bo2bo$2b5ob5o$5b2ob2o$5b2ob2o$3b2o
bobob2o$bo5bo5bo$b2obo5bob2o$3b3o3b3o$4bo2bo2bo$7bo$5bo3bo$3bobo3bobo$
2bo2bo3bo2bo$2bobobobobobo$6bobo$4b2o3b2o$bo3bo3bo3bo$5bo3bo$ob2o7b2ob
o$b2obo5bob2o$3o9b3o!
Code: Select all
x = 10, y = 14, rule = B36/S125
2bo3bo$3b2obo$5bo2$bo2bo2bo$o4b2o2bo$ob5o$ob5o$o4b2o2bo$bo2bo2bo2$5bo$
3b2obo$2bo3bo!
Yep. I guess I didn't read through everything well enough.Scorbie wrote:@Velcrorex Sorry to tell you that Lewis found the exact same one on page 2. How did you find it? with gfind?
Code: Select all
x = 14, y = 45, rule = B36/S125
3bo6bo$2b2o6b2o$2b2o6b2o$3b2ob2ob2o$3bo2b2o2bo$3b3o2b3o$4bo4bo$
2bobo4bobo$3bo6bo$6b2o$5b4o2$4bo4bo2$5bo2bo$5bo2bo$5b4o$6b2o$b3o
6b3o$4b6o$4b6o$4b2o2b2o$5bo2bo$4bob2obo$4b6o$5b4o2$3b2o4b2o$obo8b
obo$3bobo2bobo$3bo6bo$14o$2bob2o2b2obo$2bo2b4o2bo$3bo2b2o2bo2$6b
2o2$4b2o2b2o$3b8o$b3obo2bob3o$o2b2o4b2o2bo$2obobo2bobob2o$o2bobo
2bobo2bo$b2obo4bob2o!
Code: Select all
x = 51, y = 8, rule = B36/S125
b2o$o$o2$3b2o6b2o32b2o$bob3o37bob3o$5bo2bo38bo2bo$2b3ob3o35b3ob3o!
Code: Select all
x = 65, y = 30, rule = B36/S125
47bo12bo$13bo32bo14bo$14b2o28bo2bo2bobo2bobo2bo2bo$14bo2bo25bo5b3o4b3o
5bo$17bo28bo5bo2bo5bo$15b3obo24bo2b4o6b4o2bo$19bo26b2o12b2o$17b2obo$
19bob2o$20bo$20bob3o$22bo24bo12b2o$22bo2bo20bo10b4o2bo$24b2o18bo2bo2bo
bo2bo5bo$26bo16bo5b3o4b3o5bo$46bo5bo2bobo2bo2bo$44bo2b4o10bo$46b2o12bo
$ob2o11bob2o$o3bo10bo3bo$2bo14bo$3b3o12b3o$4b3o12bob2o$7bo12bo$5bo3bo
10bob3o29b2o$6b2obo12bo26bo3bo3bo$22bo2bo23b2o2bobo$24b2o22bo3bo2bo$
26bo22bo3bo3bo$54b2o!
Code: Select all
x = 40, y = 40, rule = B36/S125
30bo2bo$30bo$32bo$30b2o$26b$28b3o$28bobo8bo$26b2obo7bo$26bo9bo$
30bo2b2obob2o$29bo2bobo$25b2obo4b2o$27bo4bo$21b2o2bo2bo2b2o$20bo
2bo2bobo$20b5o$18bo4b3o$16b2obo4bobo$14bo4b2o3bobo$17bo2b2o2b2o$
15b2o4b2o$10b2o2b2o7bo$9b2ob2obo4bobo$10bob3o4bo2bo$17b3o$8bo7bo
bo2bo$9bob2o3b2o$9b2o2bo2b2o$9bobobo4bo$7bo4bo3b3o$6b2o3b3o3bo$2b
5o7bo$2b4o3b2o$8b2o$2b3o2b2o$obo2bob2o$bobobob2o$obob2ob2o$3bo$2b
obo!