I'll also add in the condition that if a cell hits the max state (in this case 8, it dies) because I don't feel like waiting for an eternal for a 255 state ruletree to compile.mniemiec wrote: ↑July 14th, 2020, 2:22 pmBack in the 1990s, I played with a rule I called Integer Life.A for awesome wrote: ↑July 14th, 2020, 12:43 pmIt's just an abbreviation for isotropic non-totalistic.
1) Assume a Moore neighborhood, except every cell has an integer value
2) At every step, a cell's neighborhood is the arithmetic sum of the values of its 8 neighbors.
3) If a cell is dead (i.e. value=0), and has a neighborhood of exactly 3n, a new cell of value n is born there; otherwise it stays dead.
4) If a cell is alive (i.e. value=n, n!=0), and has exactly 2n or 3n neighbors, it remains alive; otherwise, it dies. (As it happens, the n!=0 condition is redundant).
5) There is some room for experimentation with regards to what happens with neighborhoods aren't exact multiples of n; I have found that "round down" works the best, i.e. survival in the range [2n...4n); some other more permissive combinations can make a rule that is explosive.
This rule behaves very similarly to life, with some minor exceptions. The exteriors of soups behave much as in Life, but the interiors work very differently; it's a bit like the interior of a star, with high temperatures causing creation of heavier elements. Most stable patterns and oscillators tend to be of one state, but a fair number of hybrids of multiple states (most commonly, 2 in the interior and 1 on the outside) occur
One interesting feature is scaling; any pattern containing cells of states 1, 2, 3, ... is isomorphic to a similar pattern containing cells of states n, 2n, 3n... for any integer n that is not a multiple of 3. One can even extend this from integers to rational numbers whose denominators are not multiples of 3.
Besides supporting most patterns from Life (notably excluding anything involving dead cells with 6 neighbors, as does HighLife, e.g. ship and dead spark coil), there is also a natural 2c/6 orthogonal spaceship:Code: Select all
.111 1.2. 122. 1.2. ...1
Use the ruletree below with Golly.
Alternatively, Integer Rules (generalised to HROT) are supported by CAViewer and Caterer on the discord.
Anyway, here's the ruletree
Code: Select all
@RULE R1_I8_S2-3_B3_NM
@TREE
num_states=8
num_neighbors=8
num_nodes=180
1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0
1 2 0 2 3 0 0 0 0
1 0 0 2 3 0 0 0 0
2 0 0 1 2 3 3 4 5
1 0 0 0 3 4 0 0 0
2 0 1 2 3 3 4 5 7
1 3 0 0 3 4 0 0 0
2 1 2 3 3 4 5 7 9
1 0 0 0 3 4 5 0 0
2 2 3 3 4 5 7 9 11
2 3 3 4 5 7 9 11 11
1 4 0 0 0 4 5 6 0
2 3 4 5 7 9 11 11 14
1 0 0 0 0 4 5 6 0
2 4 5 7 9 11 11 14 16
1 0 0 0 0 4 5 6 7
2 5 7 9 11 11 14 16 18
3 6 8 10 12 13 15 17 19
1 5 0 0 0 4 5 6 7
2 7 9 11 11 14 16 18 21
3 8 10 12 13 15 17 19 22
1 0 0 0 0 0 5 6 7
2 9 11 11 14 16 18 21 24
3 10 12 13 15 17 19 22 25
2 11 11 14 16 18 21 24 24
3 12 13 15 17 19 22 25 27
1 6 0 0 0 0 5 6 7
2 11 14 16 18 21 24 24 29
3 13 15 17 19 22 25 27 30
2 14 16 18 21 24 24 29 24
3 15 17 19 22 25 27 30 32
1 0 0 0 0 0 0 6 7
2 16 18 21 24 24 29 24 34
3 17 19 22 25 27 30 32 35
1 7 0 0 0 0 0 6 7
2 18 21 24 24 29 24 34 37
3 19 22 25 27 30 32 35 38
4 20 23 26 28 31 33 36 39
2 21 24 24 29 24 34 37 34
3 22 25 27 30 32 35 38 41
4 23 26 28 31 33 36 39 42
2 24 24 29 24 34 37 34 34
3 25 27 30 32 35 38 41 44
