Thread For Your Unrecognised CA

For discussion of other cellular automata.
Post Reply
shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 10th, 2016, 4:01 am

I am excited to share this new half-wolf.

Modifying the state 2 in "lifebf7" to undergo the same transitions as state0, I obtained this variant called "flashb7a". This rule inherits many features of lifebf7 (spaceships, chaotic growth, etc.), but also exhibits extraordinary growth of higher order structure, allowing it to combine features of ordered automata and chaotic automata.

flashb7a rule table

Code: Select all

@RULE flashb7a
@TABLE
# rules: 61
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,2,3}
var e={0,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,2,3}
var k={0,2,3}
var l={0,3}
var m={0,1,3}
var n={0,3}
var o={0,3}
var p={0,3}
var q={1,2}
var r={0,1,3}
var s={0,1,3}
var t={1,3}
var u={0,1}
var v={0,1}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,2,3}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,1,2}
var E={0,2}
var F={1,2}
var G={0,2}
var H={0,2}
var I={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,e,j,k,l,1,1,1,1
a,e,i,j,k,1,l,1,1,1
a,e,j,i,k,1,1,l,1,1
a,e,b,c,1,m,d,f,2,1
a,i,l,e,1,n,o,1,1,1
a,i,l,n,1,o,1,p,1,1
a,i,l,n,q,1,o,p,1,1
a,m,e,r,2,1,s,b,1,1
a,i,e,1,l,n,1,j,1,1
a,m,e,1,r,t,s,2,1,1
0,0,0,1,1,0,1,2,1,1
a,i,u,1,m,1,r,2,1,1
a,i,u,m,2,1,v,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
a,u,1,v,1,i,2,1,m,1
0,0,1,0,2,1,0,1,1,1
u,e,1,1,1,1,1,1,1,2
1,e,j,k,w,x,y,z,b,0
1,b,c,d,e,f,g,h,3,0
1,e,b,u,c,A,d,3,f,0
1,A,u,B,C,e,3,b,D,0
1,a,u,b,v,A,B,C,3,0
q,i,l,n,o,m,p,3,r,0
1,0,0,0,u,1,q,0,3,0
1,a,E,A,b,1,1,1,1,0
q,i,l,n,o,m,3,0,r,0
1,u,0,0,0,3,0,q,F,0
1,u,0,0,0,3,F,0,q,0
1,0,0,0,1,0,A,F,3,0
F,i,l,n,1,o,u,p,3,0
1,E,A,B,1,a,1,1,1,0
F,i,l,n,u,1,o,p,3,0
1,e,A,b,1,1,j,1,1,0
1,e,A,B,t,1,1,E,1,0
F,i,l,0,3,n,o,1,u,0
F,i,0,l,3,n,1,o,1,0
F,i,l,n,3,1,0,0,1,0
1,E,a,1,G,H,1,1,1,0
1,E,G,1,H,1,a,1,1,0
1,E,G,1,H,1,1,a,1,0
1,E,G,1,1,H,a,1,1,0
1,E,G,1,1,H,1,a,1,0
1,E,1,G,1,H,1,a,1,0
F,1,1,1,1,1,1,1,1,0
2,i,l,n,o,p,I,m,r,0
2,I,0,i,0,l,1,n,1,0
2,I,i,l,0,1,0,0,1,0
2,I,i,m,r,1,1,1,1,0
2,I,i,l,1,n,o,p,1,0
2,I,m,r,1,i,1,1,1,0
2,I,m,r,1,1,i,1,1,0
2,I,m,r,1,1,1,i,1,0
2,I,i,1,l,n,1,1,1,0
2,I,i,1,l,1,n,1,1,0
2,I,i,1,l,1,1,n,1,0
2,I,i,1,1,l,n,1,1,0
2,I,i,1,1,l,1,n,1,0
2,I,1,i,1,l,1,n,1,0
IF you need any methuselahs, please refer to lifebf7a patterns:

Code: Select all

x = 540, y = 376, rule = flashb7a
390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C
88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.
2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C
88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.
2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C
88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.
2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C
10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C
$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.
2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.
2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A
7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C
88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.
C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C
88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A
.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C
88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.
2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C
88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C
88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.
2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.
A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A
3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A
29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A
4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.
2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.
2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.
3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.
2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C
39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$
C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C
88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A
3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$
C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C
39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C
88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.
2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C
88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.
2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A
42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.
2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.
3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.
C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C
88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C
88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$
C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C
$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.
C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C
48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C
30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.
2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$
C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.
2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C
46.A41.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C45.2A41.2C
88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.2C44.4A40.2C88.2C88.C$C30.2A8.A2.
2A43.2C88.2C88.2C43.3A.A40.2C88.2C88.C$C41.2A45.2C88.2C88.2C44.4A40.
2C88.2C88.C$C88.2C88.2C88.2C46.A41.2C88.2C88.C$C88.2C88.2C88.2C46.A
41.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$540C$361C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C28.B59.2C88.2C88.2C
88.2C$C36.B51.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C38.B8.B40.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$361C35$38.A$35.5A$35.A2.3A$35.5A$38.A101$40.A$37.5A$38.B.3A$
37.5A$40.A!
Since flashbf7a is rather interesting and contain many spaceships, I am updating it in a separate post.

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 22nd, 2016, 5:06 pm

I conducted a search of 4-state rulespace named flashbfAdfB , where A indicates state1 neighbors required to produce a state2 spark (birthforcers,bf) and B indicates state2 neighbors required to produce state3 spark(deathforcers,df).

A table showing some highlights
I have problem obtaining an img url so post this google drive photo instead.

Rules of interest:
flashbf2df0--explosive pattern on a death-forcer background
flashbf3df1--biphasic chaotic. One phase contain only state2 and the other contain no state2. Probably relate to some 1-state rule.
flashbf7df3- non-explosive life-like chaotic behavior with enhanced survival.
flahbf8df7--form lots of state2-cored colonies and emit tracked spaceships.

flashbf2df0.table

Code: Select all

# rules: 211
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,1,3}
var j={0,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,2,3}
var p={0,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={0,3}
var v={0,1,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,3}
var z={0,3}
var A={1,3}
var B={0,2}
var C={0,2}
var D={0,2}
a,b,c,d,e,f,g,h,i,3
j,k,l,m,n,o,p,q,2,1
j,r,k,l,m,n,o,2,1,1
j,k,l,m,n,r,1,s,2,1
b,j,k,l,m,n,1,1,2,2
b,j,k,l,m,n,1,2,1,2
j,r,s,k,l,m,2,t,1,1
b,r,j,k,l,m,2,1,1,2
j,k,l,r,s,1,t,u,2,1
b,j,k,l,m,1,r,1,2,2
b,j,k,l,m,1,n,2,1,2
b,j,k,l,r,1,1,s,2,2
j,q,v,w,x,1,1,1,2,1
j,q,v,w,k,1,1,2,1,1
b,j,k,l,m,1,2,r,1,2
j,q,v,w,k,1,2,1,1,1
j,r,s,t,k,2,u,y,1,1
b,r,s,j,k,2,t,1,1,2
b,r,j,k,l,2,1,s,1,2
j,b,q,v,k,2,1,1,1,1
j,r,s,t,1,u,y,z,2,1
b,j,k,l,1,r,s,1,2,2
b,j,k,l,1,m,n,2,1,2
b,j,k,r,1,s,1,t,2,2
j,k,q,v,1,r,1,1,2,1
j,k,q,v,1,l,1,2,1,1
b,j,k,r,1,l,2,s,1,2
j,k,q,v,1,l,2,1,1,1
b,j,r,s,1,1,t,u,2,2
j,k,q,v,1,1,r,1,2,1
j,k,q,v,1,1,l,2,1,1
j,k,q,b,1,1,1,r,2,1
j,q,k,l,1,1,2,r,1,1
b,j,r,s,1,2,t,u,1,2
j,q,v,k,1,2,r,1,1,1
j,q,k,l,1,2,1,r,1,1
b,r,s,t,2,u,y,1,1,2
b,r,s,j,2,t,1,u,1,2
j,b,c,k,2,r,1,1,1,1
b,r,j,k,2,1,s,t,1,2
j,b,q,k,2,1,r,1,1,1
j,b,k,l,2,1,1,r,1,1
b,j,r,1,s,t,1,u,2,2
j,k,l,1,r,s,1,1,2,1
j,k,l,1,m,n,1,2,1,1
b,r,s,1,t,u,2,y,1,2
j,r,s,1,k,l,2,1,1,1
b,r,s,1,t,1,u,y,2,2
j,k,l,1,r,1,s,1,2,1
j,k,l,1,r,1,m,2,1,1
j,k,b,1,r,1,1,s,2,1
j,k,l,1,r,1,2,s,1,1
j,r,s,1,k,2,t,1,1,1
j,r,s,1,k,2,1,t,1,1
j,r,s,1,1,t,u,1,2,1
j,r,s,1,1,t,k,2,1,1
j,k,r,1,1,s,1,t,2,1
j,r,s,1,1,t,2,u,1,1
j,r,s,1,1,1,t,u,2,1
j,r,s,1,2,t,1,u,1,1
j,r,s,2,t,1,u,1,1,1
j,r,s,2,t,1,1,u,1,1
j,r,k,2,1,s,1,t,1,1
j,r,1,s,1,t,1,u,2,1
1,j,k,l,m,n,o,q,2,0
1,r,j,k,l,m,n,2,1,0
1,j,k,l,m,r,1,s,2,0
1,r,s,j,k,l,2,t,1,0
1,j,k,r,s,1,t,u,2,0
1,r,s,t,j,2,u,y,1,0
1,r,s,t,1,u,y,z,2,0
1,q,v,w,1,1,1,A,2,0
1,q,v,j,1,1,1,2,A,0
1,q,v,j,1,1,2,1,A,0
1,q,v,j,1,1,2,3,1,0
1,q,v,w,1,1,3,1,2,0
1,q,v,j,1,1,3,2,1,0
1,q,v,j,1,2,1,1,A,0
1,q,v,j,1,2,1,3,1,0
1,q,v,j,1,2,3,1,1,0
1,q,v,w,1,3,1,1,2,0
1,q,v,j,1,3,1,2,1,0
1,q,v,j,1,3,2,1,1,0
1,b,q,j,2,1,1,1,A,0
1,b,q,j,2,1,1,3,1,0
1,b,q,j,2,1,3,1,1,0
1,q,v,j,2,3,1,1,1,0
1,B,q,b,3,1,1,1,2,0
1,B,q,j,3,1,1,2,1,0
1,B,q,j,3,1,2,1,1,0
1,B,q,j,3,2,1,1,1,0
1,j,q,1,r,1,1,A,2,0
1,j,q,1,B,1,1,2,A,0
1,j,q,1,B,1,2,1,A,0
1,j,q,1,k,1,2,3,1,0
1,j,q,1,r,1,3,1,2,0
1,j,q,1,k,1,3,2,1,0
1,j,q,1,B,2,1,1,A,0
1,j,q,1,k,2,1,3,1,0
1,j,q,1,k,2,3,1,1,0
1,j,q,1,r,3,1,1,2,0
1,j,q,1,k,3,1,2,1,0
1,j,q,1,k,3,2,1,1,0
1,j,q,1,1,r,1,A,2,0
1,j,q,1,1,B,1,2,A,0
1,j,q,1,1,B,2,1,A,0
1,j,q,1,1,k,2,3,1,0
1,j,q,1,1,r,3,1,2,0
1,j,q,1,1,k,3,2,1,0
1,j,q,1,1,1,r,A,2,0
1,j,q,1,1,1,B,2,A,0
1,q,b,1,1,1,A,0,2,0
1,j,B,1,1,1,2,0,A,0
1,q,j,1,1,2,0,1,A,0
1,j,B,1,1,2,r,3,1,0
1,j,B,1,1,2,1,0,A,0
1,j,B,1,1,2,3,0,1,0
1,q,v,1,1,3,0,1,2,0
1,q,r,1,1,3,B,2,1,0
1,q,b,1,1,3,1,0,2,0
1,j,r,1,1,3,2,0,1,0
1,b,r,1,2,0,1,1,A,0
1,q,j,1,2,r,1,3,1,0
1,B,C,1,2,r,3,1,1,0
1,q,j,1,2,1,0,1,A,0
1,j,B,1,2,1,r,3,1,0
1,j,B,1,2,1,1,0,A,0
1,j,B,1,2,1,3,0,1,0
1,B,C,1,2,3,0,1,1,0
1,j,k,1,2,3,1,0,1,0
1,B,C,1,3,0,1,1,2,0
1,B,C,1,3,D,1,2,1,0
1,b,r,1,3,B,2,1,1,0
1,j,k,1,3,1,0,1,2,0
1,b,r,1,3,1,B,2,1,0
1,q,b,1,3,1,1,0,2,0
1,r,s,1,3,1,2,0,1,0
1,r,s,1,3,2,0,1,1,0
1,j,k,1,3,2,1,0,1,0
1,r,s,2,0,1,1,1,A,0
1,r,s,2,t,1,1,3,1,0
1,b,r,2,s,1,3,1,1,0
1,0,B,2,r,3,1,1,1,0
1,r,j,2,1,0,1,1,A,0
1,r,j,2,1,s,1,3,1,0
1,0,B,2,1,r,3,1,1,0
1,r,j,2,1,1,0,1,A,0
1,0,B,2,1,1,r,3,1,0
1,r,B,2,1,1,1,0,A,0
1,0,B,2,1,1,3,0,1,0
1,0,B,2,1,3,0,1,1,0
1,r,j,2,1,3,1,0,1,0
1,B,C,2,3,0,1,1,1,0
1,j,k,2,3,1,0,1,1,0
1,j,k,2,3,1,1,0,1,0
1,B,0,3,0,1,1,1,2,0
1,B,C,3,D,1,1,2,1,0
1,B,C,3,D,1,2,1,1,0
1,0,0,3,B,2,1,1,1,0
1,B,r,3,1,0,1,1,2,0
1,B,j,3,1,C,1,2,1,0
1,0,r,3,1,B,2,1,1,0
1,B,r,3,1,1,0,1,2,0
1,0,r,3,1,1,B,2,1,0
1,0,r,3,1,1,1,0,2,0
1,0,r,3,1,1,2,0,1,0
1,0,r,3,1,2,0,1,1,0
1,B,j,3,1,2,1,0,1,0
1,0,r,3,2,0,1,1,1,0
1,B,j,3,2,1,0,1,1,0
1,B,j,3,2,1,1,0,1,0
1,j,1,r,1,s,1,A,2,0
1,j,1,B,1,C,1,2,A,0
1,r,1,0,1,B,2,1,A,0
1,r,1,s,1,B,2,3,1,0
1,B,1,0,1,r,3,1,2,0
1,B,1,C,1,r,3,2,1,0
1,B,1,0,1,1,r,A,2,0
1,r,1,0,1,1,B,2,A,0
1,0,1,0,1,1,A,0,2,0
1,0,1,0,1,1,2,0,3,0
1,r,1,0,1,2,0,1,A,0
1,0,1,0,1,2,0,3,1,0
1,0,1,B,1,2,1,0,3,0
1,B,1,0,1,3,0,1,2,0
1,0,1,0,1,3,0,2,1,0
1,0,1,r,1,3,1,0,2,0
1,r,1,0,2,0,1,1,A,0
1,0,1,0,2,0,1,3,1,0
1,0,1,0,2,r,3,1,1,0
1,r,1,0,2,1,0,1,A,0
1,0,1,B,2,1,0,3,1,0
1,0,1,B,2,1,1,0,3,0
1,0,1,B,2,3,0,1,1,0
1,B,1,0,3,0,1,1,2,0
1,0,1,0,3,0,1,2,1,0
1,0,1,0,3,B,2,1,1,0
1,0,1,0,3,1,0,1,2,0
1,0,1,0,3,1,0,2,1,0
1,0,1,r,3,1,1,0,2,0
1,0,1,r,3,2,0,1,1,0
1,0,1,1,0,1,A,0,2,0
1,0,1,1,0,1,2,0,3,0
1,0,1,1,0,2,0,1,3,0
1,0,1,1,0,2,0,3,1,0
1,0,1,1,0,2,1,0,3,0
1,0,1,1,0,3,0,1,2,0
1,0,1,1,0,3,0,2,1,0
1,0,1,1,0,3,1,0,2,0
1,0,1,1,1,0,2,0,3,0
1,0,1,1,1,0,3,0,2,0
flashbf3df1.table

