For discussion of other cellular automata.
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

This reminds me of B35678/S34567, which I call "Cheerios" because if you run patterns long enough, they crystallize into copies of this pattern:

Code: Select all

#C [[ THUMBNAIL THEME 8 ]]
x = 8, y = 8, rule = B35678/S34567
\$2b4o\$b2o2b2o\$bo4bo\$bo4bo\$b2o2b2o\$2b4o!

Kiran
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Also B3/S258, try long 1 cell thick rows, some oscillate but many break up after a few cycles.
Kiran Linsuain

Kazyan
Posts: 902
Joined: February 6th, 2014, 11:02 pm

Infinite growth exists in B34/S26, which is normally an implosive rule. gfind found a wickstretcher and matching fuse packaged into a series of c/3 spaceships; the next step was obvious.

Code: Select all

x = 25, y = 7, rule = B34/S26
8b2o2b3o6b2o\$bo5bobob2obo3b2o3bo\$2o7bo6bo7bo\$bobobob3o7bobob3o\$bobobob
o13b2o\$2o\$bo!
Tanner Jacobi

Scorbie
Posts: 1435
Joined: December 7th, 2013, 1:05 am

Kazyan wrote:Infinite growth exists in B34/S26, which is normally an implosive rule.
Nice find, for a really stable rule with only one known natural still life and few oscs.

Kazyan wrote:gfind found a wickstretcher and matching fuse packaged into a series of c/3 spaceships;
I suspect this was what you found on gfind:

Code: Select all

x = 28, y = 5, rule = B34/S26
11b2o2b3o6b2o\$10bobob2obo3b2o3bo\$o11bo6bo7bo\$obobobobob3o7bobob3o\$obob
obobobo13b2o!
Best wishes to you, Scorbie

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Here is a rule that I call InfectiousLife. It's basically a cross between immigration and LWOD, and the result is two "colonies" competing over "land claims" and when they intersect things get interesting.

Rule table:

Code: Select all

@RULE InfectiousLife

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0111000001
0112000001
0122000002
0222000002

@COLORS
0  48  48  48 (dark grey)
1 255   0 255 (purple)
2 255 255   0 (yellow)
Sample pattern:

Code: Select all

x = 59, y = 54, rule = InfectiousLife
53.B\$22.A\$2B18.3A12\$46.2B\$46.B\$46.B2\$17.3B\$19.B8\$57.2A\$19.2A23\$31.2A\$
32.A\$32.A!
What I think to be the smallest starting seed that shows "competitive behavior":

Code: Select all

x = 10, y = 7, rule = InfectiousLife
8.2A2\$9.A4\$2B!
I don't know if those 7 cells ever get touched:

Code: Select all

x = 2, y = 5, rule = InfectiousLife
2B2\$2A2\$.A!
By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.

Another rule I find interesting is "Star Trek":

0248/3

Surprisingly, it's actually not that explosive. It has a tiny c/6 glider and several oscillators:

Code: Select all

#CXRLE Pos=-28,-118
#C 	This is a stamp collection of patterns known for the rule StarTrek, or
#C B3/S0248, with cells being born with 3 neighbors, and surviving to the next
#C generation with 0, 2, 4, or 8 neighbors.
#C 	It is not very big yet, unfortunately. It contains a few still lifes, categorized
#C as oscillators with period 1. The collection also showcases a tiny c/6 glider
#C known to me as the Segway. The patterns are sorted by period, and size.
#C That means that the first object will have the lowest period and population,
#C which is correspondingly 1. The smallest still life in this rule does have a population #C of 1 cell, and is known as the haplomino, monomino, or most commonly and most simply
#C dot. I have set up a list of names for these still lifes using my possibly mistaken
#C knowledge of the cis, trans, and ortho prefixes.
#C 	All of these oscillators occur naturally, in asymmetric or symmetric soups.
#C Proof of this is at the catagolue census page, under B3/S0248 and symmetries
#C C1 and D4_+4.
#C 	From top left to bottom right:
#C Period 1: dot, tub, pre-block on dot, z-pentomino, aircraft carrier,
#C beehive, loaf, winged z, two pre-blocks on dot, pond, mango, short table
#C on three dots, winged tub, mutated z, short tables, winged tub with arm
#C on dot, table weld tub with wing, long bar on dot, winged tub with z on dot,
#C baker‚Äôs boat, trident, leaking boat, curio on short table, odd bar,
#C viking, booth on four dots, pond on booth, mirrored booth, clown, sailfish,
#C saucer, deranged cap
#C Period 2: blinker, x, salt shaker, flip-flop, flip-flop 2, intertube,
#C pacman
#C Period 4: spinning P-pentomino, spinning R-pentomino, spinning glider,
#C n-bar 4, weeble wobble, octagon
#C Period 6: galaxy, segway
#C Period 8: n-bar 8
#C Enjoy the collection!
x = 69, y = 126, rule = B3/S0248
4bo\$2bo\$o\$4bo15bo8bo5b2o8b2o6b2o\$13bo5bobo5bo8bo6bo2bo5bo2bo\$20bo6b2o
7b2o5b2o8b2o\$4bo3\$bo2bo2bo\$28b2o18bo7bo\$13bo5b2o7bo10b2o6bobo8b2o\$12bo
bo5bo9bo7bo2bo5bo2bo5bobo\$12bo2bo4b3o9bo5bo2bo6bobo7b2o\$13b2o7bo8b2o6b
2o8bo6bo5\$19b2o16bo2bobo5bo2bo\$11bobo6bo7b2ob2o6bob2o5b4o9b2o\$11b2obo
5b3o6bobo6b3o9bob2o5b6o\$13bo8bo5b2ob2o7bo10bobo5bo4bo\$13b2o7b2o38bo4\$
22bo19bo\$13bobo5bobo7b2ob2o5bobo13bo\$10bobob2o6b4o6bobo7b4o6b2ob3o3b2o
2bo\$13bo9bo2bo5b2obo7bo2bo6bobo6bo4bo\$11b3o9bobo8bo8bo2bo5b2ob3o4b5obo
\$11bo12bo9b2o8b2o11bo6b2obo3\$37b2o\$36bo2bo17b2o2b2o\$22bobo2bobo6bo2bo
6bob2obo6bo2bo\$10b2o2bo22b2o7b6o5bob2obo\$11bo4bo6b6o28bob2obo\$11b6o6bo
b2obo6b6o5b6o6bo2bo\$13b2o20bob2obo5bob2obo5b2o2b2o4\$24bo4bo9b2o\$12bo2b
o7bobo2bobo7bo2bo\$10b3o2b3o6b6o6b8o\$11bob2obo8bo2bo6bo2bo2bo2bo\$11bob
2obo8bo2bo6bo2bo2bo2bo\$10b3o2b3o6b6o6b8o\$12bo2bo7bobo2bobo7bo2bo\$24bo
4bo9b2o6\$3bo\$bo3bo\$56bo\$6bo22bo8bo6bo9bo3b3o\$13bo5bobo15bobo8bo7bobobo
\$5bo7bo6bo6bobobo5b3o7b2o6b3o3bo\$3bo9bo5bobo24b2o12bo\$29bo8bo10bo\$bo2b
o2bo3\$17bo\$15b2obo\$15b3o\$13bo2b2o\$13bo\$14b2o6\$bo\$54bo2b2o2bo\$7bo29b2o\$
bo35b2o7b2o8bo2bo\$13b2o6bo6bobo6b2o5b4o6bo6bo\$bo2bo2bo5b2o5b3o5b2o7b2o
9bo5bo6bo\$13bo8bo6bo7b2o6b2o9bo2bo\$37b2o7bo\$7bo46bo2b2o2bo10\$5bo\$3bo3b
o2\$2bo2\$2bo10bo11bo\$5bo7b2o10bo\$2bo4bo15bo2bo\$12b2o7b3obo\$3bo3bo5bo11b
o\$5bo7\$5bo\$3bo3bo2\$2bo5bo\$14b12o\$3bo3bo6b12o\$14b12o\$2bo5bo5b12o2\$3bo3b
o\$5bo!
EDIT: Found that a c/6 glider can eat another, head-on:

Code: Select all

x = 13, y = 9, rule = B3/S0248
9bo\$9bo\$7bo3bo\$9bo2bo\$4bo4b3o\$4bo\$2bo2bo\$3obo\$4bo!
Last edited by gmc_nxtman on July 3rd, 2015, 8:43 pm, edited 7 times in total.

