For discussion of other cellular automata.
Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

I'm confused with the "permute" symmetry, can somebody help?
Airy Clave White It Nay

Code: Select all

``````x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
``````
(Check gen 2)

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

permute just means that the order of cells doesn't matter. For instance, under permutational symmetry, all of these transitions do the same thing:

Code: Select all

``````0,1,1,1,0,0,0,0,0,1
0,1,0,1,1,0,0,0,0,1
0,0,0,0,1,1,0,1,0,1
etc.``````
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

B3/S23 with adjacent cells defined as cells one knight's move away. It's stable with smaller initial patterns but slowly expands with larger, denser ones.

Code: Select all

``````@RULE KnightLife

B3/S23 emulated on the knight's-move neighborhood
@TABLE

n_states:33
neighborhood:Moore
symmetries:none

State 1: on
State 2/3: off/on, neighbor NW
State 4/5: off/on, neighbor SW
State 6/7: off/on, neighbor NW&SW
State 8/9: off/on, neighbor SE
State 10/11: off/on, neighbor NW&SE
State 12/13: off/on, neighbor SW&SE
State 14/15: off/on, neighbor NW&SW&SE
State 16/17: off/on, neighbor NE
State 18/19: off/on, neighbor NW&NE
State 20/21: off/on, neighbor SW&NE
State 22/23: off/on, neighbor NW&SW&NE
State 24/25: off/on, neighbor SE&NE
State 26/27: off/on, neighbor NW&SE&NE
State 28/29: off/on, neighbor SW&SE&NE
State 30/31: off/on, neighbor NW&SW&SE&NE
State 32: on, no neighbors

var live={1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,32}
var n0={0,32,4,5,8,9,12,13} //neither N diagonal
var n1={2,3,6,7,10,11,14,15,16,17,20,21,24,25,28,29}
var n2={18,19,22,23,26,27,30,31} //both N diagonals
var w0={0,32,8,9,16,17,24,25} //neither W diagonal
var w1={2,3,4,5,10,11,12,13,18,19,20,21,26,27,28,29}
var w2={6,7,14,15,22,23,30,31} //both W diagonals
var s0={0,32,2,3,16,17,18,19} //neither S diagonal
var s1={4,5,6,7,8,9,10,11,20,21,22,23,24,25,26,27}
var s2={12,13,14,15,28,29,30,31} //both S diagonals
var e0={0,32,2,3,4,5,6,7} //neither E diagonal
var e1={8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23}
var e2={24,25,26,27,28,29,30,31} //both E diagonals
var b=a
var c=b
var d=c
var e=d
var f=e
var g=f
var h=g
0,a,0,b,0,c,0,d,1,2
1,a,0,b,0,c,0,d,1,3
0,a,0,b,0,c,1,d,0,4
1,a,0,b,0,c,1,d,0,5
0,a,0,b,0,c,1,d,1,6
1,a,0,b,0,c,1,d,1,7
0,a,0,b,1,c,0,d,0,8
1,a,0,b,1,c,0,d,0,9
0,a,0,b,1,c,0,d,1,10
1,a,0,b,1,c,0,d,1,11
0,a,0,b,1,c,1,d,0,12
1,a,0,b,1,c,1,d,0,13
0,a,0,b,1,c,1,d,1,14
1,a,0,b,1,c,1,d,1,15
0,a,1,b,0,c,0,d,0,16
1,a,1,b,0,c,0,d,0,17
0,a,1,b,0,c,0,d,1,18
1,a,1,b,0,c,0,d,1,19
0,a,1,b,0,c,1,d,0,20
1,a,1,b,0,c,1,d,0,21
0,a,1,b,0,c,1,d,1,22
1,a,1,b,0,c,1,d,1,23
0,a,1,b,1,c,0,d,0,24
1,a,1,b,1,c,0,d,0,25
0,a,1,b,1,c,0,d,1,26
1,a,1,b,1,c,0,d,1,27
0,a,1,b,1,c,1,d,0,28
1,a,1,b,1,c,1,d,0,29
0,a,1,b,1,c,1,d,1,30
1,a,1,b,1,c,1,d,1,31
1,a,b,c,d,e,f,g,h,32
a,n2,b,e1,c,s0,d,w0,e,1
a,n2,b,e0,c,s1,d,w0,e,1
a,n2,b,e0,c,s0,d,w1,e,1
a,n1,b,e2,c,s0,d,w0,e,1
a,n0,b,e2,c,s1,d,w0,e,1
a,n0,b,e2,c,s0,d,w1,e,1
a,n1,b,e0,c,s2,d,w0,e,1
a,n0,b,e1,c,s2,d,w0,e,1
a,n0,b,e0,c,s2,d,w1,e,1
a,n1,b,e0,c,s0,d,w2,e,1
a,n0,b,e1,c,s0,d,w2,e,1
a,n0,b,e0,c,s1,d,w2,e,1
a,n1,b,e1,c,s1,d,w0,e,1
a,n1,b,e1,c,s0,d,w1,e,1
a,n1,b,e0,c,s1,d,w1,e,1
a,n0,b,e1,c,s1,d,w1,e,1
live,n1,a,e1,b,s0,c,w0,d,1
live,n1,a,e0,b,s1,c,w0,d,1
live,n1,a,e0,b,s0,c,w1,d,1
live,n0,a,e1,b,s1,c,w0,d,1
live,n0,a,e1,b,s0,c,w1,d,1
live,n0,a,e0,b,s1,c,w1,d,1
live,n2,a,e0,b,s0,c,w0,d,1
live,n0,a,e2,b,s0,c,w0,d,1
live,n0,a,e0,b,s2,c,w0,d,1
live,n0,a,e0,b,s0,c,w2,d,1
live,a,b,c,d,e,f,g,h,0
``````
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Not my unrecognized CA, but I found Brian Prentice's 'ships' rule - here - really interesting. Here's a collection of sorts:

Code: Select all

``````x = 62, y = 81, rule = Ships
22.EC\$21.BA3\$20.4D\$20.EABABABA\$20.7DE.C3\$28.E\$27.BA\$22.2D5.C\$27.BA2\$
20.12DE3.C\$20.EBABABABABABABABA\$20.16DC\$25.D\$26.BA\$32.C\$23.2D\$23.BAB\$
26.C3\$24.2DE\$24.ABABA\$24.2DE2\$24.2DE\$23.DABABA\$23.DEDE3\$24.2D\$23.EBAB
\$25.DB.AB\$25.DA11.C\$26.E3\$25.2D\$24.DABD\$27.C\$28.AB\$37.C4\$26.6DE\$31.BA
\$37.C\$32.AB\$26.2D!
``````
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

This rule:

Code: Select all

``````@RULE Billiard
@TABLE
neighborhood:Moore
symmetries:rotate4reflect
n_states:2

var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={0,1}
var g={0,1}
var h={0,1}