Code: Select all

# rules: 507
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,2,3}
var j={0,1,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,1,2,3}
var p={0,3}
var q={0,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={1,2,3}
var v={0,3}
var w={0,3}
var x={0,2}
var y={0,2}
var z={0,2}
var A={2,3}
a,b,c,d,e,f,g,h,2,3
i,j,k,l,m,n,o,2,2,1
b,p,q,r,s,t,1,1,1,2
i,k,l,m,n,b,2,c,2,1
b,p,q,r,s,1,t,1,1,2
i,k,l,m,n,1,b,2,2,1
b,p,q,r,s,1,1,t,1,2
i,p,k,l,m,2,b,c,2,1
i,p,k,l,m,2,b,2,1,1
i,p,k,l,m,2,2,b,1,1
b,p,q,r,1,s,t,1,1,2
i,k,l,m,1,p,b,2,2,1
b,p,q,r,1,s,1,t,1,2
i,k,l,m,1,p,2,b,2,1
i,k,l,m,1,n,2,2,1,1
b,p,q,r,1,1,s,t,1,2
i,k,l,m,1,1,p,2,2,1
b,i,k,l,1,1,1,2,2,2
i,k,l,p,1,1,2,q,2,1
b,i,k,l,1,1,2,1,2,2
b,i,k,l,1,1,2,2,1,2
i,k,l,m,1,2,p,b,2,1
i,k,l,m,1,2,p,2,1,1
i,k,l,p,1,2,1,q,2,1
b,i,k,l,1,2,1,1,2,2
b,i,k,l,1,2,1,2,1,2
i,k,l,m,1,2,2,p,1,1
b,i,k,l,1,2,2,1,1,2
i,p,q,k,2,r,b,c,2,1
i,p,q,k,2,r,b,2,1,1
i,p,k,l,2,q,2,b,1,1
i,p,k,l,2,1,q,b,2,1
i,p,k,l,2,1,q,2,1,1
i,p,q,r,2,1,1,s,2,1
b,p,i,k,2,1,1,1,2,2
b,p,i,k,2,1,1,2,1,2
i,p,k,l,2,1,2,q,1,1
b,p,i,k,2,1,2,1,1,2
i,p,k,l,2,2,q,b,1,1
i,p,k,l,2,2,1,q,1,1
b,p,i,k,2,2,1,1,1,2
b,p,q,1,r,s,1,t,1,2
i,k,l,1,p,q,1,2,2,1
i,p,q,1,r,s,2,b,2,1
i,p,q,1,k,l,2,2,1,1
i,k,l,1,p,1,q,2,2,1
b,i,k,1,p,1,1,2,2,2
i,k,p,1,q,1,2,r,2,1
b,i,k,1,p,1,2,1,2,2
b,i,k,1,l,1,2,2,1,2
i,p,q,1,r,2,s,b,2,1
i,p,q,1,r,2,s,2,1,1
i,k,p,1,q,2,1,r,2,1
b,i,k,1,p,2,1,1,2,2
b,i,k,1,l,2,1,2,1,2
i,k,p,1,q,2,2,r,1,1
b,i,k,1,l,2,2,1,1,2
i,p,q,1,1,r,s,2,2,1
b,i,k,1,1,p,1,2,2,2
i,p,q,1,1,r,2,s,2,1
b,i,k,1,1,p,2,1,2,2
b,i,k,1,1,l,2,2,1,2
b,i,k,1,1,1,p,2,2,2
i,j,o,1,1,1,1,2,2,1
b,i,p,1,1,1,2,q,2,2
i,j,o,1,1,1,2,1,2,1
i,j,k,1,1,1,2,2,1,1
i,p,q,1,1,2,r,s,2,1
b,i,k,1,1,2,p,1,2,2
b,i,p,1,1,2,q,2,1,2
b,i,p,1,1,2,1,q,2,2
i,j,o,1,1,2,1,1,2,1
i,j,k,1,1,2,1,2,1,1
b,i,p,1,1,2,2,q,1,2
i,j,k,1,1,2,2,1,1,1
i,p,q,1,2,r,s,1,2,1
i,p,q,1,2,r,s,2,1,1
i,p,q,1,2,r,1,s,2,1
b,p,q,1,2,r,1,1,2,2
b,i,k,1,2,p,1,2,1,2
i,p,q,1,2,r,2,s,1,1
b,p,q,1,2,r,2,1,1,2
i,p,q,1,2,1,r,s,2,1
b,i,k,1,2,1,p,1,2,2
b,p,q,1,2,1,r,2,1,2
b,i,p,1,2,1,1,q,2,2
i,j,o,1,2,1,1,1,2,1
i,j,k,1,2,1,1,2,1,1
b,p,q,1,2,1,2,r,1,2
i,j,k,1,2,1,2,1,1,1
b,p,q,1,2,2,r,1,1,2
b,i,k,1,2,2,1,p,1,2
i,j,k,1,2,2,1,1,1,1
i,p,q,2,r,s,2,b,1,1
i,p,q,2,r,1,s,1,2,1
i,p,q,2,r,1,s,2,1,1
i,p,q,2,r,1,1,s,2,1
b,p,q,2,r,1,1,1,2,2
b,p,q,2,r,1,1,2,1,2
i,p,q,2,r,1,2,s,1,1
b,p,q,2,r,1,2,1,1,2
i,p,q,2,r,2,s,1,1,1
i,p,q,2,r,2,1,s,1,1
b,p,q,2,r,2,1,1,1,2
i,p,q,2,1,r,s,2,1,1
i,p,q,2,1,r,1,s,2,1
b,p,i,2,1,q,1,1,2,2
b,p,i,2,1,q,1,2,1,2
i,p,q,2,1,r,2,s,1,1
b,p,q,2,1,r,2,1,1,2
b,p,i,2,1,1,q,1,2,2
b,p,q,2,1,1,r,2,1,2
b,p,q,2,1,1,1,r,2,2
i,b,j,2,1,1,1,1,2,1
i,b,k,2,1,1,1,2,1,1
b,p,q,2,1,1,2,r,1,2
i,b,k,2,1,1,2,1,1,1
b,p,q,2,1,2,r,1,1,2
b,p,i,2,1,2,1,q,1,2
i,b,k,2,1,2,1,1,1,1
i,p,q,2,2,r,1,s,1,1
b,p,q,2,2,r,1,1,1,2
b,p,i,2,2,1,q,1,1,2
b,p,i,2,2,1,1,q,1,2
i,b,k,2,2,1,1,1,1,1
b,i,1,p,1,q,1,2,2,2
i,p,1,q,1,r,2,s,2,1
b,p,1,q,1,r,2,1,2,2
b,p,1,q,1,r,2,2,1,2
b,p,1,q,1,1,r,2,2,2
i,k,1,p,1,1,1,2,2,1
b,p,1,q,1,1,2,r,2,2
i,k,1,p,1,1,2,1,2,1
i,k,1,l,1,1,2,2,1,1
b,p,1,q,1,2,r,1,2,2
b,p,1,q,1,2,r,2,1,2
b,p,1,q,1,2,1,r,2,2
i,p,1,q,1,2,1,1,2,1
i,k,1,l,1,2,1,2,1,1
i,k,1,l,1,2,2,1,1,1
i,p,1,q,2,r,1,s,2,1
b,p,1,q,2,r,1,1,2,2
b,p,1,q,2,r,1,2,1,2
b,p,1,q,2,r,2,1,1,2
b,p,1,q,2,1,r,1,2,2
b,p,1,q,2,1,r,2,1,2
b,p,1,q,2,1,1,r,2,2
i,p,1,q,2,1,1,1,2,1
i,p,1,q,2,1,1,2,1,1
i,p,1,k,2,1,2,1,1,1
b,p,1,q,2,2,r,1,1,2
i,p,1,k,2,2,1,1,1,1
i,k,1,1,p,1,1,2,2,1
b,p,1,1,q,1,2,r,2,2
i,p,1,1,q,1,2,1,2,1
i,p,1,1,q,1,2,2,1,1
b,p,1,1,q,2,r,1,2,2
b,p,1,1,q,2,r,2,1,2
b,p,1,1,q,2,1,r,2,2
i,p,1,1,q,2,1,1,2,1
i,p,1,1,q,2,1,2,1,1
i,p,1,1,q,2,2,1,1,1
i,p,1,1,1,q,1,2,2,1
b,p,1,1,1,q,2,r,2,2
i,p,1,1,1,q,2,1,2,1
i,p,1,1,1,q,2,2,1,1
i,p,1,1,1,1,q,2,2,1
i,b,1,1,1,1,2,p,2,1
i,p,1,1,1,2,q,1,2,1
i,p,1,1,1,2,q,2,1,1
i,p,1,1,1,2,1,q,2,1
i,p,1,1,2,q,1,1,2,1
i,p,1,1,2,q,1,2,1,1
i,p,1,1,2,q,2,1,1,1
i,p,1,1,2,1,q,1,2,1
i,p,1,1,2,1,q,2,1,1
i,p,1,1,2,1,1,q,2,1
i,p,1,2,q,1,2,1,1,1
i,p,1,2,q,2,1,1,1,1
i,p,1,2,1,q,1,2,1,1
i,p,1,2,1,q,2,1,1,1
i,p,1,2,1,1,q,2,1,1
i,p,1,2,1,1,1,q,2,1
i,p,2,q,2,1,1,1,1,1
i,p,2,1,q,2,1,1,1,1
i,p,2,1,1,q,2,1,1,1
u,p,q,r,s,t,v,w,b,0
1,i,k,l,m,n,j,2,2,0
u,p,q,r,s,t,1,1,3,0
u,p,q,r,s,t,1,3,1,0
1,p,i,k,l,m,2,b,2,0
1,p,i,k,l,m,2,2,1,0
u,0,p,q,r,s,3,1,1,0
u,p,q,r,s,1,0,1,3,0
1,i,k,l,m,1,p,2,2,0
u,p,q,r,s,1,t,3,1,0
u,p,q,r,0,1,1,0,3,0
u,b,c,d,e,1,1,1,1,0
1,i,k,l,p,1,2,q,2,0
u,p,q,r,s,1,3,0,1,0
1,p,q,i,k,2,r,b,2,0
1,p,i,k,l,2,q,2,1,0
1,p,i,q,r,2,1,s,2,0
1,p,i,k,l,2,2,q,1,0
u,0,0,p,q,3,0,1,1,0
u,0,p,q,r,3,1,0,1,0
u,p,q,r,1,0,0,1,3,0
1,i,k,l,1,p,q,2,2,0
u,p,q,r,1,s,t,3,1,0
u,p,q,0,1,0,1,0,3,0
u,p,b,c,1,q,1,1,1,0
1,i,k,p,1,q,2,r,2,0
u,p,q,0,1,r,3,0,1,0
u,p,0,0,1,1,0,0,3,0
u,p,b,c,1,1,q,1,1,0
u,p,q,r,1,1,1,s,1,0
1,i,k,l,1,1,2,2,3,0
1,i,k,l,1,1,2,3,2,0
1,i,k,l,1,1,3,2,2,0
1,i,p,q,1,2,r,s,2,0
1,i,k,l,1,2,1,2,3,0
1,i,k,l,1,2,1,3,2,0
1,i,k,l,1,2,2,1,3,0
1,i,k,l,1,2,2,3,1,0
1,i,k,l,1,2,3,1,2,0
1,i,k,l,1,2,3,2,1,0
u,p,0,0,1,3,0,0,1,0
1,i,k,l,1,3,1,2,2,0
1,i,k,l,1,3,2,1,2,0
1,i,k,l,1,3,2,2,1,0
1,p,q,r,2,s,t,b,2,0
1,p,q,r,2,s,t,2,1,0
1,p,q,r,2,s,1,t,2,0
1,p,q,r,2,s,2,t,1,0
1,p,q,r,2,1,s,t,2,0
1,p,i,k,2,1,1,2,3,0
1,p,i,k,2,1,1,3,2,0
1,p,i,k,2,1,2,1,3,0
1,p,i,k,2,1,2,3,1,0
1,p,i,k,2,1,3,1,2,0
1,p,i,k,2,1,3,2,1,0
1,p,q,r,2,2,s,t,1,0
1,p,i,k,2,2,1,1,3,0
1,p,i,k,2,2,1,3,1,0
1,i,k,l,2,2,3,1,1,0
1,i,k,p,2,3,1,1,2,0
