Thread For Your Unrecognised CA

For discussion of other cellular automata.
User avatar
Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Re: Thread For Your Unrecognised CA

Post by Billabob » October 15th, 2015, 7:14 am

Infinite spaceship:

Code: Select all

x = 8, y = 24, rule = Billiard:T0,24
bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o$bobo2b2o$2ob4o$bobobo$bobo
bo$2ob4o$bobo2b2o$bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o$bobo2b2o
$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o!
▄▀
▀▀▀

User avatar
Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Re: Thread For Your Unrecognised CA

Post by Billabob » October 15th, 2015, 9:54 am

It is obvious that there exist objects that can't be destroyed from the inside, but what about the outside?

Here are some likely candidates:

Code: Select all

x = 65, y = 87, rule = Billiard
41bo2bo2bo2bo2bo$39b17o$40bo13bo$37bo2bob2obobobob2obo2bo$37b4ob2ob5ob
2ob4o$36b2o4b2o7b2o4b2o$37bob3obob2ob2obob3obo$37bob5o7b5obo$36b2o6b3o
b3o6b2o$37bob2obobo5bobob2obo$37bo2bobobo5bobobo2bo$36b2ob2o13b2ob2o$
37bo2bobobo5bobobo2bo$37bob2obobo5bobob2obo$36b2o6b3ob3o6b2o$37bob5o7b
5obo$37bob3obob2ob2obob3obo$36b2o4b2o7b2o4b2o$37b4ob2ob5ob2ob4o$37bo2b
ob2obobobob2obo2bo$40bo13bo$39b17o$41bo2bo2bo2bo2bo25$62bobo$63bo10$3b
o2bo2bo2bobobo2bo2bo2bo$b27o$bo2bo4bo4bo4bo4bo2bo$2o2bob2obob2obob2obo
b2obo2b2o$b4ob2obobo2bo2bobob2ob4o$bo4b4o2bobobo2b4o4bo$2ob3obo2b3obob
3o2bob3ob2o$bob5obo4bo4bob5obo$bo3bo3bob2obob2obo3bo3bo$6ob3obo2bo2bob
3ob6o$bo4bo4bob3obo4bo4bo$bob2obob4o2bo2b4obob2obo$2obob2obo3bobobo3bo
b2obob2o$bo8bo3bo3bo8bo$29o$bo8bo3bo3bo8bo$2obob2obo3bobobo3bob2obob2o
$bob2obob4o2bo2b4obob2obo$bo4bo4bob3obo4bo4bo$6ob3obo2bo2bob3ob6o$bo3b
o3bob2obob2obo3bo3bo$bob5obo4bo4bob5obo$2ob3obo2b3obob3o2bob3ob2o$bo4b
4o2bobobo2b4o4bo$b4ob2obobo2bo2bobob2ob4o$2o2bob2obob2obob2obob2obo2b
2o$bo2bo4bo4bo4bo4bo2bo$b27o$3bo2bo2bo2bobobo2bo2bo2bo!
So far I haven't found anything that lasts longer than 1K generations.

EDIT1,2,3: Here's a smaller P22:

Code: Select all

x = 11, y = 9, rule = Billiard2
4.2B.B.2B$4.2B.B.2B$7.B$B.4BABA2B$B.B4.A$2.B.B.A4B$2.B.B.B3.B$B.BAB.B
2.B$.2B.B.2B!

It can definitely be improved. Also, "Billiard2" is this:

Code: Select all

@RULE Billiard2
@TABLE
neighborhood:Moore
symmetries:rotate4reflect
n_states:3

# 0 = dead
# 1 = alive
# 2 = special alive

var a1={1,2}
var a2={1,2}
var a3={1,2}
var a4={1,2}
var a5={1,2}
var a6={1,2}
var a7={1,2}
var a8={1,2}

# C,N,NE,E,SE,S,SW,W,NW,C'

#B3
0,0,a1,0,0,0,a2,0,a3,1
0,a1,0,a2,0,0,0,a3,0,1
0,0,0,a1,0,a2,0,0,a3,1
0,a1,a2,0,0,0,0,0,a3,1
0,0,a1,a2,0,0,0,0,a3,1
0,0,a1,0,0,a2,0,0,a3,1
0,a1,0,0,a2,0,0,0,a3,1
0,a1,0,0,0,0,0,a2,a3,1
0,a1,0,a2,0,0,0,0,a3,1
0,a1,0,0,0,a2,0,0,a3,1
#B6-e
0,a1,0,a2,a3,a4,a5,a6,0,1
0,a1,a2,0,a3,a4,a5,a6,0,1
0,0,a1,a2,a3,a4,a5,a6,0,1
0,a1,a2,a3,0,a4,a5,a6,0,1
0,0,a1,a2,a3,0,a4,a5,a6,1
#Death at 0
1,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,0,0
#Death at 6
1,a1,0,a2,a3,a4,a5,a6,0,0
1,0,a1,a2,a3,a4,a5,0,a6,0
1,a1,a2,0,a3,a4,a5,a6,0,0
1,0,a1,a2,a3,a4,a5,a6,0,0
1,a1,a2,a3,0,a4,a5,a6,0,0
1,0,a1,a2,a3,0,a4,a5,a6,0
2,a1,0,a2,a3,a4,a5,a6,0,0
2,0,a1,a2,a3,a4,a5,0,a6,0
2,a1,a2,0,a3,a4,a5,a6,0,0
2,0,a1,a2,a3,a4,a5,a6,0,0
2,a1,a2,a3,0,a4,a5,a6,0,0
2,0,a1,a2,a3,0,a4,a5,a6,0
# Death at 7
1,a1,a2,a3,a4,a5,a6,a7,0,0
1,0,a1,a2,a3,a4,a5,a6,a7,0
2,a1,a2,a3,a4,a5,a6,a7,0,0
2,0,a1,a2,a3,a4,a5,a6,a7,0
# Death at 8
1,a1,a2,a3,a4,a5,a6,a7,a8,0
2,a1,a2,a3,a4,a5,a6,a7,a8,0
It has an extra live state that acts the same as a regular live cell, though can't be born.

EDIT4,7,9 :roll: : Smallest oscillators so far. If I have missed some, please tell me.