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Miscellaneous rule: Snakeskin
B1/S134567
Simple patterns, even like a single dot, explode in all directions and form an interesting "snakeskin" like texture.
Example:

Code: Select all

x = 1, y = 1 rule = b1/s134567
o\$!
By the way, what would be the inverse of this rule?

wildmyron
Posts: 1307
Joined: August 9th, 2013, 12:45 am

gmc_nxtman wrote:By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.
The rule formats are documented at Golly Help -> File Formats and also elsewhere on the web - the Rule Table Repository in particular. The best thing is to look at other rules to see how variables are used. More importantly in terms of table compactness is using the symmetry options to good effect. You specified permute - which is applicable to all semi-totalistic rules - but then you've duplicated table entries to manually account for some of the possible orientations. With permute, the following set of 4 rule table entries will have the same effect:

Code: Select all

@RULE InfectiousLife

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0111000001
0112000001
0122000002
0222000002

@COLORS
0  48  48  48 (dark grey)
1 255   0 255 (purple)
2 255 255   0 (yellow)

With a variable you can reduce the number of entries to two. For example:

Code: Select all

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

0,1,1,a,0,0,0,0,0,1
0,2,2,a,0,0,0,0,0,2
In this instance it's probably unnecessary. There are always a multitude of ways you can define a rule with variables. I think the important thing is to try to maintain readability rather than optimising compactness.

NOTE: the same variable appearing in multiple positions in one line has to have the same value in each position. This is why you will frequently come across rules with one variable defined as a set of values and a group of related variables being equal to the defined var.

Edited to fix missing commas
Last edited by wildmyron on June 9th, 2015, 8:29 pm, edited 1 time in total.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

wildmyron wrote:
gmc_nxtman wrote:By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.
The rule formats are documented at Golly Help -> File Formats and also elsewhere on the web - the Rule Table Repository in particular. The best thing is to look at other rules to see how variables are used. More importantly in terms of table compactness is using the symmetry options to good effect. You specified permute - which is applicable to all semi-totalistic rules - but then you've duplicated table entries to manually account for some of the possible orientations. With permute, the following set of 4 rule table entries will have the same effect:

Code: Select all

code

With a variable you can reduce the number of entries to two. For example:

Code: Select all

code
In this instance it's probably unnecessary. There are always a multitude of ways you can define a rule with variables. I think the important thing is to try to maintain readability rather than optimising compactness.

NOTE: the same variable appearing in multiple positions in one line has to have the same value in each position. This is why you will frequently come across rules with one variable defined as a set of values and a group of related variables being equal to the defined var.
Thanks for the tips!

I want to see if StarTrek is omniperiodic, or universal.... I've been running some apgsearch and all the things in the stamp collection are what I've found... There's definitely more, that probably doesn't occur naturally. However I don't have these kinds of search programs; maybe somebody could do an ofind search? I just want to find logic gates

fluffykitty
Posts: 650
Joined: June 14th, 2014, 5:03 pm

With a variable you can reduce the number of entries to two. For example:

Code: Select all

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

011a000001
022a000002
...
If you use variables you have to separate each neighbor with commas, like this:

Code: Select all

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

0,1,1,a,0,0,0,0,0,1
0,2,2,a,0,0,0,0,0,2
Last edited by fluffykitty on June 10th, 2015, 11:26 am, edited 1 time in total.
I like making rules

wildmyron
Posts: 1307
Joined: August 9th, 2013, 12:45 am

fluffykitty wrote:If you use variables you have to separate each neighbor with commas, like this:
Thanks for the correction. I always do, it just didn't occur to me they were required but it's obvious that they would need to be.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Both Star Trek and B3/S024 have a strange frequency gap between the 27th and 28th objects.

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Here is a rule that I call simplified seeds. It's a simple exploding rule, but it contains many replicators, rakes, and oscillators. I've uploaded an attachment containing some patterns, and all types of rule formats.
SimplifiedSeeds.zip
Includes tree and table files.
I find B345/S0456 interesting, and named it "Never happy" for the reason that most patterns make an expanding diamond, that seems like it's going to stop expanding, but doesn't.

Here's a c/3 spaceship:

Code: Select all

x = 13, y = 25, rule = B345/S0456
b2obo3bob2o\$2bo3bo3bo\$obobobobobobo\$b3ob3ob3o\$2o2b5o2b2o\$bo9bo\$
2ob2o3bob3o\$b3o7bo\$2ob2o3b5o\$2b7ob2o\$3ob9o\$b9obo\$2ob10o\$b9obo\$2o
3b2o3b3o\$b2o2bo2b2obo\$2ob3obo2b3o\$b5o2bo2bo\$2o2bob7o\$2b5ob4o\$3o3b
2o2b3o\$b2o2b2ob4o\$2b3ob7o\$3b7obo\$4bob2o!
c/7:

Code: Select all

x = 12, y = 20, rule = B345/S0456
5b2o\$4bo2bo\$3b2o2b2o2\$3b6o2\$4b4o3\$3b2o2b2o\$5b2o\$3b2o2b2o\$5b2o\$b4o2b4o\$
5b2o\$o3bo2bo3bo\$5b2o\$b2obo2bob2o\$5b2o\$2bobo2bobo!
I also think B345/S0 and B345/S025678 are interesting in the methods by which their population increase as they explode. B345/S0 is like longlife at first glance, but some of the oscillators emit dots which survive and help to further locomote the cloud. B345/S25678 is also interesting because of its switching between polygonal and chaotic growth. The expanding figures leave behind scattered dots which form a strange branch/tree-like pattern consisting of pseudo-random clouds and consistent, straight or oblique lines of dots or dominoes.

Code: Select all

x = 36, y = 36, rule = B345/S25678
2bob3obo5b2o3b7obo7bo\$ob2o2bo2bobobobobobo3b4obobobob2o\$2ob2obob4ob5o
2b3ob3o2bo2bob2o\$2bo4bob2o4bob2o2b2ob5ob3obo\$5obo5bob4obob4obob2obo3bo
\$bo3b3obo2b3ob4o2b2ob3o2b2o2bo\$b3o2bobobo2bob2o8b6ob2o\$2bo7b4obobobob
2o3bo4b3obo\$2ob2ob2ob3ob2obo3b4o2bo3bob2obo\$o2b2obo4b2ob2o2b4ob2o3bo3b
o\$2o2b2obobobo3bo2bobobo5b4o2bo\$3b2o2b2o2b2ob2ob3obo2bo4bobo\$o2bo2b3ob
o5bo7b2o2bo4b2o\$b4ob2o2b2obob6obo2b3o2b2o3bo\$2b4ob2o3bob4o2bobo3b2o3bo
3bo\$b6o3bo2bobo4b5o2b9o\$2bo3bob2obob2obo6b5o4b2obo\$4b2obo2bo2bo2bo3b5o
b2o2bob3o\$b2ob2obob3ob2obo3b6o2bo\$2b2obo2bobobo3bob2obobob2o2bo3b3o\$2b
3obobo4bob3o4bo3bo2bobo2bo\$2ob2ob3ob2o5b4o4bobo2bob4o\$4b3ob2o3b2obob3o
bo3b2obo2bo\$2bob4obo4bo2b2ob2ob3o2b2ob2obo\$2bob2obo7bo2b2o2bo4bo4b2o\$
3bo2bo2b3o10b4o2b2ob2ob2o\$3b4o2b2obob2ob2obo4b2obo4bo\$3o5b5ob2o2b3o4b
2o2b5obo\$obob4ob4obo3bo2bob3ob4o\$2o5b2o3b2ob2o6bo2b2ob2o3bo\$2bo3b2obo
2b2obob8obo2bo3b3o\$5o3bo3b3obobobo4bobobo2bobo\$bobobo2b2obob2obob4o4b
3ob2o2bo\$5b5obo2bob4obob2o2bob3ob3o\$ob7obo2bo2bo4bo2bo2bobo3b3o\$b2o3bo
4b2obo3b4o2bo3b2o2bo!

