Page 1 of 1

3458/37/4

Posted: November 14th, 2010, 7:47 am
by ynotds
I suspect nobody has had much of a look at this as it very quickly delivers one of the holy grails of CA, which I'll get to at the bottom for those who are impatient. But really it is a case where it can be more fun to discover for yourself. So I'd recommend starting with one of the five viable orthogonal collisions between common c/2 spaceships which generate distinct asymmetric patterns. (Six more generate the same viable diagonally symmetric pattern which you can find easily enough.)

Code: Select all

x = 24, y = 416, rule = 3458/37/4
19.CB$18.BA.C$19.ABA$19.3A$20.A8$.B$C3A$2.B2A$C3A$.B84$20.C.C$19.BA.A
B$20.ABA$20.3A$21.A8$.CA$.B3A$2.C2A$.B3A$.CA84$18.C.C$17.BA.AB$18.ABA
$18.3A$19.A8$.B$C3A$B.B2A$.C2A85$18.CB$17.BA.C$18.ABA$18.3A$19.A8$.B$
C3A$B.B2A$.C2A85$20.BC$19.C.AB$19.ABA$19.3A$20.A8$.CA$.B3A$CAC2A$2.B
2A!
I'm currently running the bottom one, beyond 35,000 iterations with a population over 9 million (live+dying) but please be encouraged to run one of the others and see what emerges. The growth rate is a bit quicker than 345/3/6 which has kept me focused for two years now (and which I hope I'm getting closer to writing up properly) but many of the patterns that are familiar from there and similar rules, also turn up in 3458/37/4, so the ones I'm highlighting below are one afternoon's worth of somewhat different discoveries.

A p250 switch engine which moves (2,2) per cycle:

Code: Select all

x = 12, y = 22, rule = 3458/37/4
9.2A$9.3A$6.3A.A$6.2ACB$7.BAC15$.BA$C2A$.2A!
A common enough diagonal p8 spaceship which moves (1,1) per cycle:

Code: Select all

x = 4, y = 4, rule = 3458/37/4
.3A$A2BA$4A$CA!
A cyclically symmetric p4 oscillator:

Code: Select all

x = 7, y = 6, rule = 3458/37/4
4.3A$3.3AB$2.BC.C$.C.CB$B3A$3A!
Four "engines", the upper of each pair being technically a long period spaceship (p28 and p48), the second laying ubiquitous track which erodes at 6/10c until a noisy phase-dependent reblocking and the last leaving a trail of pairs of blocks p20:

Code: Select all

x = 36, y = 68, rule = 3458/37/4
32.C2A$31.B.B2A$31.C3A$30.AB.A$28.2A.A.A$28.7A$29.A3.B2A$31.C3A$32.B
11$32.B$31.C3A$7.CB.A.A.A.A.A.A.A.A.A.A.A2.B2A$7.C.26A$8.BC.A.A.A.A.A
.A.A.A.A.A.A.A$31.A.A$31.B3A$30.CA.B2A$31.C3A$32.B11$32.B$27.C.2AC3A$
2A.2A22.4A2.B2A$6A3.BA.BC11.2A.A2.4A$.A.C2A2.2ACA.2A9.3A2.3A.A$.A.C2A
2.2ACA.2A9.3A2.3A.A$6A3.BA.BC11.2A.A2.4A$2A.2A22.4A2.B2A$27.C.2AC3A$
32.B12$32.C2A$31.B.B2A$27.ABC.4A$26.2A.2A.A$26.2A.2A.A$27.ABC.4A$31.B
.B2A$32.C2A!
Another track layer, but one which leaves behind a new viable seed pattern when it spontaneously transitions to a p8 spaceship:

Code: Select all

x = 23, y = 9, rule = 3458/37/4
19.B$18.C3A$.BC.A.A.A.A.A.A.A3.B2A$C.20A$CB.A.A.A.A.A.A.A.A.A$16.C2.A
$18.C3A$18.B.B2A$19.C2A!
A "delta" engine which is p28 immediately behind the engine and p560 by the time it starts producing the rakes of ships which produce a delta wing:

Code: Select all

x = 8, y = 8, rule = 3458/37/4
4.C2A$.2A2.B2A$.6A$C2A.A$4.A$3.C3A$3.B.B2A$4.C2A!
And the totally unexpected but very commonly produced holy grail:

Code: Select all

x = 8, y = 14, rule = 3458/37/4
.2C$B2.B$C2AC$.2A3$4.3A$4.3A$5.A$4.A.A$4.AB2A$2.CB.2A$4.B$4.C!
And, no, I'm not giving a description. You really do have to at least run that one and be as surprised as I was.