0,1,1,0,0,1,0,0,0,1
0,1,0,0,1,0,1,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,0,1,0,1,0,1,0,0,1
0,1,1,1,0,0,0,0,0,1
0,1,0,1,0,1,0,0,0,1
0,0,0,1,1,1,1,1,1,1
0,1,0,1,0,1,1,1,1,1
0,0,1,1,1,0,1,1,1,1
0,0,1,1,0,1,1,1,1,1
0,1,0,1,1,1,0,1,1,1
1,0,1,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,1
1,0,1,0,1,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,1,0,0,1,0,0,0,0,1
1,1,1,0,0,1,0,0,0,1
1,1,0,0,1,0,1,0,0,1
1,1,1,0,0,0,1,0,0,1
1,1,1,0,1,0,0,0,0,1
1,1,0,1,0,0,1,0,0,1
1,1,1,0,0,0,0,1,0,1
1,1,1,0,0,0,0,0,1,1
1,0,1,0,1,0,1,0,0,1
1,1,1,1,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,1
1,1,1,0,0,1,1,0,0,1
1,1,1,1,0,1,0,0,0,1
1,1,1,0,1,0,0,0,1,1
1,1,1,0,0,0,1,1,0,1
1,1,1,0,0,1,0,0,1,1
1,1,1,0,1,0,1,0,0,1
1,1,1,1,0,0,1,0,0,1
1,1,1,0,0,1,0,1,0,1
1,1,1,0,1,0,0,1,0,1
1,1,1,0,1,1,0,0,0,1
1,1,0,1,0,1,0,1,0,1
1,0,1,0,1,0,1,0,1,1
1,1,1,1,1,0,0,0,0,1
1,0,0,1,1,0,1,1,1,1
1,0,0,1,0,1,1,1,1,1
1,0,0,1,1,1,0,1,1,1
1,0,1,1,0,1,0,1,1,1
1,0,0,1,1,1,1,1,0,1
1,0,1,0,1,1,0,1,1,1
1,0,0,1,1,1,1,0,1,1
1,0,1,0,1,0,1,1,1,1
1,0,0,0,1,1,1,1,1,1
1,1,0,1,0,1,0,1,1,1
# Death otherwise
1,a,b,c,d,e,f,g,h,0
``````
Has a small P17:

Code: Select all

``````x = 18, y = 11, rule = Billiard
5bo2b2o2bo\$3b3o2b2o2b3o\$3bo10bo\$2b2ob8ob2o\$5bobo4bo\$2b2ob3o2b3ob2o\$2b
2obobo4bob2o\$5b8o\$2b2o10b2o\$o2b3o2b2o2b3o2bo\$2o3bo2b2o2bo3b2o!
``````
It also has various other oscillators, though I have not made a stamp collection because the rule was imagined about 5 minutes ago. It is normally explosive, though immovable objects are possible. (The P17 was discovered while randomly filling the area inside small boxes.)
▄▀
▀▀▀

gmc_nxtman
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Nice, although I'm not calling it billiard. (There's many rules with that name already, including one of mine, so it's too common to use for a well-enough studied rule)
Last edited by gmc_nxtman on August 7th, 2017, 6:55 pm, edited 1 time in total.

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

gmc_nxtman wrote:I'm not calling it billiard.
I did think the name sounded generic. I'll try to think of another name, unless you or anyone else have any ideas.

Divider

P2

Code: Select all

``````x = 7, y = 9, rule = Billiard
2b2o\$2b2o2\$6o\$bobobo\$b6o2\$3b2o\$3b2o!
``````
P4

Code: Select all

``````x = 18, y = 11, rule = Billiard
2o3bo2b2o2bo\$o2b3o2b2o2b3o\$2b2o10bo\$5b8ob2o\$2b2obo6bo\$2b2ob3ob4ob2o\$5b
o6bob2o\$2b2ob8o\$3bo10b2o\$3b3o2b2o2b3o2bo\$5bo2b2o2bo3b2o!
``````
P5

Code: Select all

``````x = 19, y = 14, rule = Billiard
3bo2b2o2b2o\$b3o2b2o2b2o\$bo\$2ob11ob2o\$3bo9bob2o\$3bobobobobobo\$2obobobob
obobo\$2obo3bobo3b3ob2o\$3bobobob4o2bob2o\$3bobobobo2bo2bo\$2ob13ob2o\$bo
15bo\$b3o2b2ob2ob2ob3o\$3bo2b2ob2ob2obo!
``````
P6

Code: Select all

``````x = 14, y = 12, rule = Billiard
3bo2b2o2bo\$b3o2b2o2b3o\$bo10bo\$2ob8ob2o\$3bobo2bobo\$2ob6obob2o\$2obo2b5ob
2o\$3bo2bobobo\$2ob8ob2o\$bo10bo\$b3o2b2o2b3o\$3bo2b2o2bo!
``````
P10

Code: Select all

``````x = 20, y = 14, rule = Billiard
3bo2b2ob2ob2o2bo\$b3o2b2ob2ob2o2b3o\$bo16bo\$2ob14ob2o\$3bobobobo3bo2bo\$3b
3obob3obo2bo\$2obo5bobob2obob2o\$2obo5bobo4bob2o\$3b3o2b7obo\$3bo4bob3obob
o\$2ob14ob2o\$bo16bo\$b3o2b2ob2ob2o2b3o\$3bo2b2ob2ob2o2bo!
``````
They can most likely be improved.
▄▀
▀▀▀

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Here are improvements on your billiard-tables:

Code: Select all

``````x = 81, y = 12, rule = Billiard
2b2o12b2o26b2o\$31bobobo8bobo11b2o12bo2bo\$6o8b6o11bobob3o34bo2bo\$bo3bo
13bo8b2obo10b7o9b4o\$b6o5b3ob4ob2o8bob3o10bobo9bobo9b8o\$19bo11bo10b3obo
bobo4b2obobo9bo6bo\$3b2o9b6o10b6o8bobobobo4bob2o2b2o4b2obo2bob3ob2o\$40b
3obo3bo8bo12bo6bo\$16b2o14b2o8bob5o7b7o7b8o2\$46bo11bobo11bo2bo\$46bo11b
2o12bo2bo!
``````
Minimal p2?

Code: Select all

``````x = 4, y = 7, rule = Billiard
2o2\$4o2\$4o2\$2o!
``````
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Code: Select all

``````x = 81, y = 12, rule = Billiard
2b2o12b2o26b2o\$31bobobo8bobo11b2o12bo2bo\$6o8b6o11bobob3o34bo2bo\$bo3bo
13bo8b2obo10b7o9b4o\$b6o5b3ob4ob2o8bob3o10bobo9bobo9b8o\$19bo11bo10b3obo
bobo4b2obobo9bo6bo\$3b2o9b6o10b6o8bobobobo4bob2o2b2o4b2obo2bob3ob2o\$40b
3obo3bo8bo12bo6bo\$16b2o14b2o8bob5o7b7o7b8o2\$46bo11bobo11bo2bo\$46bo11b
2o12bo2bo!
``````
Nice!

Code: Select all

``````x = 4, y = 7, rule = Billiard
2o2\$4o2\$4o2\$2o!
``````
I found this:

Code: Select all

``````x = 3, y = 5, rule = Billiard
o\$3o2\$3o\$2bo!
``````
...Which is probably the minimum.

Also, P3:

Code: Select all

``````x = 10, y = 10, rule = Billiard
4b2ob2o\$9bo\$2b6obo\$2bo4bo\$obob4o\$obobo\$2bobob2o\$ob3ob2o\$o\$b2o!
``````
At first glance it doesn't look like it can be improved, though it probably can. (Slicing the rotor in half?)

EDIT: P8

Code: Select all

