Serizawa

For discussion of other cellular automata.
User avatar
12Glider
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Serizawa

Post by 12Glider » April 3rd, 2011, 4:44 pm

Post patterns you have found in the rule Serizawa here.
p30 gun:

Code: Select all

x = 20, y = 20, rule = Serizawa
6.A7.A4$5.A7.A.A$19.A$5.A8.B$13.A.A4$5.A.A$6.B8.A$A18.A$5.A.A7.A5$6.A
7.A!
Image

Why hasn't a glider exploded yet?

flipper77
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Serizawa

Post by flipper77 » April 3rd, 2011, 5:28 pm

Here's a p3 and p4 oscillator:

Code: Select all

x = 5, y = 14, rule = Serizawa
2.B$.BA$2.B10$4.B$B!
Here's a dirty rake:

Code: Select all

x = 9, y = 11, rule = Serizawa
2.A$7.B$.A2.A.A.B$7.B$2.A4.B$A7.B$7.A3$2.A.A$3.B!
Here's some puffers:

Code: Select all

x = 70, y = 7, rule = Serizawa
7.A2.A$.A4.AB2ABA$ABA9.A4.A17.A2.A20.A4.A2.A$A.A5.2A.A.A2.ABA10.A4.AB
2ABA18.ABA2.AB2ABA$7.A2.A.A3.A.A9.ABA4.B4.A17.A.A3.B4.A$10.ABA15.A.A
5.2A.A25.2A.A$12.A22.A28.A!
And finally, here's a rake:

Code: Select all

x = 7, y = 6, rule = Serizawa
4.A$3.ABA$3.A.A$A.2AB.A$ABA2.B$.A!
Most of these patterns I found popped up naturally, and messed around with some of them.

User avatar
12Glider
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Re: Serizawa

Post by 12Glider » April 3rd, 2011, 6:57 pm

flipper77 wrote:Here's a p3 and p4 oscillator
The "p4" is actually a p10.
Image

Why hasn't a glider exploded yet?

flipper77
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Serizawa

Post by flipper77 » April 3rd, 2011, 7:33 pm

Thanks for catching that, I was working, and I quickly pasted in my patterns without checking.

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » April 3rd, 2011, 8:22 pm

Three cell infinite growth:

Code: Select all

x = 3, y = 4, rule = Serizawa
.B3$B.B!
Dirty puffers cleanup each other:

Code: Select all

x = 24, y = 8, rule = Serizawa
.B2.B$A.2B.B$4.3A$5.A$18.B2.B$17.A.2B.B$21.3A$22.A!
Horizontal spacing can be changed with similar results:

Code: Select all

x = 15, y = 8, rule = Serizawa
.B2.B$A.2B.B$4.3A$5.A$9.B2.B$8.A.2B.B$12.3A$13.A!
A couplle of puffers with clean output:

Code: Select all

x = 59, y = 8, rule = Serizawa
11.A2.A$10.AB2ABA$2.A2.A4.A5.A26.A2.A6.A2.A$.AB2ABA4.3A.A26.AB2ABA4.A
B2ABA$A5.BA33.A5.BA2.AB5.A$.A.2A37.A.3A6.3A.A2$46.A6.A!
p10 backrake:

Code: Select all

x = 33, y = 13, rule = Serizawa
3B15.B.3B$B17.B.B.B$3B15.B.B.B$B.B15.B.B.B$3B15.B.3B3$11.A14.A$7.B2.A
BA12.ABA2.A$6.A.B2A.A12.A.A.ABA$7.A.A18.A3.A$7.ABA17.2A2.A$8.A19.A!
flipper77 posted the p6 earlier.

137ben
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Serizawa

Post by 137ben » April 12th, 2011, 9:36 pm

p24 double rake:

Code: Select all

x = 15, y = 17, rule = serizawa
5.B3.B$4.A.3A.A2$5.A3.A$.B2.3A.3A2.B$A.A2.5A2.A.A$4.B.A.A.B$4.A5.A$3.
2A2.A2.2A$2.4A.B.4A$3.2A5.2A2$6.A.A$5.A3BA$6.3A2$7.A!