Re: 3458/37/4

Posted: November 14th, 2010, 10:17 am
by ebcube
Whoa. That... knightpuffer (?) is indeed impressive.

I've been looking at the engines with the trails at 6c/10. You can combine them in many ways; I've found a clean rake and three puffers, which seem to grow forever.

Code: Select all

x = 35, y = 188, rule = 3458/37/4
10$9.2AB$9.2ACAC$9.3AB$12.A$12.A.A.A.2A$9.11A$9.2AC6.2A$9.7AC$12.A.A.
B$12.A3.C$9.3AB$9.2ACAC$9.2AB19$11.2AC$10.2AB.B$11.3AC$12.A.BA$12.A.A
.A.A.A.CB$11.12A.C$10.2AB6.A.A.BC$11.6AB$12.A.A.2AC$12.A.BA$11.3AC$
10.2AB$11.3AC$12.A.BA$12.A.A.2AC$11.6AB$10.2AB6.A.A.BC$11.12A.C$12.A.
A.A.A.A.CB$12.A.BA$11.3AC$10.2AB.B$11.2AC12$11.2AB$11.2ACAC$11.3AB$
13.A.CB$13.A.A.A.BC$11.9A$11.2AC5.B$11.7AC$13.A.A.AB$13.A.CBA$11.3AB$
11.2ACAC$11.2AB12$11.2AB$11.2ACAC$11.3AB$14.A$14.A.A.A.2A$11.11A$11.
2AC6.A$11.7AC$14.A.A.B$14.A3.C$11.3AB$11.2ACAC$11.2AB20$11.2AB$11.2AC
AC$11.3AB$14.A3.C$14.A.A.B$11.7AC$11.2AC$11.7AC$14.A.A.B$14.A3.C$11.
3AB$11.2ACAC$11.2AB21$12.2AC$11.2AB.B$12.3AC$13.A.BA$13.A.A.A.A.A.2AC
$12.12AB$11.2AB6.A.A2.C$12.6AB$13.A.A.2AC$13.A.BA$12.3AC$11.2AB.B$12.
2AC!

Re: 3458/37/4

Posted: November 14th, 2010, 2:19 pm
by tod222
ynotds wrote:A p250 switch engine which moves (2,2) per cycle
I like the little eye-catching P8 oscillator that's part of it:

Code: Select all

x = 3, y = 3, rule = 3458/37/4
.C$B2A$3A!

Re: 3458/37/4

Posted: November 14th, 2010, 3:00 pm
by ssaamm
A Bug:

Code: Select all

x = 9, y = 10, rule = 3458/37/4
4.BC$3.3A.2A$4.2A.2A2$4.2A.2A$4.2A.2A$2.2A$2.2A$2A$2A!

Re: 3458/37/4

Posted: November 14th, 2010, 4:01 pm
by Extrementhusiast
I have done a very similar rule that has a tiny p162 (I think) oscillator:

Code: Select all

x = 4, y = 4, rule = 345/367/3
.2AB$3A$3A$B!

A couple of distictively different puffers

Posted: November 14th, 2010, 7:55 pm
by ynotds
Found these overnight in my saves from that fifth seed in the post above at 35,000 and 45,000. Both worth a look:

Code: Select all

x = 12, y = 8, rule = 3458/37/4
8.C2A$7.B.B2A$7.C3A$.2A.A.A$2AB6A$.2A.A2.B2A$5.C3A$6.B!

Code: Select all

x = 8, y = 10, rule = 3458/37/4
4.CA$4.B3A$.B3.C2A$C7A$.2ACA$4.A$3.C4A$3.B.C2A$4.B3A$4.CA!

Re: 3458/37/4

Posted: December 10th, 2010, 3:53 pm
by ebcube
Someone said knightship?

Code: Select all

x = 30, y = 32, rule = 3458/37/4
$17.2A$17.2A$18.2A5.3A$18.2A5.2ACA$25.3AB$27.A3$11.2A$11.2A$12.2A$12.
2A5.2C.3A$18.B.2AC2A$17.2ABA.3A$18.4A$19.A$9.3A$9.2ACA$9.3AB$11.A6$3.
2C.3A$2.B.2AC2A$.2ABA.3A$2.4A$3.A!

Re: 3458/37/4

Posted: December 30th, 2010, 8:32 pm
by knightlife
I like the knightship...

Another knightship:

Code: Select all

x = 20, y = 18, rule = 3458/37/4
10.C$7.CA.C$6.B3A$.3A2.4A$.ABAC3.A8.3A$2AB.2A8.C2.ABA$.B.3A7.3A.3A$2.
C.C8.2A.2A$14.CAC$15.B3$12.3A$9.C2.ABA$8.3A.3A$8.2A.2A$9.CAC$10.B!
Stable objects never get a chance to form behind this one.