``````x = 11, y = 13, rule = Billiard
5bo\$5bo2\$3b5o\$3bo3bo\$bobobobob2o\$o2b3obo2bo\$2ob3obobo\$3bobobo\$3b5o2\$5b
o\$5bo!
``````
EDIT2: Smallest oscillators so far for each period:

Code: Select all

``````x = 32, y = 603, rule = Billiard
6b2o2b2o2b2o2bo\$6b2o2b2o2b2o2b3o2\$18b3o\$14b2o4bo\$14b2o3\$6b2o2b2o2b2o\$
6b2o2b2o2b2o3\$6b2o\$6b2o3\$6b2o2b2o2b2o\$6b2o2b2o2b2o22\$6b2o2b2o2b2o6b2ob
2o\$6b2o2b2o2b2o11bo\$20b6obo\$20bo4bo\$14b2o2bobob4o\$14b2o2bobobo\$20bobob
2o\$18bob3ob2o\$6b2o2b2o2b2o2bo\$6b2o2b2o2b2o3b2o3\$14b2o\$14b2o3\$6b2o2b2o
2b2o\$6b2o2b2o2b2o22\$6b2o6b2o6b2o\$6b2o6b2o\$20b6o\$22bo2bo\$6b2o6b2o2b3ob
2obob2o\$6b2o6b2o6bo2bo\$20b6o2\$6b2o2b2o2b2o6b2o\$6b2o2b2o2b2o3\$14b2o\$14b
2o3\$14b2o\$14b2o22\$6b2o2b2o2b2o5bobobo\$6b2o2b2o2b2o5bobob3o\$18b2obo\$21b
ob3o\$6b2o13bo\$6b2o12b6o2\$22b2o\$6b2o2b2o2b2o\$6b2o2b2o2b2o3\$14b2o\$14b2o
3\$6b2o2b2o2b2o\$6b2o2b2o2b2o22\$6b2o2b2o2b2o6b2o\$6b2o2b2o2b2o6bobo2\$20b
7o\$6b2o16bobo\$6b2o12b3obobobo\$22bobobobo\$18b3obo3bo\$6b2o2b2o2b2o4bob5o
\$6b2o2b2o2b2o\$24bo\$24bo\$6b2o6b2o\$6b2o6b2o3\$6b2o2b2o2b2o\$6b2o2b2o2b2o
22\$6b2o2b2o2b2o\$6b2o2b2o2b2o3\$14b2o\$14b2o3\$14b2o\$14b2o3\$14b2o\$14b2o3\$
14b2o\$14b2o22\$6b2o2b2o2b2o7bo\$6b2o2b2o2b2o7bo2\$21b5o\$6b2o6b2o5bo3bo\$6b
2o6b2o3bobobobob2o\$18bo2bob3o2bo\$18b2obob3obo\$6b2o2b2o2b2o5bobobo\$6b2o
2b2o2b2o5b5o2\$23bo\$6b2o6b2o7bo\$6b2o6b2o3\$6b2o2b2o2b2o\$6b2o2b2o2b2o22\$
6b2o2b2o2b2o\$6b2o2b2o2b2o3\$6b2o6b2o\$6b2o6b2o3\$6b2o2b2o2b2o\$6b2o2b2o2b
2o3\$14b2o\$14b2o3\$14b2o\$14b2o22\$2o4b2o2b2o2b2o5b2o\$2o4b2o2b2o2b2o\$21b4o
\$21bobo\$2o4b2o6b2o2b2obobo\$2o4b2o6b2o2bob2o2b2o\$20bo\$19b7o\$2o4b2o6b2o\$
2o4b2o6b2o5bobo\$21b2o2\$2o4b2o6b2o\$2o4b2o6b2o3\$2o4b2o2b2o2b2o\$2o4b2o2b
2o2b2o22\$2o12b2o\$2o12b2o3\$2o12b2o\$2o12b2o3\$2o12b2o\$2o12b2o3\$2o12b2o\$2o
12b2o3\$2o12b2o\$2o12b2o22\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o3\$2o12b2o\$2o12b
2o3\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o3\$2o4b2o\$2o4b2o3\$2o4b2o2b2o2b2o\$2o4b
2o2b2o2b2o22\$2o4b2o2b2o2b2o6b2ob2o\$2o4b2o2b2o2b2o6bob2obo2\$20b10o\$2o
12b2o4bo8bo\$2o12b2o2bobo8bobo\$18bobo8bobo\$20bo8bo\$2o4b2o2b2o2b2o4b10o\$
2o4b2o2b2o2b2o\$22bob2obo\$23b2ob2o\$2o12b2o\$2o12b2o3\$2o4b2o2b2o2b2o\$2o4b
2o2b2o2b2o22\$2o4b2o6b2o\$2o4b2o6b2o3\$2o4b2o6b2o\$2o4b2o6b2o3\$2o4b2o2b2o
2b2o\$2o4b2o2b2o2b2o3\$2o12b2o\$2o12b2o3\$2o12b2o\$2o12b2o22\$2o4b2o2b2o2b2o
\$2o4b2o2b2o2b2o3\$2o4b2o\$2o4b2o3\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o3\$2o12b2o
\$2o12b2o3\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o22\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b
2o3\$2o4b2o\$2o4b2o3\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o3\$2o4b2o6b2o\$2o4b2o6b
2o3\$2o4b2o2b2o2b2o\$2o4b2o2b2o2b2o22\$2o4b2o2b2o2b2o7bo2bo\$2o4b2o2b2o2b
2o7bo2bo2\$21b8o\$2o12b2o5bob2o3bo\$2o12b2o2b2ob4ob3ob2o\$21bob2o3bo\$21b8o
\$2o12b2o\$2o12b2o7bo2bo\$23bo2bo2\$2o12b2o\$2o12b2o3\$2o12b2o\$2o12b2o!

``````
EDIT3: Sorry for such a long post, but here's a P13:

Code: Select all

``````x = 18, y = 16, rule = Billiard
2\$6b2ob2o\$6bob2obo2\$4b10o\$4bo8bo\$2bobo8bobo\$2bobo8bobo\$4bo8bo\$4b10o2\$
6bob2obo\$7b2ob2o!
``````
▄▀
▀▀▀

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Billabob wrote: EDIT: P8

Code: Select all

``````RLE
``````
That's a p10, and it's bigger than mine.
Current stamp collection of smallest oscillators:

Code: Select all