User avatar
12Glider
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Re: Serizawa

Post by 12Glider » April 12th, 2011, 9:39 pm

That's a sick rake you have there. :D
Image

Why hasn't a glider exploded yet?

User avatar
Extrementhusiast
Posts: 1817
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Serizawa

Post by Extrementhusiast » April 13th, 2011, 5:26 pm

P24 eight-barreled rake:

Code: Select all

x = 48, y = 17, rule = Serizawa
41.A$39.2A.A3.A$34.A3.A2.A5.B$9.2A22.ABA3.4A.A.A$8.AB3.A6.B11.AB3.A3.
A2.3A$9.2A8.A.B.A9.A3.ABAB3.A.A$12.A9.AB3A9.B.2A.B5.B$2.A6.2A6.2A.AB
5.A5.A.A8.A.A$A7.AB2.A4.AB3.A.AB3A3.AB2.B3.A3.3A$2.A6.2A6.2A.AB5.A5.A
.A8.A.A$12.A9.AB3A9.B.2A.B5.B$9.2A8.A.B.A9.A3.ABAB3.A.A$8.AB3.A6.B11.
AB3.A3.A2.3A$9.2A22.ABA3.4A.A.A$34.A3.A2.A5.B$39.2A.A3.A$41.A!
I Like My Heisenburps! (and others)

137ben
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Serizawa

Post by 137ben » April 13th, 2011, 7:52 pm

A p60 agar:

Code: Select all

x = 243, y = 249, rule = Serizawa
.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.
A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.
A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.
A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$
.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.
B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.
A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.
B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.
A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A6$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A
.A13.A.A13.A.A13.A.A13.A.A13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B15.B8$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
15.B15.B15.B15.B15.B15.B$A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.
A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A6$A.A13.A.A13.A.A13.
A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A13.A.A
13.A.A$.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B15.B
!
Just one unit cell of the agar on a 16 by 16 torus:

Code: Select all

x = 16, y = 16, rule = Serizawa:T16,16
.B$A.A6$A.A$.B!
By spacing the gliders, arbitrarily large period agars can be made.

User avatar
Extrementhusiast
Posts: 1817
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Serizawa

Post by Extrementhusiast » April 13th, 2011, 10:22 pm

137ben wrote:A p60 agar:

Code: Select all

(pattern)
That looks like a Maltese cross!
I Like My Heisenburps! (and others)

cloudy197
Posts: 21
Joined: April 16th, 2011, 10:35 pm

Re: Serizawa

Post by cloudy197 » April 18th, 2011, 11:24 am

Here's a simpler way to control a construction arm using only one block and no more than 4 gliders on each operation:

Code: Select all

x = 27, y = 42, rule = Serizawa
.A10.A10.A3$11.B10.B$10.A.A8.A.A2$3.B11.B$2.A.A9.A.A8.A$24.ABA$24.A.A
4$.B$A.A7$.A10.A3$2.B8.B$.A.A6.A.A2.A$14.ABA$14.A.A$4.A$3.ABA$3.A.A5.
B$10.A.A2$14.B$5.B7.A.A$4.A.A5$.B$A.A!

ebcube
Posts: 124
Joined: February 27th, 2010, 2:11 pm

Re: Serizawa

Post by ebcube » April 18th, 2011, 12:52 pm

Great ones, cloudy. I just found one to move a red cell four blocks left or right:

Code: Select all

x = 7, y = 18, rule = Serizawa
2.A11$.B$A.A2.B$4.A.A2$3.A$2.ABA$2.A.A!
And another one to move it five blocks (unfortunately, this one needs five gliders). Using both, you can move a cell wherever you want.