I thought I could make more variants but haven't found any more yet.

EDIT:
Didn't look close enough the first time...
There is a single block that forms momentarily.

Re: 3458/37/4

Posted: December 30th, 2010, 8:43 pm
by knightlife
Another knightship using different phases of the puffer:

Code: Select all

x = 14, y = 13, rule = 3458/37/4
7.A$6.4A$5.2AB.ABAC$6.3A.ACAB$7.7A$11.2A2$4.3A$.C2.ABA$3A.3A$2A.2A$.C
AC$2.B!

Re: 3458/37/4

Posted: December 30th, 2010, 10:53 pm
by knightlife
Knightship repeats every 64 generations (instead of 32):

Code: Select all

x = 21, y = 26, rule = 3458/37/4
6.A$3.2CB2AB$5.A.C2A$.C2BA.3A$BA2.CB.2A$.2A$.BC$12.2A$11.B3A$11.AC2A.
C$10.2ACA.A$11.A2CB.BAC$11.2B3CA.2A$14.2B4A$17.3A2$11.C$8.CA.C$7.B3A$
7.4A$9.A8.3A$15.C2.ABA$14.3A.3A$14.2A.2A$15.CAC$16.B!

Re: 3458/37/4

Posted: December 31st, 2010, 2:23 am
by knightlife
This knightship has an extra-long tail:

Code: Select all

x = 21, y = 37, rule = 3458/37/4
CBA2.C$.2BAB3A$.C2.A.2A$3.AC.2A$3.BA2.AB$4.C2AC$5.2A5$8.A$7.3A$7.ABA$
5.2A2.ACB$5.2A2.AC2A$6.ABA.AB$6.3A$7.A2$18.2A$15.BC.3A$14.3A.2A$14.2A
CA$15.BAB$16.A2$10.C$8.2BAB$6.CAC.AC$7.3AB$7.2A$16.C2A$14.AB.2A$14.2A
.2A$14.ABAC$14.3A!
The large spark is useful for making rakes (knightrakes?):
forward:

Code: Select all

x = 105, y = 116, rule = 3458/37/4
CBA2.C$.2BAB3A$.C2.A.2A$3.AC.2A$3.BA2.AB$4.C2AC$5.2A5$8.A$7.3A$7.ABA$
5.2A2.ACB$5.2A2.AC2A$6.ABA.AB$6.3A$7.A2$18.2A$15.BC.3A$14.3A.2A$14.2A
CA$15.BAB$16.A2$10.C$8.2BAB$6.CAC.AC$7.3AB$7.2A$16.C2A$14.AB.2A$14.2A
.2A$14.ABAC$14.3A35$52.CBA2.C$53.2BAB3A$53.C2.A.2A$55.AC.2A$55.BA2.AB
$56.C2AC$57.2A5$60.A$59.3A$59.ABA$57.2A2.ACB$57.2A2.AC2A$58.ABA.AB$
58.3A$59.A2$70.2A$67.BC.3A$66.3A.2A$66.2ACA$67.BAB$68.A2$62.C$60.2BAB
24.2A.A$58.CAC.AC24.6A$59.3AB27.A.2A8.C$59.2A41.B$68.C2A26.2A.2A.BC$
66.AB.2A26.3A.BA$66.2A.2A26.2A.3A$66.ABAC31.A$66.3A$86.BC$85.C.2A$85.
C.2A7.C$86.BC8.B$91.2A.2A.BC$91.3A.BA$91.2A.3A$95.A!
more compact backrake:

Code: Select all

x = 73, y = 82, rule = 3458/37/4
3A$ABA$4A$.A.B$2.CBC$.B$.CB$.BAC$.AB$.CBC7$6.BA$5.CBCBC.C$5.B3.3AC$4.
CB3.4A$6.2C3.3A$8.C3.2A$8.B3.2A12.2A$6.B3A16.2A$6.ACA$7.B$6.2C5$15.2A
$15.3A$16.A.3A$17.AB2ACB$17.AB2.A.C13.ABA.2A$14.4A2BA.A.B11.ACA.3A$
14.BA2BA3BAC2A10.B3A.C2A$13.C.CBA2.2A.3A13.5A$14.B3A6.A11.2C3.2A$14.C
A18.AB2.C$32.ABA.C$32.3A.B.C$33.A2.2AC$35.C2A$17.2A$16.4ABA$16.2AC.AC
B$16.4A.A.AC$17.5AB2A$19.2A.3A24.2A7.C$49.2A5.CABAC$40.C15.BCBCB$38.
2BAB14.CAB.C$36.CAC.AC17.B$37.3AB18.C$37.2A20.B$46.C2A9.C.C2A$44.AB.
2A11.3A$44.2A.2A12.2A$44.ABAC$44.3A3$70.C$70.B$65.2A.2A.BC$65.3A.BA$
59.3A3.2A.3A$58.AC2A7.A$58.B3A$59.A6$62.3A.2C$62.2AC2A.B$62.3A.AB2A$
65.4A$67.A!
It was fun to engineer those rakes but I'm sure smaller versions with just a few of engines exist, more on the order of this p8 oscillator "knightpuffer":

