Partitioned Cellular Automata

For discussion of other cellular automata.
User avatar
PHPBB12345
Posts: 762
Joined: August 5th, 2015, 11:55 pm
Contact:

Re: Partitioned Cellular Automata

Post by PHPBB12345 » January 29th, 2020, 8:52 am

Code: Select all

@RULE PCA_13

@NAMES
1 N
2 E
3 NE
4 S
5 NS
6 ES
7 NES
8 W
9 NW
10 EW
11 NEW
12 SW
13 NSW
14 ESW
15 NESW
16 Boundary

@TREE

num_states=17
num_neighbors=4
num_nodes=121
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 16
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 16
2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 16
1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 16
1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 16
2 4 4 4 4 5 5 5 5 4 4 4 4 5 5 5 5 6
1 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 16
1 4 4 4 4 4 4 4 4 12 12 12 12 12 12 12 12 16
1 0 1 0 1 0 1 0 1 8 9 8 9 8 9 8 9 16
2 8 8 8 8 9 9 9 9 8 8 8 8 9 9 9 9 10
3 3 3 7 7 3 3 7 7 3 3 7 7 3 3 7 7 11
1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 16
1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 16
1 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 16
2 13 13 13 13 14 14 14 14 13 13 13 13 14 14 14 14 15
1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 16
1 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 16
1 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 16
2 17 17 17 17 18 18 18 18 17 17 17 17 18 18 18 18 19
1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 16
1 6 6 6 6 6 6 6 6 14 14 14 14 14 14 14 14 16
1 4 5 4 5 4 5 4 5 12 13 12 13 12 13 12 13 16
2 21 21 21 21 22 22 22 22 21 21 21 21 22 22 22 22 23
3 16 16 20 20 16 16 20 20 16 16 20 20 16 16 20 20 24
1 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 16
1 8 8 10 10 8 8 10 10 8 8 10 10 8 8 10 10 16
1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 16
2 26 26 26 26 27 27 27 27 26 26 26 26 27 27 27 27 28
1 4 4 6 6 4 4 6 6 4 4 6 6 4 4 6 6 16
1 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 16
1 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 16
2 30 30 30 30 31 31 31 31 30 30 30 30 31 31 31 31 32
1 0 0 2 2 0 0 2 2 8 8 10 10 8 8 10 10 16
1 4 4 6 6 4 4 6 6 12 12 14 14 12 12 14 14 16
1 0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11 16
2 34 34 34 34 35 35 35 35 34 34 34 34 35 35 35 35 36
3 29 29 33 33 29 29 33 33 29 29 33 33 29 29 33 33 37
4 12 12 12 12 12 12 12 12 25 25 25 25 25 25 25 25 38
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 16
1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 16
2 40 40 40 40 41 41 41 41 40 40 40 40 41 41 41 41 42
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 16
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 16
1 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 16
2 44 44 44 44 45 45 45 45 44 44 44 44 45 45 45 45 46
1 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 16
1 3 3 3 3 3 3 3 3 11 11 11 11 11 11 11 11 16
1 2 3 2 3 2 3 2 3 10 11 10 11 10 11 10 11 16
2 48 48 48 48 49 49 49 49 48 48 48 48 49 49 49 49 50
3 43 43 47 47 43 43 47 47 43 43 47 47 43 43 47 47 51
1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 16
1 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 16
1 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 16
2 53 53 53 53 54 54 54 54 53 53 53 53 54 54 54 54 55
1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 16
1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16
1 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16
2 57 57 57 57 58 58 58 58 57 57 57 57 58 58 58 58 59
1 5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13 16
1 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15 16
1 6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15 16
2 61 61 61 61 62 62 62 62 61 61 61 61 62 62 62 62 63
3 56 56 60 60 56 56 60 60 56 56 60 60 56 56 60 60 64
1 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 16
1 12 12 14 14 12 12 14 14 12 12 14 14 12 12 14 14 16
1 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10 11 16