1,i,k,l,2,3,1,2,1,0
1,i,k,l,2,3,2,1,1,0
u,0,0,0,3,0,0,1,1,0
u,0,0,p,3,0,1,0,1,0
u,0,p,q,3,1,0,0,1,0
1,x,i,p,3,1,1,2,2,0
1,x,i,p,3,1,2,1,2,0
1,x,i,k,3,1,2,2,1,0
1,x,i,p,3,2,1,1,2,0
1,x,i,k,3,2,1,2,1,0
1,x,i,k,3,2,2,1,1,0
u,p,0,1,0,0,1,0,3,0
u,p,q,1,r,s,1,1,1,0
1,p,q,1,r,s,2,t,2,0
u,0,0,1,0,0,3,0,1,0
u,0,0,1,0,1,0,0,3,0
u,p,q,1,r,1,s,1,1,0
u,p,q,1,r,1,1,s,1,0
1,i,k,1,x,1,2,2,3,0
1,i,k,1,p,1,2,3,2,0
1,i,k,1,p,1,3,2,2,0
1,p,q,1,r,2,s,t,2,0
1,i,k,1,x,2,1,2,3,0
1,i,k,1,p,2,1,3,2,0
1,i,k,1,x,2,2,1,3,0
1,i,k,1,l,2,2,3,1,0
1,i,k,1,p,2,3,1,2,0
1,i,k,1,l,2,3,2,1,0
1,i,k,1,p,3,1,2,2,0
1,i,k,1,p,3,2,1,2,0
1,i,k,1,l,3,2,2,1,0
u,p,q,1,1,r,s,1,1,0
u,p,q,1,1,r,1,s,1,0
1,i,k,1,1,x,2,2,3,0
1,i,k,1,1,p,2,3,2,0
1,i,k,1,1,p,3,2,2,0
1,j,o,1,1,1,1,2,2,0
1,j,o,1,1,1,2,1,2,0
1,j,i,1,1,1,2,2,1,0
1,i,k,1,1,2,0,2,3,0
1,i,k,1,1,2,p,3,2,0
1,j,o,1,1,2,1,1,2,0
1,j,i,1,1,2,1,2,1,0
1,i,x,1,1,2,2,0,3,0
1,j,i,1,1,2,2,1,1,0
1,i,p,1,1,2,3,0,2,0
1,i,k,1,1,3,0,2,2,0
1,i,p,1,1,3,2,0,2,0
1,i,k,1,2,0,1,2,3,0
1,i,k,1,2,p,1,3,2,0
1,i,k,1,2,0,2,1,3,0
1,i,k,1,2,p,2,3,1,0
1,i,k,1,2,p,3,1,2,0
1,i,k,1,2,p,3,2,1,0
1,i,k,1,2,1,0,2,3,0
1,i,k,1,2,1,p,3,2,0
1,j,o,1,2,1,1,1,2,0
1,j,i,1,2,1,1,2,1,0
1,i,x,1,2,1,2,0,3,0
1,j,i,1,2,1,2,1,1,0
1,i,p,1,2,1,3,0,2,0
1,i,k,1,2,2,0,1,3,0
1,i,x,1,2,2,p,3,1,0
1,i,x,1,2,2,1,0,3,0
1,j,i,1,2,2,1,1,1,0
1,i,x,1,2,2,3,0,1,0
1,i,x,1,2,3,0,1,2,0
1,p,q,1,2,3,0,2,1,0
1,i,p,1,2,3,1,0,2,0
1,p,q,1,2,3,2,0,1,0
1,x,y,1,3,0,1,2,2,0
1,p,q,1,3,0,2,1,2,0
1,i,k,1,3,x,2,2,1,0
1,i,k,1,3,1,0,2,2,0
1,i,p,1,3,1,2,0,2,0
1,p,q,1,3,2,0,1,2,0
1,p,q,1,3,2,0,2,1,0
1,i,p,1,3,2,1,0,2,0
1,p,q,1,3,2,2,0,1,0
1,p,q,2,r,s,2,t,1,0
1,p,q,2,0,1,1,2,3,0
1,p,q,2,r,1,1,3,2,0
1,p,q,2,0,1,2,1,3,0
1,p,q,2,r,1,2,3,1,0
1,p,q,2,r,1,3,1,2,0
1,p,q,2,r,1,3,2,1,0
1,p,q,2,0,2,1,1,3,0
1,p,q,2,r,2,1,3,1,0
1,p,i,2,q,2,3,1,1,0
1,0,x,2,p,3,1,1,2,0
1,0,x,2,p,3,1,2,1,0
1,p,i,2,q,3,2,1,1,0
1,p,i,2,1,0,1,2,3,0
1,p,i,2,1,q,1,3,2,0
1,p,q,2,1,0,2,1,3,0
1,p,i,2,1,q,2,3,1,0
1,0,x,2,1,p,3,1,2,0
1,p,i,2,1,q,3,2,1,0
1,p,i,2,1,1,0,2,3,0
1,p,x,2,1,1,q,3,2,0
1,b,j,2,1,1,1,1,2,0
1,b,i,2,1,1,1,2,1,0
1,p,x,2,1,1,2,0,3,0
1,b,i,2,1,1,2,1,1,0
1,p,0,2,1,1,3,0,2,0
1,p,q,2,1,2,0,1,3,0
1,0,x,2,1,2,p,3,1,0
1,p,x,2,1,2,1,0,3,0
1,b,i,2,1,2,1,1,1,0
1,0,x,2,1,2,3,0,1,0
1,0,x,2,1,3,0,1,2,0
1,p,0,2,1,3,0,2,1,0
1,p,q,2,1,3,1,0,2,0
1,p,q,2,1,3,2,0,1,0
1,p,q,2,2,0,1,1,3,0
1,p,q,2,2,r,1,3,1,0
1,0,x,2,2,p,3,1,1,0
1,p,i,2,2,1,0,1,3,0
1,0,x,2,2,1,p,3,1,0
1,p,x,2,2,1,1,0,3,0
1,b,i,2,2,1,1,1,1,0
1,0,x,2,2,1,3,0,1,0
1,x,y,2,2,3,0,1,1,0
1,i,k,2,2,3,1,0,1,0
1,x,0,2,3,0,1,1,2,0
1,x,y,2,3,0,1,2,1,0
1,0,0,2,3,0,2,1,1,0
1,i,p,2,3,1,0,1,2,0
1,p,q,2,3,1,0,2,1,0
1,p,q,2,3,1,1,0,2,0
1,p,q,2,3,1,2,0,1,0
1,p,q,2,3,2,0,1,1,0
1,i,k,2,3,2,1,0,1,0
1,x,0,3,0,1,1,2,2,0
1,x,0,3,0,1,2,1,2,0
1,x,y,3,z,1,2,2,1,0
1,0,0,3,0,2,1,1,2,0
1,0,0,3,x,2,1,2,1,0
1,0,0,3,x,2,2,1,1,0
1,x,p,3,1,0,1,2,2,0
1,0,p,3,1,0,2,1,2,0
1,0,p,3,1,x,2,2,1,0
1,0,p,3,1,1,0,2,2,0
1,0,p,3,1,1,2,0,2,0
1,0,p,3,1,2,0,1,2,0
1,0,p,3,1,2,0,2,1,0
1,0,p,3,1,2,1,0,2,0
1,0,p,3,1,2,2,0,1,0
1,0,p,3,2,0,1,1,2,0
1,0,p,3,2,0,1,2,1,0
1,0,p,3,2,0,2,1,1,0
1,x,p,3,2,1,0,1,2,0
1,0,p,3,2,1,0,2,1,0
1,0,p,3,2,1,1,0,2,0
1,0,p,3,2,1,2,0,1,0
1,0,p,3,2,2,0,1,1,0
1,x,i,3,2,2,1,0,1,0
u,p,1,q,1,r,1,s,1,0
1,p,1,0,1,x,2,2,3,0
1,p,1,q,1,r,2,3,2,0
1,x,1,0,1,p,3,2,2,0
1,i,1,p,1,1,1,2,2,0
1,i,1,p,1,1,2,1,2,0
1,i,1,k,1,1,2,2,1,0
1,p,1,0,1,2,0,2,3,0
1,0,1,0,1,2,p,3,2,0
1,p,1,q,1,2,1,1,2,0
1,i,1,k,1,2,1,2,1,0
1,0,1,0,1,2,2,0,3,0
1,i,1,k,1,2,2,1,1,0
1,0,1,0,1,2,3,0,2,0
1,0,1,0,1,3,0,2,2,0
1,p,1,q,1,3,2,0,2,0
1,p,1,0,2,0,1,2,3,0
1,p,1,q,2,r,1,3,2,0
1,p,1,0,2,0,2,1,3,0
1,p,1,0,2,0,2,3,1,0
1,0,1,0,2,p,3,1,2,0
1,0,1,0,2,p,3,2,1,0
1,p,1,0,2,1,0,2,3,0
1,0,1,0,2,1,p,3,2,0
1,p,1,q,2,1,1,1,2,0
1,p,1,q,2,1,1,2,1,0
1,0,1,0,2,1,2,0,3,0
1,p,1,i,2,1,2,1,1,0
1,0,1,0,2,1,3,0,2,0
1,p,1,0,2,2,0,1,3,0
1,0,1,0,2,2,0,3,1,0
1,0,1,x,2,2,1,0,3,0
1,p,1,i,2,2,1,1,1,0
1,0,1,0,2,3,0,1,2,0
1,0,1,0,2,3,0,2,1,0
1,p,1,0,2,3,1,0,2,0
1,0,1,0,3,0,1,2,2,0
1,0,1,0,3,0,2,1,2,0
1,0,1,0,3,0,2,2,1,0
1,0,1,0,3,1,0,2,2,0
1,0,1,p,3,1,2,0,2,0
1,0,1,p,3,2,0,1,2,0
1,0,1,p,3,2,0,2,1,0
1,0,1,p,3,2,1,0,2,0
1,i,1,1,p,1,1,2,2,0
1,p,1,1,q,1,2,1,2,0
1,p,1,1,q,1,2,2,1,0
1,p,1,1,0,2,0,2,3,0
1,0,1,1,0,2,p,3,2,0
1,p,1,1,q,2,1,1,2,0
1,p,1,1,q,2,1,2,1,0
1,0,1,1,0,2,2,0,3,0
1,p,1,1,q,2,2,1,1,0
1,0,1,1,0,2,3,0,2,0
1,0,1,1,0,3,0,2,2,0
1,0,1,1,p,3,2,0,2,0
1,p,1,1,1,q,1,2,2,0
1,p,1,1,1,q,2,1,2,0
1,p,1,1,1,q,2,2,1,0
1,p,1,1,1,1,q,2,2,0
1,b,1,1,1,1,2,p,2,0
1,p,1,1,1,2,q,1,2,0
1,p,1,1,1,2,q,2,1,0
1,p,1,1,1,2,1,q,2,0
1,p,1,1,2,q,1,1,2,0
1,p,1,1,2,q,1,2,1,0
1,0,1,1,2,0,2,0,3,0
1,p,1,1,2,q,2,1,1,0
1,0,1,1,2,0,3,0,2,0
1,p,1,1,2,1,q,1,2,0
1,p,1,1,2,1,q,2,1,0
1,p,1,1,2,1,1,q,2,0
1,0,1,1,3,0,2,0,2,0
1,0,1,2,0,1,2,0,3,0
1,p,1,2,q,1,2,1,1,0
1,0,1,2,0,1,3,0,2,0
1,0,1,2,0,2,0,1,3,0
1,0,1,2,0,2,0,3,1,0
1,0,1,2,0,2,1,0,3,0
1,p,1,2,q,2,1,1,1,0
1,0,1,2,0,3,0,2,1,0
1,0,1,2,0,3,1,0,2,0
1,p,1,2,1,q,1,2,1,0
1,0,1,2,1,0,2,0,3,0
1,p,1,2,1,q,2,1,1,0
1,0,1,2,1,0,3,0,2,0
1,p,1,2,1,1,q,2,1,0
1,p,1,2,1,1,1,q,2,0
1,0,1,3,0,2,0,2,1,0
1,0,1,3,0,2,1,0,2,0
1,0,1,3,1,0,2,0,2,0
1,0,2,0,2,0,3,1,1,0
1,0,2,0,2,1,0,3,1,0
1,0,2,0,2,1,1,0,3,0
1,p,2,q,2,1,1,1,1,0
1,0,2,0,3,0,2,1,1,0
1,0,2,0,3,1,0,2,1,0
1,0,2,1,0,2,1,0,3,0
1,p,2,1,q,2,1,1,1,0
1,p,2,1,1,q,2,1,1,0
A,0,0,0,0,0,0,1,1,0
A,0,0,0,0,0,1,0,1,0
A,0,0,0,0,1,0,0,1,0
A,0,0,0,1,0,0,0,1,0
flashbf7df3.table