Code: Select all

x = 17, y = 20, rule = 3458/37/4
8.B$7.CAC$6.2A.A$4.3A.2AC$4.B3A.B$5.C$11.CBC2A$11.B2.B2A$11.C2ABA$12.
4A2$.CA.C$B3A$4A$2.A8.3A$8.C2.ABA$7.3A.3A$7.2A.2A$8.CAC$9.B!
I found a knightpuffer that creates other knightpuffers but it also makes a ton of debris.
I am trying to find a clean one (knightpuffer knightrake!) :) .

EDIT:
Correction made... forward rake is truly forward (I think)

Re: 3458/37/4

Posted: December 31st, 2010, 4:43 pm
by knightlife
Found this small, clean, two engine "knightrake":

Code: Select all

x = 21, y = 25, rule = 3458/37/4
11.A$7.2ACB3A$6.2AB2.2BA$7.3A.3A$9.BC.C4$18.3A$15.C2.ABA$.3A10.3A.3A$
.ABAC9.2A.2A$2AB.2A9.CAC$.B.3A10.B$2.C.C5$12.3A$9.C2.ABA$8.3A.3A$8.2A
.2A$9.CAC$10.B!
Discovered while trying to clean up a much larger rake. :mrgreen:

Re: 3458/37/4

Posted: December 31st, 2010, 5:44 pm
by knightlife
Nice double backrake uses just two knight engines:

Code: Select all

x = 20, y = 19, rule = 3458/37/4
11.B$10.CAC$9.2A.A$7.3A.2AC$.3A3.B3A.B$.ABAC3.C$2AB.2A8.CBC2A$.B.3A8.
B2.B2A$2.C.C9.C2ABA$15.4A4$12.3A$9.C2.ABA$8.3A.3A$8.2A.2A$9.CAC$10.B!

Re: 3458/37/4

Posted: December 31st, 2010, 8:49 pm
by knightlife
Two engine double K-rake (forward and backward):

Code: Select all

x = 18, y = 18, rule = 3458/37/4
9.4A$9.AB2ACB$8.2AB2.A.C$9.A2BA.A.B$9.2A3BAC2A$12.2A.3A$16.A3$.CA$B3A
$4A$2.A8.3A$8.C2.ABA$7.3A.3A$7.2A.2A$8.CAC$9.B!

Re: 3458/37/4

Posted: January 1st, 2011, 1:09 am
by knightlife
Finally, a clean K-puffer K-rake:

Code: Select all

x = 167, y = 123, rule = 3458/37/4
51.2A$51.2A2$72.2A$72.2A$71.2A$71.2A2$38.2A$38.4A$40.2A4$30.2A$30.4A$
32.2A29.2A$63.2A2$84.2A$22.2A60.2A$22.4A57.2A$6.BC16.2A57.2A$6.2A$5.A
2BA41.2A$5.4A41.4A$14.2A18.BC16.2A$14.4A16.2A$16.2A15.A2BA44.BC$2.2A
29.4A43.C.2A$2.2A38.2A18.BC12.2A.AB.2A7.C$CB.A38.4A16.2A12.4A.BC8.B$
2.A41.2A15.A2BA8.A.2A2.A6.2A.2A.BC$2.3AB24.2A29.4A6.3A2BA.3A5.3A.BA$
3.AC2A23.2A39.2A.ABA2CA6.2A.3A$3.BAB22.CB.A42.2A.BAB10.A$4.A25.A47.A$
30.3AB24.2A$31.AC2A23.2A$31.BAB22.CB.A$32.A25.A$58.3AB$59.AC2A$59.BAB
27.C.C$60.A28.3AB$87.2A.2B$86.2AB3A$87.2A.A5$87.2A$87.2A$91.A$90.4A
35.3A$89.2AB.ABAC31.CBABC$90.3A.ACAB28.C7.C$91.7A28.C.CB2AC.CB$95.2A
30.BC2A.B2A.A$131.3A.2A$122.2C8.B.4A$107.2A15.B7.CBA.BC$107.2A12.C.2C
5.ABC2.C$106.2A12.AB.BA4.3A2.B$106.2A12.2A.2A4.3ACABC$120.AB.BA4.ABC.
B$121.C.2C7.BC$124.B$122.2C9$119.2A19.CBA$119.2A19.2A.2A$118.2A20.5A$
118.2A22.A3$140.B$139.C3A3.C$139.A.2B3.AB$137.3A.2AB.3A$137.2A.A2.C.B
4A$138.A2.A2.C4.3A$137.3A.2AB2.3AC2A$137.3ABA.A.A.A.3A$140.3ACACB$
144.BA12.2A$131.2A25.2A$131.2A24.2A$130.2A20.B4.2A$130.2A19.CBC$149.
2C2.B4.A$154.BC5A$151.C.C2.2A2BA$150.B2A.3A2.B2A$137.2A11.2A.B.A.C3A$
135.C.2A13.C3A2.B$136.2A16.A4.A$136.2A15.3A2.4A$153.3A2.AB2ACB$157.2A
B2.A.C$149.3A6.A2BA.A.B$149.ABAC5.2A3BAC2A$136.C11.2AB.2A7.2A.3A$133.
CA.C12.B.3A11.A$132.B3A14.C.C$132.4A$134.A8.3A$140.C2.ABA$139.3A.3A$
139.2A.2A16.3A$140.CAC14.C2.ABA$141.B14.3A.3A$156.2A.2A$157.CAC$158.B
!
Well, it's a puffer factory that uses five knight engines to make a rake that outputs knightpuffers cleanly.
All output is completely stable, which took a while longer to achieve.
It is still before midnight on the last day of the year 2010, which was my other goal.