Code: Select all

x = 8, y = 26, rule = Serizawa
2.A14$.B$A.A$6.B$5.A.A$2.B$.A.A$6.B$5.A.A3$.B$A.A!
And an easier one to move it just one block to the side:

Code: Select all

x = 9, y = 12, rule = Serizawa
2.A4$.B$A.A$5.B$4.A.A3$7.B$6.A.A!

cloudy197
Posts: 21
Joined: April 16th, 2011, 10:35 pm

Re: Serizawa

Post by cloudy197 » April 19th, 2011, 9:23 am

Tight salvos of gliders can be created using this reaction:

Code: Select all

x = 42, y = 37, rule = Serizawa
23.A$24.B$23.A$40.2A$A12.2A24.AB$.B12.BA24.2A$A12.2A17$31.A$30.ABA$
30.A.A4$32.B$31.A.A5$28.B$27.A.A!

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » April 23rd, 2011, 2:16 pm

Improved "5 to the right" needs only three gliders:

Code: Select all

x = 28, y = 26, rule = Serizawa
2.A19.A14$.B19.B$A.A17.A.A$6.B19.B$5.A.A17.A.A$2.B$.A.A$6.B$5.A.A17.B
$24.A.A2$.B$A.A!
The two leading gliders are in the same positions.

Simple systematic way to retract arm by any amount 5 cells or more with only three gliders:

Code: Select all

x = 71, y = 18, rule = Serizawa
4.A29.A29.A7$3.B29.B29.B$2.A.A27.A.A27.A.A4$.B$A.A6.B29.B29.B$8.A.A
20.B6.A.A27.A.A$30.A.A$61.B$60.A.A!
Leftmost glider moves down two cells to retract arm by one additional cell.
Rightmost glider can be removed if arm is supposed to fire a glider as well.

Found a "bomber" that can interact with another one to create quadratic growth:

Code: Select all

x = 29, y = 15, rule = Serizawa
5.A2.A$.B2.AB2ABA2.B$A.A.AB2.BA.A.A$6.2A8$20.A2.A$16.B2.AB2ABA2.B$15.
A.A.AB2.BA.A.A$21.2A!
Another quadratic (settles after 2K to 3K generations):

Code: Select all

x = 23, y = 3, rule = Serizawa
.A3.A3.A3.A3.A3.A$ABA.ABA.ABA.ABA.ABA.ABA$A5.A.A5.A.A5.A!

137ben
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Serizawa

Post by 137ben » April 25th, 2011, 7:53 pm

I have been trying to determine the end behavior of this rule, modeled with very large toroidal universes. I have run a bunch of tori of sizes 8192 by 8192, 4096 by 4096, and 16384 by 16384, each starting with random-fill (50%). (I have been doing this for several other rules, but my results for those are not as complete as for serizawa). The results for serizawa are nothing spectacular: Almost all of the universe is covered with single cell still-lives. There are a few p3s, and a few p10s. I am skeptical that anything else (or at least any other still life/oscillators) will occur naturally with any significant frequency.
The average density is about .0050. However, this might change for other starting densities. I will do searches on other starting conditions and see what final densities turn up.

EDIT: I found a tagalong for a glider:

Code: Select all

x = 6, y = 6, rule = Serizawa
.A$B$.A2.A$3.A.A$2.AB$3.2A!

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 27th, 2011, 2:00 pm

A p18 oscillator that is really a six-barrel p18 gun with blocked output:

Code: Select all

x = 12, y = 13, rule = Serizawa
4.A2.A5$4.B3.A$A2.B7.A$4.B3.A5$4.A2.A!
Any or all of the six outermost cells can be removed to provide up to six p18 glider streams.

137ben
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Serizawa

Post by 137ben » May 27th, 2011, 2:02 pm

Cool. Any ideas on how best to do a complete search of 3x3 patterns which might exhibit infinite growth?

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 27th, 2011, 2:33 pm

Just 4 cells produces three different spaceships traveling North:

Code: Select all

x = 6, y = 8, rule = Serizawa
B.B3$5.B4$5.B!
The largest spaceship has 8 phases.