Code: Select all

# rules: 84
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={1,2}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,2,3}
var t={0,2,3}
var u={0,2,3}
var v={0,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,1}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={0,1}
var F={1,2,3}
var G={0,2}
var H={1,2}
var I={1,3}
var J={0,2}
var K={0,2}
var L={2,3}
var M={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,e,k,l,1,1,1,1
a,b,e,c,d,f,h,g,2,1
0,b,c,d,f,g,2,2,2,3
a,i,e,k,l,1,m,1,n,1
a,e,k,l,i,1,1,m,n,1
a,b,e,c,d,2,f,g,h,1
0,b,c,d,f,2,g,2,2,3
0,b,c,d,f,2,2,g,2,3
a,h,o,p,q,2,2,2,2,1
a,b,e,c,1,d,f,h,2,1
a,e,k,l,1,m,r,1,1,1
a,e,k,l,1,m,1,r,1,1
a,e,k,l,1,1,m,r,1,1
a,e,b,c,n,d,f,g,2,1
0,b,c,d,2,f,g,2,2,3
a,b,e,c,2,d,n,f,1,1
0,b,c,d,2,f,2,g,2,3
a,b,h,o,2,c,2,2,2,1
0,b,c,d,2,2,f,g,2,3
a,b,h,o,2,2,c,2,2,1
a,b,c,d,2,2,2,f,2,1
a,e,k,1,l,m,1,r,1,1
a,b,c,2,d,f,i,g,1,1
0,b,c,2,d,f,2,g,2,3
a,b,c,2,d,f,2,2,2,1
a,b,i,2,c,1,d,1,f,1
a,b,c,2,d,2,f,2,2,1
a,b,c,2,d,2,2,f,2,1
a,b,c,2,1,d,f,2,1,1
a,b,c,2,2,d,f,2,2,1
0,0,b,2,2,c,1,d,1,1
a,b,c,2,2,d,2,f,2,1
a,b,1,c,1,d,2,f,2,1
b,a,1,1,1,1,1,1,1,2
a,b,2,c,2,d,2,f,2,1
1,a,i,j,s,t,u,v,h,0
1,h,o,p,a,q,w,x,3,0
1,a,h,y,o,z,p,3,q,0
1,z,y,A,B,a,3,h,C,0
1,D,y,h,E,A,B,C,3,0
F,e,k,l,m,b,r,3,c,0
1,0,0,0,E,1,n,0,3,0
1,D,G,A,h,1,1,1,1,0
F,e,k,l,m,b,3,0,c,0
1,E,0,0,0,3,0,n,H,0
1,E,0,0,0,3,H,0,n,0
1,0,0,0,1,0,A,H,3,0
F,e,k,l,1,m,E,r,3,0
1,D,A,B,1,G,1,1,1,0
F,e,k,l,E,1,m,r,3,0
1,a,A,h,1,1,i,1,1,0
1,a,A,B,I,1,1,D,1,0
F,e,k,0,3,l,m,1,E,0
F,e,0,k,3,l,1,m,1,0
F,e,k,l,3,1,0,0,1,0
1,D,G,1,J,K,1,1,1,0
1,D,G,1,J,1,K,1,1,0
1,D,G,1,J,1,1,K,1,0
1,D,G,1,1,J,K,1,1,0
1,D,G,1,1,J,1,K,1,0
1,D,1,G,1,J,1,K,1,0
F,1,1,1,1,1,1,1,1,0
L,e,k,l,m,r,M,b,c,0
L,M,0,e,0,k,1,l,1,0
2,b,c,d,f,g,2,2,2,1
L,M,e,k,0,1,0,0,1,0
L,M,e,b,c,1,1,1,1,0
2,b,c,d,f,2,g,2,2,1
2,b,c,d,f,2,2,g,2,1
L,M,e,k,1,l,m,r,1,0
L,M,b,c,1,e,1,1,1,0
L,M,b,c,1,1,e,1,1,0
L,M,b,c,1,1,1,e,1,0
2,b,c,d,2,f,g,2,2,1
2,b,c,d,2,f,2,g,2,1
2,b,c,d,2,2,f,g,2,1
L,M,e,1,k,l,1,1,1,0
L,M,e,1,k,1,l,1,1,0
L,M,e,1,k,1,1,l,1,0
L,M,e,1,1,k,l,1,1,0
L,M,e,1,1,k,1,l,1,0
2,b,c,2,d,f,2,g,2,1
L,M,1,e,1,k,1,l,1,0
flashbf8df7.table

Code: Select all

# rules: 65
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={0,1,2}
var o={0,2,3}
var p={0,2,3}
var q={0,2,3}
var r={0,2,3}
var s={0,1,2,3}
var t={0,2}
var u={0,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={1,2,3}
var z={0,2}
var A={0,1}
var B={0,2}
var C={1,3}
var D={1,2}
var E={1,2}
var F={2,3}
var G={0,3}
var H={0,1,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,k,l,m,1,1,1,1
a,i,j,k,l,1,m,1,1,1
a,i,j,k,l,1,1,m,1,1
a,i,j,k,1,l,m,1,1,1
a,i,j,k,1,l,1,m,1,1
a,i,j,k,1,1,l,m,1,1
a,b,c,d,2,f,g,e,2,1
a,i,j,1,k,l,1,m,1,1
a,d,2,e,2,2,b,2,2,1
a,d,2,2,e,2,2,2,2,1
n,d,2,2,2,2,2,2,2,3
d,1,1,1,1,1,1,1,1,2
a,2,2,2,2,2,2,2,2,1
1,a,o,p,i,j,q,r,b,0
1,b,c,f,d,g,h,s,3,0
1,b,c,t,d,f,g,3,n,0
1,n,t,u,d,b,3,v,w,0
1,d,n,v,t,w,x,b,3,0
y,i,j,k,l,d,m,3,e,0
1,0,0,0,t,1,1,0,3,0
1,t,n,v,w,1,1,1,1,0
y,i,j,k,l,d,3,0,e,0
1,a,0,o,t,p,u,z,d,0
1,i,a,t,A,u,z,B,2,0
1,B,n,v,1,t,1,1,1,0
1,B,n,v,1,C,t,1,1,0
1,B,t,u,1,1,1,z,1,0
1,0,0,A,2,0,D,E,3,0
1,0,0,0,3,0,1,1,2,0
1,0,0,0,3,1,0,1,2,0
1,B,t,1,u,z,1,1,1,0
1,B,t,1,u,1,z,1,1,0
1,B,t,1,u,1,1,z,1,0
1,i,B,1,t,2,u,z,2,0
1,B,t,1,1,u,z,1,1,0
1,B,t,1,1,u,1,z,1,0
1,0,0,1,2,0,0,1,3,0
1,0,0,1,2,0,1,0,3,0
1,0,0,1,2,1,0,0,3,0
1,0,B,2,2,t,1,a,2,0
1,0,0,2,2,1,1,3,2,0
1,B,1,t,1,u,1,z,1,0
1,0,1,B,2,2,t,2,2,0
1,n,v,2,2,2,A,3,2,0
1,a,2,2,0,2,2,2,A,0
1,0,2,2,2,0,2,2,2,0
1,B,2,2,2,1,3,2,1,0
1,0,2,2,2,2,2,2,1,0
1,B,3,2,1,1,2,2,2,0
1,2,2,2,2,2,2,2,2,0
F,i,j,k,l,m,G,d,e,0
F,G,i,j,k,l,1,m,1,0
F,G,i,j,k,1,0,0,1,0
F,G,d,e,H,1,1,1,1,0
F,G,i,j,1,k,l,m,1,0
F,G,H,d,1,i,1,1,1,0
F,G,H,d,1,1,i,1,1,0
F,G,i,j,1,1,1,k,1,0
F,G,i,1,j,k,1,1,1,0
F,G,i,1,j,1,k,1,1,0
F,G,i,1,j,1,1,k,1,0
F,G,i,1,1,j,k,1,1,0
F,G,i,1,1,j,1,k,1,0
F,G,1,i,1,j,1,k,1,0