Code: Select all

x = 244, y = 258, rule = Billiard2
6.2B2.2B2.2B2.B51.2B12.2B6.B39.2B2.2B2.2B12.2B6.2B2.2B34.2B6.2B4.2B2.
2B2.2B6.B2.B$6.2B2.2B2.2B2.3B49.2B12.2B4.3B39.2B2.2B2.2B12.2B46.2B6.
2B4.2B2.2B2.2B4.8B$19.A70.B.B.B65.8B62.B3.A2.B$18.3B67.B.B.B2.B64.B.A
66.2BAB.3AB.B$14.2B4.B49.2B12.2B2.B.B.2A2B44.2B12.2B2.B.B.B3.2B34.2B
6.2B4.2B6.2B2.B.B.A.A.AB.B$14.2B54.2B12.2B4.B.A.A45.2B12.2B3.B2AB.B
37.2B6.2B4.2B6.2B4.B.A3.AB$90.BAB.B.B63.BAB.B.2B62.8B$89.2BAB.B.B61.B
.B.3B70.B$6.2B2.2B2.2B54.2B12.2B4.B41.2B2.2B2.2B12.2B3.B4.B37.2B2.2B
2.2B4.2B6.2B6.B$6.2B2.2B2.2B54.2B12.2B4.B41.2B2.2B2.2B12.2B46.2B2.2B
2.2B4.2B6.2B6.B3$6.2B62.2B12.2B46.2B20.2B54.2B4.2B6.2B$6.2B62.2B12.2B
46.2B20.2B54.2B4.2B6.2B3$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B12.2B54.
2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B12.2B54.2B4.2B2.2B
2.2B13$6.2B2.2B2.2B4.B5.B.2B40.2B4.2B2.2B2.2B7.2B37.2B2.2B2.2B4.2B2.
2B2.2B6.2B.B.2B33.2B6.2B4.2B2.2B2.2B4.2B.2B$6.2B2.2B2.2B4.B5.BAB41.2B
4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B6.2B.B.2B33.2B6.2B4.2B2.2B2.2B$
18.2BA2B2.2B.B62.3B.B69.B64.7B$27.B.2B60.B.B.B62.B.4BABA2B61.B.A.B.B$
14.2B2.2BA2B4.BAB40.2B12.2B3.3B.B.2B43.2B12.2B2.B.B5.2A34.2B6.2B4.2B
6.2B2.B.B3AB.3B$14.2B4.B5.2B.B40.2B12.2B54.2B12.2B4.B.BA.4B33.2B6.2B
4.2B6.2B2.B.B.A.A$20.B67.B.B.B.B.3B61.B.B.B3.B61.B.A.A2B$88.B.BAB.B.B
61.B.B.BAB2.B60.B.B2.A$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.B.B.B37.2B2.2B
2.2B4.2B2.2B2.2B3.2B.B.2B36.2B2.2B2.2B4.2B2.2B2.2B2.B.B3AB.3B$6.2B2.
2B2.2B54.2B4.2B2.2B2.2B4.5B37.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B
2.2B2.2B4.B3.B.B$230.7B$92.B$14.2B54.2B4.2B14.B39.2B12.2B62.2B4.2B6.
2B4.2B.2B$14.2B54.2B4.2B54.2B12.2B62.2B4.2B6.2B3$6.2B2.2B2.2B54.2B4.
2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B54.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.
2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B54.2B4.2B2.2B2.2B13$6.2B6.2B4.
2B48.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B11.B34.2B2.2B2.2B4.2B2.2B
2.2B7.B2.B.B$6.2B6.2B54.2B4.2B2.2B2.2B6.2B2.2B10.B23.2B2.2B2.2B4.2B2.
2B2.2B6.B3.B35.2B2.2B2.2B4.2B2.2B2.2B7.B2.B.B$18.4B86.3B49.5B$21.B68.
10B6.B.B51.B.A.B.B64.10B$6.2B6.2B2.2B.2B47.2B12.2B4.B3.2A3.B4.3B.BA3B
27.2B4.2B10.B.BAB.B.B35.2B6.2B4.2B6.2B5.B4.3A.B$6.2B6.2B3.B.B48.2B12.
2B2.B.B.A4.A.B.B6.A3.B27.2B4.2B10.B.B.A.A37.2B6.2B4.2B6.2B2.2B.B.BA6B
.2B$19.B.B66.B.B.A4.A.B.B4.2BA.A.B.2B44.B.2A2B65.B2A6.B$90.B3.2A3.B
12.B46.2BA2B64.2B.BAB.2B.3B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.10B6.7B19.
2B2.2B2.2B4.2B2.2B2.2B2.B.B2.B38.2B2.2B2.2B4.2B6.2B5.BAB.2B.B.B.2B$6.
2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B6.B39.2B2.2B2.2B
4.2B6.2B5.BAB4.B.B$92.2B2.2B10.B.B117.2B.B.4BABAB.2B$108.2B121.B2.2A
4.B$14.2B54.2B12.2B46.2B20.2B46.2B6.2B4.2B6.2B5.10B$14.2B54.2B12.2B
46.2B20.2B46.2B6.2B4.2B6.2B$233.B.B2.B$233.B.B2.B$14.2B54.2B4.2B2.2B
2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B4.2B
2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B
2.2B5.B.B.B44.2B4.2B6.2B7.B38.2B2.2B2.2B4.2B2.2B2.2B6.2B2.2B28.2B4.2B
2.2B2.2B4.2B2.2B2.2B5.B.2B$6.2B2.2B2.2B5.BAB.3B42.2B4.2B6.2B5.3B38.2B
2.2B2.2B4.2B2.2B2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B4.B$18.2B.B2A67.B68.
8B61.B.6B$21.BA3B63.B.B.3B64.B.A65.B.B2A3.B$6.2B13.B.A46.2B4.2B6.2B2.
B.B4.B44.2B4.2B6.2B2.B.B.B3.2B28.2B4.2B6.2B4.2B6.2B4.B2A.2AB.B$6.2B
12.6B44.2B4.2B6.2B4.BA2BAB.B42.2B4.2B6.2B2.B.BAB.B31.2B4.2B6.2B4.2B6.
2B2.B.B4A.B.B$89.2B2.2AB.B62.BAB.B.2B60.B.B.A.2AB$22.2B67.B.BAB64.B.
3B65.B3.2AB.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B5.B.B.B36.2B2.2B2.2B4.2B2.
2B2.2B8.B31.2B4.2B6.2B4.2B6.2B4.6B.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.
2B2.2B2.2B4.2B2.2B2.2B40.2B4.2B6.2B4.2B6.2B10.B$232.2B.B2$14.2B54.2B
12.2B46.2B12.2B6.2B40.2B4.2B6.2B4.2B6.2B$14.2B54.2B12.2B46.2B12.2B6.
2B40.2B4.2B6.2B4.2B6.2B3$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B
2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B
4.2B2.2B2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B2.2B5.2B47.2B4.2B
2.2B2.2B5.B.B.B36.2B2.2B2.2B4.2B6.2B10.B$6.2B2.2B2.2B54.2B4.2B2.2B2.
2B2.B2.B.BAB36.2B2.2B2.2B4.2B6.2B5.B4.B$19.6B64.B.B.2AB.2B61.B.B.B.3B
.B$19.B71.B.A.B66.BAB3.B.B$6.2B10.2B.2B47.2B4.2B12.B2.A.B44.2B4.2B6.
2B5.B4A3B$6.2B11.BAB48.2B4.2B12.4B.B.2B41.2B4.2B6.2B5.B.2A3.B.B$19.B.
B66.B.B.A2.B62.2B.B.5AB.B$88.B.6B65.B4.A.B$6.2B2.2B2.2B54.2B4.2B2.2B
2.2B6.2B38.2B2.2B2.2B4.2B2.2B2.2B5.8B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B
46.2B2.2B2.2B4.2B2.2B2.2B$163.2B2.2B2$6.2B6.2B54.2B12.2B54.2B12.2B$6.
2B6.2B54.2B12.2B54.2B12.2B3$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.
2B12.2B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B13$6.2B2.2B2.
2B5.B.B46.2B4.2B2.2B2.2B7.B38.2B2.2B2.2B4.2B2.2B2.2B4.B2.B2.B2.B2.B$
6.2B2.2B2.2B2.B2.BA3B.B42.2B4.2B2.2B2.2B6.B39.2B2.2B2.2B4.2B2.2B2.2B
4.13B$19.B.B.A.B.B131.2B4.A.A4.2B$21.B.BAB64.5B65.B2A3B.3B2AB$14.2B4.
2BAB.B44.2B4.2B16.B45.2B4.2B12.BAB2.3A2.BAB$14.2B5.B48.2B4.2B12.3B.B.
2B42.2B4.2B14.B2.BAB2.B$21.B70.A.B63.8B.8B$88.3B.BAB65.B2.B5.B2.B$14.
2B54.2B4.2B2.2B2.2B4.B.BAB.2B34.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B4.2B
2.2B2.2B6.BAB37.2B2.2B2.2B4.2B2.2B2.2B$92.B.B2$14.2B54.2B4.2B6.2B54.
2B12.2B$14.2B54.2B4.2B6.2B54.2B12.2B3$14.2B54.2B4.2B2.2B2.2B46.2B2.2B
2.2B4.2B2.2B2.2B$14.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B13$6.
2B2.2B2.2B9.2B43.2B4.2B2.2B2.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B4.2B2.
2B$6.2B2.2B2.2B9.B44.2B4.2B2.2B2.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B$
21.B.BAB134.8B.B$21.B.BA2B64.8B61.B.2A3.B.B$6.2B6.2B2.2B.B.A.B44.2B
12.2B5.B.A4.B41.2B4.2B10.B.B5A.B$6.2B6.2B5.B.3B44.2B12.2B2.2B.BA5.2B
40.2B4.2B10.B.B2A2.2AB.B$21.B.B67.B.A4.B61.B.5AB.B$91.8B59.B.B3.2A.B$
6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B2.B.8B$6.2B2.2B2.2B54.
2B12.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B$93.B2.B65.2B2.2B2$6.2B6.2B54.
2B12.2B54.2B4.2B6.2B$6.2B6.2B54.2B12.2B54.2B4.2B6.2B3$6.2B2.2B2.2B54.
2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B
4.2B2.2B2.2B13$6.2B2.2B2.2B6.B47.2B4.2B2.2B2.2B6.2B38.2B2.2B2.2B4.2B
2.2B2.2B9.2B$6.2B2.2B2.2B6.3B.B43.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B
2.2B2.B.B.B$20.B.B.B.B63.6B62.B.B.5B$18.3B.B.B65.B.A.B.B63.B2.A.B2.2B
$6.2B6.2B9.B44.2B4.2B6.2B2.B.B.B.B2.B42.2B4.2B6.2B3.5BAB$6.2B6.2B4.3B
.B45.2B4.2B6.2B2.B.B2A.AB.B42.2B4.2B6.2B7.BA5B$24.B.B63.B4.A.B.B59.2B
2.B4.B2.2B$20.5B.B63.8B.B62.5B.B$6.2B2.2B2.2B6.B47.2B4.2B2.2B2.2B46.
2B2.2B2.2B4.2B2.2B2.2B10.B.5B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.2B2.2B
36.2B2.2B2.2B4.2B2.2B2.2B6.2B2.B4.B2.2B$165.5B.B$169.B.5B$14.2B54.2B
12.2B54.2B4.2B6.2B9.2B2.B4.B$14.2B54.2B12.2B54.2B4.2B6.2B12.5B.B$172.
BAB.B$168.2B2.B.B.B$14.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.
2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B13$2B4.2B2.2B2.2B7.B38.2B2.2B2.2B4.2B
2.2B2.2B8.2B2.B.B31.2B2.2B2.2B4.2B2.2B2.2B5.B$2B4.2B2.2B2.2B8.B37.2B
2.2B2.2B4.2B2.2B2.2B9.B2.B.B31.2B2.2B2.2B4.2B2.2B2.2B5.3B$21.3B.B69.
2B2A.B.2B54.2B.B.B$21.B.B65.2B2.2B.A.A.B60.B.B.2B$2B4.2B6.2B2.2B.B.B
46.2B4.2B6.2B10.B.BAB39.2B4.2B6.2B2.3B2.B.2B$2B4.2B6.2B2.B.2B2A2B44.
2B4.2B6.2B3.6B.BAB.B.2B36.2B4.2B6.2B5.B.B$20.A.3A64.B.A8.B57.2B.BABA
4B$19.7B62.13B60.B.A4.B$2B4.2B6.2B5.B40.2B2.2B2.2B4.2B6.2B46.2B2.2B2.
2B4.2B2.2B2.2B5.4BABAB.2B$2B4.2B6.2B7.B38.2B2.2B2.2B4.2B6.2B4.2B2.B2.
2B33.2B2.2B2.2B4.2B2.2B2.2B10.B.B$24.B69.B68.2B.B.B$164.B$2B4.2B6.2B
46.2B12.2B6.2B54.2B12.2B8.B$2B4.2B6.2B46.2B12.2B6.2B54.2B12.2B3$2B4.
2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B$2B4.2B2.2B2.2B
46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B!