Code: Select all

x = 36, y = 36, rule = B345/S0
2bob3obo5b2o3b7obo7bo\$ob2o2bo2bobobobobobo3b4obobobob2o\$2ob2obob4ob5o
2b3ob3o2bo2bob2o\$2bo4bob2o4bob2o2b2ob5ob3obo\$5obo5bob4obob4obob2obo3bo
\$bo3b3obo2b3ob4o2b2ob3o2b2o2bo\$b3o2bobobo2bob2o8b6ob2o\$2bo7b4obobobob
2o3bo4b3obo\$2ob2ob2ob3ob2obo3b4o2bo3bob2obo\$o2b2obo4b2ob2o2b4ob2o3bo3b
o\$2o2b2obobobo3bo2bobobo5b4o2bo\$3b2o2b2o2b2ob2ob3obo2bo4bobo\$o2bo2b3ob
o5bo7b2o2bo4b2o\$b4ob2o2b2obob6obo2b3o2b2o3bo\$2b4ob2o3bob4o2bobo3b2o3bo
3bo\$b6o3bo2bobo4b5o2b9o\$2bo3bob2obob2obo6b5o4b2obo\$4b2obo2bo2bo2bo3b5o
b2o2bob3o\$b2ob2obob3ob2obo3b6o2bo\$2b2obo2bobobo3bob2obobob2o2bo3b3o\$2b
3obobo4bob3o4bo3bo2bobo2bo\$2ob2ob3ob2o5b4o4bobo2bob4o\$4b3ob2o3b2obob3o
bo3b2obo2bo\$2bob4obo4bo2b2ob2ob3o2b2ob2obo\$2bob2obo7bo2b2o2bo4bo4b2o\$
3bo2bo2b3o10b4o2b2ob2ob2o\$3b4o2b2obob2ob2obo4b2obo4bo\$3o5b5ob2o2b3o4b
2o2b5obo\$obob4ob4obo3bo2bob3ob4o\$2o5b2o3b2ob2o6bo2b2ob2o3bo\$2bo3b2obo
2b2obob8obo2bo3b3o\$5o3bo3b3obobobo4bobobo2bobo\$bobobo2b2obob2obob4o4b
3ob2o2bo\$5b5obo2bob4obob2o2bob3ob3o\$ob7obo2bo2bo4bo2bo2bobo3b3o\$b2o3bo
4b2obo3b4o2bo3b2o2bo!
EDIT: Here's a c/3 spaceship in one of the rules (I think that spaceships in the second rule are impossible)

Code: Select all

x = 16, y = 30, rule = B345/S25678
2b2o8b2o\$5bo4bo\$3obo2b2o2bob3o\$2ob2o6b2ob2o\$b3o3b2o3b3o\$3ob3o2b3ob3o\$b
4o2b2o2b4o\$4o2bo2bo2b4o\$b5ob2ob5o\$o3bo2b2o2bo3bo\$3b2obo2bob2o\$2b3o6b3o
\$3b3o4b3o\$2b4o4b4o\$3bob6obo\$5b2o2b2o\$4bo2b2o2bo\$3bob2o2b2obo\$3b3ob2ob
3o\$6bo2bo\$3o3bo2bo3b3o\$2ob2ob4ob2ob2o\$b4o2b2o2b4o\$3ob3o2b3ob3o\$b3o2b4o
2b3o\$16o\$b3o2bo2bo2b3o\$bo2bo2b2o2bo2bo\$4b2ob2ob2o\$6b4o!

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

I made a rule I called "predator", here it is:

Code: Select all

@RULE Predator
@TABLE
n_states:5
neighborhood:vonNeumann
symmetries:rotate4reflect
var a={0,1,2,3,4}
var b={0,1,2,3,4}
var c={0,1,2,3,4}
var d={0,1,2,3,4}
var a1={1,2}
var b1={1,2}
var c1={1,2}
0,1,1,1,1,3
1,0,0,0,0,2
2,3,a,b,c,1
2,1,1,1,a,3
2,a,b,c,d,0
0,a1,b1,c1,0,1
0,a1,b1,0,0,1
0,1,0,0,0,4
4,1,0,0,0,1
4,a,b,c,d,0
1,1,0,0,0,2
1,1,1,1,1,2
1,1,1,1,0,2
1,3,a,b,c,0
3,a,b,c,d,0
I know I could simplify it a lot more, but I didn't want to.
c/4 Glider:

Code: Select all

x = 4, y = 5, rule = Predator
2ABD\$3A2\$3A\$2ABD!
Diagonal one:

Code: Select all

x = 6, y = 6, rule = Predator
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
(Check gen 2)

wildmyron
Posts: 1307
Joined: August 9th, 2013, 12:45 am

gmc_nxtman wrote:I also think B345/S0 and B345/S025678 are interesting in the methods by which their population increase as they explode. B345/S0 is like longlife at first glance, but some of the oscillators emit dots which survive and help to further locomote the cloud. B345/S25678 is also interesting because of its switching between polygonal and chaotic growth. The expanding figures leave behind scattered dots which form a strange branch/tree-like pattern consisting of pseudo-random clouds and consistent, straight or oblique lines of dots or dominoes.

<snip example patterns>

EDIT: Here's a c/3 spaceship in one of the rules (I think that spaceships in the second rule are impossible)
Not according to Eppstein's database

I also just found a c/5 while trying to disprove your speculation - before checking the database.

Code: Select all

x = 17, y = 13, rule = B345/S0
11bobo\$11bobobo\$9bobobobo\$o8b3obobo\$2o2bobobo4bobo\$2bo5b3obobobo\$3o5b
2o2bo3bo\$2bo5b3obobobo\$2o2bobobo4bobo\$o8b3obobo\$9bobobob2o\$11bobobo\$
11bobo!
Forgot to mention the ship is p10 (glide reflective). Here's another p10 version which has bilateral symmetry instead:

Code: Select all

x = 17, y = 13, rule = B345/S0
11bobo\$11bobobo\$9bobobobo\$o8b3obobo\$2o2bobobo4bobo\$2bo5b3obobobo\$3o5b
2o2bo3bo\$2bo5b3obobobo\$2o2bobobo4bobo\$o8b3obobo\$9bobobobo\$11bobobo\$11b
obo!
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Nice! Here is a rule that behaves much like my SimplifiedSeeds rule:

Code: Select all

@RULE OverComplicatedSeeds
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,1
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,1
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,2
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,1
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,1
0,1,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,1
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,2
1,0,0,0,0,0,0,0,0,2
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,1
1,0,0,0,0,0,1,1,2,2
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,2
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,1
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,1
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,2
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,2
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,2
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,1
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,2
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,2
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,2
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0   0   0   0
1  48  48   0
2   0  48  48
And here is another interesting rule:

Code: Select all

@RULE Tryllic
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,0,3,2
0,0,0,0,0,0,0,0,1,3
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,2
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,3
0,0,0,0,0,0,2,2,2,1
0,0,0,0,0,0,2,2,3,0
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,3
0,0,0,0,0,0,3,3,1,2
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,1
0,0,0,0,0,2,2,2,3,2
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,0
0,0,0,0,0,3,3,3,3,0
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,0
0,0,0,0,0,3,1,1,1,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,2
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,0
0,0,0,0,2,2,3,3,3,3
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,0
0,0,0,0,3,3,3,1,1,2
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,3
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,3
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,1
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,3
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,3
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,0
0,0,0,3,3,3,3,1,1,1
0,0,0,3,3,3,1,1,1,0
0,0,0,3,3,1,1,1,1,0
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,2,3
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,3,2
0,0,2,2,2,2,2,3,3,2
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,2
0,0,2,2,3,3,3,3,3,3
0,0,2,3,3,3,3,3,3,1
0,0,3,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,1
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,0
0,2,2,2,2,2,3,3,3,0
0,2,2,2,2,3,3,3,3,0
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,1
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,1,1,2
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,2
1,0,0,0,0,0,0,3,3,0
1,0,0,0,0,0,0,3,1,2
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,3
1,0,0,0,0,0,2,3,3,2
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,0
1,0,0,0,0,0,3,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,1
1,0,0,0,0,1,2,2,2,1
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,2
1,0,0,0,0,2,2,3,3,1
1,0,0,0,0,2,3,3,3,0
1,0,0,0,0,3,3,3,3,2
1,0,0,0,0,3,3,3,1,3
1,0,0,0,0,3,3,1,1,0
1,0,0,0,0,3,1,1,1,3
1,0,0,0,0,1,1,1,1,1
1,0,0,0,1,1,1,1,1,3
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,3
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,2
1,0,0,0,2,2,3,3,3,0
1,0,0,0,2,3,3,3,3,1
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,0
1,0,0,0,3,3,3,1,1,1
1,0,0,0,3,3,1,1,1,2
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,3
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,0
1,0,0,2,2,2,2,3,3,0
1,0,0,2,2,2,3,3,3,3
1,0,0,2,2,3,3,3,3,0
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,0
1,0,0,3,3,3,3,3,1,1
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,0
1,0,0,3,3,1,1,1,1,0
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,3
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,1
1,0,2,2,2,2,2,2,3,0
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,3
1,0,2,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,3,1
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,2
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,0
1,2,2,2,2,2,3,3,3,2
1,2,2,2,2,3,3,3,3,0
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,1
1,2,3,3,3,3,3,3,3,0
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,1
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,1,1,1,3
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,3
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,0
2,0,0,0,0,0,3,1,1,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,2
2,0,0,0,0,2,2,3,3,0
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,0
2,0,0,0,0,3,3,3,1,2
2,0,0,0,0,3,3,1,1,0
2,0,0,0,0,3,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,3
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,2
2,0,0,0,3,3,3,3,3,0
2,0,0,0,3,3,3,3,1,0
2,0,0,0,3,3,3,1,1,2
2,0,0,0,3,3,1,1,1,2
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,2
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,1
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,0,2,2,2,2,2,3,0
2,0,0,2,2,2,2,3,3,1
2,0,0,2,2,2,3,3,3,2
2,0,0,2,2,3,3,3,3,0
2,0,0,2,3,3,3,3,3,3
2,0,0,3,3,3,3,3,3,0
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,3
2,0,0,3,3,1,1,1,1,3
2,0,0,3,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,3
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,1
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,0
2,0,2,2,2,2,3,3,3,0
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,3
2,0,2,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,0
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,0
2,0,3,3,1,1,1,1,1,0
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,2
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,3
2,2,2,2,2,2,3,3,3,3
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,0
2,2,3,3,3,3,3,3,3,1
2,3,3,3,3,3,3,3,3,3
3,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,3
3,0,0,0,0,0,0,1,1,1
3,0,0,0,0,0,0,1,2,2
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,0
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,2
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,3
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,1
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,1
3,0,0,0,0,0,3,3,3,1
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,0
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,2
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,3
3,0,0,0,0,2,2,2,3,1
3,0,0,0,0,2,2,3,3,0
3,0,0,0,0,2,3,3,3,1
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,0
3,0,0,0,0,3,3,1,1,3
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,1,1,1,1,1,0
3,0,0,0,1,1,1,1,2,0
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,0
3,0,0,0,2,2,2,2,2,0
3,0,0,0,2,2,2,2,3,0
3,0,0,0,2,2,2,3,3,1
3,0,0,0,2,2,3,3,3,0
3,0,0,0,2,3,3,3,3,0
3,0,0,0,3,3,3,3,3,0
3,0,0,0,3,3,3,3,1,2
3,0,0,0,3,3,3,1,1,1
3,0,0,0,3,3,1,1,1,2
3,0,0,0,3,1,1,1,1,0
3,0,0,0,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,0
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,2
3,0,0,1,2,2,2,2,2,0
3,0,0,2,2,2,2,2,2,3
3,0,0,2,2,2,2,2,3,2
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,1
3,0,0,2,3,3,3,3,3,0
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,0
3,0,0,3,3,3,3,1,1,3
3,0,0,3,3,3,1,1,1,2
3,0,0,3,3,1,1,1,1,0
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,0
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,3
3,0,1,1,1,2,2,2,2,0
3,0,1,1,2,2,2,2,2,0
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,2
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,3
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,1
3,0,3,3,3,3,1,1,1,0
3,0,3,3,3,1,1,1,1,0
3,0,3,3,1,1,1,1,1,1
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,1,3
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,0
3,1,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,2,1
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,1
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,0
3,3,3,3,3,3,3,3,3,3