``````x = 182, y = 25, rule = Billiard
155bo2bo\$68bobo84bo2bo\$68bobo52bo\$86bo35bo14bo2bo12b8o\$55bo10b7o14bo
10b2o2b2o33bo2bo12bobo4bo12bo2bo\$54bo11bo5bo11b3obo31b5o25b2ob2o2bo2bo
b2o7b8o\$52bo10b2obo5bob2o8bobo9b10o18bo10b8o10bo3bo2bo10bobobo2bo\$13bo
11bo12bobobo7b7o9bo5bo8b2obobo9bo8bo14b3obob2o7bo6bo10bob3o2bo9b2obobo
2bobo\$11b5o7b5o10bobob3o9bobo6b2obo5bob2o5bob2o2b2o5bobo8bobo14bobo7b
2obo2bob4o6b2obo4bobob2o5bobo4bobobo\$bo9bo15bo8bobo11b3obob2o8bo5bo10b
o10bobo8bobo10b3obobo10bo6bo10bo6bo10bo4bobo\$b3o6b2ob3o6bob5o7bobob3o
6bo2bobobobo7b7o9b7o7bo8bo14bobobob2o7b8o10b8o10b8o\$11bobo8b2obobobo8b
o11bobo3bo27bo11b10o16bobo51bo\$b3o7bob3o11bo10b5o6b2ob5o11bobo15bo35bo
bo12bo2bo14bo2bo14bo\$3bo11bo11bo12bo13bo13bobo16bo10b2o2b2o33bo2bo14bo
2bo14bo2\$119bo2bobobo\$obobo6bobobo7bo3bo10bobobo8bobobo11bobobo9bo2bob
obo8bo2bobobo30bo2bobobo8bobobo2bobobo7bo3bo2bobobo\$119bo2bo\$4bo10bo7b
o3bo10bo12bo19bo9bo2bo3bo8bo6bo30bo6bo12bo6bo7bo3bo2bo3bo\$119bo2bobobo
\$obobo6bobobo7bobobo10bobobo8bobobo15bo9bo2bo3bo8bo2bobobo30bo6bo8bobo
bo2bobobo7bobobo2bo3bo\$119bo2bo3bo\$o14bo11bo14bo8bo3bo15bo9bo2bo3bo8bo
6bo30bo6bo8bo6bo15bo2bo3bo\$119bo2bobobo\$obobo6bobobo11bo10bobobo8bobob
o15bo9bo2bobobo8bo2bobobo30bo6bo8bobobo2bobobo11bo2bobobo!
``````
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

BlinkerSpawn wrote: That's a p10, and it's bigger than mine.
Agh. Sorry, I'm an idiot.
BlinkerSpawn wrote:Current stamp collection of smallest oscillators:

Code: Select all

``dgasdfs``
Nice! I especially like the P7 and P16.

Here's a P12:

Code: Select all

``````x = 11, y = 13, rule = Billiard
5b2o2\$3b3obo\$3bob3o\$b3ob4o\$2bo2b2o\$obobobob3o\$obob3obo\$2bobobo\$2b5o2\$
4bo\$4bo!
``````
EDIT: 15-cell P4:

Code: Select all

``````x = 5, y = 7, rule = Billiard
2b2o2\$4o\$3bo\$2ob2o\$bobo\$bobo!``````
▄▀
▀▀▀

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Way-too-large p8:

Code: Select all

``````x = 14, y = 15, rule = Billiard
5bo2bo\$5bo2bo2\$3b8o\$3bo6bo\$2ob4obobob2o\$3bob2o3bo\$3b6obo\$bobo6bobo\$bob
6obobo\$3bob2o3bo\$3b8o2\$5bo2bo\$5bo2bo!
``````
EDIT: 35 fewer cells

Code: Select all

``````x = 9, y = 7, rule = Billiard
2o5b2o\$bo5bo\$bobobobo\$2ob3ob2o\$bo3bobo\$b7o\$3bobo!
``````
EDIT: Even smaller!

Code: Select all

``````x = 9, y = 7, rule = Billiard
2o5b2o\$bo5bo\$bobobobo\$2obobob2o\$bo5bo\$b3ob3o\$3bobo!
``````
EDIT: Is this the smallest possible? (21 cells)

Code: Select all

``````x = 8, y = 7, rule = Billiard
6b2o\$6bo\$b2obobo\$2bobob2o\$2bo3bo\$obob3o\$b2obo!
``````
Could this become a sub-40 p7?

Code: Select all

``````x = 11, y = 9, rule = Billiard
b2o2b2o2\$b8o\$bo6bo\$7ob2o\$bobo2bobo\$b4obobo\$4bob3obo\$b2o5bobo!
``````
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

M. I. Wright wrote: EDIT: Is this the smallest possible? (21 cells)

Code: Select all

``````x = 8, y = 7, rule = Billiard
6b2o\$6bo\$b2obobo\$2bobob2o\$2bo3bo\$obob3o\$b2obo!
``````
Here's one with 20 cells, at the cost of larger bounding box:

Code: Select all

``````x = 9, y = 7, rule = Billiard
7b2o\$7bo\$3bobobo\$3bobob2o\$2obo3bo\$3bob3o\$3bobo!
``````
M. I. Wright wrote:Could this become a sub-40 p7?

Code: Select all

``````x = 11, y = 9, rule = Billiard
b2o2b2o2\$b8o\$bo6bo\$7ob2o\$bobo2bobo\$b4obobo\$4bob3obo\$b2o5bobo!
``````
I don't see a line of attack right now, but maybe after I get some sleep I'll be able to figure it out.
▄▀
▀▀▀

Sphenocorona
Posts: 480
Joined: April 9th, 2013, 11:03 pm

An infinite family of babbling brooks exists in this automaton, and presumably an infinite number of periods can be achieved this way. This is not to say that the method below proves the CA omniperiodic, or provides anything remotely close to minimal for a given period. But, an an example, here is a period 38 oscillator:

Code: Select all

``````x = 19, y = 16, rule = Billiard
7b2o\$obobo\$obob5o\$2bo4bo2b2o\$b5obo\$5bob5o\$b2o2bo4bo2b2o\$4b5obo\$8bob5o\$
4b2o2bo4bo2b2o\$7b5obo\$11bob5o\$7b2o2bo4bo\$10b5obo\$14bobobo\$10b2o2bobobo!``````
EDIT: Completely unrelated, here's a 34-cell P28, and a related 36-cell P21:

Code: Select all

``````x = 29, y = 22, rule = Billiard
4b2o2b2o13b2o2b2o2\$2b8o11b8o\$2bobobo14bobobo\$obobo3b2o9bobobo3b2o\$b2ob
obo12bobobobo\$2bobobob2o11bobobob2o\$obob3o14bob3o\$bo4bo18bo5\$bobobo2bo
8bobobo2bobobo2\$5bo2bo12bo2bo3bo2\$bobobo2bo8bobobo2bobobo2\$bo6bo8bo6bo
3bo2\$bobobo2bo8bobobo2bobobo!``````
EDIT 2: Also, a 45-cell P34:

Code: Select all

``````x = 13, y = 11, rule = Billiard
8bo\$3bo4bo\$2bobobob3obo\$4bobo3bobo\$3bo4b3o\$3bobo4bobo\$2obobo2b3obo\$3bo
bo4bo\$3b8o2\$5b2o2b2o!``````
Last edited by Sphenocorona on September 27th, 2015, 5:12 pm, edited 2 times in total.

gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

A P48:

Code: Select all

``````x = 13, y = 15, rule = Billiard
5bobo\$5bobo2\$3b7ob2o\$o2bo3bobobo\$bob5obo2bo\$2obobobo2bobo\$o2b3o2b3o\$bo
bo6bobo\$2obobobobo2bo\$3bobobobobo\$3b7ob2o2\$5bobo\$5bobo!
``````
P36:

Code: Select all

``````x = 14, y = 13, rule = Billiard
5bo2bo\$5bo2bo2\$3b8o\$3bo4bobo\$2obob6ob2o\$3bo2b2o2bo\$2ob6obob2o\$3bobo4bo
\$3b8o2\$5bo2bo\$5bo2bo!
``````
P80:

Code: Select all

``````x = 16, y = 16, rule = Billiard
5bo2bobo\$5bo2bobo2\$3b10o\$3bobo6bo\$2obob8ob2o\$3bobo6bo\$2obobob2ob3o\$3bo
bob2obobob2o\$3bobo4bobo\$2obob8ob2o\$3bo8bo\$3b10o2\$5bobo2bo\$5bobo2bo!
``````
P19!

Code: Select all