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 7th, 2016, 6:16 am

I tried to implement the idea "delay" into the rule, where cells made a dead-live transition in the last generation cannot make an immediate dead-live transition in this generation. And vice-versa. This family of rule can thus be represented as B/S/D. By screening the B/S/D1 rulespace, I found this interesting rule "B3/S34/D1" with natural digonal SS and puffer.

ruletable B3_S34_D1.table

Code: Select all

# rules: 20
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={2,3}
var g={2,3}
var h={2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1}
var r={2,3}
var s={2,3}
0,a,b,c,d,e,f,g,h,2
0,a,b,c,d,f,e,g,h,2
0,a,b,c,d,f,g,e,h,2
0,a,b,c,f,d,e,g,h,2
0,a,b,c,f,d,g,e,h,2
0,a,b,c,f,g,d,e,h,2
0,a,b,f,c,d,g,e,h,2
1,i,j,k,l,m,n,o,p,0
2,i,j,k,l,m,n,o,p,3
3,a,b,c,d,e,q,i,j,1
3,a,b,c,d,e,f,q,g,1
3,a,b,c,d,f,e,q,g,1
3,a,b,c,f,d,e,q,g,1
3,i,j,k,f,g,h,r,s,1
3,a,i,f,b,g,h,r,s,1
3,a,i,f,g,b,h,r,s,1
3,a,b,f,g,h,c,r,s,1
3,a,b,f,g,h,r,c,s,1
3,a,f,b,g,c,h,r,s,1
3,a,f,b,g,h,c,r,s,1
transition function:

Code: Select all

switch (c) 
{
case 0:
if ((state2 neighbors+state3 neighbors)==3)
return 2;
else
return 0;

case 1: return 0;

case 2: return 3;

case 3: 
if ( ( (state2 neighbors+state3 neighbors-1) |1 )==3) return 3;
else return 1;
}
natural puffer:

Code: Select all

x = 6, y = 6, rule = B3_S34_D1
$2.BC$.B2C$.2C.BC$3.BA$3.A!
natural diagonal SS:

Code: Select all

x = 4, y = 4, rule = B3_S34_D1
$2.BC$.B2C$.2CB!
orthgonal SS:

Code: Select all

x = 23, y = 18, rule = B3_S34_D1
.2C$BCA.C$.C.C.BA$5.C2$.2C$BCA.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C3$.2C$BCA.C$.C.C.C3$.2C$BCA.C$.C.C!

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 7th, 2016, 9:46 am

Keep modifying the generation rule.
In this explosive variant, secondary structure forms upon a primitve layer.
The "step" means every cell is capable of sustaining the neighbors of the same state (except for vacuum).

UPDATE: After some construction effort, I managed to create a stable tubular network to support screening for orthogonal moving object on an infinite plane.You can see how the space between tubules are much more ordered due to the limited width.
NOTE: This rule is analogous to the generation rule 23/2/3, however it takes a 0,0/2,1/3,2/1,3 conversion to translate pattern from B2S23D1step into one in 23/2/3. The minimal implementation of tubuluar network requires 23/2/2 (in other words B2/S23).

It's certainly desirable to create a tubular network capable of replicating itself (though they'll have to split at the end of a cycle in order to avoid crystallizing the whole plane). By adjusting the size of a such bounded structure, we should expect a self-replicating low entropy form. It might be possible to adapt the "loop" replication but I am not sure on this possibility. It is also intriguing to how a curved boundary could improve such structure.

What's more, these tube support multi-mode chaotic pattern. Namely tubes allow some character of the intial pattern indside to be conserved。

Effect of initial pattern on the outcome pattern in a tube in 23/2/4

Code: Select all

x = 300, y = 62, rule = 23/2/4:T300,70
300A2$300A2$170.2AC3A.CBA44.3A$171.A.A.A3.CBA43.A$172.A2.2B2A2.CBA$
172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A$170.2AC3A.CBA44.3A2$300A2$300A2$
170.2AC3A.CBA44.3A9.3A9.3A9.3A$171.A.A.A3.CBA43.A11.A11.A11.A$172.A2.
2B2A2.CBA$172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A$170.2AC3A.C
BA44.3A9.3A9.3A9.3A2$300A2$300A2$170.2AC3A.CBA44.3A9.3A9.3A9.3A9.3A9.
3A$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$172.A2.2B2A2.CBA$172.A2.2B
2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$170.2AC3A.CBA44.3A9.3A
9.3A9.3A9.3A9.3A2$300A2$300A2$129.A4.ABC.A.A$127.3A6.A.AB3A81.3A9.3A
9.3A9.3A$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.A.A.A.A.A.A5.CBA$
127.A.A.A.A.A.A5.CBA$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.3A6.A
.AB3A81.3A9.3A9.3A9.3A$129.A4.ABC.A.A2$300A2$300A2$39.2A2.2AC2B2.AB5.
A.ABA$39.A.2A.A.C.A.A.C2.C.2AC.A$41.A3.A.CB.2B3.2A2.B.2A2.CBA$41.A.3A
.2C.2B4.A4.A5.CBA$41.A.3A.2C.2B4.A4.A5.CBA$41.A3.A.CB.2B3.2A2.B.2A2.C
BA$39.A.2A.A.C.A.A.C2.C.2AC.A$39.2A2.2AC2B2.AB5.A.ABA2$300A2$300A!

Tube Wickstrechers implemented with minimal cell states(2). TubeWidth=6

Code: Select all

x = 46, y = 53, rule = B2/S23
9$12b22o$11bo22bo$9bo2bob6ob4ob6obo2bo$9bo3bob2o4bo2bo4b2obo3bo$11bo2b
o2bo3b4o2b2o2bo2bo$13bo2b4o3b2ob4o2bo$14b3o2b5ob3ob3o$15b2o4b3obobob2o
$12bo4b3o6b2o5bo$10bobo4b2o4b2ob3o4bobo$8bo3bo4b2o7b2o5bo3bo$8bo4b4o2b
obo5bob4o4bo$10bo24bo$11b24o$13bo18bo$14b3obo3bo2b2o2b3o$16bobo2bo2bob
ob2o2$14b3ob2ob3ob7o$13bo18bo$11b24o$10bo24bo$8bo4b4o2bobo5bob4o4bo$8b
o3bo4b2o7b2o5bo3bo$10bobo20bobo$12bo20bo2$14bo$13bo2b4o3b2ob4o2bo$11bo
2bo2bo3b4o2b2o2bo2bo$9bo3bob2o4bo2bo4b2obo3bo$9bo2bob6ob4ob6obo2bo$11b
o22bo$12b22o!



Tubewidth=7

Code: Select all

x = 34, y = 40, rule = B2/S23
4$6b22o$5bo22bo$3bo2bob6ob4ob6obo2bo$3bo3bob2o4bo2bo4b2obo3bo$5bo2bo2b
o3b4o2b2o2bo2bo$7bo2b4o3b2ob4o2bo$8b3o2b5ob3ob3o$9b2o4b3obobob2o$6bo4b
3o6b2o5bo$4bobo4b2o4b2ob3o4bobo$2bo3bo4b2o7b2o5bo3bo$2bo4b4o2bobo5bob
4o4bo$4bo24bo$5b24o$7bo18bo$8b3obo3bo2b2o2b3o$10bobo2bo2bobob2o3$8b3ob
2ob3ob7o$7bo18bo$5b24o$4bo24bo$2bo4b4o2bobo5bob4o4bo$2bo3bo4b2o7b2o5bo
3bo$4bobo20bobo$6bo20bo2$26bo$5bo22bo$3bo22bo3bo$3bo2bo20bo2bo$5bo22bo
$6b22o!
TubeWidth=8

Code: Select all

x = 38, y = 40, rule = B2/S23
$7b22o$6bo22bo$4bo2bob6ob4ob6obo2bo$4bo3bob2o4bo2bo4b2obo3bo$6bo2bo2bo
3b4o2b2o2bo2bo$8bo2b4o3b2ob4o2bo$9b3o2b5ob3ob3o$10b2o4b3obobob2o$7bo4b
3o6b2o5bo$5bobo4b2o4b2ob3o4bobo$3bo3bo4b2o7b2o5bo3bo$3bo4b4o2bobo5bob
4o4bo$5bo24bo$6b24o$8bo18bo$9b3o2b4o8bo$11bo2b4obo3b3o$13b3o2bob2obobo
$13bo4b4o$14bo5b2o3bo$9b3o3b3o2bo3bobo$8bo18bo$6b24o$5bo24bo$3bo4b4o
14b2o4bo$3bo3bo20bo3bo$5bobo20bobo$7bo20bo3$6bo22bo$4bo26bo$4bo2bo20bo
2bo$6bo22bo$7b22o!
Overall, a width of 7 seems to generate the most interesting pattern

Tubular network(implemented in B2S23D1step)

Code: Select all

x = 124, y = 143, rule = B2S23D1step
115.C$114.C.C$113.C3.C$113.C.B.C$113.2B.2B$114.B.B$114.B.B$114.B.B$2.
2CB109.B.B$.C2.110B2.B$C2.B110.B.B$.C2.3B.B.104B2.B$2.2CB2.B.B104.B.B
$7.B.B92.2C4.2C4.B.B$7.B.B2.2B88.2A4.2C4.B.B$7.B.B.4B87.2C10.B.B$7.B.
B2.CB88.2B10.B.B$7.B.B.C.2A2B14.CB62.BC17.B.B$7.B.B.A.BC2B13.CAC62BCA
C16.B.B$7.B.B3.CB16.CB62.BC17.B.B$7.B.B3.B20.C.C54BC.C20.B.B$7.B.B.3C
20.CAC54.CAC20.B.B$7.B.B.ACA26.2C5.C.3C6.C3B4.3BC6.3C.C5.2C26.B.B$7.B
.B.CBA26.C6.2C2.C6.C.B6.B.C6.C2.2C6.C26.B.B$7.B.B2.CAB19.CAC54.CAC20.
B.B$7.B.B2.B.2CB17.C.C54BC.C20.B.B$7.B.B.2CB2C15.CB62.BC17.B.B$7.B.B.
C3.2B13.CAC62BCAC16.B.B$7.B.B3.CAB15.CB62.BC17.B.B$7.B.B.C.BC99.B.B$
7.B.B.2C.B99.B.B$7.B.B104.B.B$7.B.B104.B.B$7.B.B104.B.B2.B2C$7.B2.
104B.B.3B2.C$7.B.B110.B2.C$7.B2.110B2.C$7.B.B109.B2C$7.B.B$6.2B.2B$6.
C.B.C$6.C3.C$7.C.C$8.C42$60.B24CB$58.B.C11.B12.C.B$57.15B.16B$56.B2C
12.B.B13.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCA3C6.B.B9.CACB2.A
CB$56.B2C8.C3.B.B13.2CB$49.B7.3BCB3.2B4.B.B.2C2A.B2C.BC3B6.B$41.B2C.A
.BCA2.C.C11.A4.B.B3.ACA2.A.C.B8.ACB.A.2CB$39.B3C4.BCACACAB12.A2.CB.B.
C2B16.CACB4.3CB$37.BCA9.B2CAC3.B.B.C2B.CBA3.B.B.2B2.A14.CB9.ACB$37.BC
A19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$39.B2C29.B.B29.2CB$40.31B3.31B$41.
B.C27.3B27.C.B$43.28B3.28B$44.B.C24.B.B24.C.B$47.B.B.2C.B3CB.B.B2.C.B
.B.B.B.2BA4.B.B.B3CB.2C.B.B$46.4BAB2.CB2A3C.2B.2C3B.B.B2.2BCA.2B.3C2A
BC2.BA4B$44.B.C24.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B
$39.B2C29.B.B4.C24.2CB$37.BCA25.BCB3.B.B3.C27.ACB$37.BCA24.B6.B.B4.A
26.ACB$39.B3C21.2A2C3.B.B3.BA23.3CB$41.B2C.A3.2BCBAB2ABC.B.B.B4.C.B.B
.CB2.CB2C.B.CB2ABABC2B5.2CB$47.B.B.2C.B3CB.B.2B3.ACB.B.B.BC.C3.B.B.B
3CB.2C.B.B$46.4BAB2.C2BA3C.5B.CB.B.B.BCB.A.2B.3CA2BC2.BA4B$44.B.C18.A
.BC2.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B
29.2CB$37.BCA19.BCB.3B3.C.B.B3.C3B.B.2B19.ACB$37.BCA9.B2CAB2C.4BC2B.C
AB3.B.B.B.C.B.A6B.2CBA2CB9.ACB$39.B3C4.BCAB.2AB.BCB.2CBCABC4.B.B.CB2.
A.2B2C.BCB.B2A.BACB4.3CB$41.B2C.A.BC2BCBACBA.C.BCB.B3.2A.B.B.CB.A2.2C
2B.C.ABCABC2BCB.A.2CB$47.B.B3C.B3C5B.A2.BCB.B.B.2BA3.2B.3B3CB.3CB.B$
46.4BA2BACB2A3CA2B.BA3B.B.B2.2BCA.3B3C2ABCA2BA4B$44.B.C24.B.B24.C.B$
43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B29.2CB$37.BCA
19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$37.BCA9.B2CAC3.B.B.CBA.C.A3.B.B.B.C
A15.CB9.ACB$39.B3C4.BCACACAB15.CB.B.C.3B14.CACB4.3CB$41.B2C.A.BCA2.C.
C16.B.B4.B3.A.C.B8.ACB.A.2CB$49.B7.3BCB.2CB5.B.B.C2.2AB2C.BC3B6.B$56.
B2C12.B.B2.C2.C7.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCAC8.B.B9.
CACB2.ACB$56.B2C12.B.B13.2CB$57.15B.16B$58.B.C11.B12.C.B$60.B24CB!
Admittedly, it's hard to construct a indestructible loop.