Re: 3458/37/4

Posted: January 8th, 2011, 10:09 am
by ebcube
This small trail engine based puffer creates the (2,2)c/250 switch engine spaceship:

Code: Select all

x = 265, y = 88, rule = 3458/37/4
$217.C$216.B2A$216.3A4$224.A$223.3A$223.AB2A$222.2AB.B$223.A.BC$216.B
CBA.3A2C$215.C.A.AB.2A2CB$214.2B.B2CA2.A.AB$215.CA2CA.2A.A$175.2A40.
2B6A2.C$173.B3A45.3A.BAB$135.2A35.2A2C2A46.A.4A$135.2A35.3A.B2C45.2A.
2A$134.C2.C35.3A49.A2.2A$135.2A38.C48.2A2.2A$135.2A38.2BC45.2AC2A$
104.C2A68.A48.B3A$104.3A68.CBC47.2A$100.BC2A.B2A68.B$99.C.C5A25.2A11.
BC$94.A4.C3.A28.2A11.2CB$93.4A.A.A2.AB40.B2.BC$61.BC29.B2.8AC41.C.C.C
$60.3AB28.C2A2.CA2.2A42.CB50.2A.2A35.2A.2A$60.2AB3.CB24.B.A.BA49.BC
36.2A10.2A.2A23.2A10.2A.2A$61.ABA.ABC24.3A2.AB45.4A37.2A38.2A$62.4A2.
B24.AB2AC46.ABA$65.3AC3.2A19.4A47.3A59.2A38.2A$65.3AC2.B2AB131.2A38.
2A$18.2A40.2C8.2ACAC2.CBAC$16.B3A40.2A8.4A2.C.A.AB$16.A2CB34.2A.5A9.
2A4.2A.A25.2A21.2AC10.2A$4.B10.2AC32.2A2.2A2B.B2A11.C.C.CB.2A24.2A13.
2A6.3A9.4AB$2.3AC9.2AB32.2A4.5A12.CB4.3A39.2A5.2AB10.2A2C2A$.2AB2.AC
16.2A30.2A71.2AC9.3AC2A14.2A6.AB$2.6A16.2A116.3AB15.2A.AC.C.2AC$3.A.A
.2A50.2A97.A4.3A.C.3A.AB$3.A.AC2A49.B2AB64.A14.C14.4A3.2A.A.AB2ABCA$
2.6A49.2A2C2A62.3A11.CBA14.A2BA4.ABCBC3.BC2A18.2A38.2A$.2AB2.B51.B2AB
57.C5.ABA11.3AC13.AB.C6.AB5.3A18.2A38.2A$2.3AC53.2A16.B7.C15.2A14.CB
5.2A.C12.2AB12.A.AB$4.B25.2A43.3AC6.C15.2A13.2A6.AC15.A13.2A.A11.2C
45.2A38.2A$30.2A43.2A2.2A.2C2.2A28.3A6.2A24.C2.2ABA21.2ABC34.2A38.2A$
38.3A30.B4.A.2A.2A2.4A26.2AC.2A3.B2A28.3A21.2ACA$38.3AC28.CBAB.CB.A.
2ACAB2C2A27.6A.CA.A29.A22.3A.2A$38.C2.2A28.2CA2.3A2.C2A2C2B29.A.B2A.C
.3A54.ABA41.2A$41.2A27.ABC2A.2AB3A2CBA30.3A.AC4.2A21.C32.ABA41.2A$40.
3A27.2A.A3.B.A.AC.B32.2A3.B.2A21.2AB32.3A$37.C.2A29.4AC2.C.5A34.2AB2A
.2A20.2AB16.2A38.2A38.2A$40.BC28.A.A2.C.2A3.C2A32.BA.2C2A.A21.2A16.2A
38.2A10.2A.2A23.2A10.2A$39.C31.3A2.2A.AB4A32.C2.BA2.AC91.2A.2A35.2A$
71.5AB.A.CA30.C.C3.B.A2.A.B$72.2A.7A29.BAC4.C5A.CAC$76.A2.3A30.3ACBA
4.2B.B.AB23.2A$112.2A.BC3A.AB2A.3A23.2A$116.A.A.2A.A2.A$116.CB2.2C.2A
.2A113.A$116.2AC2AB2A.AB2A111.3A9.C$117.3A.A.A2CBA27.2A82.2ABA7.BCAB$
117.3A2.CBAB2A27.2A42.A40.2A8.A2B$198.B3A37.A2.A7.4A$155.2A40.C.B2A
37.2A2BA9.CAC$155.2A40.CB.2A37.A3BA9.B.B$196.B2.A37.BA2.ACA8.CA.C$
196.2C.2A35.2AC2A.B10.2BC$196.B2.2A36.B4ACA$196.3A39.A.A.2A$197.2AC
39.2A2BA$240.4A$241.A8$236.3A$236.B2A$237.C!
Speeds found so far:

(1,1)c/8 [diagonal c/8]
(2,2)c/250 [diagonal c/125]
(8,6)c/32 [knight (4,3)c/16]
orthogonal c/2 ("basic" spaceships)

Re: 3458/37/4

Posted: January 15th, 2011, 3:28 pm
by knightlife
Nice one, ebcube.

This quadratic has a similar form, releasing K-puffers symmetrically backward:

Code: Select all

x = 61, y = 47, rule = 3458/37/4
53.B$52.3C$54.B$50.2A.2A$49.3ACBC$49.B.2C$33.A.2A12.A3C.C$31.6AC9.C3A
3B$28.C.3A2.A.2A8.A$28.4AB.C2.2A8.6A.2C$26.2A.A.C4.2A9.4ABA.B$25.3ACB
2.BC2.2AC10.4AB2A$.2AC11.BC9.2A.C.C19.A.2A$2AB.B4.2A.A.A.2A13.CB3.2AB
$.3AC3.CB9A12.C4.AB.C$5.A.A4.A.A.AB4A4.C.2C7.3A$3.8A.A2.C3A.2AC.3A2.B
6.A.AB15.A$2.2AB2.A.A.BA.A2.C2.A.2B.2A2.C5.C2A.C13.3AB$3.2AC4.6AB2A.A
.C4AC.CB4.B.A15.2AC2A.C$12.A.A3.5A2.3A.C6.B16.3A2.AB$13.C.B2.AC.2A4.C
B6.C20.2A.AC$14.B2C.C2AC5.C28.3A$19.2A6.C29.AC2$19.2A6.C29.AC$14.B2C.
C2AC5.C28.3A$13.C.B2.AC.2A4.CB6.C20.2A.AC$12.A.A3.5A2.3A.C6.B16.3A2.A
B$3.2AC4.6AB2A.A.C4AC.CB4.B.A15.2AC2A.C$2.2AB2.A.A.BA.A2.C2.A.2B.2A2.
C5.C2A.C13.3AB$3.8A.A2.C3A.2AC.3A2.B6.A.AB15.A$5.A.A4.A.A.AB4A4.C.2C
7.3A$.3AC3.CB9A12.C4.AB.C$2AB.B4.2A.A.A.2A13.CB3.2AB$.2AC11.BC9.2A.C.
C19.A.2A$25.3ACB2.BC2.2AC10.4AB2A$26.2A.A.C4.2A9.4ABA.B$28.4AB.C2.2A
8.6A.2C$28.C.3A2.A.2A8.A$31.6AC9.C3A3B$33.A.2A12.A3C.C$49.B.2C$49.3AC
BC$50.2A.2A$54.B$52.3C$53.B!
This K-puffer quadratic has adjustable density:

Code: Select all

x = 453, y = 111, rule = 3458/37/4
96.C$87.B7.3A$85.3AC3.6A$84.2AB3.A.2A2.C2.CB$85.4ABABA.CB3.3A$86.A.AB
A.AB2.CB.2A$86.A.3AC.AC.2A.A.A$85.5A3.B.B.A.2AB$84.2AB2.AB3ACACA2.AC$
85.2AC.3A.B.B2ABC2$85.2AC.3A.B.B2ABC$84.2AB2.AB3ACACA2.AC$85.5A3.B.B.
A.2AB$86.A.3AC.AC.2A.A.A$86.A.ABA.AB2.CB.2A$85.4ABABA.CB3.3A$84.2AB3.
A.2A2.C2.CB$85.3AC3.6A$87.B7.3A$96.C2$2.AC$3AB$2AC2.A.A.A.A.A.A.A.A.A
.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.2A$81A$2.A.A
.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
A.A.A$2.A.CB$3AB$2ACAC$2AB2$110.C$101.B7.3A$99.3AC3.6A$98.2AB3.A.2A2.
C2.CB$99.4ABABA.CB3.3A$100.A.ABA.AB2.CB.2A$100.A.3AC.AC.2A.A.A$99.5A
3.B.B.A.2AB$98.2AB2.AB3ACACA2.AC$99.2AC.3A.B.B2ABC$256.A194.2A$99.2AC
.3A.B.B2ABC132.B6.A.3A191.B3A$98.2AB2.AB3ACACA2.AC128.3AC3.B2ABABA
191.A2CB$99.5A3.B.B.A.2AB127.2AB2.2BC.2A.A126.A65.2AC$100.A.3AC.AC.2A
.A.A128.4AC.C.BA5.2BC110.B6.A.3A53.AC8.A.2AC$100.A.ABA.AB2.CB.2A131.
2BA.BAC5.2AC109.3AC3.B2ABABA51.3AB7.3A.B$99.4ABABA.CB3.3A130.BABC2A.C
2.2C.A.C107.2AB2.2BC.2A.A53.2AC.B6.4A$98.2AB3.A.2A2.C2.CB129.6A.2A.B
2.B.2A109.4AC.C.BA5.2BC47.4AC4.2A.A$99.3AC3.6A131.2AB.A.A.2AC.CAB.BC
111.2BA.BAC5.2AC51.A4.B2A.A$101.B7.3A132.2AC2.C3A3.BC114.BABC2A.C2.2C
.A.C50.AC3AC2AC2A$110.C259.6A.2A.B2.B.2A48.3ABC2A3.3A$244.2AC2.C3A3.B
C111.2AB.A.A.2AC.CAB.BC48.2AC4A$243.2AB.A.A.2AC.CAB.BC109.2AC2.C3A3.B
C51.2AB$244.6A.2A.B2.B.2A$246.BABC2A.C2.2C.A.C108.2AC2.C3A3.BC51.2AB$
246.2BA.BAC5.2AC108.2AB.A.A.2AC.CAB.BC48.2AC4A$244.4AC.C.BA5.2BC108.
6A.2A.B2.B.2A48.3ABC2A3.3A$243.2AB2.2BC.2A.A116.BABC2A.C2.2C.A.C50.AC
3AC2AC2A$244.3AC3.B2ABABA114.2BA.BAC5.2AC51.A4.B2A.A$246.B6.A.3A112.
4AC.C.BA5.2BC47.4AC4.2A.A$256.A112.2AB2.2BC.2A.A53.2AC.B6.4A$370.3AC
3.B2ABABA51.3AB7.3A.B$372.B6.A.3A53.AC8.A.2AC$382.A65.2AC$449.A2CB$
449.B3A$451.2A22$178.3A$168.AC5.AB.3A$166.3AB4.C2ACACB$166.2AC.A2C2.
2A.BA$166.3A2B4.CBA4.2C$168.A2CB.CB6.2B$168.ACAC.2A7.A$166.7A.2A.C2.C
.2B$166.2AC.A.A.BA3.BC.C$166.2AB4.3A3.C2$166.2AB4.3A3.C$166.2AC.A.A.B
A3.BC.C$166.7A.2A.C2.C.2B$168.ACAC.2A7.A$168.A2CB.CB6.2B$166.3A2B4.CB
A4.2C$166.2AC.A2C2.2A.BA$166.3AB4.C2ACACB$168.AC5.AB.3A$178.3A!
The initial trail can changed in length by a multiple of 10, longer or shorter (this one is 70 cells shorter):

