Page 1 of 1

Moore-shapes

Posted: November 28th, 2012, 2:11 pm
by Hektor
Imagine that the neighborhood of a cell changes with the cell's position, in the following lattice:

Code: Select all

A B A B A B A
B A B A B A B
A B A B A B A
B A B A B A B
A B A B A B A
The A cells and B cells have these neighborhoods:

Code: Select all

       O         O     O
    O  A  O      O  B  O
    O     O         O
b2s0123 is the only interesting rule in this rulespace, but I'm not surprised since a two-fold symmetry is usually boring. Using four types of cells for a four-folded symmetry rulespace could lead to interesting rules...
However, here is the .table file (already set on b2s0123)

Code: Select all

n_states:4
neighborhood:Moore
symmetries:none

# MOORE-5;2; b2s0123
# 28/11/12
# hkt
#
# Neighbors of a state-1 cell
#     O  
#  O  A  O
#  O     O
# Neighbors of a state-2 cell
#  O     O
#  O  B  O
#     O  
# Tesselation
#  B  A  B
#  A  B  A
#  B  A  B  

var a1 = {0,1,2,3} #All
var a2 = {a1}
var a3 = {a1}
var a4 = {a1}
var a5 = {a1}
var a6 = {a1}
var a7 = {a1}
var a8 = {a1}

var ov1 = {0,1}
var ov2 = {ov1}
var ov3 = {ov1}
var ov4 = {ov1}
var tv1 = {2,3}
var tv2 = {tv1}
var tv3 = {tv1}
var tv4 = {tv1}

# 8 1 2
# 7 C 3
# 6 5 4


#----Expand the checkerboard
0,a1,3,a3,a4,a5,a6,a7,a8,3
0,a1,a2,a3,3,a5,a6,a7,a8,3
0,a1,a2,a3,a4,a5,3,a7,a8,3
0,a1,a2,a3,a4,a5,a6,a7,3,3


#----B0
0,3,a2,3,0,a5,0,3,a8,0
3,a1,3,0,a4,0,a6,0,3,3

#----B1
#---State 1

0,2,a2,3,0,a5,0,3,a8,0
0,3,a2,2,0,a5,0,3,a8,0
0,3,a2,3,1,a5,0,3,a8,0
0,3,a2,3,0,a5,1,3,a8,0
0,3,a2,3,0,a5,0,2,a8,0

#---State 2
3,a1,2,0,a4,0,a6,0,3,3
3,a1,3,1,a4,0,a6,0,3,3
3,a1,3,0,a4,1,a6,0,3,3
3,a1,3,0,a4,0,a6,1,3,3
3,a1,3,0,a4,0,a6,0,2,3

#----B2
#---State 1
0,2,a2,2,0,a5,0,3,a8,1
0,2,a2,3,1,a5,0,3,a8,1
0,2,a2,3,0,a5,1,3,a8,1
0,2,a2,3,0,a5,0,2,a8,1
0,3,a2,2,1,a5,0,3,a8,1
0,3,a2,2,0,a5,1,3,a8,1
0,3,a2,2,0,a5,0,2,a8,1
0,3,a2,3,1,a5,1,3,a8,1
0,3,a2,3,1,a5,0,2,a8,1
0,3,a2,3,0,a5,1,2,a8,1

#---State 2
3,a1,2,1,a4,0,a6,0,3,2
3,a1,2,0,a4,1,a6,0,3,2
3,a1,2,0,a4,0,a6,1,3,2
3,a1,2,0,a4,0,a6,0,2,2
3,a1,3,1,a4,1,a6,0,3,2
3,a1,3,1,a4,0,a6,1,3,2
3,a1,3,1,a4,0,a6,0,2,2
3,a1,3,0,a4,1,a6,1,3,2
3,a1,3,0,a4,1,a6,0,2,2
3,a1,3,0,a4,0,a6,1,2,2

#----B3
#---State 1
0,2,a2,2,1,a5,0,3,a8,0
0,2,a2,2,0,a5,1,3,a8,0
0,2,a2,2,0,a5,0,2,a8,0
0,2,a2,3,1,a5,1,3,a8,0
0,2,a2,3,1,a5,0,2,a8,0
0,2,a2,3,0,a5,1,2,a8,0
0,3,a2,2,1,a5,1,3,a8,0
0,3,a2,2,1,a5,0,2,a8,0
0,3,a2,2,0,a5,1,2,a8,0
0,3,a2,3,1,a5,1,2,a8,0

#---State 2
3,a1,2,1,a4,1,a6,0,3,3
3,a1,2,1,a4,0,a6,1,3,3
3,a1,2,1,a4,0,a6,0,2,3
3,a1,2,0,a4,1,a6,1,3,3
3,a1,2,0,a4,1,a6,0,2,3
3,a1,2,0,a4,0,a6,1,2,3
3,a1,3,1,a4,1,a6,1,3,3
3,a1,3,1,a4,1,a6,0,2,3
3,a1,3,1,a4,0,a6,1,2,3
3,a1,3,0,a4,1,a6,1,2,3

#----B4
#---State 1
0,2,a2,2,1,a5,1,3,a8,0
0,2,a2,2,1,a5,0,2,a8,0
0,2,a2,2,0,a5,1,2,a8,0
0,2,a2,3,1,a5,1,2,a8,0
0,3,a2,2,1,a5,1,2,a8,0

#---State 2
3,a1,2,1,a4,1,a6,1,3,3
3,a1,2,1,a4,1,a6,0,2,3
3,a1,2,1,a4,0,a6,1,2,3
3,a1,2,0,a4,1,a6,1,2,3
3,a1,3,1,a4,1,a6,1,2,3