Ongoing attempt:

Code: Select all

x = 229, y = 231, rule = B2S23D1step
26$198.C$33.C163.C.C$32.C.C161.C3.C$31.C3.C160.C.B.C$31.C.B.C160.2B.
2B$31.2B.2B161.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$22.2CB7.B.B162.B.B6.B2C$21.C2.8B3.162B.B.7B2.C$
20.C2.B8.3B163.B8.B2.C$21.C2.8B3.162B.B.7B2.C$22.2CB7.B.B162.B.B6.B2C
$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B130.C31.B.B$32.B.B34.C94.C.C30.B.B$32.B.B33.C
.C92.C3.C29.B.B$32.B.B32.C3.C91.C.B.C29.B.B$32.B.B32.C.B.C91.2B.2B29.
B.B$32.B.B32.2B.2B92.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B21.C2.B8.3B94.B8.B2.C19.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
22.C2.B8.B94.3B8.B2.C18.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.
B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.
B.B93.B.B30.B.B$32.B.B33.B.B92.2B.2B29.B.B$32.B.B32.2B.2B91.C.B.C29.B
.B$32.B.B32.C.B.C91.C3.C29.B.B$32.B.B32.C3.C92.C.C30.B.B$32.B.B33.C.C
94.C31.B.B$32.B.B34.C127.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B162.B.B$23.2CB6.B.B162.B.B7.B2C$22.C2.7B.B.162B3.8B2.C$21.C2.B8.B
163.3B8.B2.C$22.C2.7B.B.162B3.8B2.C$23.2CB6.B.B162.B.B7.B2C$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B161.2B.2B$31.2B.2B160.C.B.C$31.C.B.C160.C3.C$31.C3.C161.C.C$32.C.C
163.C$33.C!
B1S23D1step.table

Code: Select all

# rules: 24
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1}
var q={0,1}
var r={0,1}
var s={0,1}
var t={0,1}
var u={0,1}
var v={0,1}
var w={2,3}
var x={2,3}
var y={2,3}
var z={2,3}
0,a,b,c,d,e,f,g,2,2
1,h,i,j,k,l,m,n,o,0
2,a,b,c,d,e,f,g,h,3
2,h,i,j,k,2,2,2,2,3
2,a,h,i,2,b,2,2,2,3
2,a,h,i,2,2,b,2,2,3
2,a,b,c,2,2,2,d,2,3
2,a,b,2,c,d,2,2,2,3
2,a,b,2,c,2,d,2,2,3
2,a,b,2,c,2,2,d,2,3
2,a,b,2,2,c,d,2,2,3
2,a,b,2,2,c,2,d,2,3
2,a,2,b,2,c,2,d,2,3
3,p,q,r,s,t,u,v,h,1
3,h,i,j,k,w,x,y,z,1
3,p,h,i,w,q,x,y,z,1
3,p,h,i,w,x,q,y,z,1
3,p,q,r,w,x,y,s,z,1
3,p,q,w,r,s,x,y,z,1
3,p,q,w,r,x,s,y,z,1
3,p,q,w,r,x,y,s,z,1
3,p,q,w,x,r,s,y,z,1
3,p,q,w,x,r,y,s,z,1
3,p,w,q,x,r,y,s,z,1
An exemplar torus:

Code: Select all

x = 10, y = 10, rule = B1S23D1step:T129,101
C.B2.2AB.C$.BC.C.A.A$.B.B.C3.C$.B.A.AB$2AB.CB2.B$2A3.2CAC$2.C.A2.C$4.
AC.B.C$.C.C.ABA.C$3.2B2.CBA!

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » May 8th, 2016, 1:47 pm

B3678S13567 has a lot of weird patterns.

http://catagolue.appspot.com/census/b3678s13567/C1
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » May 8th, 2016, 2:14 pm

Like this sort-of puffer, which dies out at gen 10106, and leaves an ov_p4:

Code: Select all

x = 16, y = 16, rule = B3678/S13567
obo2b2ob2ob2o2bo$obobo5bo2b3o$2b2ob3obobob3o$ob5o2b2o3b2o$4bo3bob3o2bo
$3obob4obob2o$bob4obobo$o2b5o$2obo2b2o2bobo2bo$bo2b3ob3obob2o$2b3obob
4ob3o$o4b4o4bo$ob2ob3obo4b2o$4ob2obob6o$3b2obobo2b4o$obo4bo3b2ob2o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 2:55 am

Based on my investigation into “tube effect” in 23/2/8 and other rules, I tried to apply the principle to B3/S23 to see whether anything happens.
Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus). Thus I added a non-changeable state2 to B3/S23, and name this rule life_grey (it's basically a grey block in lifehistory or in extendedlife) to allow easy construction of a tube.
life_grey.table

Code: Select all

# rules: 18
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:3
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,2}
var c={0,2}
var d={0,2}
var e={0,2}
var f={0,2}
var g={0,2}
var h={0,1,2}
var i={0,1,2}
var j={0,1,2}
var k={0,1,2}
0,a,b,c,d,e,1,1,1,1
0,a,b,c,d,1,e,1,1,1
0,a,b,c,d,1,1,e,1,1
0,a,b,c,1,d,e,1,1,1
0,a,b,c,1,d,1,e,1,1
0,a,b,c,1,1,d,e,1,1
0,a,b,1,c,d,1,e,1,1
1,a,b,c,d,e,f,g,h,0
1,h,i,j,k,1,1,1,1,0
1,a,h,i,1,b,1,1,1,0
1,a,h,i,1,1,b,1,1,0
1,a,b,c,1,1,1,d,1,0
1,a,b,1,c,d,1,1,1,0
1,a,b,1,c,1,d,1,1,0
1,a,b,1,c,1,1,d,1,0
1,a,b,1,1,c,d,1,1,0
1,a,b,1,1,c,1,d,1,0
1,a,1,b,1,c,1,d,1,0
Indeed, search in life_grey revealed some pattern that requires communication across the torus, and not easily recognised by the conventional oscar.py , as I termed earlier as pseudo-Methuselah, which is often interaction between smaller parts. There has also been some emergence of LWSS, MWSS, queen bee, and pulsars.

Since these pseudo-methuselahs are spanning the whole torus and cannot live without a torus of specifc size, I term them "spanning spaceship" (SSS) and "spanning oscillator"(SOS)


Here are the results

All patterns are normalised to least population

(PS:can put them into a single code window if the post is too lengthy, but we then can't select it easily. Is there a compromise between?)

1c/18 SSS

Code: Select all

x = 15, y = 8, rule = life_grey:T15,8
15B$15B$15B2$.A.A3.A$A2.A3.2A$.A.A3.A!
1c/22 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A.A6.A$2.A2.A6.2A$3.A.A6.A!
1c/26 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B$3A10.3A$4.A7.A3.A2.A$4.A7.A3.A2.A$4.A7.A3.A2.A$3A10.3A!
3c/29 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A10.A$.2A9.2A.2A$3.A10.A!
19c/55 SSS,SOS

Code: Select all

x = 38, y = 8, rule = life_grey:T38,8
38B$38B$38B$3.A.A12.A.A$2.A3.A10.A3.A$2.A3.A10.A3.A$2.A3.A10.A3.A$3.A
.A12.A.A!
8c/60 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B2$13.A$9.3A.A$13.A!
12c/82 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$12.2A6.A.A$11.A2.A4.A2.A$12.2A6.A.A!
10c/92 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B$25.A$25.2A$24.A.2A$24.A.A$24.2A!
4c/150 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B$32.2A$14.A17.2A4.2A$12.2A.2A20.A2.A$14.A17.2A4.2A$32.2A!
42c/160 SSS, SOS

Code: Select all

x = 84, y = 8, rule = life_grey:T84,8
84B$84B$84B2$64.A13.A$63.2A13.2A$64.A13.A!
38c/185 SSS,SOS

Code: Select all

x = 76, y = 8, rule = life_grey:T76,8
76B$76B$76B2$59.A5.A$58.2A5.2A$59.A5.A!
37c/188 SSS,SOS

Code: Select all

x = 74, y = 8, rule = life_grey:T74,8
74B$74B$74B2$53.A3.A$51.2A5.2A$53.A3.A!
32c/246 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$6.A24.2A$4.2A.2A21.A2.A$6.A24.2A!
24c/275 SSS,SOS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$5.A18.A$4.2A18.2A$5.A18.A!
16c/303 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B2$8.A.A4.A3.A9.A$7.A2.A2.2A5.2A5.2A.2A$8.A.A4.A3.A9.A!
20c/345 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B2$17.A3.A13.3A$15.2A5.2A11.3A$17.A3.A13.3A!
24c/523 SSS

Code: Select all

x = 57, y = 8, rule = life_grey:T57,8
57B$57B$57B2$16.A3.A22.2A$14.2A5.2A19.A2.A$16.A3.A22.2A!
6c/615 SSS

Code: Select all

x = 67, y = 8, rule = life_grey:T67,8
67B$67B$67B2$8.A30.A3.A11.A.A$8.A30.2A3.A9.A2.A$8.A30.A3.A11.A.A!
3c/656 SSS

Code: Select all

x = 39, y = 8, rule = life_grey:T39,8
39B$39B$39B$22.A.A$21.2A.A$20.2A$21.2A14.2A$37.2A!
14c/762 SSS

Code: Select all

x = 53, y = 8, rule = life_grey:T53,8
53B$53B$53B2$25.A24.2A$24.2A23.A2.A$25.A24.2A!
18c/805 SSS

Code: Select all

x = 41, y = 8, rule = life_grey:T41,8
41B$41B$41B2$16.A3.A$2.3A9.2A5.2A$16.A3.A!
(2 or 44)c/909 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B$14.A22.2A$13.A5.2A16.2A$13.A4.A2.A$13.A5.2A16.2A$14.A22.
2A!
13c/925 SSS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$16.A.A11.3A$15.A2.A11.A.A$16.A.A11.3A!
9c/1203 SSS

Code: Select all

x = 65, y = 8, rule = life_grey:T65,8
65B$65B$65B2$10.2A5.A3.A$9.A2.A2.2A5.2A25.3A$10.2A5.A3.A!
20c/1607 SSS

Code: Select all

x = 83, y = 8, rule = life_grey:T83,8
83B$83B$83B$8.A13.A$7.A.A11.A.A18.2A$6.A3.A9.A3.4A13.A2.A$7.A.A11.A.A
18.2A$8.A13.A!
SS's:
16c/94 SS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$20.A5.2A3.2A$18.2A.2A2.A2.A2.2A$20.A5.2A!
LWSS,MWSS,HWSS:

Code: Select all

x = 35, y = 8, rule = life_grey:T35,8
35B$35B$35B$16.2A$15.4A$15.2A.2A$17.2A!