EDIT5,6: P13 in desperate need of improvement...

Code: Select all

x = 13, y = 12, rule = Billiard2
9.B$7.3B$3.B3.B$3.3B.3B$.3B.B3.B$.B.B.BA3B.B$3B5.AB2.B$2.3B4AB.2B$2.B
.2A2.AB$.9B2$3.2B.2B!
EDIT8: P20 that could also do with improvement:

Code: Select all

x = 16, y = 11, rule = Billiard2
6.2B2.B.B$7.B2.B.B$7.2B2A.B.2B$.2B2.2B.A.A.B$8.B.BAB$.6B.BAB.B.2B$.B.
A8.B$13B2$2.2B2.B2.2B$6.B!
▄▀
▀▀▀

User avatar
gmc_nxtman
Posts: 1148
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Post by gmc_nxtman » October 30th, 2015, 8:50 pm

Here's something for rulemakers: a "neighbor map", that shows every configuration of neighbors in a Moore Neighborhood and the sequences for them:

Code: Select all

x = 131, y = 70, rule = LifeTemplate
.B3$A4.A$.B3.B3$2A2.A.A2.A4.A7.A$.B3.B2.AB2.AB2.ABA2.B$20.A2$3A.2A2.A
.A.A8.A3.A2.A.A3.A3.A$.B2.AB2.AB2.ABA2.BA.ABA.AB3.B3.B3.B$16.2A8.A2.A
2.A.A.2A2$A.A.3A2.A2.A3.A.A.3A.2A2.2A2.2A2.2A2.3A.A$.B3.B2.ABA.ABA.AB
A.AB2.ABA.AB3.BA2.BA2.B3.BA$A.A2.A3.A4.A15.A2.A2.A5.A.A.A2$3A2.2A2.A
2.3A.3A.3A.2A2.3A.3A2.2A$AB2.AB2.ABA.ABA.AB2.AB2.ABA2.B3.B3.BA$A3.A.A
.A.A7.A2.A3.A2.2A2.A.A.2A2$3A.2A3.A2.3A.3A.3A$.B2.ABA.ABA.AB2.AB2.AB$
3A2.2A.3A2.2A.2A2.A.A2$3A.3A$ABA.ABA$A.A.2A2$3A$ABA$3A2$10B$B8.B$10B
2$10B.10B$BA7.B.B.A6.B$10B.10B2$10B.10B.10B.10B.10B.10B$B2A6.B.BA.A5.
B.B.A.A4.B.B2.2A4.B.B3.2A3.B.B2.A2.A2.B$10B.10B.10B.10B.10B.10B2$10B.
10B.10B.10B.10B.10B.10B.10B.10B.10B$B3A5.B.B2A.A4.B.BA.2A4.B.BA2.2A3.
B.B4.3A.B.B.A.2A3.B.B.A.A3.AB.BA.A3.A.B.B2.A2.A.AB.B2.A2.2A.B$10B.10B
.10B.10B.10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B.10B.10B.10B
.10B.10B.10B$BA.A2.A.AB.B3A3.A.B.B.A.2A.A.B.BA2.2A2.AB.BA.3A3.B.B4A4.
B.B2A.2A3.B.B2A.A3.AB.B2A2.A.A.B.B2A2.2A2.B.B3A4.AB.BA3.2A.AB$10B.10B
.10B.10B.10B.10B.10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B.10B
.10B.10B.10B$B4A.A2.B.B.3A.A.AB.B.A.3A.AB.B5A3.B.B4A3.AB.B4A2.A.B.B2A
.2A.A.B.B3A2.2A.B.B3A2.A.AB.B.2A.3A.B$10B.10B.10B.10B.10B.10B.10B.10B
.10B.10B2$10B.10B.10B.10B.10B.10B$B3A2.3AB.B2A.2A.2AB.B.A.5AB.B4A2.2A
B.B4A.2A.B.B4A.A.AB$10B.10B.10B.10B.10B.10B2$10B.10B$B6A.AB.B7A.B$10B
.10B2$10B$B8AB$10B!

User avatar
A for awesome
Posts: 1942
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » December 21st, 2015, 4:35 pm

Code: Select all

@RULE 2xpand2
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,1,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,0,0,0,0
1,1,1,0,1,0,0,0,0,0
1,1,1,0,0,1,0,0,0,0
1,1,1,0,0,0,1,0,0,0
1,1,1,0,0,0,0,1,0,0
1,1,1,0,0,0,0,0,1,1
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,1,0,0,1
1,1,0,0,1,0,1,0,0,0
1,0,1,0,1,0,1,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,1,0,0,1,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,1,0,0,1,0
1,1,1,0,0,0,1,1,0,0
1,1,0,1,0,1,0,1,0,1
1,0,1,0,1,0,1,0,1,1
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
This rule is similar to 2x2 in some respects. It is B3/S12 with the added survival conditions

Code: Select all

x = 27, y = 3, rule = 2xpand2
7bo5bo4bobo5bo$bo4b3o3b3o4bo4b2o$3o10bo4bobo4bo!
.
It is named because the first unusual survival condition allows for patterns to expand at c/2, such as these ships:

Code: Select all

x = 37, y = 13, rule = 2xpand2
3o7b3o8b3o8b3o$9bo25bo$obo9bo7bo3bo6bo4bo$8b2o10b5o6b3o$19bo5bo4bo5$
21b3o2$21b3o$21b3o!
The first one is common enough that I have found a rake for it:

Code: Select all

x = 21, y = 36, rule = 2xpand2
10bo$9bo2bo$8b5o6$10bo$9bobo5bo$9bobo5bo$b5o9bo3bo$3bo12b3o2$o5bo7bo5b
o$bo3bo9b5o$10bo4bo3bo$2b3o4bobo$9bobo4b3o6$5bo$4b3o3bo3bo$4b3o4bo$12b
3o2$3b5o$5bo2$2bo5bo$3bo3bo2$4b3o!
Apart from that, the only other rule-specific thing of interest that I've found is this p22:

Code: Select all

x = 6, y = 4, rule = 2xpand2
b3o$o4bo$o4bo$2b3o!
Last edited by A for awesome on December 21st, 2015, 5:48 pm, edited 1 time in total.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

thunk
Posts: 165
Joined: October 3rd, 2015, 8:50 pm
Location: Central USA

Re: Thread For Your Unrecognised CA

Post by thunk » December 21st, 2015, 5:09 pm

A for awesome wrote:

Code: Select all

@RULE 2xpand2
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
table entries
Your patterns don't seem to work--the rule table may be wrong.
"What's purple and commutes?
The Evanston Express."

User avatar
A for awesome
Posts: 1942
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » December 21st, 2015, 5:48 pm

thunk wrote:
A for awesome wrote:

Code: Select all

@RULE 2xpand2
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
table entries
Your patterns don't seem to work--the rule table may be wrong.
Fixed.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » December 21st, 2015, 6:36 pm

@A for awesome
rule specific p8 oscillator found from a single D8_4 soup:

Code: Select all

x = 8, y = 5, rule = 2xpand2
3b2o$obo2bobo$bo4bo$o6bo$3b2o!
And the soup:

Code: Select all

x = 32, y = 32, rule = 2xpand2
2bo5b3o2bob2obo2b3o5bo$b3o2b3o2bob2o2b2obo2b3o2b3o$7o3bobo2b2o2bobo3b
7o$b2obobobo5bo2bo5bobobob2o$2b5obob2o8b2obob5o$2bobo3bob2o2bo2bo2b2ob
o3bobo$b4o2b5obo4bob5o2b4o$bo4bob7o2b7obo4bo$2ob6o2bo8bo2b6ob2o$o5b2o
6bo2bo6b2o5bo$obob4o2bob8obo2b4obobo$bo2b5o4bo4bo4b5o2bo$2bo4bo2bo2b2o
2b2o2bo2bo4bo$2o4b2o2b4ob2ob4o2b2o4b2o$bobobobob2obob4obob2obobobobo$o
bo7bo2b2o2b2o2bo7bobo$obo7bo2b2o2b2o2bo7bobo$bobobobob2obob4obob2obobo
bobo$2o4b2o2b4ob2ob4o2b2o4b2o$2bo4bo2bo2b2o2b2o2bo2bo4bo$bo2b5o4bo4bo
4b5o2bo$obob4o2bob8obo2b4obobo$o5b2o6bo2bo6b2o5bo$2ob6o2bo8bo2b6ob2o$b
o4bob7o2b7obo4bo$b4o2b5obo4bob5o2b4o$2bobo3bob2o2bo2bo2b2obo3bobo$2b5o
bob2o8b2obob5o$b2obobobo5bo2bo5bobobob2o$7o3bobo2b2o2bobo3b7o$b3o2b3o
2bob2o2b2obo2b3o2b3o$2bo5b3o2bob2obo2b3o5bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Post by Saka » December 21st, 2015, 10:07 pm