4 26 28 31 33 36 39 42 45
1 0 0 0 0 0 0 0 7
2 24 29 24 34 37 34 34 47
3 27 30 32 35 38 41 44 48
4 28 31 33 36 39 42 45 49
2 29 24 34 37 34 34 47 47
3 30 32 35 38 41 44 48 51
4 31 33 36 39 42 45 49 52
2 24 34 37 34 34 47 47 47
3 32 35 38 41 44 48 51 54
4 33 36 39 42 45 49 52 55
2 34 37 34 34 47 47 47 47
3 35 38 41 44 48 51 54 57
4 36 39 42 45 49 52 55 58
2 37 34 34 47 47 47 47 0
3 38 41 44 48 51 54 57 60
4 39 42 45 49 52 55 58 61
5 40 43 46 50 53 56 59 62
2 34 34 47 47 47 47 0 0
3 41 44 48 51 54 57 60 64
4 42 45 49 52 55 58 61 65
5 43 46 50 53 56 59 62 66
2 34 47 47 47 47 0 0 0
3 44 48 51 54 57 60 64 68
4 45 49 52 55 58 61 65 69
5 46 50 53 56 59 62 66 70
2 47 47 47 47 0 0 0 0
3 48 51 54 57 60 64 68 72
4 49 52 55 58 61 65 69 73
5 50 53 56 59 62 66 70 74
2 47 47 47 0 0 0 0 0
3 51 54 57 60 64 68 72 76
4 52 55 58 61 65 69 73 77
5 53 56 59 62 66 70 74 78
2 47 47 0 0 0 0 0 0
3 54 57 60 64 68 72 76 80
4 55 58 61 65 69 73 77 81
5 56 59 62 66 70 74 78 82
2 47 0 0 0 0 0 0 0
3 57 60 64 68 72 76 80 84
4 58 61 65 69 73 77 81 85
5 59 62 66 70 74 78 82 86
2 0 0 0 0 0 0 0 0
3 60 64 68 72 76 80 84 88
4 61 65 69 73 77 81 85 89
5 62 66 70 74 78 82 86 90
6 63 67 71 75 79 83 87 91
3 64 68 72 76 80 84 88 88
4 65 69 73 77 81 85 89 93
5 66 70 74 78 82 86 90 94
6 67 71 75 79 83 87 91 95
3 68 72 76 80 84 88 88 88
4 69 73 77 81 85 89 93 97
5 70 74 78 82 86 90 94 98
6 71 75 79 83 87 91 95 99
3 72 76 80 84 88 88 88 88
4 73 77 81 85 89 93 97 101
5 74 78 82 86 90 94 98 102
6 75 79 83 87 91 95 99 103
3 76 80 84 88 88 88 88 88
4 77 81 85 89 93 97 101 105
5 78 82 86 90 94 98 102 106
6 79 83 87 91 95 99 103 107
3 80 84 88 88 88 88 88 88
4 81 85 89 93 97 101 105 109
5 82 86 90 94 98 102 106 110
6 83 87 91 95 99 103 107 111
3 84 88 88 88 88 88 88 88
4 85 89 93 97 101 105 109 113
5 86 90 94 98 102 106 110 114
6 87 91 95 99 103 107 111 115
3 88 88 88 88 88 88 88 88
4 89 93 97 101 105 109 113 117
5 90 94 98 102 106 110 114 118
6 91 95 99 103 107 111 115 119
7 92 96 100 104 108 112 116 120
4 93 97 101 105 109 113 117 117
5 94 98 102 106 110 114 118 122
6 95 99 103 107 111 115 119 123
7 96 100 104 108 112 116 120 124
4 97 101 105 109 113 117 117 117
5 98 102 106 110 114 118 122 126
6 99 103 107 111 115 119 123 127
7 100 104 108 112 116 120 124 128
4 101 105 109 113 117 117 117 117
5 102 106 110 114 118 122 126 130
6 103 107 111 115 119 123 127 131
7 104 108 112 116 120 124 128 132
4 105 109 113 117 117 117 117 117
5 106 110 114 118 122 126 130 134
6 107 111 115 119 123 127 131 135
7 108 112 116 120 124 128 132 136
4 109 113 117 117 117 117 117 117
5 110 114 118 122 126 130 134 138
6 111 115 119 123 127 131 135 139
7 112 116 120 124 128 132 136 140
4 113 117 117 117 117 117 117 117
5 114 118 122 126 130 134 138 142
6 115 119 123 127 131 135 139 143
7 116 120 124 128 132 136 140 144
4 117 117 117 117 117 117 117 117
5 118 122 126 130 134 138 142 146
6 119 123 127 131 135 139 143 147
7 120 124 128 132 136 140 144 148
8 121 125 129 133 137 141 145 149
5 122 126 130 134 138 142 146 146
6 123 127 131 135 139 143 147 151
7 124 128 132 136 140 144 148 152
8 125 129 133 137 141 145 149 153
5 126 130 134 138 142 146 146 146
6 127 131 135 139 143 147 151 155
7 128 132 136 140 144 148 152 156
8 129 133 137 141 145 149 153 157
5 130 134 138 142 146 146 146 146
6 131 135 139 143 147 151 155 159
7 132 136 140 144 148 152 156 160
8 133 137 141 145 149 153 157 161