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » May 12th, 2016, 7:51 am

shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).
Set one dimension to zero in the rule specification to get a tube.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 8:58 am

BlinkerSpawn wrote:
shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).
Set one dimension to zero in the rule specification to get a tube.
I meant tube as a hybrid that is vertically plane (not connected) and horizontally torus (connected). Set dimension to zero gives me a infinite dimension.

Thus I should probably call it a "toric tube"

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » May 12th, 2016, 3:11 pm

Code: Select all

x = 4, y = 5, rule = B3/S23:P0,5
2o$obo$ob2o$b2o$bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 3:14 pm

BlinkerSpawn wrote:

Code: Select all

x = 4, y = 5, rule = B3/S23:P0,5
2o$obo$ob2o$b2o$bo!
The length is infinite while I wanted them to be teleported.

EDIT: BTW, this is a nice pattern!
Last edited by shouldsee on October 20th, 2016, 12:57 pm, edited 1 time in total.

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 5:46 pm

Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2

It shows interesting self organization property

Code: Select all

x = 227, y = 175, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.D.D
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.D.C
.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.D.C.C
.C.C.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.C.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.D.C.C.C.D.D.
D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.
D.D.C.C.C.C.C.C.D.C.D.C.D.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.D.C.C.D.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.D.D.C.D.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.
C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.D.D.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.C.C.C.C.C.D.C.D.D.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.
C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.D.C.C.C.C.
C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.D.C.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.D.D.C.C.C.C.C.C.
C.C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C
.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.D
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D
.D.D.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.
F.D.D.C.C.C.C.C.C.D.C.C.D.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D
.C.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.F.C.E.D.C.C.C.C.C.D.D.D.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.E.C.C.F.
D.C.C.C.C.E.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C
.C.C.D.D.D.C.D.D.D.D.C.C.D.C.F.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.D.D.C.C.C.C.C.C.D.D.D.D.E.D.D.D.C.D.D.C.D.D.C.C.C.C.C.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.D.D.E.C.D.F.D.D.D
.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.D.D.D.D.D.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.C.F.C.D.D.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.E.C.D.D.D.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
D.D.D.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.E.E.D.C.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.F.F.F.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.D.E.E.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C
.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.D.D.D.C.C.C.D
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.C.C.C
.C.C.C.C.D.D.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.D.D.D.D.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.C.C.C.C.C.D.D.C.C.C.D.C.D.D.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.D.C.D.C.C.C.C.D.
D.C.C.C.D.D.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C.
C.D.C.D.D.D.C.C.C.D.D.C.C.C.D.D.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.D.C.C.C.C.D.D.D.C.D.C.C.C.D.C.C.C.D.C.C.C.C.C.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.C.D.C.C.C.C.C.D
.C.D.D.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.D.D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.D.C.D.D.C.C.C.C.C.C.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.
C.C.C.C.C.D.C.D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.D.C.D.C.C.C.D.D.C.D.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.D.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.D.C.D.D.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C
.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.D.D.D.D.C.C.C.C.D
.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.
C.C.D.C.C.D.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.D.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.D.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.
D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.
C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.
C.C.C.C.C.C.C.D.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C
.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C
.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.D.C.D.D.D.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C
.C.D.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C
.C.D.D.C.C.C.D.C.C.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C
.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.D.D.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.D.D.D.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.D.D.D.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.
C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.D.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.D.D.D.C.D
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D.D.C.C.C.C.C
.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.
C.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.D.C.C.C.C.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C
.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.D.C.C.C.
C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.D.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.D.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C!
Other interesting fabrication units

So far I have only manually searched these

Code: Select all

x = 60, y = 42, rule = BGRainbowR2
39.C.C$39.2C$40.2C5$39.3C2$9.2C28.3C$8.3C$8.2C4$C8.2C11.C16.3C14.3C$.
C6.C.C12.C16.C15.C.2C$8.2C2.C.C9.C14.3C14.C2.C$12.2C42.4C$13.2C3$39.C
.C$40.C$39.3C16$C.C$2C!

Also, it's great fun to watch this spaceship incubator (fixed)

Code: Select all

x = 102, y = 67, rule = BGRainbowR2
DBE2DADFCA92C$2CE2DCADCD92C$2BCFA2FC2D2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$2E4CBDFB
92C$FACEC2BDA93C$CDEBFADEFB2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$2C2ACEACE93C$FBCBAC
2EBD92C$F2CBEDACED2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$DCEFE2CECF92C$ADED3EAFA92C$DB
FDCEBECB2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FDB3D3BF92C$FC4ADFEA92C$DADCBFAEFE2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C$FAB2EDACB93C$2B2AD4CA92C$AEAFD2EDFE2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C$2CFCEBDACE92C$DEBCADBDBE92C$AE2BEBADCA2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FC
2FCB3EF92C$BEAB2DCBEF92C$FCFADBCEFC2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$DEDEBDBACB
92C$FD2BC2BEDB92C$FDAEFCDEDF2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$E2A2CADCFD92C$FAFEF
2DADB92C$ECFCFEFAFD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BACBA2CE2D92C$CA2BFA2E2F92C$
DCF3ABAFD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BFCBDFDEDE92C$BFBC2EF2CB92C$BF2BDFE2CA
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C$C2FAFED2BD92C$CFCE2ABCBE92C$DB2E3AE2C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C$E2F2BD3BE92C$FA2FACFCDB92C$EBEC2DACAE2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C$D2ADBABCA93C$2EC3DCEBA92C$EAFABCAEAD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$EDFEDBF
ACB92C$FACBAE2FA93C$BDBFEA2E2F2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$CEFBAEFAEF92C$EDA
DBEDFEB92C$CDAECAFCBD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BA2CB2DCA93C$AC3DECBA93C$D
FA2EF2DBD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$EFABADBAFB92C$BF2C2EABEA92C$CF2BECDCFA
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C$DCB2DECDF93C$EBEADFCBDE92C$DFBF2DAEFD2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C$2B2DFD2AEB92C$FDAED3B2D92C$EBFEDEFC2B2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C$BABDBAFB2F92C$FBECAF2ECF92C$AFEADBDEFA2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FEAFD
A2CF93C!

Code: Select all

@RULE BGRainbowR2

@COLORS

0 0 0 0
1 0 100 50
2 255 255 0
3 0 0 255

4 255 0 0
5 255 0 127
6 255 127 127
7 255 127 255

@TABLE
# rules: 35
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:7
neighborhood:Moore
symmetries:rotate8
var a={0,1,3,5,6}
var b={0,1,3,5,6}
var c={0,1,3,5,6}
var d={0,1,3,5,6}
var e={0,1,3,5,6}
var f={2,4}
var g={2,4}
var h={2,4}
var i={0,1,3,5,6}
var j={0,1,3,5,6}
var k={0,1,2,3,4,5,6}
var l={0,1,2,3,4,5,6}
var m={0,1,2,3,4,5,6}
var n={0,1,2,3,4,5,6}
var o={2,4}
var p={0,1,2,3,4,5,6}
var q={0,1,2,3,4,5,6}
var r={0,1,2,3,4,5,6}
var s={0,1,2,3,4,5,6}
1,a,b,c,d,e,f,g,h,2
1,a,b,c,d,f,e,g,h,2
1,a,b,c,d,f,g,e,h,2
1,a,b,c,f,d,e,g,h,2
1,a,b,c,f,d,g,e,h,2
1,a,b,c,f,g,d,e,h,2
1,a,b,f,c,d,g,e,h,2
2,a,b,c,d,e,i,j,k,1
2,k,l,m,n,f,g,h,o,1
2,a,k,l,f,b,g,h,o,1
2,a,k,l,f,g,b,h,o,1
2,a,b,c,f,g,h,d,o,1
2,a,b,f,c,d,g,h,o,1
2,a,b,f,c,g,d,h,o,1
2,a,b,f,c,g,h,d,o,1
2,a,b,f,g,c,d,h,o,1
2,a,b,f,g,c,h,d,o,1
2,a,f,b,g,c,h,d,o,1
3,a,b,c,d,e,i,f,g,4
3,a,b,c,d,e,f,i,g,4
3,a,b,c,d,f,e,i,g,4
3,a,b,c,f,d,e,i,g,4
4,a,b,c,d,e,i,j,k,5
4,k,l,m,n,f,g,h,o,5
4,a,k,l,f,b,g,h,o,5
4,a,k,l,f,g,b,h,o,5
4,a,b,c,f,g,h,d,o,5
4,a,b,f,c,d,g,h,o,5
4,a,b,f,c,g,d,h,o,5
4,a,b,f,c,g,h,d,o,5
4,a,b,f,g,c,d,h,o,5
4,a,b,f,g,c,h,d,o,5
4,a,f,b,g,c,h,d,o,5
5,k,l,m,n,p,q,r,s,6
6,k,l,m,n,p,q,r,s,3

Last edited by shouldsee on May 13th, 2016, 12:09 pm, edited 4 times in total.

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » May 12th, 2016, 6:33 pm

I realize that BGRainbowR2 shouldn't be used this way, but...
CTRL+5!

Code: Select all

x = 5, y = 6, rule = BGRainbowR2
.C$ACA$2C.C$.2DCF$2.2D$2.D!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
blah
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Thread For Your Unrecognised CA

Post by blah » May 13th, 2016, 6:58 am

shouldsee wrote:Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2
That's actually the rule 23/2/4V, which Golly cannot interpret, but the point is that it's a Von Neumann neighbourhood. Since it does not have B1, it is impossible for a pattern to escape its initial bounding box. I also noticed signals can pass along a wire:

Code: Select all

x = 32, y = 32, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.C$.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C$C.C.C.C.C.C.C.C.D.C.
D.D.C.C.C.C$.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C$C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C$.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$
.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C$C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C$.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C!
succ

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 13th, 2016, 7:41 am

blah wrote:
shouldsee wrote:Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2
That's actually the rule 23/2/4V, which Golly cannot interpret, but the point is that it's a Von Neumann neighbourhood. Since it does not have B1, it is impossible for a pattern to escape its initial bounding box. I also noticed signals can pass along a wire:

Code: Select all

x = 32, y = 32, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.C$.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C$C.C.C.C.C.C.C.C.D.C.
D.D.C.C.C.C$.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C$C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C$.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$
.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C$C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C$.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C!
Yeah I think a change in topology is to some extent equivalent to a change in transition rule.

User avatar
dvgrn
Moderator
Posts: 5894
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Thread For Your Unrecognised CA

Post by dvgrn » May 13th, 2016, 8:39 am

shouldsee wrote:Yeah I think a change in topology is to some extent equivalent to a change in transition rule.
And a change in the default background can also be equivalent to a change in transition rule. A really Life-altering change, quite often.

In B3/S23, for example, a spaceship can't travel faster than c/2 through vacuum -- but if we fill the universe with zebra stripes, we can get lightspeed "negative spaceships" with the grain of the stripes, or 2c/3 negative spaceships perpendicular to the grain. If the laws of the universe can change to that degree, then really it's a different universe.

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 13th, 2016, 9:36 am

dvgrn wrote:
shouldsee wrote:Yeah I think a change in topology is to some extent equivalent to a change in transition rule.
And a change in the default background can also be equivalent to a change in transition rule. A really Life-altering change, quite often.

In B3/S23, for example, a spaceship can't travel faster than c/2 through vacuum -- but if we fill the universe with zebra stripes, we can get lightspeed "negative spaceships" with the grain of the stripes, or 2c/3 negative spaceships perpendicular to the grain. If the laws of the universe can change to that degree, then really it's a different universe.
But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.

Could you please post some zebra strips and SS's?

User avatar
blah
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Thread For Your Unrecognised CA

Post by blah » May 13th, 2016, 10:01 am

shouldsee wrote:Could you please post some zebra strips and SS's?
There's plenty on this page. The images in it are links to RLE files. It was the top result when I looked this up.
succ

User avatar
dvgrn
Moderator
Posts: 5894
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Thread For Your Unrecognised CA

Post by dvgrn » May 13th, 2016, 10:31 am

shouldsee wrote:But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.
Yeah, it would be a strange Life universe that started with an infinite tiling that was not stable (in the sense of P1-or-oscillating). It's perfectly possible, though -- there would be some early fireworks, and then it would settle down into an agar made up of whatever emergent structures happened to turn up. Sounds kind of like the Big Bang, actually.