Code: Select all

@RULE CrossLife
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,1,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,0,0,0,1
1,1,1,0,1,0,0,0,0,1
1,1,1,0,0,1,0,0,0,1
1,1,1,0,0,0,1,0,0,1
1,1,1,0,0,0,0,1,0,1
1,1,1,0,0,0,0,0,1,1
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,1,0,0,1
1,1,0,0,1,0,1,0,0,1
1,0,1,0,1,0,1,0,0,1
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,1,0,0,1,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,0,1,1,0,0
1,0,1,0,1,0,1,0,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
A rule that was designed to (and does) allow this oscillator:

Code: Select all

x = 16, y = 13, rule = CrossLife
4b2o$4bo2bo2bo$5b6o2$2o3b6o3b2o$obobo6bobobo$2bob6obobo$b2obo6bob2o$5b
6o2$5b6o$4bo2bo2bo$4b2o!
Interesting objects I came across while running soups:

Code: Select all

x = 44, y = 13, rule = CrossLife
35bo3bo$34bobobobo$34bobobobo$32b2o2bobo2b2o$bo9b2o18bo4bobo4bo$obo7bo
2bo18b4o3b4o$bo9b2o11b2o$2b3o18bobo6b4o3b4o$3bobo5b4o7b3o6bo4bobo4bo$
3bo2bo3bo4bo5bobo8b2o2bobo2b2o$4b2o4b2o2b2o5b2o11bobobobo$34bobobobo$
35bo3bo!
The last one is a temporary still life from

Code: Select all

x = 5, y = 4, rule = CrossLife
2b2o$bo2bo$o3bo$b3o!
Some spaceships:

Code: Select all

x = 90, y = 39, rule = CrossLife
51b2o3b2o$19b2ob2o$19bo3bo27bo5bo$18bobobobo25b2o5b2o$20bobo$17bo2bobo
2bo24b2o5b2o$9b2o8b2ob2o24bo11bo$2o3bob3o9b2ob2o25bo2bo3bo2bo$4bo3b2o
9b2ob2o25bo2bo3bo2bo$o3bobob2o6b2obo3bob2o3bobo7bobo8b2o3b2o$b2obobo9b
2obobobob2o3b3obo3bob3o9bo3bo$2bobob2o7b2ob2o3b2ob2o3bo3bobo3bo9b2o3b
2o21bo5bo$3b3o9b3o3bo3b3o3bo3bobo3bo38bo3bo$4bo15b3o9b3obob3o9bo7bo20b
o2bo2bo$21bo11bobobobo9b3o5b3o19b3ob3o$18bobobobo25bo7bo17bobobo3bobob
o$16b5ob5o49bo3bobobo3bo$15bo2bobobobo2bo21bobo5bobo18b9o$17bob2ob2obo
23bobo5bobo15b2o3bo3bo3b2o$16bo3bobo3bo48b2ob2o5b2ob2o$16b2o3bo3b2o22b
3o5b3o16bob2o5b2obo$17bo7bo52bo7bo$17b3o3b3o2$16bo2bo3bo2bo$15bo3bo3bo
3bo$16bobo5bobo$17b3o3b3o$18b2o3b2o$15b2ob2o3b2ob2o$15bo2b2o3b2o2bo$
18bob3obo$15bo11bo2$16b2o7b2o$16b2o7b2o$17bobo3bobo$18b2obob2o$20bobo!
The added survival conditions:

Code: Select all

x = 12, y = 3, rule = CrossLife
bo7bo$3o6b3o$bo7bo!
or 4et (B3/S234et)
Unfortunately, this rule is exploding
Airy Clave White It Nay

Code: Select all

x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
(Check gen 2)

User avatar
A for awesome
Posts: 1942
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » December 22nd, 2015, 11:36 am

Saka wrote:

Code: Select all

rule
A rule that was designed to (and does) allow this oscillator:

Code: Select all

rle
Interesting objects I came across while running soups:

Code: Select all

rle
The last one is a temporary still life from

Code: Select all

rle
Some spaceships:

Code: Select all

rle
The added survival conditions:

Code: Select all

rle
or 4et (B3/S234et)
Unfortunately, this rule is exploding
A p3:

Code: Select all

x = 9, y = 5, rule = CrossLife
3b3o$3bobo$b3ob3o$o2bobo2bo$2o5b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Billabob
Posts: 144
Joined: April 2nd, 2015, 5:28 pm

Re: Thread For Your Unrecognised CA

Post by Billabob » December 22nd, 2015, 11:39 am

This spark:

Code: Select all

x = 7, y = 1, rule = CrossLife
7o!
Is quite impressive.

Also, here's a reduction on that oscillator:

Code: Select all

x = 14, y = 11, rule = CrossLife
6b2o$6b2o2$2o2b6o2b2o$o2bo6bo2bo$bob6obobo$2obo6bob2o$4b6o2$6b2o$6b2o!
Still lifes:

Code: Select all

x = 6, y = 14, rule = CrossLife
2o2b2o$bo2bo2$bo2bo$b4o$bo2bo$2b2o$bo2bo$bo2bo2$bo2bo2$2b2o$2b2o!

Code: Select all

x = 6, y = 13, rule = CrossLife
bo2bo$2b2o3$6o$bo2bo$bo2bo$bo2bo$2b2o2$2b2o$bo2bo$o4bo!
▄▀
▀▀▀

User avatar
A for awesome
Posts: 1942
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » December 22nd, 2015, 4:02 pm

Code: Select all

@RULE cb2
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
var a={0,1}
var aa=a
var ab=a
var ac=a
var ad=a
var ae=a
var af=a
var ag=a
0,1,1,0,0,0,0,0,0,1
0,1,0,1,0,0,0,0,0,1
0,1,1,0,1,1,0,0,0,1
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,0,0,0,1,0,0,0,1
1,a,aa,ab,ac,ad,ae,af,ag,0
The above rule has the unusual property of having the transition 0,1,1,0,0,0,0,0,0,1 as a two-state rule but still not turning into expanding piles of total randomness, instead turning into combinations of puffers, rakes, and breeders expanding outwards at c while interacting in complex ways towards the center. Here are some example patterns:

Code: Select all

x = 86, y = 9, rule = cb2
23b2o22b2o$b2o5b2ob2o7b2o3bo5b2o2b2o6b2obo2bo24b2o$o2bo3bo2bo2bo5bo10b
o2b2o2bo4bobo8bo2b2o2bo13b2o$23bo20bo9bo4bo24bo$9b3o9bo10b4o10b2o28b2o
7bo$48bo27b2o$8bo3bo18bo4bo2$8bo3bo18bo4bo!
It seems like there must be some way to create complex technology in this rule. Here is a period doubler:

Code: Select all

x = 8, y = 28, rule = cb2
7bo$6bo$o$bo13$7bo$6bo$o$bo7$o2b2o2bo$bo4bo!
Edit: Adjustable-period guns:

Code: Select all

x = 25, y = 14, rule = cb2
bo$o17bo$6bo10bo6bo$7bo15bo5$2bo2bo13bo2bo$3b2o15b2o$bo16bo$o16bo6bo$
6bo16bo$7bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » December 22nd, 2015, 5:39 pm

Code: Select all

@RULE zigzag
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,1,0,0,1,0
1,1,1,0,0,0,1,1,0,0
1,1,0,1,0,1,0,1,0,0
1,0,1,0,1,0,1,0,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0

@COLORS

0 0 0 0
1 255 255 255
It has several gliders:

Code: Select all

x = 37, y = 5, rule = zigzag
3o3b3o20bo4b2o$2bo3b3o20bo2b4o$bo7bo19bo6bo$7bo25b3o$7bo26b2o!
And several oscillators:

P2:

Code: Select all

x = 57, y = 7, rule = zigzag
o3b3o6bo3b2o6bo6b2o10bo3b2o3b2o$o6bo3b2o4bo5b2o3bo3bo9bobo3bobo2bo$o6b
o5b2o3b2o5b2obo4bobo7bobo4bo3bo$7bo4bo7bo7bo7bo3bo2bo7bo2bobo$19b2o14b
2o4b2o7b2o3b2o$39b2o$41bo!
P3:

Code: Select all

x = 83, y = 18, rule = zigzag
b4o3b2o7b2o6bob4obo5b4o10bo3bo15b4o$5o4b2o5bobo6b2o4b2o5bo2bo10bo3bo
12b4o2b4o$o2b2o4b2o6bo3bo14b3o2b3o8bo3bo11bob2o4b2obo$3b2o5bo6b5o3b2o
4b2o3bo6bo7b2o3b2o9bobo8bobo$2b2o13b4o4bob4obo3bo6bo6bobo3bobo7bobo10b
obo$10bo25b3o2b3o3b5o5b5o4b2o12b2o$10b2o26bo2bo24b2o12b2o$10b2o26b4o
23b2o14b2o$11b2o52bo16bo$47b5o5b5o3bo16bo$50bobo3bobo6b2o14b2o$51b2o3b
2o8b2o12b2o$52bo3bo9b2o12b2o$52bo3bo9bobo10bobo$52bo3bo10bobo8bobo$68b
ob2o4b2obo$69b4o2b4o$72b4o!
P4:

Code: Select all

x = 32, y = 6, rule = zigzag
b3o6b2o8b3o4b3o$o3bo5b2o6b2ob2o3bo3bo$b2obo5b2o6b2obo5b2obo$b2obo5b2o
5bo3bo5b2ob2o$3bo6b2o5b4o8b3o$10b2o5b2o!
P5:

Code: Select all

x = 6, y = 7, rule = zigzag
4b2o$5bo$3bo$bo2bo$2bo$o$2o!
P6:

Code: Select all

x = 22, y = 12, rule = zigzag
bo2bo7bobo2bobo$ob2obo7b6o$bo2bo5bobo6bobo$bo2bo6bob2o2b2obo$ob2obo4b
2ob2o2b2ob2o$bo2bo6bo8bo$11bo8bo$10b2ob2o2b2ob2o$11bob2o2b2obo$10bobo
6bobo$13b6o$12bobo2bobo!
P8:

Code: Select all

x = 27, y = 8, rule = zigzag
b3o6b3o7b6o$2o2bo5b2ob2o4bo6bo$bo2bo6bob2o4bo6bo$2b3o7b2o5bo6bo$3bo8b
2o5bo6bo$19bo6bo$19bo6bo$20b6o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » December 23rd, 2015, 2:44 am

Two puffers that occurred from running 5000000 soups in 2xpand2:

Code: Select all

x = 15, y = 26, rule = 2xpand2
3b4o$4b6o$6b2o3bo$7bo4bo$8b2o2b2o$13b2o$12b2o13$10bo$2b4o5bo$4bo8bo$ob
2o2bobo4bo$o4bo7bo$bo3bo5bo$10bo!
And the soups:

Code: Select all

x = 56, y = 16, rule = 2xpand2
4o2bo6bo27b2ob3ob2o2bo$3o5b4ob3o24b9ob2o3bo$2b2obobob2ob2o27b4obo2bobo
b3o$bobobo4b2o3bo25b2o2bobobobo3bo$2o3bob5o29b2o2b2o3b5o$2bo2b5ob3o26b
obob4o2bob2o$2obo3bobobobo27bo3bo2b2o2b4o$o4bo2bo2b4o25b3ob3o5b2o$obob
o2bo3bob2o27bo4b3obob3o$bob2ob2ob4ob2o26bobo3b3o2bobo$obo5b4o2bo26bo5b
o2b2o2bo$o2bo2bob2o4bo29b6o2b2obo$o4b4obob2obo24bo2b5o3b3obo$2obob4o3b
2obo25bob2ob6obobo$ob5o2bo3b2o26b2o2bob4ob3o$7b2o3bo2bo25bo3b4obo!

User avatar
BlinkerSpawn
Posts: 1929
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » December 23rd, 2015, 10:14 am

gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:
One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » December 23rd, 2015, 10:22 am

BlinkerSpawn wrote:
gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:
One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?
Copy the rule again. I think you have the wrong one.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » February 11th, 2016, 11:27 pm

I just made a rule, OWSSlife:

Code: Select all

@RULE OWSSlife
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect
var a = {0, 1, 2}
var b = a
var c = a
var d = a
var e = a
var f = a
var g = a
var h = a
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,2
1,0,1,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,1,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,0,0,0,1
1,1,1,0,1,0,0,0,0,1
1,1,1,0,0,1,0,0,0,1
1,1,1,0,0,0,1,0,0,1
1,1,1,0,0,0,0,1,0,1
1,1,1,0,0,0,0,0,1,1
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,1,0,0,1
1,1,0,0,1,0,1,0,0,1
1,0,1,0,1,0,1,0,0,1
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,1,0,0,1,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,1,0,0,1,0
1,1,1,0,0,0,1,1,0,0
1,1,0,1,0,1,0,1,0,0
1,0,1,0,1,0,1,0,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0

0,1,1,0,1,0,0,0,1,1
0,1,1,0,0,1,0,0,1,1
0,1,1,0,1,1,1,0,0,1
0,1,1,0,1,1,1,0,1,1
2,a,b,c,d,e,f,g,h,0
a,2,b,c,d,e,f,g,h,0
a,b,2,c,d,e,f,g,h,0
The only differences from regular life are the following transitions, and the fact that state-2 cells and everything they touch die in the next generation.

Code: Select all

x = 45, y = 14, rule = OWSSlife
.3A7.3A7.3A7.3A$41.2A$3.A8.A9.2A7.3A3$2.A9.A9.A9.A9.A$2.A9.A9.A9.A9.A
$A.A.A5.A.A.A5.A.A.A5.A.A.A5.A.A.A$.3A7.3A7.3A7.3A7.3A$2.A9.A9.A9.A9.
A4$2.A9.A9.A9.A9.B!
As you can guess, the rule allows indefinitely long *WSSes, which generate bigger and bigger sparks until they look like flotillae:

Code: Select all

x = 30, y = 44, rule = OWSSlife
.4A$A3.A$4.A$3.A7$.6A$A5.A$6.A$5.A7$.7A$A6.A$7.A$6.A17$.29A$A28.A$29.
A$28.A!
The only other spaceship I have found evolves from a parent of the B-heptomino:

Code: Select all

x = 3, y = 4, rule = OWSSlife
.A$2.A$2.A$3A!
Edit: It appears that spaceships can have other backends as well:

Code: Select all

x = 34, y = 60, rule = OWSSlife
$19.15A$18.B15A$19.15A2$17.17A$16.B17A$17.17A2$15.19A$14.B19A$15.19A
2$13.21A$12.B21A$13.21A2$14.20A$13.B20A$14.20A2$13.21A$12.B21A$13.21A
2$15.19A$14.B19A$15.19A2$13.21A$12.B21A$13.21A2$11.23A$10.B23A$11.23A
2$10.24A$9.B24A$10.24A2$12.22A$11.B22A$12.22A2$14.20A$13.B20A$14.20A
2$16.18A$15.B18A$16.18A2$18.16A$17.B16A$18.16A2$20.14A$19.B14A$20.14A
!
Since so much of the spaceships are spark, they are very self-reparable if one doodles inside of them.

muzik
Posts: 3522
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » February 12th, 2016, 4:36 am

B3/S02 makes Seirpnski triangles from straight lines.

Code: Select all

x = 1, y = 29, rule = B3/S02
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!

Code: Select all

x = 1, y = 86, rule = B3/S02
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

muzik
Posts: 3522
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » March 19th, 2016, 3:22 pm

Am I the only one who thinks this reaction could be made into a gun?

Code: Select all

x = 11, y = 29, rule = cb2
o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
SuperSupermario24
Posts: 120
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Thread For Your Unrecognised CA

Post by SuperSupermario24 » March 19th, 2016, 4:35 pm

muzik wrote:B3/S02 makes Seirpnski triangles from straight lines.
So does CGOL:

Code: Select all

x = 1, y = 1, rule = B3/S23
32768o!

Code: Select all

bobo2b3o2b2o2bo3bobo$obobobo3bo2bobo3bobo$obobob2o2bo2bobo3bobo$o3bobo3bo2bobobobo$o3bob3o2b2o3bobo2bo!

muzik
Posts: 3522
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » March 19th, 2016, 5:20 pm

SuperSupermario24 wrote:
muzik wrote:B3/S02 makes Seirpnski triangles from straight lines.
So does CGOL:

Code: Select all

x = 1, y = 1, rule = B3/S23
32768o!
That I am aware of, just this rule does it cleaner.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » March 23rd, 2016, 5:17 pm

B2n3/S1e245i is like 2x2, morley, and that one rule that had patterns that lasted very long (B2-a5/S???)

4-cell failed replicator:

Code: Select all

x = 1, y = 4, rule = B2n3_S1e245i
o$o$o$o!
6-cell 4439 gen:

Code: Select all

x = 3, y = 4, rule = B2n3_S1e245i
2bo$obo$obo$2bo!
8-cell 33481 gen:

Code: Select all

x = 19, y = 4, rule = B2n3_S1e245i
o$obo15bo$obo15bo$o!
8-cell 91.6k gen:

Code: Select all

x = 20, y = 4, rule = B2n3_S1e245i
o$obo16bo$obo16bo$o!
Last edited by drc on March 26th, 2016, 4:32 pm, edited 1 time in total.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

User avatar
BlinkerSpawn
Posts: 1929
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » March 23rd, 2016, 6:08 pm

muzik wrote:Am I the only one who thinks this reaction could be made into a gun?

Code: Select all

x = 11, y = 29, rule = cb2
o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo!
This makes a gun:

Code: Select all

x = 8, y = 9, rule = cb2
o2b2o2bo$bo4bo2$bo4bo$o2b2o2bo3$4bo$3bo!
EDIT: p12n gun for all integers n > 1:

Code: Select all

x = 73, y = 11, rule = cb2
3bo3bobo3bo8bo3bobo3bobo3bo8bo3bobo3bobo3bobo3bo$4bobo3bobo10bobo3bobo
3bobo10bobo3bobo3bobo3bobo2$bo3bo2bo6bo4bo3bo2bo12bo4bo3bo2bo18bo$o4bo
10bo2bo4bo16bo2bo4bo22bo$6bo18bo24bo4$12bo24bo30bo$13bo24bo30bo!
EDIT 2: p2n gun for all integers n > 13:

Code: Select all

x = 88, y = 11, rule = cb2
4bobo5bobo10bobo5bo3bo9bobo7bobo10bobo7bo3bo$3bo3bo3bo3bo8bo3bo5bobo9b
o3bo5bo3bo8bo3bo7bobo$9bo20bo21bo22bo$o7bo9bo2bo7bo9bo3bo7bo11bo2bo7bo
11bo$bo6bo8bo4bo6bo10bo3bo6bo10bo4bo6bo12bo$9bo20bo21bo22bo4$14bo22bo
21bo24bo$15bo20bo23bo22bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 8th, 2016, 8:45 am

This rule "lifebf7" is inspired by "extended life" (extremeenthusiaist). I tried to mobilise the birth-forcer by defining the transition 0-> birthforcer (2) as surrounded by exactly 7 normal live cells.

lifebf7 rule table (for some reason, state 4,5,6 disappeared when generating rule table from transition function, but they are not important here anyway. )

Code: Select all

@RULE lifebf7
# lifebf7 in full means life birth forcer when 7. This rule is similar to
# Conway's game of life, with an added birth forcer (state 2). An empty cell
# or state1 cell turns into state2 when surrounded by exactly 7 live cells and
# dies as normal cells. As to keeping cells alive, both state2 and state1
# cells count as living neighbors. When there are 2 or 3 living neighbors, the
# cell remains at the current state.