5 134 138 142 146 146 146 146 146
6 135 139 143 147 151 155 159 163
7 136 140 144 148 152 156 160 164
8 137 141 145 149 153 157 161 165
5 138 142 146 146 146 146 146 146
6 139 143 147 151 155 159 163 167
7 140 144 148 152 156 160 164 168
8 141 145 149 153 157 161 165 169
5 142 146 146 146 146 146 146 146
6 143 147 151 155 159 163 167 171
7 144 148 152 156 160 164 168 172
8 145 149 153 157 161 165 169 173
5 146 146 146 146 146 146 146 146
6 147 151 155 159 163 167 171 175
7 148 152 156 160 164 168 172 176
8 149 153 157 161 165 169 173 177
9 150 154 158 162 166 170 174 178==========================
Stuff I've found
P58
Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
oobobobobbbooooo$
obobobbobobbbbbb$
boobobbooobbbbob$
bboboboooobobbob$
ooobbbbobobobbbb$
boooboooobbbbobb$
bobbbbbooooobboo$
oobbboobboobbooo$
boobbboboooooooo$
boobobboooobbbbo$
oobooboboobobbbo$
boboboobbobooobb$
bboooboboooobbob$
oobbooooboobooob$
bobooboboobboobo$
obbooboboobbbbbo!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
bbbbboooooobbobb$
ooobbbooobbooobo$
ooooboooboobobbb$
bbbbobbobbooobob$
booobbbbobbooobb$
booobbbbbbobbobb$
obooobobobobbooo$
bobooobbbobbboob$
boooooobbobboboo$
bbobobbobbbbobbo$
obbboboboooboobb$
oboobbooooboobob$
boboobboobobboob$
bbbbobbboooboobb$
boooobbboboobbob$
oooboboooboobbbo!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
bbboobobbboooobo$
oobobbbbbboooboo$
ooboobbbooobooob$
bbobobbooobboobb$
bboboobbobooobbo$
obobbboooooboboo$
boobooobooboobob$
booobooobobobobb$
oobbbboobobobbob$
bobobooboobobbbb$
oobbbooobboooobb$
bbooobobbooobobo$
bbboobbboobbboob$
ooooobobbbbobooo$
bbbobooobbbbooob$
booobobobobooboo!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
bbobobboobboooob$
bbbboooobbboboob$
oooobbobbooobboo$
obbbbobobbobobob$
bboboobbbbbbbooo$
oobobbbbbbbboooo$
bbbobooobobbbobo$
ooobbobobboobbbb$
bbbbboobobobobob$
booobbbboobooboo$
bbobobbboobboobb$
ooobbobooooboboo$
obbbbbbobooooooo$
obbobbbboobbbbbo$
bbbbbboooobbbbob$
obobbobbbbbobbbb!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
oooooooboobooobb$
obooobobobobbooo$
obooooooobobooob$
bobooobbooboobbo$
boboobbobooooobb$
obooobbbobobboob$
oboooooobbobobbo$
oobbobbbooboobbb$
bbbbobbobboooboo$
oobbbbbboooooooo$
obbobooboooboobo$
obboobobbobobbbb$
obobbbobbobobboo$
booobbooobbooobo$
bbobbboobobboobb$
boobbobooobbbboo!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
obooboooooobboob$
bboboobobbbbbbob$
ooooobooobbooboo$
bboobobbbbbobooo$
obbbobobobobbbbo$
bbbbobbooobobobb$
ooobbbbooboobooo$
bobboboooobooobo$
bbbbooobbooboboo$
bboobooboboooobo$
bbbbobobbbbobboo$
oobbboooboooobbo$
obboboooobobbbbb$
oobbbbbbbboobbbb$
bboooobboobooboo$
obobbboobboooobo!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
bobboobobobobbbo$
ooboobbooobobobo$
oooboooobobbbbbo$
obbobbbobbbbbbbb$
ooboobbbboboobob$
bbobbbbboboboobb$
bobbbbbboboboobb$
ooooooobobboobbb$
bboooobooooboobb$
bboboobbbboobboo$
boooobboobooobob$
oooooooooooobobo$
oboboooobobooboo$
booobbobbboboobo$
ooobobobbbobbbbo$
bbbbbobbbboobobb!Code: Select all
x = 16, y = 16, rule = R1_I8_S2-3_B3_NM
bbobbobobooooobb$
bbboooooboobooob$
oooobbbbbboobboo$
obooboobbobbbbob$
bobbbboobbbbbbob$
boobobbbobbboooo$
boooobbbboobboob$
ooobbobobbobooob$
bboobobobbobbboo$
booobbobbbbooboo$
ooboobbbooobboob$
oobobbobobbobbbo$
obboobbbbbbbobob$
bbooobbooboboooo$
oobobobbooobbooo$
oboooooboobobobo!