``````x = 14, y = 12, rule = Billiard
6bo\$2b2o2bo\$bo\$bob6o\$3bobobobo\$3bobobo2bo\$2obob4obo\$3bob2obobob2o\$3b8o
bo\$12bo\$5bobo2b2o\$5bobo!
``````

Sphenocorona
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Reduction of three of gameoflifeboy's oscillators: P48 to just 53 cells, P36 (bounding box reduction only), P19 to 38 cells:

Code: Select all

``````x = 47, y = 13, rule = Billiard
2b2ob2o2\$2b7o10b2o2b2o14b2o\$2bo3bobo\$obo3bob3o8b8obo8b6o\$obo3bo12bo6bo
bo8bobobobo\$2bo3b3o8bob5o2bo8bobobobo2bo\$obo3bo10bobo6bobo6bobo4bobo\$o
b5ob3o8bo2b5obo8bo4bobobo\$2bo3bobo8bobo6bo10b8obo\$2b7o8bob8o\$37b2o2b2o
\$2b2ob2o14b2o2b2o!``````
30 cell P11:

Code: Select all

``````x = 9, y = 10, rule = Billiard
4bo\$2b3o\$2bobobo\$obobo2bo\$obo2b3o\$2bo3bo\$2bobobobo\$b4obobo\$2bo\$2bo!``````

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Smaller p7:

Code: Select all

``````x = 10, y = 7, rule = Billiard
3bobo\$o2bob3obo\$bobo3bobo\$3bobobo\$2b4obo\$3bo\$3bo!
``````
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

A fuse:

Code: Select all

``````x = 47, y = 5, rule = Billiard
obo\$6o\$4b3o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o\$6o\$obo!
``````
I wonder if spaceships are possible in this rule.
▄▀
▀▀▀

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Billabob wrote:I wonder if spaceships are possible in this rule.
Billiard in Alan Hensel's notation is B36-e/S12345, so if you can find Paul Tookes's modified gfind program that accepts that it shouldn't be too difficult to begin searches.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

wildmyron
Posts: 1274
Joined: August 9th, 2013, 12:45 am

Billabob wrote:I wonder if spaceships are possible in this rule.
Billiard in Alan Hensel's notation is B36-e/S12345, so if you can find Paul Tookes's modified gfind program that accepts that it shouldn't be too difficult to begin searches.
I think consideration of the nearby semi-totalistic CA space is a necessary first step before embarking on that search.
From a brief interrogation of the glider DB, I am unable to find any rule with B3x/S12345y with known gliders. I think it's reasonable to assume this makes gliders in B36-e/S12345 unlikely to be easily found. However, whilst running a few exploratory searches in the most similar rule ( B36/S12345 ) I did find a few 2c/4 wickstretchers:

Code: Select all

``````x = 73, y = 62, rule = B36/S12345
3bobobobobobobobobobobobobobobobobobobobobobobobobo\$3bobob7ob3ob5obobo
bobob3obobobob5ob5o\$9bobobo2b4ob5obobob5obobob3obob2o3b2o\$b6obob6o2b2o
bo3bob7ob11o2b2obob4o\$2bobobobob3obobob4ob2ob4obobobo3b3obobo5b2ob2ob
2o\$2bobobobobobobobob7ob2obobob4o2bo4b2o6bob6o\$19b3o3b2obob2ob2ob2ob3o
b2o4b2ob2ob4o\$19ob4ob2ob2ob3o3b3ob5o3b2obob4o\$2bobobobobobobobobobob9o
3b4ob2ob8o2bob5o\$28b2o5b2o3b2obo3b3ob2obo3b2o\$28b2o5b2o3b2obo3b3ob2obo
3b2o\$2bobobobobobobobobobob9o3b4ob2ob8o2bob5o\$19ob4ob2ob2ob3o3b3ob5o3b
2obob4o\$19b3o3b2obob2ob2ob2ob3ob2o4b2ob2ob4o\$2bobobobobobobobob7ob2obo
bob4o2bo4b2o6bob6o\$2bobobobob3obobob4ob2ob4obobobo3b3obobo5b2ob2ob2o\$b
6obob6o2b2obo3bob7ob11o2b2obob4o\$9bobobo2b4ob5obobob5obobob3obob2o3b2o
\$3bobob7ob3ob5obobobobob3obobobob5ob5o\$3bobobobobobobobobobobobobobobo
bobobobobobobobobobo20\$bobobobobobobobobobobobobobobobo\$bobobobobobobo
bobobobobobobob5o\$26o6bobobobobobobobobobobobobobobobobobo\$28bob3obob
7ob3ob3obobobobobobobob4o\$2bobobobobobobobobobobobobobob4o4bob2obob2ob
ob4ob2o2bobob2obobob2o\$2bobobobob3obobobob3obobobob3obo2b4ob2o4bo2b2ob
3o2b8obo2b2o\$b10ob6o2b2o2bob2o4bobo5b2ob4ob4o4bo2bo5bobob4o\$12b3ob2o4b
2ob5ob7o2b4o5b2o3b6o4b2obob3o\$3bobobobob3obob3obob3obobob3obobobob3ob
6o2bo5bo6bobobo\$3bobobobobobobobobobobobobobobobobobobobobobobo5bobobo
b3o4bobobo\$51bob5obob11o\$b49o6bob3o2b6o2b2o\$51bob5obob11o\$3bobobobobob
obobobobobobobobobobobobobobobobobo5bobobob3o4bobobo\$3bobobobob3obob3o
bob3obobob3obobobob3ob6o2bo5bo6bobobo\$12b3ob2o4b2ob5ob7o2b4o5b2o3b6o4b
2obob3o\$b10ob6o2b2o2bob2o4bobo5b2ob4ob4o4bo2bo5bobob4o\$2bobobobob3obob
obob3obobobob3obo2b4ob2o4bo2b2ob3o2b8obo2b2o\$2bobobobobobobobobobobobo
bobob4o4bob2obob2obob4ob2o2bobob2obobob2o\$28bob3obob7ob3ob3obobobobobo
bobob4o\$26o6bobobobobobobobobobobobobobobobobobo\$bobobobobobobobobobob
obobobob5o\$bobobobobobobobobobobobobobobobo!``````
Much simpler 2c/4 wickstretchers with even bilateral symmetry:

Code: Select all

``````x = 19, y = 52, rule = B36/S12345
o2bobo\$8o\$2bobob2o2\$8ob3o\$o4bo2b5o\$5b4o5b2o\$6b3obo3b2o\$5b4ob4obo\$5b13o
\$bo3bo3b2o2bo3b2o\$bo3bo3b2o2bo3b2o\$5b13o\$5b4ob4obo\$6b3obo3b2o\$5b4o5b2o
\$o4bo2b5o\$8ob3o2\$2bobob2o\$8o\$o2bobo9\$2bo2bo\$2b6o\$4bob2o2\$2b6ob3o\$o7b5o
\$ob7o5b2o\$b4ob3obo3b2o\$2b3ob3ob4obo\$2b16o\$9b2o2bo3b2o\$9b2o2bo3b2o\$2b
16o\$2b3ob3ob4obo\$b4ob3obo3b2o\$ob7o5b2o\$o7b5o\$2b6ob3o2\$4bob2o\$2b6o\$2bo
2bo!``````
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Code: Select all

``````@RULE triship

@TABLE
neighborhood:Moore
symmetries:rotate4reflect
n_states:2

0,0,0,1,0,1,0,1,0,1
0,1,1,0,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,1,0
1,1,0,0,0,1,0,0,0,0
1,1,1,1,1,1,0,0,0,0

# OOONNONO
# C,N,NE,E,SE,S,SW,W,NW,C'``````
A CA I made so that this polyplet:

Code: Select all

``````x = 3, y = 2, rule = triship
obo\$bo!
``````
...Is a spaceship.