@COLORS
0  48  48  48
1 255   0   0
2   0   0 255
3 255   0 255
An interesting 2-state rule:

Code: Select all

@RULE Trycogene
@TABLE

n_states:2
neighborhood:Moore
symmetries:rotate8reflect

0,0,0,0,0,0,1,1,1,1
0,0,0,0,0,0,1,0,1,1
0,1,1,0,1,0,0,0,0,1
0,0,0,0,0,1,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,0,1,1,0,1,1,0
1,1,1,1,1,1,1,1,0,0
1,1,1,1,1,1,1,0,1,0
1,1,1,0,1,0,0,0,0,0
1,1,1,1,1,1,0,0,0,0
1,1,1,1,0,1,1,1,0,0
1,1,1,0,0,1,1,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,1,0,1,1,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,0,1,0,0,1,1,0
1,0,1,0,0,0,1,1,1,0
1,1,1,1,1,1,1,0,0,0

@COLORS
0   0   0   0
1 255 255   0
Many small p2 osc, including checker, semicolon, and apostrophe.

2c/5 glider:

Code: Select all

x = 4, y = 6, rule = Trycogene
bo2\$2obo\$bo\$b2o\$o!
Also, oscillators of arbitrarily high period can be made from alternating on and off cells of composite population:

Code: Select all

x = 35, y = 23, rule = Trycogene
13bo2\$6bo6bo2\$6bo6bo2\$o5bo6bo\$34bo\$o5bo6bo\$34bo2\$17bo16bo2\$17bo16bo\$6b
o\$17bo16bo\$6bo\$17bo16bo\$6bo\$17bo16bo\$6bo\$17bo16bo\$6bo!
They can sometimes interact.

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Code: Select all

@RULE Quintlanych

@TABLE
n_states:6
neighborhood:Moore
symmetries:rotate8reflect
var a={1,4}
var b={2,3}
var c={3,5}
var a1={0,1,2,3,4,5}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={a1}
var f1={b1}
var g1={c1}
var z={a1}
0,a,a,a,0,0,0,0,0,1
1,c,a1,a1,0,0,0,0,0,2
1,0,0,0,0,0,0,0,0,3
3,a1,b1,c1,d1,e1,f1,g1,b,2
2,a1,b1,c1,d1,e1,f1,g1,a,1
0,a,a,a,a,a,a,a,a,4
4,0,0,0,0,0,0,0,0,3
3,b,b,b,b,b,b,b,b,0
2,a,a,a,a,a,a,a,a,0
2,1,2,3,4,5,0,a1,b1,0
0,b,b,b,b,b,b,b,b,5
5,a1,b1,c1,d1,e1,f1,g1,z,0
4,a1,b1,c1,d1,e1,f1,g1,z,5
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,0,0
1,1,1,1,1,1,1,0,0,0
3,0,0,0,0,0,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,1,1,1,0,0,0,2
1,1,1,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0

@COLORS
0 48 48 48
1 255 0 0
2 0 255 0
3 0 0 255
4 255 255 255
5 255 255 0
It has a glider:

Code: Select all

x = 5, y = 3, rule = Quintlanych
3.A\$3ABA\$A2.A!
A lot of orthogonal wickstretchers, a diagonal line stretcher:

Code: Select all

x = 16, y = 12, rule = Quintlanych
14.2A\$12.3A\$8.2A.A.A\$8.A.3A\$7.A.A\$6.A.A\$5.A\$4.A\$.A.A\$.2A\$AB2A\$.A!
and a boatstretcher/tubstretcher:

Code: Select all

x = 10, y = 10, rule = Quintlanych
3.A\$2.2A\$.3A\$3A.A\$3.A.A\$4.A.A\$5.A.A\$6.A.A\$7.A.A\$8.2A!
Extendable "wickstretcher hassler":

Code: Select all

x = 17, y = 4, rule = Quintlanych
5.A.A.A.A.2A\$4.11A\$B4.A.A.A.A.A2.B\$.B13.B!

Code: Select all

x = 14, y = 11, rule = Quintlanych
4.2A\$.A.A.A\$.4A\$2.A\$.A\$A\$A\$.A11.B\$2.A.A3.A4.B\$3.5AB\$5.A2.A!
Miscellaneous oscillators:

Code: Select all

x = 3, y = 5, rule = Quintlanych
2A\$2A\$A\$.CA\$.A!

Code: Select all

x = 5, y = 7, rule = Quintlanych
2.A\$2.2A\$.A2.A\$.A2.A\$A2.A\$2A.A\$2.A!

Code: Select all

x = 8, y = 5, rule = Quintlanych
2.A\$2.2A2.A\$.A.3A.A\$3A.A.A\$.2A!
SUPER SMALL breeder:

Code: Select all

x = 4, y = 4, rule = Quintlanych
2.2A\$A.2A\$.ABA\$3A!
Equivalent of HWSS emulator:

Code: Select all

x = 10, y = 5, rule = Quintlanych
3.4A\$.8A\$A8.A\$.8A\$3.4A!
NATURAL growing ship:

Code: Select all

x = 21, y = 3, rule = Quintlanych
A2.A.A.A.A.A.A.A3.A\$19ABA\$2.A.A.A.A.A.A.A.A2.A!
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
(Check gen 2)

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

This rule has some interest, as it has small spaceships, oscillators, and an occasionaly occuring four-barrelled strictvolatility statorless gun.

Code: Select all

@RULE Zygorax
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,1
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,2
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,1
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,1
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,1
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,2
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,1,1,1,1,1,1,2
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,1
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,1
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,2
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,2
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,1
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,2
1,0,1,1,1,1,1,1,1,1
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,2
1,0,1,1,1,1,2,2,2,1
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,2
1,1,1,1,1,1,1,1,2,1
1,1,1,1,1,1,1,2,2,2
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,2
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,1
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,2
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0  48  48  48
1 255 255 255
2 255   0 255
This one has a replicator, and several small sparky diagonal spaceships/rakes.