@TABLE
# rules: 69
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2}
var F={0,3}
var G={0,3}
var H={1,2}
var I={1,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
p,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,E,0
1,t,0,0,0,3,E,0,p,0
1,0,0,0,1,0,A,E,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
1,d,A,B,s,1,1,D,1,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
E,1,1,1,1,1,1,1,1,0
2,h,k,m,n,o,F,G,a,0
2,a,b,c,e,E,p,H,I,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,F,a,b,E,G,H,I,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,F,a,b,E,H,G,I,p,0
2,0,0,0,1,1,0,2,1,0
2,F,G,h,E,H,I,k,p,0
2,F,G,E,h,k,H,I,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,F,G,E,h,H,k,I,p,0
2,0,0,1,0,1,0,2,1,0
2,F,G,E,h,H,I,k,p,0
2,0,0,1,0,1,2,0,1,0
2,F,G,E,H,h,k,I,p,0
2,0,0,1,1,0,0,2,1,0
2,F,G,E,H,h,I,k,p,0
2,0,0,1,1,0,2,0,1,0
2,F,E,G,H,h,I,k,p,0
As compared to lifebf5,lifebf6 that exhibits unlimited expansion, lifebf7 allows chaotic oscillation similar to those in Conway's life. Here are some oscillators, puffers and spaceships that escaped the chaotic soup and manually tested Methuselahs, recorded in one graph.

A tidier version

Code: Select all

x = 540, y = 303, rule = lifebf7
390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C
88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.
2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C
88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.
2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C
88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.
2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C
10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C
$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.
2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.
2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A
7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C
88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.
C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C
88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A
.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C
88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.
2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C
88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C
88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.
2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.
A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A
3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A
29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A
4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.
2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.
2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.
3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.
2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C
39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$
C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C
88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A
3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$
C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C
39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C
88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.
2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C
88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.
2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A
42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.
2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.
3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.
C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C
88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C
88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$
C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C
$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.
C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C
48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C
30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.
2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$
C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.
2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C
88.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C88.2C88.2C88.C
$C30.2A7.3A2.A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A8.A2.2A43.2C88.2C
88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$540C$361C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C28.B59.2C88.2C88.2C88.2C$C36.B51.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C38.B8.B40.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$361C35$38.A$35.5A$35.A2.3A
$35.5A$38.A28$39.A$36.5A$37.B.3A$36.5A$39.A!

I am not aware of codes readily available for searching under a custom 3-state totalistic rule. Please do advise.

EDIT:
As it turns out, death-enforcers are much harder to incorporate. Thus I made attenuated-death-enforcers that count as '-1' when cells transit from 'live' to 'live'. These rules are lifeb7ad5, lifeb7ad6 and lifeb7ad8. While lifeb7ad8 exhibits chaotic growth, the other two stablise fairly quickly and emit spaceships.
lifeb7ad5:

Code: Select all

@RULE lifeb7ad5
@TABLE
# rules: 97
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,h,k,m,1,1,1,1,1,3
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,h,k,1,m,1,1,1,1,3
0,l,d,1,q,s,r,2,1,1
0,h,k,1,1,m,1,1,1,3
0,0,0,1,1,0,1,2,1,1
0,h,k,1,1,1,m,1,1,3
0,h,t,1,l,1,q,2,1,1
0,h,k,1,1,1,1,m,1,3
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,h,1,k,1,m,1,1,1,3
0,t,1,u,1,h,2,1,l,1
0,h,1,k,1,1,m,1,1,3
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
1,1,1,1,1,1,1,1,1,3
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad6

Code: Select all

@RULE lifeb7ad6
@TABLE
# rules: 94
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,k,1,1,1,1,1,1,3
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,h,1,k,1,1,1,1,1,3
0,0,1,0,2,1,0,1,1,1
0,h,1,1,k,1,1,1,1,3
0,h,1,1,1,k,1,1,1,3
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
1,1,1,1,1,1,1,1,1,3
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad8

Code: Select all

@RULE lifeb7ad8
@TABLE
# rules: 91
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,1,3
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
E,1,1,1,1,1,1,1,1,0
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad8a, a variant of lifeb7ad8

Code: Select all

@RULE lifeb7ad8a
@TABLE
# rules: 90
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
t,1,1,1,1,1,1,1,1,3
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
Last edited by shouldsee on April 9th, 2016, 12:00 pm, edited 5 times in total.

fluffykitty
Posts: 650
Joined: June 14th, 2014, 5:03 pm

Re: Thread For Your Unrecognised CA

Post by fluffykitty » April 8th, 2016, 10:57 am

Error: rule lifefb not found.
Corrected version:

Code: Select all

x = 461, y = 475, rule = lifebf7:T489,477
368.3C$367.C$366.C$224.C140.C$225.C138.C$226.C137.C$227.2C134.C$229.
2C131.C$231.C129.C$195.15C22.C128.C$187.8C14.C19.C2.C127.C$178.9C21.C
21.C2.C125.C$170.8C30.C22.C2.C123.C$149.21C37.C24.C2.C122.C$124.25C
58.C25.C.2C120.C$80.44C83.C25.C122.C$68.12C126.C27.C120.C$52.16C138.C
28.C119.C$43.9C154.C29.C117.C$38.5C163.C29.C116.C$21.17C168.C30.C115.
C$6.C8.6C185.C31.C113.C$15C191.C32.C112.C$6.C199.C32.C111.C$6.C199.C
33.C109.C$6.C199.C34.C108.C$6.C199.C34.C107.C$6.C199.C35.C105.C$6.C
199.C35.C105.C$6.C199.C36.C103.C$6.C199.C37.C102.C$6.C199.C37.C101.C$
6.C199.C38.C66.76C$6.C199.C33.C5.C48.17C33.C42.69C$6.C199.C34.2C3.C
39.9C49.C111.C$6.C199.C36.2C2.C24.14C57.C112.C$6.C199.C38.27C71.C112.
C$6.C199.C41.C93.C113.C$6.C199.C41.C92.C114.C$6.C199.C42.C90.C115.C$
6.C199.C42.C90.C115.C$6.C199.C43.C88.C116.C$6.C199.C43.C87.C117.C$6.C
199.C44.C85.C118.C$6.C199.C44.C85.C118.C$6.C199.C44.C84.C119.C$6.C
199.C45.C82.C120.C$6.C199.C45.C81.C121.C$6.C199.C46.C80.C121.C$6.C
199.C46.C79.C122.C$6.C199.C47.C77.C123.C$6.C199.C47.C77.C123.C$6.C
199.C48.C75.C124.C$6.C199.C48.C74.C126.C$6.C199.C48.C73.C127.C$6.C
199.C49.C72.C127.C$6.C200.C48.C71.C128.C$6.C200.C49.C69.C129.C$6.C
200.C49.C69.C129.C$6.C200.C50.C67.C130.C$6.C200.C51.C65.C131.C$6.C
200.C51.C64.C132.C$6.C200.C52.C63.C132.C$6.C200.C52.C62.C133.C$6.C
200.C52.C62.C133.C$6.C200.C53.C60.C134.C$6.C200.C54.C59.C134.C$6.C
200.C54.C58.C136.C$6.C200.C55.2C56.C136.C$6.C200.C55.2C55.C137.C$6.C
200.C56.C53.2C57.C81.C$6.C200.C56.C32.3A18.C58.C81.C$6.C200.C57.C31.A
.A18.C58.C81.C$6.C200.C57.2C30.3A18.C58.C81.C$6.C200.C57.3C50.C31.C
26.C81.C$6.C200.C57.C2.C29.3A17.C28.C29.C47.C33.C$6.C200.C57.C32.A.A
17.C58.C47.C34.C$6.C201.C56.C32.3A17.C30.C27.C47.C34.C$6.C201.C56.C
52.C27.C30.C48.C33.C$6.C201.C56.C52.C58.C48.C33.C$6.C201.C56.C52.C57.
C49.C33.C$6.C201.C56.C52.C57.C49.C33.C$6.C201.C56.C51.C58.C50.C32.C$
6.C201.C56.C51.C58.C50.C32.C$6.C201.C56.C51.C58.C50.C32.C$6.C202.C55.
C51.C58.C50.C32.C$6.C202.C55.C51.C58.C19.3A29.C31.C$6.C202.C55.C51.C
58.C8.2A7.A3.2A28.C31.C$6.C202.C55.C51.C57.C18.A.A2.2A27.C31.C$6.C
202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.
C31.C$6.C202.C55.C51.C57.C52.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.C
31.C$6.C202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C54.C52.C57.C18.
A.A2.2A27.C31.C$6.C202.C27.48C32.C57.C9.2A7.A3.2A28.C31.C$6.C202.C54.
C20.8C24.C57.C20.3A29.C31.C$6.C202.C54.C28.9C15.C56.C52.C5.7C20.C$6.C
202.C54.C37.8C7.C56.C52.6C7.7C12.C$6.C202.C54.C45.8C56.C47.6C31.C$6.C
202.C54.C51.C.9C47.C41.6C5.C31.C$6.C202.C54.C51.C10.8C39.C35.6C11.C
31.C$6.C202.C54.C51.C18.9C30.C29.6C17.C31.C$6.C202.C54.C51.C27.8C22.C
10.19C23.C$6.C202.C54.C51.C35.9C13.C10.3C39.C$6.C202.C54.C51.C44.24C
42.C$6.C202.C54.C51.C57.C52.C$6.C202.C54.C51.C57.C52.C$6.C202.C53.C
52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C
202.C53.C52.C56.C53.C$6.C203.C52.C52.C56.C52.C$6.C203.C52.C52.C56.C
52.C$6.C203.C52.C52.C56.C52.C$6.C77.3A.3A119.C52.C52.C56.C41.A10.C$6.
C77.A.A.A.A119.C52.C52.C56.C41.A10.C$6.C77.3A.3A119.C52.C52.C27.3A26.
C40.3A9.C$6.C203.C52.C52.C27.A.A26.C40.A.A9.C$6.C203.C52.C14.3A35.C
27.3A25.C40.5A8.C$7.C203.C51.C14.A.A35.C55.C41.3A9.C$7.C203.C51.C14.
3A35.C55.C42.A10.C$7.C203.C51.C52.C21.3A31.C53.C$7.C203.C51.C52.C21.A
.A31.C25.2A.A24.C$7.C203.C50.C53.C21.3A31.C24.A3.3A21.C$7.C203.C50.C
53.C55.C24.A.2B24.C$7.C203.C50.C53.C55.C24.A27.C$7.C203.C50.C14.3A36.
C55.C25.2A3.A21.C$7.C203.C50.C14.A.A36.C55.C52.C$7.C203.C50.C14.3A36.
C55.C52.C$7.C203.C50.C53.C54.C53.C$7.C203.C50.C53.C54.C53.C$7.C203.C
50.C53.C54.C53.C$7.C203.C50.C53.C54.C52.C$7.C204.C49.C53.C54.C52.C$7.
C204.C49.C53.C54.C52.C$7.C204.C24.10C15.C53.C54.C52.C$7.C204.C34.16C
53.C54.C52.C$7.C204.C49.20C34.C54.C52.C$7.C204.C49.C19.21C13.C54.C52.
C$7.C204.C49.C40.19C49.C52.C$7.C204.C49.C52.C6.18C31.C51.C$7.C204.C
49.C52.C24.18C13.C51.C$7.C204.C49.C52.C42.18C47.C$7.C204.C49.C52.C55.
C4.19C28.C$7.C204.C49.C52.C54.C24.20C8.C$7.C204.C49.C52.C54.C44.28C$
7.C204.C48.C53.C54.C52.C$7.C204.C48.C53.C54.C51.C$7.C204.C48.C53.C54.
C51.C$7.C204.C48.C27.A25.C54.C51.C$7.C204.C48.C25.2A.2A23.C54.C51.C$
7.C204.C48.C27.B25.C54.C51.C$7.C205.C47.C25.A.B.A23.C54.C51.C$7.C205.
C47.C25.A3.A23.C54.C51.C$8.C204.C47.C26.3A23.C55.C51.C$8.C204.C47.C
52.C55.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C11.2A3.A
38.C50.C$8.C204.C47.C52.C10.A.3B.A38.C50.C$8.C204.C47.C52.C11.2A3.A
38.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C55.C50.C$8.C
204.C47.C52.C55.C50.C$8.C204.C47.C52.C54.C51.C$8.C204.C47.C52.C34.3A
17.C51.C$8.C204.C47.C52.C33.A3.A16.C50.C$8.C204.C47.C52.C33.A.B.A16.C
26.A23.C$8.C204.C36.C10.C52.C35.B18.C24.2A.2A21.C$9.C203.C37.2C8.C52.
C33.2A.2A16.C26.B23.C$9.C203.C39.4C4.C52.C35.A18.C24.A.B.A21.C$9.C
203.C43.5C107.C24.A3.A21.C$9.C203.C47.7C101.C25.3A22.C$9.C203.C47.C6.
5C96.C50.C$9.C203.C47.C11.6C90.C50.C$9.C203.C47.C17.7C83.C50.C$9.C
203.C47.C24.9C74.C50.C$9.C203.C47.C33.9C65.C50.C$10.C202.C90.9C56.C
50.C$11.C201.C99.9C47.C50.C$12.4C197.C108.9C38.C49.C$16.10C187.C117.
9C29.C49.C$26.9C178.C126.8C21.C49.C$35.7C171.C134.9C12.C49.C$42.8C
163.C143.13C49.C$50.8C148.8C155.5C45.C$58.19C115.14C163.C4.5C40.C$77.
21C82.12C177.C9.11C29.C$98.14C48.20C189.C20.13C16.C$112.11C26.11C209.
C33.8C8.C$123.26C220.C41.5C3.C$369.C46.4C$369.C49.3C$419.C2.2C$419.C
4.C$419.C$419.C$419.C$419.C$419.C$419.C$419.C$125.49C245.C$124.C49.
98C147.C$124.C147.49C98.C$124.C195.C98.C$124.C115.22C58.C98.C$124.C
72.43C21.C58.C98.C$124.C50.22C64.C58.C98.C$124.C50.C85.C58.C98.C$124.
C50.C85.C58.C98.C$124.C50.C85.C58.C98.C$124.C50.C51.3A5.3A23.C58.C99.
C$124.C50.C30.3A18.A.A5.A.A23.C58.C99.C$124.C50.C30.A.A18.3A5.3A23.C
58.C99.C$124.C50.C30.3A26.3A23.C58.C99.C$124.C50.C59.A.A23.C58.C99.C$
124.C50.C59.3A23.C58.C$124.C50.C21.3A61.C58.C$124.C50.C21.A.A60.C59.C
$124.C50.C21.5A34.3A21.C59.C$124.C50.C23.A.A34.A.A21.C59.C$124.C50.C
23.3A28.3A3.3A21.C15.3A41.C$124.C50.C54.A.A27.C15.A.A41.C$124.C50.C
25.3A26.3A27.C15.3A41.C$124.C50.C25.A.A56.C59.C$124.C50.C25.3A29.3A
24.C59.C$124.C50.C57.A.A24.C59.C$124.C24.A9.A15.C57.3A24.C37.3A19.C$
124.C23.3A7.3A14.C84.C37.A.A19.C$124.C50.C84.C37.3A19.C$124.C18.2A.A
2.4A3.4A2.A.2A9.C39.3A42.C59.C$124.C18.A.2A.A.AB5.BA.A.2A.A9.C39.A.A