Random soups in this rule mostly create wickstretchers, rakes and growing wickstretchers. (?)

Code: Select all

``````x = 58, y = 66, rule = triship
2o2bo9b5obobob3obo5b2o2bobobob4ob2ob3obo\$o3b2ob3ob2o3bobo3bobo2bob4obo
b3o3bob3o2b3o2bo\$b2o3b4o2b4o2b3o2bo4bo2bob8o2b3o2b2obobo3bo\$ob2obo2bo
2b2o2b5obo2b4obobo4bo6b3ob2o4bo2bo\$bo5bo2b3ob2ob4o2b6ob3o2b2o3b3o2b4ob
5obo\$bo3b2o2b2ob2obobo2b4o3bo6b4o4b2o2bo2bobo2bobo\$bo2b4ob3o2b2o3bobob
obob2obob4o2bo4bo3b3ob3o\$3o3b2o2bob5ob2o2b2obo2bob3ob2o2bo3bob2obo2bob
o3bo\$b2obo4b3o4bobo4b2o5b2ob3o6bo2bo2b2o3b2o\$b3o4bo2b7o2bobo2bo3bo2b3o
3b2o4b5o2b3ob3o\$3ob4obo2b3o2bobobobob2o2bo4b2obobob5o3bo2bob2obo\$4o2bo
6b3o2b2ob5obo8b2obo5b3obo2b2ob3o\$4o2b3o2bob2o2b2obo6bo2b4ob4o6bo3b6o\$o
2b2obo3bo3b2o2bobo2b4ob3ob2o2bo2bo2bob4obo2bob2obo\$b2o2bo2bob3o3b2ob3o
b2o4bobo2b2ob2o5b2o3b3ob3obo\$4bobobo2b4o3bob2ob2o3b3o2bobo2bob5o2b4ob
3obo\$2obo4b2obo2b3o2bob3ob3o2b2o3bo4bo3bo2bo2bo2b3o\$2bo2b6o6b2ob4o7bob
3ob4ob2ob2obo3bo4bo\$2o4b2obo2b3ob2ob2o4b4o2bo2b2o4b2o2bo2b2o2bob4o\$ob
2o2bo3b2o4b2o3bo4b3o4b3o2b4o3b2ob4obob3o\$b2ob3obo2bo2bo2bob3obobob2ob
3o6b3ob3ob2o2bob2obo\$ob9o6b4ob3ob2obob2ob2obobobo2bobo3bob2o3bo\$b2obo
2bobo5bobobobob10obo4b2obo2bobob2ob5o\$3bo2bobo2bobo2b4o2b3o2bob2obo2b
2o2b2o2bobo3bob2o3b2o\$bobo4b2ob3o2bobob5obob5ob7ob2o3b2obobo2b2o\$2o3bo
b8ob3ob3o3b3o2bob6o2bo3bob2obobo\$2obobo2bobobo4b2o2bob2obob3obo5bobob
2o3bob2o2b3o\$b2obo5bob6o2bo2bob4obobobob4o5bobob3obobo\$3bo2bobob4ob4o
5b2o4b3o4b3o2bobob4obob2o\$obo2bob4o2bo2bob2ob2obobob3ob2o2b2o3bo2bob3o
3b5o\$b3ob2obob2o2bo5b2o2bo3bob2obob4obobobobo2bob3o2bo\$4b4o3b4o2bobobo
2bo7b2o2b3obo2bo2bob2o3bob3o\$3bob2ob2o2bobo2bob5o2b8obo3b3obobobo3b2ob
obo\$bob3obob4obo2bobob2ob2obobo2bo3b2o2bo3bob3o3b2o2bo\$o3b3ob2o2bo2b2o
b2o3b2obo2b3o5bo3b4o2bobo5bo\$bo3bo7bob2obo3bo2b2obo2bob2o2b4ob3o2b3o2b
o2bobo\$b3obobobo3bo2bobo2bobo2b3o2bobob4o2b2o2bob8obo\$3bob2o2bobob2obo
2bobobob5ob2o2bo2b3obob2o2bo6bobo\$3ob2ob2ob5o2bob5ob2ob2o2b3o5bob2ob2o
3b3ob2obo\$bob5ob4o3b2o2bo2bob5o2b2o2bobobo2b3obo2b2o2b2o\$2ob6ob2o4b5ob
3o2b3obob2obo3b4o4b2o5bobo\$obobo4bobo2bob2o2b2o3b3o2bob5ob3o2bo2b5o2b
3o\$3b3ob2o2b2o2bo2b2obob4o2b5o2bobobo4b3ob2o3b2obo\$bob2ob6o3bo3b4o2b2o
5bobo2b2obob2o2bo2b2o2bo2b2o\$bob2o2bo5bo2b3o2b4obob3obob3ob3obo4bob2o
2b4o\$4bobobobo2bob2o3bobob2o3b2o2b5o5b6o2bo3b2o\$obo2b2obo2b3obo5bobobo
b2ob2o3bo2bo2bo2b3obobo2bo\$ob3o2b4ob2obo2bo3b5obob2o2b4o4b4obo4b2ob3o\$
5b3ob7o3bob2ob2o3bo2bo2bobobo3b2obo3bob3o2bo\$bob2o3b4o8b3ob2ob6o3bobo
4b2ob2ob2obo3bo\$6o5b3obob4obo3bo4b3o2b4o3bob2obo2bob2o\$bobo3bo3b2o5b2o
bob2o3b2o3b2ob2ob2o3b5o4bob2o\$ob3obo3bo3bo3bob2ob2o2bo6bo5b2obo5b2ob2o
2b2o\$b6o2b3o4b2o2bo2bo2b2o3bob2ob2o5bo2b2ob3ob4o\$2b2obo2bo3bo3bobobob
3obo2b4obob3o3b4o2bobob2obobo\$obo4bo2bobo3b2obob2obobo2bobob2o2b3o3bob
o3b2o\$2o4bob8ob3o2bo4b3o5b2obo2bob2o3bo3b2o\$2obobo4bo2bobob3ob4o3b2o5b
obo4bobobo3b2o3bo\$o2bob2ob3o6bo4bo6bobobobo2b2obo2b2ob2ob2o4bo\$bobo3bo
3b3ob2ob2o5b3obo2bobo2bo3bobobo3bo5b2o\$bob3obobo7b5o4b2ob3o2bo2b3o4b
14o\$2bo3b2ob5ob7o3b3o3b2obob2o3bob2o4bob3ob2o\$3o2b2o3bo2bo2b2obo3b2obo
2b6obo2b3o6b3o2b4o\$2o11bob2o4b3o2b2o4bob3o2bo2b3o2bob4obobo\$4ob3obo4b
2o2b2obobobo4b2ob2ob2obo2b4o2b3o2b4o\$4o2bob4o3b2o6b3o4b2ob4ob2o2b4o4b
3obobo!
``````