Code: Select all

@RULE Sparklers
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,3
0,0,0,0,0,0,0,0,3,0
0,0,0,0,0,0,0,0,1,2
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,2
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,0
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,0,2,2,3,0
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,0
0,0,0,0,0,0,3,3,1,0
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,0
0,0,0,0,0,2,2,2,3,0
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,1
0,0,0,0,0,3,3,3,3,2
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,1
0,0,0,0,0,3,1,1,1,1
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,3
0,0,0,0,2,2,2,2,2,0
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,0
0,0,0,0,2,2,3,3,3,1
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,3
0,0,0,0,3,3,3,1,1,3
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,3
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,3
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,0
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,0
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,3
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,3
0,0,0,3,3,3,3,1,1,0
0,0,0,3,3,3,1,1,1,2
0,0,0,3,3,1,1,1,1,3
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,1
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,3
0,0,1,1,2,2,2,2,2,2
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,3
0,0,2,2,2,2,2,2,3,2
0,0,2,2,2,2,2,3,3,0
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,0
0,0,2,2,3,3,3,3,3,0
0,0,2,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,3,3
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,3
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,2
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,0
0,2,2,2,2,2,3,3,3,0
0,2,2,2,2,3,3,3,3,1
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,0
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,3
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,0
1,0,0,0,0,0,0,3,3,1
1,0,0,0,0,0,0,3,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,2
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,0
1,0,0,0,0,0,2,3,3,0
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,1
1,0,0,0,0,0,3,1,1,3
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,1
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,0
1,0,0,0,0,2,2,3,3,0
1,0,0,0,0,2,3,3,3,0
1,0,0,0,0,3,3,3,3,0
1,0,0,0,0,3,3,3,1,0
1,0,0,0,0,3,3,1,1,0
1,0,0,0,0,3,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,3
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,3
1,0,0,0,2,2,3,3,3,0
1,0,0,0,2,3,3,3,3,0
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,3
1,0,0,0,3,3,3,1,1,0
1,0,0,0,3,3,1,1,1,0
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,1
1,0,0,2,2,2,2,3,3,0
1,0,0,2,2,2,3,3,3,0
1,0,0,2,2,3,3,3,3,0
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,0
1,0,0,3,3,3,3,3,1,1
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,0
1,0,0,3,3,1,1,1,1,0
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,2
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,3
1,0,1,1,1,2,2,2,2,3
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,3,2
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,3
1,0,2,3,3,3,3,3,3,2
1,0,3,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,3
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,0
1,2,2,2,2,2,3,3,3,0
1,2,2,2,2,3,3,3,3,2
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,0
1,2,3,3,3,3,3,3,3,0
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,2
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,0
2,0,0,0,0,0,0,1,1,1
2,0,0,0,0,0,1,1,1,3
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,0
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,0
2,0,0,0,0,0,3,1,1,3
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,1
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,3
2,0,0,0,0,2,2,3,3,2
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,1
2,0,0,0,0,3,3,3,1,0
2,0,0,0,0,3,3,1,1,2
2,0,0,0,0,3,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,2
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,0
2,0,0,0,3,3,3,3,3,0
2,0,0,0,3,3,3,3,1,0
2,0,0,0,3,3,3,1,1,0
2,0,0,0,3,3,1,1,1,2
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,2
2,0,0,1,1,1,1,2,2,1
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,0,2,2,2,2,2,3,0
2,0,0,2,2,2,2,3,3,0
2,0,0,2,2,2,3,3,3,2
2,0,0,2,2,3,3,3,3,2
2,0,0,2,3,3,3,3,3,0
2,0,0,3,3,3,3,3,3,1
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,0
2,0,0,3,3,1,1,1,1,0
2,0,0,3,1,1,1,1,1,2
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,3
2,0,2,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,1
2,0,2,2,2,2,3,3,3,3
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,0
2,0,2,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,0
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,2
2,0,3,3,1,1,1,1,1,0
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,3
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,2
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,3
2,2,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,0
2,2,2,2,2,2,3,3,3,0
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,0
2,2,3,3,3,3,3,3,3,0
2,3,3,3,3,3,3,3,3,0
3,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,0,1,2,0
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,2
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,1
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,2
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,2
3,0,0,0,0,0,3,3,3,2
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,0
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,0
3,0,0,0,0,2,2,2,3,0
3,0,0,0,0,2,2,3,3,0
3,0,0,0,0,2,3,3,3,0
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,1
3,0,0,0,0,3,3,1,1,0
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,1
3,0,0,0,1,1,1,1,1,0
3,0,0,0,1,1,1,1,2,0
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,2
3,0,0,0,2,2,2,2,2,1
3,0,0,0,2,2,2,2,3,0
3,0,0,0,2,2,2,3,3,0
3,0,0,0,2,2,3,3,3,1
3,0,0,0,2,3,3,3,3,0
3,0,0,0,3,3,3,3,3,3
3,0,0,0,3,3,3,3,1,0
3,0,0,0,3,3,3,1,1,0
3,0,0,0,3,3,1,1,1,0
3,0,0,0,3,1,1,1,1,1
3,0,0,0,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,0
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,2
3,0,0,1,2,2,2,2,2,3
3,0,0,2,2,2,2,2,2,0
3,0,0,2,2,2,2,2,3,0
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,0
3,0,0,2,3,3,3,3,3,0
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,0
3,0,0,3,3,3,3,1,1,0
3,0,0,3,3,3,1,1,1,0
3,0,0,3,3,1,1,1,1,3
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,3
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,1
3,0,1,1,1,2,2,2,2,0
3,0,1,1,2,2,2,2,2,2
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,0
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,0
3,0,3,3,3,3,1,1,1,1
3,0,3,3,3,1,1,1,1,2
3,0,3,3,1,1,1,1,1,0
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,3
3,1,2,2,2,2,2,2,2,2
3,2,2,2,2,2,2,2,2,3
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,0
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,1
3,3,3,3,3,3,3,3,3,1

@COLORS
0  48  48  48
1 255 255   0
2   0 255   0
3 255   0 255
This one has puffers and replicators with smouldering trails:

Code: Select all

@RULE Wildfire
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,0,3,2
0,0,0,0,0,0,0,0,1,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,3
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,2
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,1
0,0,0,0,0,0,2,2,3,3
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,0
0,0,0,0,0,0,3,3,1,0
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,3
0,0,0,0,0,2,2,2,2,0
0,0,0,0,0,2,2,2,3,0
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,0
0,0,0,0,0,3,3,3,3,0
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,0
0,0,0,0,0,3,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,3
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,3
0,0,0,0,2,2,3,3,3,0
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,0
0,0,0,0,3,3,3,1,1,2
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,0
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,0
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,0
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,0
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,0
0,0,0,3,3,3,3,1,1,0
0,0,0,3,3,3,1,1,1,0
0,0,0,3,3,1,1,1,1,2
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,2
0,0,1,1,1,1,1,2,2,1
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,3
0,0,2,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,3,0
0,0,2,2,2,2,2,3,3,0
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,0
0,0,2,2,3,3,3,3,3,1
0,0,2,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,2
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,1
0,1,1,1,1,2,2,2,2,3
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,1
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,3
0,2,2,2,2,2,3,3,3,1
0,2,2,2,2,3,3,3,3,2
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,0
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,2
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,3
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,0
1,0,0,0,0,0,0,3,3,0
1,0,0,0,0,0,0,3,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,3
1,0,0,0,0,0,1,2,2,3
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,1
1,0,0,0,0,0,2,3,3,0
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,2
1,0,0,0,0,0,3,1,1,3
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,0
1,0,0,0,0,2,2,3,3,0
1,0,0,0,0,2,3,3,3,1
1,0,0,0,0,3,3,3,3,0
1,0,0,0,0,3,3,3,1,1
1,0,0,0,0,3,3,1,1,2
1,0,0,0,0,3,1,1,1,0
1,0,0,0,0,1,1,1,1,3
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,1
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,0
1,0,0,0,2,2,3,3,3,3
1,0,0,0,2,3,3,3,3,0
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,2
1,0,0,0,3,3,3,1,1,0
1,0,0,0,3,3,1,1,1,0
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,3
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,0
1,0,0,2,2,2,2,3,3,1
1,0,0,2,2,2,3,3,3,0
1,0,0,2,2,3,3,3,3,2
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,3
1,0,0,3,3,3,3,3,1,0
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,2
1,0,0,3,3,1,1,1,1,3
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,1,1
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,3
1,0,2,2,2,2,2,2,3,0
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,0
1,0,2,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,3,2
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,2
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,3
1,2,2,2,2,2,3,3,3,0
1,2,2,2,2,3,3,3,3,0
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,3
1,2,3,3,3,3,3,3,3,1
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,3
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,2
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,1,1,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,3
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,0
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,2
2,0,0,0,0,0,3,1,1,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,0
2,0,0,0,0,2,2,3,3,2
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,0
2,0,0,0,0,3,3,3,1,0
2,0,0,0,0,3,3,1,1,1
2,0,0,0,0,3,1,1,1,2
2,0,0,0,0,1,1,1,1,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,3
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,0
2,0,0,0,3,3,3,3,3,1
2,0,0,0,3,3,3,3,1,3
2,0,0,0,3,3,3,1,1,0
2,0,0,0,3,3,1,1,1,0
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,3
2,0,0,1,1,1,1,2,2,3
2,0,0,1,1,1,2,2,2,3
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,3
2,0,0,2,2,2,2,2,3,1
2,0,0,2,2,2,2,3,3,3
2,0,0,2,2,2,3,3,3,1
2,0,0,2,2,3,3,3,3,0
2,0,0,2,3,3,3,3,3,1
2,0,0,3,3,3,3,3,3,0
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,0
2,0,0,3,3,1,1,1,1,0
2,0,0,3,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,3
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,0
2,0,2,2,2,2,3,3,3,3
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,0
2,0,2,3,3,3,3,3,3,3
2,0,3,3,3,3,3,3,3,2
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,1
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,0
2,0,3,3,1,1,1,1,1,2
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,2
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,3
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,0
2,2,2,2,2,2,3,3,3,0
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,2
2,2,3,3,3,3,3,3,3,0
2,3,3,3,3,3,3,3,3,1
3,0,0,0,0,0,0,0,0,2
3,0,0,0,0,0,0,0,1,0
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,0,1,2,0
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,0
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,0
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,1
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,0
3,0,0,0,0,0,3,3,3,0
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,3
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,1
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,0
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,1
3,0,0,0,0,2,2,2,3,0
3,0,0,0,0,2,2,3,3,1
3,0,0,0,0,2,3,3,3,0
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,0
3,0,0,0,0,3,3,1,1,0
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,1,1,1,1,1,1
3,0,0,0,1,1,1,1,2,1
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,0
3,0,0,0,2,2,2,2,2,3
3,0,0,0,2,2,2,2,3,3
3,0,0,0,2,2,2,3,3,0
3,0,0,0,2,2,3,3,3,0
3,0,0,0,2,3,3,3,3,2
3,0,0,0,3,3,3,3,3,0
3,0,0,0,3,3,3,3,1,0
3,0,0,0,3,3,3,1,1,0
3,0,0,0,3,3,1,1,1,3
3,0,0,0,3,1,1,1,1,1
3,0,0,0,1,1,1,1,1,2
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,1
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,0
3,0,0,1,2,2,2,2,2,1
3,0,0,2,2,2,2,2,2,0
3,0,0,2,2,2,2,2,3,0
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,0
3,0,0,2,3,3,3,3,3,2
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,3
3,0,0,3,3,3,3,1,1,0
3,0,0,3,3,3,1,1,1,3
3,0,0,3,3,1,1,1,1,0
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,0
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,1
3,0,1,1,1,2,2,2,2,1
3,0,1,1,2,2,2,2,2,0
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,3
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,0
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,3
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,0
3,0,3,3,3,3,1,1,1,0
3,0,3,3,3,1,1,1,1,0
3,0,3,3,1,1,1,1,1,0
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,2
3,1,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,0
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,0
3,3,3,3,3,3,3,3,3,0