42.C59.C$124.C22.2A.2A5.2A.2A13.C39.3A42.C59.C$124.C23.A11.A14.C46.3A
12.3A20.C59.C$124.C22.A.A9.A.A13.C46.A.A12.A.A20.C58.C$124.C23.2A9.2A
14.C46.3A12.3A20.C58.C$124.C50.C53.6A25.C58.C$124.C50.C32.3A18.A.2A.A
25.C58.C$124.C50.C32.A.A18.6A25.C58.C$124.C50.C32.3A49.C58.C$124.C50.
C32.3A49.C58.C$124.C50.C32.A.A49.C58.C$124.C50.C32.3A23.3A23.C58.C$
124.C50.C58.A.A23.C58.C$124.C50.C34.3A21.3A.3A18.C59.C$124.C50.C34.A.
A25.A.A18.C59.C$124.C50.C34.3A25.3A18.C59.C$124.C50.C83.C59.C$124.C
50.C83.C59.C$124.C50.C83.C59.C$124.C50.C52.3A28.C59.C$124.C50.C52.A.A
28.C59.C$124.C50.C52.3A28.C59.C$124.C50.C83.C59.C$124.C50.C83.C59.C.C
$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.17C
34.C83.C59.C.C$124.C16.32C2.C83.C59.C.C$124.C48.33C53.C59.C.C$124.C
50.C30.32C21.C59.C.C$123.C51.C62.33C48.C.C$123.C51.C83.C11.32C16.C.C$
123.C51.C83.C43.17C.C$123.C51.C83.C59.C.C$123.C51.C83.C59.C.C$123.C
44.3A4.C83.C59.C.C$123.C28.3A13.A.A4.C83.C59.C.C$123.C28.A.A13.3A4.C
83.C59.C.C$123.C28.3A20.C82.C60.C.C$123.C51.C82.C60.C.C$123.C51.C82.C
60.C.C$123.C51.C82.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C22.A.A
57.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C65.3A14.C41.3A16.C.C$
123.C17.3A31.C65.A.A14.C18.3A6.3A11.A.A16.C.C$123.C17.A.3A29.C65.3A
14.C18.A.A6.A.A11.3A16.C.C$123.C17.3A.A29.C20.3A34.3A2.3A17.C18.3A6.
3A16.3A11.3C$123.C19.3A29.C20.A.A34.A.A2.A.3A15.C16.3A20.3A4.A.A11.3C
$123.C51.C20.3A34.3A2.3A.A15.C16.A.A20.A.A4.3A11.3C$123.C6.3A21.3A10.
3A5.C64.3A15.C16.3A20.3A18.3C$123.C6.A.A21.A.A.3A6.A.A5.C82.C60.3C$
123.C6.3A21.3A.A.A6.3A5.C55.3A24.C60.3C$123.C34.3A6.3A5.C55.A.A24.C
15.3A42.3C$123.C43.A.A5.C55.3A24.C15.A.A42.3C$123.C41.5A5.C82.C15.3A
42.3C$123.C6.3A32.A.A7.C82.C31.3A26.3C$123.C6.A.A32.3A7.C59.3A20.C31.
A.A18.3A5.3C$123.C6.3A42.C59.A.A9.3A8.C31.3A18.A.A5.3C$123.C6.A.A42.C
47.3A9.3A9.A.A8.C52.3A5.3C$123.C6.3A42.C16.3A7.3A11.3A4.A.A21.3A8.C
60.3C$123.C51.C16.A.A7.A.A11.A.A4.3A32.C41.3A16.3C$123.C51.C16.3A7.3A
11.3A39.C35.3A3.A.A16.C.C$123.C21.3A27.C57.3A21.C35.2A.A3.3A16.3C$
123.C21.A.A27.C24.3A30.A.A21.C35.A.2A2.3A17.3C$123.C21.3A27.C24.A.A
30.3A21.C28.3A4.3A3.A.A17.3C$123.C51.C24.3A54.C28.A.A10.3A17.3C$123.C
13.3A35.C81.C28.3A31.2C$123.C13.A.A35.C81.C62.2C$123.C13.3A19.3A13.C
81.C62.2C$123.C35.A.A13.C81.C62.2C$123.C35.3A13.C28.3A10.3A37.C62.2C$
123.C51.C28.A.A10.A.A37.C62.2C$123.C51.C28.3A10.3A16.3A5.3A10.C34.3A
25.2C$123.C51.C60.A.A5.A.A10.C34.A.A25.2C$123.C51.C22.3A25.3A7.3A5.3A
10.C34.3A2.3A20.2C$123.C51.C22.A.A25.A.A28.C39.A.A20.2C$123.C51.C22.
3A25.3A28.C12.3A24.3A20.2C$123.C51.C81.C12.A.A47.2C$123.C27.5A19.C81.
C12.3A47.2C$123.C23.3A.A.A.A19.C81.C62.2C$123.C23.A.A.5A19.C81.C62.2C
$123.C23.3A25.C81.C62.2C$123.C51.C81.C62.2C$123.C51.C81.C62.2C$123.C
51.C81.C62.2C$123.C51.C81.C22.C39.2C$123.C51.C81.C22.C39.2C$123.13C
39.C81.C22.C39.2C$123.39C13.C80.C23.C39.2C$123.C16.36C80.C23.C39.2C$
123.C49.33C50.C23.C39.2C$123.C51.C30.33C17.C23.C39.2C$123.C51.C63.33C
8.C39.2C$123.C51.C80.C15.33C15.2C$122.C52.C80.C23.C24.17C$122.C52.C
80.C23.C39.2C$122.C52.C80.C23.C39.2C$122.C38.3A11.C80.C23.C39.2C$122.
C38.A.A4.3A4.C80.C23.C39.2C$122.C38.3A4.A.A4.C80.C63.2C$122.C45.3A4.C
80.C63.2C$122.C52.C80.C63.2C$122.C28.3A21.C80.C63.2C$122.C28.A.A21.C
80.C63.2C$122.C28.3A21.C80.C63.2C$122.C52.C80.C63.2C$122.C52.C80.C63.
2C$122.C52.C80.C63.2C$121.C54.C79.C63.2C$121.C54.C79.C63.2C$121.C33.
3A18.C79.C63.2C14.2A$121.C13.3A17.A.A5.3A10.C79.C63.2C11.2A.3A$121.C
10.4A.A17.3A5.A.A10.C79.C63.2C4.3A3.4A.A.3A2.2A$121.C10.A.4A25.3A10.C
79.C63.2C3.3A2.3A2.A.3A3.4A$121.C10.3A41.C78.C64.2C2.A2.3B.A.3A3.3A2.
B3A$121.C35.3A16.C78.C64.2C8.A3.2A3.A3.4A$121.C35.A.A16.C37.3A38.C64.
2C2.A.B2.A$121.C35.3A16.C37.A.A38.C64.2C2.A3.A4.A$121.C54.C37.3A38.C
64.2C2.A.B.A4.2A$121.C37.3A14.C78.C64.2C2.A2.A3.A3.A6.A$121.C37.A.A
14.C78.C64.2C3.A.A6.3A4.A.A$121.C37.3A14.C78.C64.2C8.A5.A4.A.A$120.C
33.3A19.C78.C64.2C5.3A.4A2.A4.A$120.C33.A.A19.C78.C64.2C8.A$120.C33.
3A19.C78.C64.2C11.3A2.A$120.C55.C78.C64.2C2.A7.AB3A.A$120.C11.3A41.C
78.C64.2C2.3A5.A2.A.A$120.C11.A.A41.C78.C64.2C2.A.A6.2A.A$120.C11.3A
41.C78.C64.2C2.3A.2A5.3A2.4A$120.C21.3A31.C78.C64.2C3A.A4.3A.5A.A2.A$
120.C21.A.A25.3A3.C12.3A63.C64.2C2.A.2A3.3A2.A5.2A$120.C21.3A17.4A4.A
.A3.C12.A.A63.C64.2C4.A9.A3.A$120.C41.A2.A4.3A3.C12.3A63.C64.2C2.2A6.
3A.A3.2A$120.C41.4A4.A.A3.C78.C64.2C2.AB6.A.A.2A$120.C49.3A3.C78.C64.
2C2.4A.4ABA4.A.A$119.C10.3A43.C37.3A6.3A29.C64.2C2.ABA3.A.3A5.A$119.C
10.A.A43.C37.A.A6.A.A11.3A15.C64.2C2.3A4.3A$119.C10.3A17.3A23.C37.3A
6.3A11.A.A15.C64.2C3.2A5.A$119.C30.A.A23.C60.3A15.C64.2C$119.C30.3A
23.C78.C64.2C3.2A5.A$119.C56.C77.C66.C2.3A4.3A$119.C38.3A15.C77.C66.C
2.ABA3.A.3A5.A$119.C29.3A6.A.A3.3A9.C77.C66.C2.4A.4ABA4.A.A$119.C29.A
.A6.3A3.A.A9.C77.C66.C2.AB6.A.A.2A$119.C29.3A12.4A8.C77.C66.C2.2A6.3A
.A3.2A$119.C9.3A33.A.A8.C77.C66.C4.A9.A3.A$119.C9.A.A33.3A8.C77.C66.C
2.A.2A3.3A2.A5.2A$119.C9.3A44.C77.C66.C3A.A4.3A.5A.A2.A$119.C56.C77.C
66.C2.3A.2A5.3A2.4A$118.C57.C77.C66.C2.A.A6.2A.A$118.C19.3A35.C77.C
66.C2.3A5.A2.A.A$118.C19.A.A35.C77.C66.C2.A7.AB3A.A$118.C19.3A35.C77.
C66.C11.3A2.A$118.C58.C76.C66.C8.A$118.C58.C76.C66.C5.3A.4A2.A4.A$
118.C58.C76.C66.C8.A5.A4.A.A$118.C43.3A12.C76.C66.C3.A.A6.3A4.A.A$
118.C43.A.A5.3A4.C76.C66.C2.A2.A3.A3.A6.A$118.C29.3A11.3A5.A.A4.C76.C
66.C2.A.B.A4.2A$118.C29.A.A19.3A4.C76.C66.C2.A3.A4.A$118.C29.3A26.C
76.C66.C2.A.B2.A$118.C58.C76.C66.C8.A3.2A3.A3.4A$118.C27.3A28.C76.C
66.C2.A2.3B.A.3A3.3A2.B3A$117.C10.3A15.A.A28.C76.C66.C3.3A2.3A2.A.3A
3.4A$117.C10.A.A15.3A4.3A21.C76.C66.C4.3A3.4A.A.3A2.2A$117.C10.3A22.A
.A21.C76.C66.C11.2A.3A$117.C35.3A21.C75.C26.C40.C14.2A$117.C59.C75.C
26.C40.C$117.C59.C75.C26.C40.C$117.13C47.C75.C26.C40.C$130.26C21.C75.
C26.C40.C$156.25C72.C26.C40.C$177.C3.26C46.C26.C40.C$177.C29.25C21.C
26.C40.C$177.C54.26C22.C40.C$177.10C66.C4.25C38.C$187.19C47.C26.C2.
26C12.C$206.19C28.C26.C28.13C$225.19C9.C26.C40.C$244.10C26.C40.C$321.
C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C!
Though you should probably check your patterns before posting.
I like making rules

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » April 8th, 2016, 11:54 pm

A c/4 diagonal spaceship bigger than a glider:

Code: Select all

x = 5, y = 7, rule = lifebf7
3.A$2.2A$.4A$3A.A$.4A$3.A$3.A!

Post Reply