Code: Select all

x = 383, y = 111, rule = 3458/37/4
26.C$17.B7.3A$15.3AC3.6A$14.2AB3.A.2A2.C2.CB$15.4ABABA.CB3.3A$16.A.AB
A.AB2.CB.2A$16.A.3AC.AC.2A.A.A$15.5A3.B.B.A.2AB$14.2AB2.AB3ACACA2.AC$
15.2AC.3A.B.B2ABC2$15.2AC.3A.B.B2ABC$14.2AB2.AB3ACACA2.AC$15.5A3.B.B.
A.2AB$16.A.3AC.AC.2A.A.A$16.A.ABA.AB2.CB.2A$15.4ABABA.CB3.3A$14.2AB3.
A.2A2.C2.CB$15.3AC3.6A$17.B7.3A$26.C2$2.AC$3AB$2AC2.A.A.2A$11A$2.A.A.
A.A$2.A.CB$3AB$2ACAC$2AB2$40.C$31.B7.3A$29.3AC3.6A$28.2AB3.A.2A2.C2.C
B$29.4ABABA.CB3.3A$30.A.ABA.AB2.CB.2A$30.A.3AC.AC.2A.A.A$29.5A3.B.B.A
.2AB$28.2AB2.AB3ACACA2.AC$29.2AC.3A.B.B2ABC$186.A194.2A$29.2AC.3A.B.B
2ABC132.B6.A.3A191.B3A$28.2AB2.AB3ACACA2.AC128.3AC3.B2ABABA191.A2CB$
29.5A3.B.B.A.2AB127.2AB2.2BC.2A.A126.A65.2AC$30.A.3AC.AC.2A.A.A128.4A
C.C.BA5.2BC110.B6.A.3A53.AC8.A.2AC$30.A.ABA.AB2.CB.2A131.2BA.BAC5.2AC
109.3AC3.B2ABABA51.3AB7.3A.B$29.4ABABA.CB3.3A130.BABC2A.C2.2C.A.C107.
2AB2.2BC.2A.A53.2AC.B6.4A$28.2AB3.A.2A2.C2.CB129.6A.2A.B2.B.2A109.4AC
.C.BA5.2BC47.4AC4.2A.A$29.3AC3.6A131.2AB.A.A.2AC.CAB.BC111.2BA.BAC5.
2AC51.A4.B2A.A$31.B7.3A132.2AC2.C3A3.BC114.BABC2A.C2.2C.A.C50.AC3AC2A
C2A$40.C259.6A.2A.B2.B.2A48.3ABC2A3.3A$174.2AC2.C3A3.BC111.2AB.A.A.2A
C.CAB.BC48.2AC4A$173.2AB.A.A.2AC.CAB.BC109.2AC2.C3A3.BC51.2AB$174.6A.
2A.B2.B.2A$176.BABC2A.C2.2C.A.C108.2AC2.C3A3.BC51.2AB$176.2BA.BAC5.2A
C108.2AB.A.A.2AC.CAB.BC48.2AC4A$174.4AC.C.BA5.2BC108.6A.2A.B2.B.2A48.
3ABC2A3.3A$173.2AB2.2BC.2A.A116.BABC2A.C2.2C.A.C50.AC3AC2AC2A$174.3AC
3.B2ABABA114.2BA.BAC5.2AC51.A4.B2A.A$176.B6.A.3A112.4AC.C.BA5.2BC47.
4AC4.2A.A$186.A112.2AB2.2BC.2A.A53.2AC.B6.4A$300.3AC3.B2ABABA51.3AB7.
3A.B$302.B6.A.3A53.AC8.A.2AC$312.A65.2AC$379.A2CB$379.B3A$381.2A22$
108.3A$98.AC5.AB.3A$96.3AB4.C2ACACB$96.2AC.A2C2.2A.BA$96.3A2B4.CBA4.
2C$98.A2CB.CB6.2B$98.ACAC.2A7.A$96.7A.2A.C2.C.2B$96.2AC.A.A.BA3.BC.C$
96.2AB4.3A3.C2$96.2AB4.3A3.C$96.2AC.A.A.BA3.BC.C$96.7A.2A.C2.C.2B$98.
ACAC.2A7.A$98.A2CB.CB6.2B$96.3A2B4.CBA4.2C$96.2AC.A2C2.2A.BA$96.3AB4.
C2ACACB$98.AC5.AB.3A$108.3A!

Re: 3458/37/4

Posted: January 16th, 2011, 2:03 am
by ynotds
knighlife, your "clean K-puffer K-rake" particularly appeals to me.

I just found that a slight rule change also turns the original K-puffer engine into a K-ship:

Code: Select all

x = 14, y = 13, rule = 345/378/4
C5$11.A$10.3A$10.ABA$11.A$10.B.2A$10.BC2A$9.C.3A$10.C!
but aren't rushing to explore the obvious adjacent possibilities. No such luck as yet with the true (4,2)c/10 puffer block trail which is still turning up occasionally in various WMPVN rules.