User avatar
12Glider
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Re: Serizawa

Post by 12Glider » May 27th, 2011, 4:12 pm

137ben wrote:I have been trying to determine the end behavior of this rule, modeled with very large toroidal universes. I have run a bunch of tori of sizes 8192 by 8192, 4096 by 4096, and 16384 by 16384, each starting with random-fill (50%). (I have been doing this for several other rules, but my results for those are not as complete as for serizawa). The results for serizawa are nothing spectacular: Almost all of the universe is covered with single cell still-lives. There are a few p3s, and a few p10s. I am skeptical that anything else (or at least any other still life/oscillators) will occur naturally with any significant frequency.
The average density is about .0050. However, this might change for other starting densities. I will do searches on other starting conditions and see what final densities turn up.

EDIT: I found a tagalong for a glider:

Code: Select all

x = 6, y = 6, rule = Serizawa
.A$B$.A2.A$3.A.A$2.AB$3.2A!
The proposed tagalong is a glider itself.
Image

Why hasn't a glider exploded yet?

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 27th, 2011, 4:36 pm

137ben wrote:Cool. Any ideas on how best to do a complete search of 3x3 patterns which might exhibit infinite growth?
Even though there are 3^9 = 19683 (EDIT: corrected value) starting patterns for 3x3 it should not take too long to do an exhaustive search with a Python script on a fast desktop PC. The hard part is to test for infinite growth reliably. Other than eliminating starting patterns with population less than three, it may not even be worth checking for reflections and rotations. The job can still be done in reasonable time as follows:

1) track maximum population at each tic.
2) check for minimum growth (a new max population within max_tics generations).
3) stop checking for infinite growth if max_gens is reached.
4) if population is still growing when max_gens is reached then save pattern for verification.

max_tics = 1000 should be overkill (knowing Serizawa, 100 is probably enough, reducing run time)
max_gens = 10000 is probably OK, although it is tough to find a small methuselah that lasts even 1000 tics.

My Python skills are pretty lean, but the task is simple enough I will try to do this.
I have been wanting to do automated searches for some time. Suggestions are welcome.
I have a feeling the search will come up empty for infinite growth, in which case I will search for methuselahs.

If anyone posts a Golly script for an automated search using Python, that would flatten the learning curve a lot.
I suspect there is someone reading this who could whip this out in no-time.

Code: Select all

x = 3, y = 3, rule = serizawa
2B$AB$B.B!

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 28th, 2011, 11:30 pm

I had some success in the search for Serizawa 3x3 infinite growth patterns:

Code: Select all

x = 3, y = 3, rule = serizawa
B.A$.BA$B.A!
I have not done an exhaustive search yet, but I found candidates to investigate.
These are the early results. I have to eat my words about an empty search!
Here is a three cell pattern with infinite growth:

Code: Select all

x = 3, y = 3, rule = serizawa
B.B2$A!
This beats the previously posted 3-cell pattern that has a 3x4 bounding box

137ben
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Serizawa

Post by 137ben » May 29th, 2011, 10:13 am

Congratulations! Now the question of minimal bounding boxes for infinite growth patterns is fully answered, along with minimum bounding polyominio, population, and p-neighborhood.

Next challenge: to find the minimum population/bounding p-neighborhood/bounding box/bounding polyomino for a pattern with quadratic growth.

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 29th, 2011, 5:45 pm

How about 1-cell wide patterns with infinite growth?
I have found the smallest such pattern, a 4-cell polyomino:

Code: Select all

x = 4, y = 1, rule = serizawa
A2BA!
Other larger infinite growth 1-cell wide patterns tend to have this one as a subset.

User avatar
ssaamm
Posts: 125
Joined: June 4th, 2010, 9:43 pm

Re: Serizawa

Post by ssaamm » May 29th, 2011, 9:12 pm

What about this 3-cell rake parent?

x = 3, y = 3, rule = serizawa
2.A2$B.B!

EDIT: I should have looked harder; This was already discovered
Last edited by ssaamm on May 30th, 2011, 10:40 am, edited 1 time in total.

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Serizawa

Post by knightlife » May 29th, 2011, 10:06 pm

ssaamm wrote:What about this 3-cell rake parent?

x = 3, y = 3, rule = serizawa
2.A2$B.B!
That one is the same as the 3-cell pattern I posted yesterday (rotated 180 degrees).

Post Reply