2 66 66 66 66 67 67 67 67 66 66 66 66 67 67 67 67 68
1 9 9 11 11 9 9 11 11 9 9 11 11 9 9 11 11 16
1 13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15 16
1 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 16
2 70 70 70 70 71 71 71 71 70 70 70 70 71 71 71 71 72
1 1 1 3 3 1 1 3 3 9 9 11 11 9 9 11 11 16
1 5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15 16
1 4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15 16
2 74 74 74 74 75 75 75 75 74 74 74 74 75 75 75 75 76
3 69 69 73 73 69 69 73 73 69 69 73 73 69 69 73 73 77
4 52 52 52 52 52 52 52 52 65 65 65 65 65 65 65 65 78
1 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4 16
1 8 8 8 8 12 12 12 12 8 8 8 8 12 12 12 12 16
1 0 1 0 1 4 5 4 5 0 1 0 1 4 5 4 5 16
2 80 80 80 80 81 81 81 81 80 80 80 80 81 81 81 81 82
1 2 2 2 2 6 6 6 6 2 2 2 2 6 6 6 6 16
1 3 3 3 3 7 7 7 7 3 3 3 3 7 7 7 7 16
1 2 3 2 3 6 7 6 7 2 3 2 3 6 7 6 7 16
2 84 84 84 84 85 85 85 85 84 84 84 84 85 85 85 85 86
1 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12 16
1 2 2 2 2 6 6 6 6 10 10 10 10 14 14 14 14 16
1 0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13 16
2 88 88 88 88 89 89 89 89 88 88 88 88 89 89 89 89 90
3 83 83 87 87 83 83 87 87 83 83 87 87 83 83 87 87 91
1 1 1 1 1 5 5 5 5 1 1 1 1 5 5 5 5 16
1 10 10 10 10 14 14 14 14 10 10 10 10 14 14 14 14 16
1 8 9 8 9 12 13 12 13 8 9 8 9 12 13 12 13 16
2 93 93 93 93 94 94 94 94 93 93 93 93 94 94 94 94 95
1 9 9 9 9 13 13 13 13 9 9 9 9 13 13 13 13 16
1 11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15 16
1 10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15 16
2 97 97 97 97 98 98 98 98 97 97 97 97 98 98 98 98 99
1 1 1 1 1 5 5 5 5 9 9 9 9 13 13 13 13 16
1 3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15 16
1 2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15 16
2 101 101 101 101 102 102 102 102 101 101 101 101 102 102 102 102 103
3 96 96 100 100 96 96 100 100 96 96 100 100 96 96 100 100 104
1 0 0 2 2 4 4 6 6 0 0 2 2 4 4 6 6 16
1 8 8 10 10 12 12 14 14 8 8 10 10 12 12 14 14 16
1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 16
2 106 106 106 106 107 107 107 107 106 106 106 106 107 107 107 107 108
1 1 1 3 3 5 5 7 7 1 1 3 3 5 5 7 7 16
1 9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15 16
1 8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15 16
2 110 110 110 110 111 111 111 111 110 110 110 110 111 111 111 111 112
1 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16
1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 16
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 114 114 114 114 115 115 115 115 114 114 114 114 115 115 115 115 116
3 109 109 113 113 109 109 113 113 109 109 113 113 109 109 113 113 117
4 92 92 92 92 92 92 92 92 105 105 105 105 105 105 105 105 118
5 39 79 39 79 39 79 39 79 39 79 39 79 39 79 39 79 119

@COLORS

# the grey-level intensity is proportional to the number of particles
# in the square
1  120 120 120
2  120 120 120
3  160 160 160
4  120 120 120
5  160 160 160
6  160 160 160
7  220 220 220
8  120 120 120
9  160 160 160
10 160 160 160
11 220 220 220
12 160 160 160
13 220 220 220
14 220 220 220
15 255 255 255
16 200 180   0
S-gate:

Code: Select all

x = 37, y = 6, rule = PCA_13
4.P13.P13.P$P7.P5.P7.P5.P7.P$.D27.D2$5.B13.B$4.P13.P13.P!
bit-loop-to-stream copier:

Code: Select all

x = 132, y = 13, rule = PCA_13
126.P$125.P$127.P2.P$H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.
H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H3.H6.P3$125.P2.P$126.D2.P$
130.P3$125.P$126.2P!

muzik
Posts: 3848
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Partitioned Cellular Automata

Post by muzik » January 29th, 2020, 5:16 pm

What would this rule be in LifeViewer's notation, then, so it can be added as an alias?

EDIT: also, what do the boundary cells do, exactly, in case it's possible to get them included in the default LifeViewer PCA specification?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

Post Reply