There have been innumerable experiments run in B3/S23 on different-sized tori (i.e., bounded rectangles with wrapping) that amount to the same thing -- except for the idea of a finite area where things are different from the default.
shouldsee wrote:Could you please post some zebra strips and SS's?
I think blah's link is as good as I can do. Gabriel Nivasch has collected nearly all of the known B3/S23 examples of these kinds of weird signals through non-empty space. The only exceptions I can think of are a scattering of reburnable fuses -- you could put a few blocks in a rectangular tile, and repeat that to infinity, and then there would be relatively small spaceships that travel through that agar at 31c/240.

Similar tricks could be done with a couple of blinkers and 17c/45 pi climbers, but again it would only allow travel in one direction through the grid of blinkers (and a "spaceship" would consist of 34 consecutive pi climbers (with all kinds of spacing options)... because you have to put the blinkers back where you found them.

That all seems kind of silly and not terribly interesting, though. Somehow I would like it better if nontrivial new signals could travel through the agar in both directions, as in the zebra-stripes case.

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 13th, 2016, 11:47 am

dvgrn wrote:
shouldsee wrote:But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.
Yeah, it would be a strange Life universe that started with an infinite tiling that was not stable (in the sense of P1-or-oscillating). It's perfectly possible, though -- there would be some early fireworks, and then it would settle down into an agar made up of whatever emergent structures happened to turn up. Sounds kind of like the Big Bang, actually.

There have been innumerable experiments run in B3/S23 on different-sized tori (i.e., bounded rectangles with wrapping) that amount to the same thing -- except for the idea of a finite area where things are different from the default.
shouldsee wrote:Could you please post some zebra strips and SS's?
I think blah's link is as good as I can do. Gabriel Nivasch has collected nearly all of the known B3/S23 examples of these kinds of weird signals through non-empty space. The only exceptions I can think of are a scattering of reburnable fuses -- you could put a few blocks in a rectangular tile, and repeat that to infinity, and then there would be relatively small spaceships that travel through that agar at 31c/240.

Similar tricks could be done with a couple of blinkers and 17c/45 pi climbers, but again it would only allow travel in one direction through the grid of blinkers (and a "spaceship" would consist of 34 consecutive pi climbers (with all kinds of spacing options)... because you have to put the blinkers back where you found them.

That all seems kind of silly and not terribly interesting, though. Somehow I would like it better if nontrivial new signals could travel through the agar in both directions, as in the zebra-stripes case.
When I burn zebra strips they just burn into ashes without producing emergent structures. I guess it would take some programming to search for such structure. However, I am not really good at searching in B3/S23... The live-cell background just seems too fragile to me for interesting behavior, though it would be realtively easy to search in such construction.

Nevertheless, the interesting point about the zebra strips is the active pattern itself can influence the spatial topology around it (i.e. minor change to the default background), which leads to my next ambition, that is making topology itself dynamic yet robust (which is kind of self-contradictory).

Thanks for the info @dvrgn,blah .

Burn, baby, burn!

Code: Select all

x = 123, y = 143, rule = Life:T123,144
123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o$30bo5bo3bo4bo$123o2$123o$
41bo$123o$39b2o$33ob13ob75o$30bo10bo$123o$40bo$123o$30b2o8b2obo$123o$
31bo7bo4bo$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$
123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$
123o2$123o!

User avatar
dvgrn
Moderator
Posts: 5894
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Thread For Your Unrecognised CA

Post by dvgrn » May 13th, 2016, 1:13 pm

shouldsee wrote:When I burn zebra strips they just burn into ashes without producing emergent structures. I guess it would take some programming to search for such structure. However, I am not really good at searching in B3/S23... The live-cell background just seems too fragile to me for interesting behavior, though it would be realtively easy to search in such construction.
Yup, "fragile" is the name of the game for B3/S23, it seems. You're probably not much more likely to create a negative spaceship by random scribbling in zebra stripes, than you would be to create a loafer (let's say) by random scribbling in an empty universe.

It does seem a little weird that for the zebra-stripes case, almost every random experiment will result in the eventual collapse of the entire space-time continuum, so to speak.

I was thinking of this as a possible way to rehabilitate rules that might otherwise be considered boring -- like the no-B3-or-below rules that get dismissed because a pattern can't escape its initial bounding box. But if you effectively start with an infinitely large bounding box, that little problem goes away.

This isn't a new idea by any means. I just remembered the anti-rules supported by Golly, where effectively the universe starts with all ON cells, and when you run "Antilife" -- B0123478/S01234678 -- the OFF cells obey standard Life rules.

It's a little tricky to find nontrivial agars that aren't as fragile as the Life case, where there's some hope of seeing emergent behavior coming from random initial conditions. I would think a common kind of interesting behavior might be signals propagating along some kind of boundary, where there's a reliably higher number of neighbors -- and/or maybe where the agar includes a regular pattern of invulnerable islands, so there's no danger of a completely catastrophic collapse.

User avatar
A for awesome
Posts: 1904
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » May 13th, 2016, 2:36 pm

dvgrn wrote:I just remembered the anti-rules supported by Golly, where effectively the universe starts with all ON cells, and when you run "Antilife" -- B0123478/S01234678 -- the OFF cells obey standard Life rules.
I just remembered B123478/S01234678, which is one of my favorite rules:

Code: Select all

x = 1, y = 1, rule = B123478/S01234678
o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 14th, 2016, 1:55 am

Day and night is probably a good example of "conjugate" effect, though it's a bit different from negative signals.

User avatar
PHPBB12345
Posts: 617
Joined: August 5th, 2015, 11:55 pm
Contact:

Re: Thread For Your Unrecognised CA

Post by PHPBB12345 » May 14th, 2016, 6:30 am

shouldsee wrote:Based on my investigation into “tube effect” in 23/2/8 and other rules, I tried to apply the principle to B3/S23 to see whether anything happens.
Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus). Thus I added a non-changeable state2 to B3/S23, and name this rule life_grey (it's basically a grey block in lifehistory or in extendedlife) to allow easy construction of a tube.
life_grey.table

Code: Select all

# rules: 18
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:3
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,2}
var c={0,2}
var d={0,2}
var e={0,2}
var f={0,2}
var g={0,2}
var h={0,1,2}
var i={0,1,2}
var j={0,1,2}
var k={0,1,2}
0,a,b,c,d,e,1,1,1,1
0,a,b,c,d,1,e,1,1,1
0,a,b,c,d,1,1,e,1,1
0,a,b,c,1,d,e,1,1,1
0,a,b,c,1,d,1,e,1,1
0,a,b,c,1,1,d,e,1,1
0,a,b,1,c,d,1,e,1,1
1,a,b,c,d,e,f,g,h,0
1,h,i,j,k,1,1,1,1,0
1,a,h,i,1,b,1,1,1,0
1,a,h,i,1,1,b,1,1,0
1,a,b,c,1,1,1,d,1,0
1,a,b,1,c,d,1,1,1,0
1,a,b,1,c,1,d,1,1,0
1,a,b,1,c,1,1,d,1,0
1,a,b,1,1,c,d,1,1,0
1,a,b,1,1,c,1,d,1,0
1,a,1,b,1,c,1,d,1,0
Indeed, search in life_grey revealed some pattern that requires communication across the torus, and not easily recognised by the conventional oscar.py , as I termed earlier as pseudo-Methuselah, which is often interaction between smaller parts. There has also been some emergence of LWSS, MWSS, queen bee, and pulsars.

Since these pseudo-methuselahs are spanning the whole torus and cannot live without a torus of specifc size, I term them "spanning spaceship" (SSS) and "spanning oscillator"(SOS)


Here are the results

All patterns are normalised to least population

(PS:can put them into a single code window if the post is too lengthy, but we then can't select it easily. Is there a compromise between?)

1c/18 SSS

Code: Select all

x = 15, y = 8, rule = life_grey:T15,8
15B$15B$15B2$.A.A3.A$A2.A3.2A$.A.A3.A!
1c/22 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A.A6.A$2.A2.A6.2A$3.A.A6.A!
1c/26 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B$3A10.3A$4.A7.A3.A2.A$4.A7.A3.A2.A$4.A7.A3.A2.A$3A10.3A!
3c/29 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A10.A$.2A9.2A.2A$3.A10.A!
19c/55 SSS,SOS

Code: Select all

x = 38, y = 8, rule = life_grey:T38,8
38B$38B$38B$3.A.A12.A.A$2.A3.A10.A3.A$2.A3.A10.A3.A$2.A3.A10.A3.A$3.A
.A12.A.A!
8c/60 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B2$13.A$9.3A.A$13.A!
12c/82 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$12.2A6.A.A$11.A2.A4.A2.A$12.2A6.A.A!
10c/92 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B$25.A$25.2A$24.A.2A$24.A.A$24.2A!
4c/150 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B$32.2A$14.A17.2A4.2A$12.2A.2A20.A2.A$14.A17.2A4.2A$32.2A!
42c/160 SSS, SOS

Code: Select all

x = 84, y = 8, rule = life_grey:T84,8
84B$84B$84B2$64.A13.A$63.2A13.2A$64.A13.A!
38c/185 SSS,SOS

Code: Select all

x = 76, y = 8, rule = life_grey:T76,8
76B$76B$76B2$59.A5.A$58.2A5.2A$59.A5.A!
37c/188 SSS,SOS

Code: Select all

x = 74, y = 8, rule = life_grey:T74,8
74B$74B$74B2$53.A3.A$51.2A5.2A$53.A3.A!
32c/246 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$6.A24.2A$4.2A.2A21.A2.A$6.A24.2A!
24c/275 SSS,SOS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$5.A18.A$4.2A18.2A$5.A18.A!
16c/303 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B2$8.A.A4.A3.A9.A$7.A2.A2.2A5.2A5.2A.2A$8.A.A4.A3.A9.A!
20c/345 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B2$17.A3.A13.3A$15.2A5.2A11.3A$17.A3.A13.3A!
24c/523 SSS

Code: Select all

x = 57, y = 8, rule = life_grey:T57,8
57B$57B$57B2$16.A3.A22.2A$14.2A5.2A19.A2.A$16.A3.A22.2A!
6c/615 SSS

Code: Select all

x = 67, y = 8, rule = life_grey:T67,8
67B$67B$67B2$8.A30.A3.A11.A.A$8.A30.2A3.A9.A2.A$8.A30.A3.A11.A.A!
3c/656 SSS

Code: Select all

x = 39, y = 8, rule = life_grey:T39,8
39B$39B$39B$22.A.A$21.2A.A$20.2A$21.2A14.2A$37.2A!
14c/762 SSS

Code: Select all

x = 53, y = 8, rule = life_grey:T53,8
53B$53B$53B2$25.A24.2A$24.2A23.A2.A$25.A24.2A!
18c/805 SSS

Code: Select all

x = 41, y = 8, rule = life_grey:T41,8
41B$41B$41B2$16.A3.A$2.3A9.2A5.2A$16.A3.A!
(2 or 44)c/909 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B$14.A22.2A$13.A5.2A16.2A$13.A4.A2.A$13.A5.2A16.2A$14.A22.
2A!
13c/925 SSS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$16.A.A11.3A$15.A2.A11.A.A$16.A.A11.3A!
9c/1203 SSS

Code: Select all

x = 65, y = 8, rule = life_grey:T65,8
65B$65B$65B2$10.2A5.A3.A$9.A2.A2.2A5.2A25.3A$10.2A5.A3.A!
20c/1607 SSS

Code: Select all

x = 83, y = 8, rule = life_grey:T83,8
83B$83B$83B$8.A13.A$7.A.A11.A.A18.2A$6.A3.A9.A3.4A13.A2.A$7.A.A11.A.A
18.2A$8.A13.A!
SS's:
16c/94 SS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$20.A5.2A3.2A$18.2A.2A2.A2.A2.2A$20.A5.2A!
LWSS,MWSS,HWSS:

Code: Select all

x = 35, y = 8, rule = life_grey:T35,8
35B$35B$35B$16.2A$15.4A$15.2A.2A$17.2A!
105c/200 SSS,SOS

Code: Select all

x = 210, y = 8, rule = life_grey:T210,8
210B$210B$210B2$69.3A67.3A$69.A.A67.A.A$69.3A67.3A!

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 14th, 2016, 10:59 am

PHPBB12345 wrote:
105c/200 SSS,SOS

Code: Select all

x = 210, y = 8, rule = life_grey:T210,8
210B$210B$210B2$69.3A67.3A$69.A.A67.A.A$69.3A67.3A!
Great we have one more now.

But could you please trim back the quote box to exclude the previous list so that this long thing is not repeated. Many thanks

Post Reply