@COLORS
0  47  19  17
1 255 128   0
2 255   0   0
3 255 255   0

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

gmc_nxtman wrote: This one has a replicator, and several small sparky diagonal spaceships/rakes.

Code: Select all

@ RULE Sparklers
It has two, actually.

Code: Select all

x = 17, y = 16, rule = Sparklers
15.B\$15.2B\$15.2B\$16.B11\$.B\$B!
Any even-length diagonal line of state-2 or state-3 pixels evolves into the slow replicator.
Last edited by M. I. Wright on September 14th, 2015, 8:09 pm, edited 1 time in total.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Nice! This rule seems to also have potential:

Code: Select all

@RULE ShiftingTracks
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,1
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,2
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,1
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,2
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,1
1,0,0,0,0,0,1,2,2,1
1,0,0,0,0,0,2,2,2,2
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,2
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,2
1,0,0,1,2,2,2,2,2,1
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,1
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,1
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,1
1,2,2,2,2,2,2,2,2,1
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,2
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,1
2,0,0,0,0,0,1,1,1,2
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,1
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,2
2,0,0,0,1,2,2,2,2,1
2,0,0,0,2,2,2,2,2,1
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,1
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,1
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,2
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,2
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,2
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0 255 255 255
1  11  14  61
2  48  48  48
And this is an interesting variant of my InfectiousLife rule (The names should probably be switched)

Code: Select all

@RULE predvprey
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

var a={0,1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var q={0,2}
var r={q}
var s={r}
var t={s}
var u={t}

0,1,1,1,q,r,s,t,u,1
1,2,2,2,a,b,c,d,e,2

@COLORS
0  48  48  48
1   0 255   0
2   0   0 255
Here is an interesting pattern:

Code: Select all

x = 3, y = 4, rule = predvprey
.2B\$A2B\$A2B\$2A!
EDIT: Another in a similar spirit:

Code: Select all

x = 5, y = 5, rule = predvprey
.2A\$2B2A\$.2BA\$2.B2A\$2.B!

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Woah, ShiftingTracks is really neat! I think the blue should be made a bit lighter, though.

Code: Select all

x = 145, y = 102, rule = ShiftingTracks
116.2A26.A\$116.2B26.B\$116.2B26.B\$116.2A26.A30\$121.2A\$121.2B\$121.2B\$
121.2A37\$60.A\$60.2A10.2A\$60.A5.2A2.A5.B\$61.3B6.B2.A2.A\$66.B3.B2.B\$38.
BA.B18.A.B7.A.A.2B\$39.A3.A17.A10.2A\$37.B2.2A19.B3.A\$22.A2BA4.B7.B4.AB
A19.ABA8.A\$17.B12.B8.B4.2A\$2A.2A2.2A4.A3.3A44.3A\$2B2.A3.A.3A21.A26.4A
.A.2A\$2B3.B.AB.A.A.BA2.A15.A2.A5.B.2A14.A.A5.A\$2A2.AB.3A3.A.A.A16.2AB
6.A3.A20.A\$5.A2.A.BA3.A27.B.2B\$43.B3.A\$44.A\$44.A\$44.A\$42.B\$43.A.A2\$
43.A.A2\$42.B.A\$43.AB\$42.A2.B\$42.AB\$42.A2BA!
There are a lot of bluestretschers in predvprey.

Code: Select all

x = 44, y = 11, rule = predvprey
A2B\$.AB21.5B\$.A3B19.2A3B\$.3AB20.4A7.3B2.3B\$4.A8.B11.4A7.3A2.ABA\$12.A
2B21.3A2.3A\$13.A3B\$13.3A3B\$13.3A.A3B\$17.3AB\$19.A!
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Small rake:

Code: Select all

x = 7, y = 4, rule = ShiftingTracks
2A2.A.A\$2B2.3B\$2B2.3B\$2A2.A.A!
Replicator-based spaceship:

Code: Select all

x = 17, y = 48, rule = ShiftingTracks
\$2.A2B.A2.A.2BA\$3.A.B4.B.A\$3.A8.A\$2.B10.B3\$3.3A4.3A\$3.3A4.3A\$3.B.B4.B
.B\$3.3B4.3B\$3.AB6.BA\$2.A2.A4.A2.A\$.BA10.AB\$3.A2BA2.A2BA\$4.2BA2.A2B\$.
2A3.A2.A3.2A\$4.2A4.2A\$6.A2.A\$2.3A6.3A2\$2.A.A6.A.A4\$3.B.A4.A.B\$4.2A4.
2A\$3.A8.A\$3.A8.A\$4.AB.2B.BA5\$5.A4.A\$5.A4.A\$5.A.2A.A\$6.A2.A\$7.2B2\$6.A
2BA\$6.A2BA\$6.A2BA\$6.A2BA\$6.A2BA!
Tiny Sierpinski breeder:

Code: Select all

x = 9, y = 4, rule = ShiftingTracks
2A6.A\$2B6.B\$2B6.B\$2A6.A!
glider reflective spaceship:

Code: Select all

x = 4, y = 4, rule = ShiftingTracks
3A\$BA\$BA\$2A.A!
Very large smoke:

Code: Select all

x = 115, y = 30, rule = ShiftingTracks
85.A\$85.A.A\$72.A14.B.B\$54.B.AB15.BA14.B\$56.BA10.A4.A\$41.B12.A2.2A13.B
14.B11.A2B\$43.A12.A.A2.A.A6.B2.4A10.A11.A2B2A\$39.B2.A21.B6.2A.2AB9.B
17.B\$30.B9.AB.A12.2B.2A3.A5.B2.2A.A23.A.A\$27.A2.B12.A.2A11.2A2.B9.B
26.B2.2A\$22.2A3.2A.2A9.3A14.A.B4.A.A4.B.3A24.3A\$15.2A.A3.A3B3.A2.A2B
3.A.A6.B12.A.2B2.B.A5.3A24.2A.A\$10.A3.A2.A4.2AB2A.B3.B.BA6.B18.A40.AB
\$7.A6.A9.A2.AB3.6A.AB4.A.B13.3AB.B35.2A\$2A2.A.A.B9.B6.BA.A15.BA.A16.B
A.A\$2B2.2B.A3.B2.A10.2A10.A.A3.A.A.A.A.A11.BA\$2B2.2B.A3.B2.A20.A10.A
2.3A11.A\$2A2.A.A.B9.B8.A3.A.B2A6.A.A6.A4.A13.A5.A.A\$7.A6.A15.2A3.B.A
11.A4.B15.A5.3A\$10.A3.A2.A4.A.2A6.A3.A12.A7.A14.B4.A\$15.2A.A3.A.A3.A.
ABA3.A11.A6.3A13.ABA38.A\$22.A.A5.A.A3.A12.AB16.2A7.3A15.A15.3A\$24.A.B
7.3A12.2A4.BA6.2A.2A8.3A15.BA.A14.A\$34.A.A10.2A.2A3.BA4.A2.A30.A16.2A
\$34.A12.A.B.A12.A.BA4.B.B17.AB.2A15.ABA\$48.A2.A9.A15.AB13.A15.2A4.A\$
65.B6.A.A.A18.2A12.A.A\$47.2A.B.B8.AB.2A10.B15.BA.B12.A\$49.2ABA7.B.A.A
13.BAB11.A.A13.3A\$60.2A.2A43.A.A!