#----B5
0,2,a2,2,1,a5,1,2,a8,0
3,a1,2,1,a4,1,a6,1,2,3


#----S0
1,3,a2,3,0,a5,0,3,a8,1
2,a1,3,0,a4,0,a6,0,3,2

#----S1
#---State 1

1,2,a2,3,0,a5,0,3,a8,1
1,3,a2,2,0,a5,0,3,a8,1
1,3,a2,3,1,a5,0,3,a8,1
1,3,a2,3,0,a5,1,3,a8,1
1,3,a2,3,0,a5,0,2,a8,1

#---State 2
2,a1,2,0,a4,0,a6,0,3,2
2,a1,3,1,a4,0,a6,0,3,2
2,a1,3,0,a4,1,a6,0,3,2
2,a1,3,0,a4,0,a6,1,3,2
2,a1,3,0,a4,0,a6,0,2,2

#----S2
#---State 1
1,2,a2,2,0,a5,0,3,a8,1
1,2,a2,3,1,a5,0,3,a8,1
1,2,a2,3,0,a5,1,3,a8,1
1,2,a2,3,0,a5,0,2,a8,1
1,3,a2,2,1,a5,0,3,a8,1
1,3,a2,2,0,a5,1,3,a8,1
1,3,a2,2,0,a5,0,2,a8,1
1,3,a2,3,1,a5,1,3,a8,1
1,3,a2,3,1,a5,0,2,a8,1
1,3,a2,3,0,a5,1,2,a8,1

#---State 2
2,a1,2,1,a4,0,a6,0,3,2
2,a1,2,0,a4,1,a6,0,3,2
2,a1,2,0,a4,0,a6,1,3,2
2,a1,2,0,a4,0,a6,0,2,2
2,a1,3,1,a4,1,a6,0,3,2
2,a1,3,1,a4,0,a6,1,3,2
2,a1,3,1,a4,0,a6,0,2,2
2,a1,3,0,a4,1,a6,1,3,2
2,a1,3,0,a4,1,a6,0,2,2
2,a1,3,0,a4,0,a6,1,2,2

#----S3
#---State 1
1,2,a2,2,1,a5,0,3,a8,1
1,2,a2,2,0,a5,1,3,a8,1
1,2,a2,2,0,a5,0,2,a8,1
1,2,a2,3,1,a5,1,3,a8,1
1,2,a2,3,1,a5,0,2,a8,1
1,2,a2,3,0,a5,1,2,a8,1
1,3,a2,2,1,a5,1,3,a8,1
1,3,a2,2,1,a5,0,2,a8,1
1,3,a2,2,0,a5,1,2,a8,1
1,3,a2,3,1,a5,1,2,a8,1

#---State 2
2,a1,2,1,a4,1,a6,0,3,2
2,a1,2,1,a4,0,a6,1,3,2
2,a1,2,1,a4,0,a6,0,2,2
2,a1,2,0,a4,1,a6,1,3,2
2,a1,2,0,a4,1,a6,0,2,2
2,a1,2,0,a4,0,a6,1,2,2
2,a1,3,1,a4,1,a6,1,3,2
2,a1,3,1,a4,1,a6,0,2,2
2,a1,3,1,a4,0,a6,1,2,2
2,a1,3,0,a4,1,a6,1,2,2

#----S4
#---State 1
1,2,a2,2,1,a5,1,3,a8,0
1,2,a2,2,1,a5,0,2,a8,0
1,2,a2,2,0,a5,1,2,a8,0
1,2,a2,3,1,a5,1,2,a8,0
1,3,a2,2,1,a5,1,2,a8,0

#---State 2
2,a1,2,1,a4,1,a6,1,3,3
2,a1,2,1,a4,1,a6,0,2,3
2,a1,2,1,a4,0,a6,1,2,3
2,a1,2,0,a4,1,a6,1,2,3
2,a1,3,1,a4,1,a6,1,2,3

#----S5
1,2,a2,2,1,a5,1,2,a8,0
2,a1,2,1,a4,1,a6,1,2,3


Here is the .color file

Code: Select all

color= 3 99 99 99
I called this table m5-b2s0123, but if anyone comes up with a better name, feel free to post it

Here are some patterns

Code: Select all

x = 9, y = 9, rule = m5-b2s0123
C.C.C.C.C$.C.C.C.C$C.C.C.C.C$.C.C.C.C$C.C.B.C.C$.C.C.B.C$C.C.C.C.C$.C
.C.C.C$C.C.C.C.C!

Code: Select all

x = 17, y = 17, rule = m5-b2s0123
C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
$C.C.C.C.C.C.C.C.C$.C.C.B.BAC.C.C.C$C.C.CACAB.C.C.C.C$.C.C.B.BAC.C.C.
C$C.C.CACAB.C.C.C.C$.C.C.B.BAC.C.C.C$C.C.CACAB.C.C.C.C$.C.C.B.BAC.C.C
.C$C.C.CACAB.C.C.C.C$.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C$C.C.C.C.C.C.C.C.C!

Code: Select all

x = 8, y = 9, rule = m5-b2s0123
3.C.C.C$2.C.CAB$.C.CABAC$C.CAB.B$.CABACAC$C.BAB.B$.C.BACAC$C.C.C.C$.C
!

Code: Select all

x = 11, y = 16, rule = m5-b2s0123
2.C.C.C.C.C$.C.C.CAB.B$C.C.CABACAC$.C.C.C.B.B$C.C.BACACAC$.CABABAC.C$
C.BAC.BACAC$.CAB.C.B.B$C.BABACACAC$.C.C.BAB.B$C.C.CAB.C.C$.CAB.B.C.C$
C.BACACACAC$.CAB.B.B.B$C.BACACACAC$.C.C.C.C!