EDIT: Strange:

Code: Select all

``````x = 4, y = 6, rule = triship
2b2o\$3bo\$3bo\$2o\$o\$o!
``````
EDIT2: Spacefiller + Quadratic growth + some wickstretchers:

Code: Select all

``````x = 5, y = 7, rule = triship
2b2o\$3bo\$3bo\$2o\$bo\$bob2o\$3b2o!
``````

Code: Select all

``````x = 7, y = 9, rule = triship
b2o\$bo\$2o\$3b2o\$3bo\$2b2o\$5b2o\$5bo\$4b2o!
``````
▄▀
▀▀▀

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Oscillators in the Billiard rule so far:

Code: Select all

``````x = 45, y = 738, rule = Billiard
14b2o2b2o2b2o2bo\$14b2o2b2o2b2o2b3o\$27bo\$26b3o\$22b2o4bo\$22b2o3\$14b2o2b
2o2b2o\$14b2o2b2o2b2o3\$14b2o\$14b2o3\$14b2o2b2o2b2o\$14b2o2b2o2b2o13\$14b2o
2b2o2b2o4bo\$14b2o2b2o2b2o4bo\$26b5o2\$22b2o2b5o\$22b2o4bo\$28bo2\$14b2o2b2o
2b2o\$14b2o2b2o2b2o3\$22b2o\$22b2o3\$14b2o2b2o2b2o\$14b2o2b2o2b2o13\$14b2o6b
2o4b2o\$14b2o6b2o\$26b4o\$29bo\$14b2o6b2o2b2ob2o\$14b2o6b2o3bobo\$27bobo2\$
14b2o2b2o2b2o\$14b2o2b2o2b2o3\$22b2o\$22b2o3\$22b2o\$22b2o13\$14b2o2b2o2b2o
5bobobo\$14b2o2b2o2b2o5bobob3o\$26b2obobo\$29bob3o\$14b2o13bobo\$14b2o12b6o
2\$30b2o\$14b2o2b2o2b2o\$14b2o2b2o2b2o3\$22b2o\$22b2o3\$14b2o2b2o2b2o\$14b2o
2b2o2b2o13\$14b2o2b2o2b2o5b2o\$14b2o2b2o2b2o\$27b6o\$27bo\$14b2o10b2ob2o\$
14b2o11b3o\$27bobo2\$14b2o2b2o2b2o\$14b2o2b2o2b2o3\$14b2o6b2o\$14b2o6b2o3\$
14b2o2b2o2b2o\$14b2o2b2o2b2o13\$14b2o2b2o2b2o5bobo\$14b2o2b2o2b2o2bo2b5ob
o\$27bobobobobo\$29bob3o\$22b2o4b4obo\$22b2o5bo\$29bo2\$22b2o\$22b2o3\$22b2o\$
22b2o3\$22b2o\$22b2o13\$14b2o2b2o2b2o9b2o\$14b2o2b2o2b2o9bo\$29bob3o\$29bob
4o\$14b2o6b2o2b2obobobo\$14b2o6b2o5bob3o\$29bobo2\$14b2o2b2o2b2o\$14b2o2b2o
2b2o3\$14b2o6b2o\$14b2o6b2o3\$14b2o2b2o2b2o\$14b2o2b2o2b2o13\$14b2o2b2o2b2o
6bo\$14b2o2b2o2b2o6b3obo\$28bobobobo\$26b3obobo\$14b2o6b2o9bo\$14b2o6b2o4b
3obo\$32bobo\$28b5obo\$14b2o2b2o2b2o6bo\$14b2o2b2o2b2o3\$22b2o\$22b2o3\$22b2o
\$22b2o13\$8b2o4b2o2b2o2b2o7bo\$8b2o4b2o2b2o2b2o8bo\$29b3obo\$29bobo\$8b2o4b
2o6b2o2b2obobo\$8b2o4b2o6b2o2bob2ob3o\$32bo\$27b7o\$8b2o4b2o6b2o5bo\$8b2o4b
2o6b2o7bo\$32bo2\$8b2o4b2o6b2o\$8b2o4b2o6b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b
2o2b2o13\$8b2o12b2o6bo\$8b2o12b2o4b3o\$28bobobo\$26bobobo2bo\$8b2o12b2o2bob
o2b3o\$8b2o12b2o4bobobo\$28bobobobo\$27b2obobobo\$8b2o12b2o4bo\$8b2o12b2o4b
o3\$8b2o12b2o\$8b2o12b2o3\$8b2o12b2o\$8b2o12b2o13\$8b2o4b2o2b2o2b2o7b2o\$8b
2o4b2o2b2o2b2o\$29b3obo\$29bobobo\$8b2o12b2o3b3obob2o\$8b2o12b2o\$26bobobob
ob3o\$26bob3obobo\$8b2o4b2o2b2o2b2o4bobobo\$8b2o4b2o2b2o2b2o4b5o2\$30bo\$8b
2o4b2o14bo\$8b2o4b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b2o2b2o13\$8b2o4b2o2b2o
2b2o\$8b2o4b2o2b2o2b2o6b2o2b2o2\$28b10o\$8b2o12b2o4bo8bo\$8b2o12b2o2bobo8b
obo\$26bobo8bobo\$28bo8bo\$8b2o4b2o2b2o2b2o4b10o\$8b2o4b2o2b2o2b2o\$30b2o2b
2o2\$8b2o12b2o\$8b2o12b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b2o2b2o13\$8b2o4b2o
2b2o2b2o7bo\$8b2o4b2o2b2o2b2o6bo2\$28b5o\$8b2o4b2o16bo\$8b2o4b2o12b3obob2o
\$30bobo\$26b3ob3o\$8b2o4b2o2b2o2b2o4bob3ob2o\$8b2o4b2o2b2o2b2o6b3o\$30bobo
2\$8b2o4b2o6b2o\$8b2o4b2o6b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b2o2b2o13\$8b2o
4b2o2b2o2b2o7bo2bo\$8b2o4b2o2b2o2b2o7bo2bo2\$29b8o\$8b2o12b2o5bobob2obo\$
8b2o12b2o2b2ob3o3b3o\$29bobob2obo\$29b8o\$8b2o12b2o\$8b2o12b2o7bo2bo\$31bo
2bo2\$8b2o12b2o\$8b2o12b2o3\$8b2o12b2o\$8b2o12b2o13\$8b2o4b2o2b2o2b2o6b2o\$
8b2o4b2o2b2o2b2o\$28b6o\$28bobobobo\$8b2o4b2o6b2o2bobobobo2bo\$8b2o4b2o6b
2o2bob6obo\$28bo6bobo\$28b8obo\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b2o2b2o4b2o2b2o
3\$8b2o12b2o\$8b2o12b2o3\$8b2o12b2o\$8b2o12b2o13\$2o2b2o2b2o12b2o6b2o2b2o\$
2o2b2o2b2o12b2o\$28b8o\$28bobo\$8b2o12b2o2bobobo3b2o\$8b2o12b2o3b4obo\$28b
3obob2o\$26bobob3o\$2o2b2o2b2o12b2o3bo4bo\$2o2b2o2b2o12b2o3\$2o20b2o\$2o20b
2o3\$2o2b2o2b2o12b2o\$2o2b2o2b2o12b2o13\$2o2b2o2b2o4b2o2b2o2b2o7bo2bo\$2o
2b2o2b2o4b2o2b2o2b2o7bo2bo2\$29b8o\$8b2o12b2o5bo4b3o\$8b2o12b2o2b2obobo4b
ob2o\$29bo4bobo\$29bo4b3o\$2o2b2o2b2o4b2o2b2o2b2o2b2ob2ob2ob2ob2o\$2o2b2o
2b2o4b2o2b2o2b2o5b2o2b2obo\$29b8o2\$2o12b2o15bo2bo\$2o12b2o15bo2bo3\$2o2b
2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o13\$2o2b2o2b2o4b2o2b2o2b2o6b2o
2b2o\$2o2b2o2b2o4b2o2b2o2b2o\$28b8o\$28bobo\$8b2o4b2o6b2o2bobobo3b2o\$8b2o
4b2o6b2o2bob3obo\$28b3obob2o\$28bob3o\$2o2b2o2b2o4b2o2b2o2b2o8bo\$2o2b2o2b
2o4b2o2b2o2b2o3\$2o12b2o6b2o\$2o12b2o6b2o3\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o
2b2o4b2o2b2o2b2o13\$2o2b2o2b2o4b2o6b2o10bo\$2o2b2o2b2o4b2o6b2o5bo4bo\$28b
obobob3obo\$30bobo3bobo\$8b2o4b2o6b2o5b8o\$8b2o4b2o6b2o5bo3b2obobo\$26b2ob
o3b4obo\$29bo3b2obo\$2o2b2o2b2o4b2o2b2o2b2o5b8o\$2o2b2o2b2o4b2o2b2o2b2o\$
31b2o2b2o2\$8b2o12b2o\$8b2o12b2o3\$2o2b2o2b2o12b2o\$2o2b2o2b2o12b2o13\$2o2b
2o2b2o4b2o2b2o2b2o4bo2bo2bo2bo2bo\$2o2b2o2b2o4b2o2b2o2b2o4b13o\$27b2obo
7bob2o\$28bob4ob4obo\$8b2o4b2o12bobo2bobo2bobo\$8b2o4b2o14bo2bobo2bo\$26b
8ob8o\$28bo2bo5bo2bo\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o3\$8b
2o12b2o\$8b2o12b2o3\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o13\$2o
2b2o2b2o4b2o2b2o2b2o4b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o\$28b8obo\$28bob2o3bo
bo\$8b2o4b2o10bob6obo\$8b2o4b2o10bob3o2b3obo\$28bob6obo\$26bobo3b2obo\$2o2b
2o2b2o4b2o2b2o2b2o2bob8o\$2o2b2o2b2o4b2o2b2o2b2o\$30b2o2b2o2\$8b2o4b2o6b
2o\$8b2o4b2o6b2o3\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o13\$2o2b
2o2b2o4b2o2b2o2b2o9b2o\$2o2b2o2b2o4b2o2b2o2b2o2bobobo\$26bob7o\$28bob2obo
2b2o\$8b2o4b2o6b2o3b5obo\$8b2o4b2o6b2o7b7o\$27b2o2bob2obo2b2o\$30b5obo\$2o
2b2o2b2o4b2o2b2o2b2o10bob5o\$2o2b2o2b2o4b2o2b2o2b2o6b2o2bo4bo2b2o\$33b5o
bo\$37bob5o\$8b2o4b2o6b2o9b2o2bo2bobo\$8b2o4b2o6b2o12b7o\$40bobobo\$36b2o2b
obobo\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o13\$2o6b2o4b2o2b2o2b
2o6bo2bo\$2o6b2o4b2o2b2o2b2o4b8o\$28bobo4bo\$27b6o2bobo\$2o6b2o4b2o6b2o2bo
bob4obobo\$2o6b2o4b2o6b2o4bo6bo\$28b8o\$33bo\$2o2b2o2b2o4b2o6b2o6bo\$2o2b2o
2b2o4b2o6b2o6bo3\$8b2o4b2o6b2o\$8b2o4b2o6b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o
2b2o2b2o13\$2o6b2o4b2o2b2o2b2o4b2ob2o\$2o6b2o4b2o2b2o2b2o\$28b7o\$28bobobo
bo\$2o6b2o4b2o6b2o2bob5ob3o\$2o6b2o4b2o6b2o2bobobobo\$28bobob3o\$26bobo2bo
\$2o2b2o2b2o4b2o2b2o2b2o2bob5ob3o\$2o2b2o2b2o4b2o2b2o2b2o4bo3bobo\$28b7o
2\$8b2o4b2o6b2o4b2ob2o\$8b2o4b2o6b2o3\$8b2o4b2o2b2o2b2o\$8b2o4b2o2b2o2b2o
13\$2o2b2o2b2o4b2o2b2o2b2o7bo2bobo\$2o2b2o2b2o4b2o2b2o2b2o7bo2bobo2\$29b
10o\$2o6b2o4b2o6b2o5bo4b3obo\$2o6b2o4b2o6b2o2b2obob8ob2o\$29bobo6bo\$26b2o
b3ob2ob3o\$2o2b2o2b2o4b2o6b2o5b3ob2obobob2o\$2o2b2o2b2o4b2o6b2o5b3o4bobo
\$26b2obob8ob2o\$29bo2b2o4bo\$2o6b2o4b2o6b2o5b10o\$2o6b2o4b2o6b2o\$31bobo2b
o\$31bobo2bo\$2o2b2o2b2o4b2o2b2o2b2o\$2o2b2o2b2o4b2o2b2o2b2o!
``````
▄▀
▀▀▀