Code: Select all

x = 32, y = 11, rule = ShiftingTracks
\$25.2A3.2A\$26.A3.A\$13A3.A4.4A3.B\$13B3.B4.4B3.A\$13B3.B4.4B3.A\$13A3.A4.
4A3.B\$26.A3.A\$25.2A3.2A!
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
(Check gen 2)

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

I'm not sure but maybe this rule has some potential...

Code: Select all

@RULE Kel

@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate8reflect
var a={1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var f={e}
var g={f}
var h={g}
var a1={0,1,2}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={d1}
var f1={e1}
var g1={f1}
var h1={g1}

0,a,b,c,0,0,0,0,0,1
1,a,b,c,d,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
1,a,b,c,d,e,0,0,0,2
1,a,b,c,d,e,f,g,0,2
2,a,b,c,d,e,f,g,0,1
2,a1,b1,c1,d1,e1,f1,g1,h1,0
A fun rule:

Code: Select all

@RULE ReplicatorCrystal

@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate8reflect
var a={1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var f={e}
var g={f}
var h={g}
var a1={0,1,2}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={d1}
var f1={e1}
var g1={f1}
var h1={g1}

0,a,b,c,0,0,0,0,0,1
1,a,b,c,d,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
1,a,b,c,d,e,0,0,0,2
1,a,b,c,d,e,f,g,0,2
2,a,b,c,d,e,f,g,0,1
2,a1,b1,c1,d1,e1,f1,g1,h1,0
0,a,b,0,0,0,0,0,0,2
There's gliders in kel:

Code: Select all

x = 5, y = 5, rule = Kel
.3A\$.3A\$A3.A\$.B.A\$4.B!

Code: Select all

x = 5, y = 4, rule = Kel
.A2.A\$2A\$.A2.A\$3.A!
a large natural still life:

Code: Select all

x = 5, y = 7, rule = Kel
.2A\$A2.A\$.A.A\$2A.2A\$.A.A\$A2.A\$.2A!
and then there's this:

Code: Select all

x = 10, y = 5, rule = Kel
2.A\$.A.2A3.2A\$A3.A3.2A\$.A.2A\$2.A!
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
(Check gen 2)

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

A p8 wick in Sparklers:

Code: Select all

x = 42, y = 44, rule = Sparklers
41.B\$40.2B\$40.2B\$40.B\$37.B\$36.2B\$36.2B\$36.B5\$29.B\$28.2B\$28.2B\$28.B\$
25.B\$24.2B\$24.2B\$24.B5\$17.B\$16.2B\$16.2B\$16.B\$13.B\$12.2B\$12.2B\$12.B5\$
5.B\$4.2B\$4.2B\$4.B\$.B\$2B\$2B\$B!
And a half-Sierpinski breeder:

Code: Select all

x = 8, y = 6, rule = Sparklers
.3B\$3B3\$5.2B\$5.3B!
edit: this works.

Code: Select all

x = 18, y = 12, rule = Sparklers
.B15.B\$2B14.2B\$2B14.2B2\$8.B3.B\$8.2B2.2B\$8.2B2.2B\$13.B\$4.B\$4.2B\$4.2B\$
5.B!
Normal breeder:

Code: Select all

x = 11, y = 6, rule = Sparklers
3B5.3B\$2B6.2B3\$3.3B\$4.3B!
Backrakes:

Code: Select all

x = 70, y = 23, rule = Sparklers
66.3B\$67.3B2\$38.3B5.3B\$39.2B6.2B18.2B\$67.3B2\$39.2B\$4.B34.3B\$4.2B2.2B\$
4.2B2.2B\$5.B3.B\$B\$2B\$2B2\$4.2B\$4.2B\$4.2B\$5.B\$B\$2B\$2B!
An 'engine' for a siderake that needs stabilization:

Code: Select all

x = 5, y = 4, rule = Sparklers
3B\$.B.B\$3.B\$4.B!
Smaller stabilization of Quintlanych's linestretcher:

Code: Select all

x = 4, y = 4, rule = Quintlanych
2.A\$.3A\$.2A\$C!
A couple variations on the breeder:

Code: Select all

x = 127, y = 42, rule = Quintlanych
97.A\$96.3A\$95.5A\$96.A.A\$95.2A.2A\$96.A.2A\$95.2A.2A\$96.A.2A\$95.2A.A\$96.
A.AB\$95.2A.B4A\$96.A.AB\$95.2A.A\$15.A80.A.A\$14.3A78.2A.2A\$13.5A78.A.A\$
13.2A.2A77.2A.A\$14.A.A79.A.AB\$14.A.2A77.2A.B4A8.A\$12.3A.A79.A.AB.A.A.
A4.3A\$14.A.2A77.2A.A3.4A3.5A\$14.A.A79.A.A4.A.A4.A.A\$8.A6.3A77.2A.2A2.
2A.2A2.2A.2A\$7.3A5.2A79.A.A4.A.A4.A.2A\$6.5A6.A77.2A.A3.2A.A3.2A.A\$7.A
.4A3.2A2.2A74.A.2A3.A.2A3.A.2A\$6.A3.3A3.5A74.2A.A3.2A.A3.2A.A\$6.2A3.
3A4.3A75.A.A4.A.A4.A.A5.A\$11.4A80.3A4.3A4.3A5.3A\$11.A84.2A5.2A5.2A4.
5A\$3A92.A6.A6.A6.2A.2A\$.4A18.A71.2A5.2A5.A4.C.2A.A\$2.3A17.AB.A64.A3.
2A5.3A.2A.2A6.2A2.A\$3.A17.2A.A65.2A.A.A4.A5.2A.A2.2A\$22.A.B2A63.2A.2A
5.2A5.A5.A\$19.3A2.A67.2A5.2A\$19.2A71.A.A5.A24.A\$20.A70.A7.3A22.3A\$18.
2A69.2A9.A22.3A\$18.3A66.2A34.2A\$87.2A34.A\$87.A!
A neat ripple-like effect:

Code: Select all

x = 66, y = 74, rule = Quintlanych
36.A\$35.3A\$34.5A\$35.A.A\$34.2A.2A\$35.A.2A\$34.2A.2A\$35.A.2A\$34.2A.A\$35.
A.AB\$34.2A.B4A\$35.A.AB\$34.2A.A\$35.A.A\$34.2A.2A\$35.A.A\$34.2A.A\$35.A.AB
\$34.2A.B4A8.A\$35.A.AB.A.A.A4.3A\$34.2A.A3.4A3.5A\$35.A.A4.A.A4.A.A\$34.
2A.2A2.2A.2A2.2A.2A\$35.A.A4.A.A4.A.2A\$34.2A.A3.2A.A3.2A.A\$35.A.2A3.A.
2A3.A.2A\$34.2A.A3.2A.A3.2A.A\$35.A.A4.A.A4.A.A5.A\$34.3A4.3A4.3A5.3A\$
35.2A5.2A5.2A4.5A\$34.A6.A6.A6.2A.2A\$34.2A5.2A5.A4.C.2A.A\$29.A3.2A5.3A
.2A.2A6.2A2.A\$29.2A.A.A4.A5.2A.A2.2A\$29.2A.2A5.2A5.A5.A\$31.2A5.2A\$31.
A.A5.A24.A\$30.A7.3A22.3A\$28.2A9.A22.3A\$26.2A34.2A\$26.2A34.A\$26.A27\$A.
A.A.2A\$9A\$A6.3A\$.8A\$3.A2.2A\$3.A!

Code: Select all

x = 16, y = 3, rule = Quintlanych
11.A\$B9.AB3A\$11.A3.C!
Last edited by M. I. Wright on September 16th, 2015, 8:12 pm, edited 1 time in total.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Thanks for contributing to ShiftingTracks and predvprey, guys!