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Have a p100:x = 11, y = 11, rule = Billiard
3bob2o\$2bo\$bob6o\$obo3bobo\$2bobobobobo\$obobo3bobo\$obobo2b2o\$2bo2bo2bobo
\$2b6obo\$8bo\$4b2obo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Code: Select all

``````x = 11, y = 11, rule = Billiard
3bob2o\$2bo\$bob6o\$obo3bobo\$2bobobobobo\$obobo3bobo\$obobo2b2o\$2bo2bo2bobo
\$2b6obo\$8bo\$4b2obo!``````
Nice! Here's a P25 that can probably be improved:

Code: Select all

``````x = 12, y = 11, rule = Billiard:T100,100
5b2o\$5bobo2\$3b7o\$3bobobobo\$2ob3obob2o\$3bob3o3bo\$3bo3b3o\$2ob4o\$3bo2bob
2o\$3bo2bobobo!
``````
By the way, is this the smallest P3?

Code: Select all

``````x = 5, y = 7, rule = Billiard
2bo\$2bo\$2ob2o2\$2ob2o\$2bo\$2bo!
``````
▄▀
▀▀▀

Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Billabob wrote: Here's a P25 that can probably be improved:

Code: Select all

``````x = 12, y = 11, rule = Billiard:T100,100
5b2o\$5bobo2\$3b7o\$3bobobobo\$2ob3obob2o\$3bob3o3bo\$3bo3b3o\$2ob4o\$3bo2bob
2o\$3bo2bobobo!
``````
It can, of course:

Code: Select all

``````x = 10, y = 10, rule = Billiard:T100,100
9bo\$4bo3bo\$2b5o\$2bobobobo\$obobobobo\$obo\$2bo3b2o\$b5o\$obo2bo\$4bo!
``````
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]