The aforementioned statorless, quad-symmetric four-barreled gun in Zygorax:

Code: Select all

x = 5, y = 2, rule = Zygorax
AB.2A\$B!
A "gun" in Wildfire:

Code: Select all

x = 11, y = 11, rule = Wildfire
2.2B\$2.A2.2B\$6.C\$4.B.C\$2B4.B\$2BC2B\$2B3.B\$5.2CBA\$6.CBC.B\$5.2CABC\$8.A!
Some very long, smoky, and sparky natural(!) spaceships:

Code: Select all

#C Also contains a few oscillators.
x = 459, y = 67, rule = Wildfire
230.C\$235.2B\$231.B3.2B\$231.B10.A\$176.BC.CB42.3B4.B3CB.B6.C2.AC53.A\$
106.C21.BC.CB43.B3.C2B8.2B30.3B4.C.3B5.A2C4.C51.A\$102.ACA3.C19.B3.B
43.BC.C11.C40.B10.A2.A5.A44.AC70.B\$128.BC.2C2B41.2BCB.BC14.2B25.B13.B
.CA6.C.C.C8.BAB38.CB68.B\$133.2B41.2BC2.A3.2C4.C2.2BC2B33.2B.B2.B10.CA
3CA5.C40.A70.B\$133.2C41.2BC.B6.CA5.2B3C24.3B4.2C8.C2.2CB3.C2.C47.2C4.
3B28.C30.C2.2B\$73.C56.C51.BC.2C6.B.C27.3B8.C4.BA3.C4.B2.A9.ACA31.A11.
CB55.3BC.C\$71.B27.B26.A.C.A.A.C45.3B10.BC.A.C9.A14.3B4.3C6.B4.2C25.3B
20.A14.B30.BA23.C.CB\$71.BC3.BC50.C3.C47.C15.C7.C.B2.C30.C3.C2.C14.2B
7.C24.AC4.A4.C57.C91.A\$90.B3.CB12.B.B16.CACA.A44.A.C.A14.A37.B3.B.A6.
C13.3B32.C3.AC34.A3.C24.B6.2B84.C\$74.C3.B16.B33.B52.C24.B2C29.A2.BC3.
C17.AB2C4.B.B24.B3.C25.B2CB40.B44.B38.C\$77.CB12.BC3.B2.BC7.B.B18.A76.
C35.3BC2B15.B2.BA6.CA.C21.2C2.C26.B2.C.AC.A.A33.C7.3B32.3B36.B\$56.2C
17.B20.B2.C2.CA101.C.B32.2B21.C.A.B4.AC.B2.AC.B17.C3.C26.B3.2C3.C28.B
6.B37.3B.B36.C.3B\$13.C46.B11.C3.C19.B2.C.C107.B53.C8.A2C2.AC3.2B17.C.
CB4.A21.B8.CA26.B6.C6.C30.2BC2.C37.3B\$26.BC29.C2.B4.2B5.B2.C2.C20.B4.
C158.B2CB5.CBCB6.2B17.A3.2B2.C22.C2.2BC2A4.A23.BC4.C6.C2.A28.2BC2.C\$
14.CA12.C14.B3C2B15.C.CB3.A3.2A26.C2.C160.3B4.2C6.C19.C6.2CA3B19.CB2.
B2.A3.C23.A4.B.2B3.A4.BC27.B.C\$C3.C2.2AC2.B9.B8.CB15.B13.C4.C10.2B21.
A177.B22.2BC2.A.C2.3B8.3B9.B3.B5.C21.B3.A.3A10.B\$5.C2.C.A11.B9.B11.BC
A.C14.A3.C6.B24.A2.B168.B4.B4.A.A19.B2.CA2.A.3B8.C.C7.B18.C7.C19.B2.C
.2B59.C.B\$3C5.A19.C2.CB8.2B2.2C.C13.C2.C2B40.C162.C2.3B3.B2.A19.C8.2B
11.C13.BC2B9.C8.ACA10.A.A6.C60.C3.C\$2BC6.C12.B18.2B3.B.C14.AC205.C2.A
.2B26.C4.C11.B3.CB7.BC2.3B3.AC6.C.CBA3.C3.A11.B2.B4.C35.A29.3B\$2B9.C
12.B4.B8.AB3C.C.C.B10.C2.B208.2C4.B25.BC3.A11.B3.B9.3B2.C5.A5.A.C.A7.
A14.A2.C.A35.C31.B\$41.2B2.B14.A.B207.A2C31.B15.B8.2B.3B3.B6.A6.A2.AB
4.A15.2B4.C33.A3CA28.CB\$46.C14.CB210.A4.2CB18.C4.B.C.C.B2CB15.2B.C.C
19.CAB4.A16.B2.C37.C25.B4.B\$44.2B12.3B237.B3.3B.C.C8.C.C8.3B2.CB16.C.
C20.B2C3.BC2B35.A25.A2.2C\$44.2B258.CB3.CB9.B12.AB39.B5.3B66.C\$299.BC
2.2CBC3.B3.4B19.A13.A7.B5.B8.BC3.C3B67.2B\$300.B2C3B3.CB3.B4.2A10.C5.
2C19.CB20.3B62.ACA.C2B\$314.B7.B32.B93.3B2\$327.AB3.B\$332.C73.B.B2\$2.3B
6.A394.B.B\$2.2BC2B4.C\$2.C6.A.C22.B\$16.3B\$2.C2.A2.A7.2BC2.A15.C\$5.CB.A
\$10.C4.B26.3B362.B\$13.C2B6.C.C13.2BCBC2B\$12.C3.C.C19.2BCBC2B3.B3.B5.C
\$16.3B5.B13.2BC2B9.B\$13.A6.B27.C2.2B8.AC\$14.2C44.3C\$60.C\$58.2A7\$7.B\$
4.2B\$4.2BC\$4.C6.CB22.B7.2C\$8.C2B31.ABAB\$4.C2.AC5.C17.BC.C6.ABAB\$7.CB
2.C.A18.B.CBA6.2C\$11.C.A18.B.BA6.B2CB\$12.C10.B\$12.A\$21.B!
Simpe wickstretcher in Kel:

Code: Select all

x = 5, y = 5, rule = Kel
2.A\$.A.A\$A2.2A\$.A.A\$2.A!
I think this rule is also interesting, with c/2 diagonal replicators, puffers, and puffer-eaters:

Code: Select all

@RULE hdiag
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,2
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,2
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,2
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,1
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,2
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,2
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,2
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,1
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,1
1,0,1,2,2,2,2,2,2,2
1,0,2,2,2,2,2,2,2,2
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,2
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,2
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,1
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,2
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,1
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,2
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,2
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,2
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,2
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,2

@COLORS
0  48  48  48
1 255 128 128
2 128 128 255

Code: Select all

x = 2, y = 2, rule = hdiag
B\$.B!
This one eerily resembles a generations rule I studied a while back:

Code: Select all

@RULE snakelike
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,2
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,1
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,2
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,1
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,2
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,1
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,2
1,0,0,0,1,1,1,1,2,1
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,2
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,1
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,1
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0 255 255 255
1  48  48  48
2  54  79  54
This rule seems to heavily be in favor of diagonal technology (replicators, puffers, spaceships, etc.)

Code: Select all

@RULE Scutile
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,1
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,2
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,1
0,0,0,0,0,1,1,1,2,2
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,2
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,1
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,1
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,2
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,1
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,2
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,2
1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,2,2
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,2
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,2
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,1
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,1
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,2
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,1
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,1
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0
Sparky diagonal spaceships, the LOM Is a p2 osc, and a relocation reaction:

Code: Select all

@RULE reloscr
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,2
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,2
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,1
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,2
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,1
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,1
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,2
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,1
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,1
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,1
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,1
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,1
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,2
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,1
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0
Explosive, but many diagonal spaceships:

Code: Select all

@RULE canoe
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,2
0,0,0,0,0,0,0,1,2,2
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,1
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,1
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,1
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,2
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,2
1,0,0,0,0,0,0,0,2,1
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,2
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,2
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,2
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,2
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,1
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,1
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,1
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,1
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,2
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,1
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,1
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,1
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,2
2,0,0,1,1,1,1,1,2,2
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,2
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,1
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,2
2,2,2,2,2,2,2,2,2,0

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Quintlanych "sidepuffer"

Code: Select all

x = 13, y = 23, rule = Quintlanych
4.2A\$.2A.A.A\$.4A2.A\$A3.A.2A\$.A2.2A.2A\$2.A.A.3A\$.2A.2A2.2A\$2.A.A5.A\$.
2A.2A5.A\$2.A.A7.A\$.2A.2A\$2.A.A\$.2A.2A.2A\$2.A.A2.2A.A\$.2A.2A.AB\$2.A.A
3.AB2A\$.2A.2A3.AB2A\$2.A.A5.A\$.2A.2A\$2.A.A\$.2A.2A\$.ABABA\$2.3A!
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
(Check gen 2)