random cellular automata concepts
- SquishyBoi
- Posts: 172
- Joined: August 3rd, 2020, 11:22 pm
- Location: the middle of australia, where we fry koala on the barbie
- Contact:
random cellular automata concepts
exactly what the title says
1. an (interesting) one-state cellular automata solved by wzkchem5
2. a spaceship that goes backwards solved by saka
3. a pattern that will survive forever, yet will never return to any of it's prior positions already solved by toroidalet
4. a rulestring where every pattern goes downwards solved by cvojan
5. a cellular automata that makes music
6. a cellular automata that moves on the beat of a preset song concept by wzkchem5
7. ventrella's "clusters" made in cellular automata
8. a convolutional neural network that creates it's own cellular automatas
9. a cellular automata that does a dance solved by saka and their atrocity of a blob
10. a pattern that looks like an oscillator, spaceship, wickstretcher, etc. but will stabilise after an abnormally short amount of generations already in day & night
11. a self-aware cellular automata concept by wzkchem5
12. a cellular automata but the grid is composed of circles concept by moosey
13. a cellular automata simulation inside of a cellular automata already exists as the 0e0p metacell
14. langton's ant but ants create baby ants behind them which die after a short amount of time, yet still long enough to affect some of the other ant's paths, as baby ants act just like ants
15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
16. a cellular automata that rickrolls you solved by saka
17. a cellular automata that does my taxes concept by wzkchem5 probably already exists actually
18. a two cell pattern that has some interesting properties already exists as the on/off trigger
19. cell machine made in cellular automata
20. a pattern resembling a unipole (bipole, tripole, etc.) solved by saka
21. a 5 dimensional cellular automata (apparently 3 and 4 dimensional has already been done)
22. a cellular automata that apgsearches itself
23. one from wzkchem5, two inequivalent cellular automata A and B such that both are turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
create any of these 23 concepts mentioned above and you'll get a free ice-cream of your choosing here
you can also make your own random concepts :D
1. an (interesting) one-state cellular automata solved by wzkchem5
2. a spaceship that goes backwards solved by saka
3. a pattern that will survive forever, yet will never return to any of it's prior positions already solved by toroidalet
4. a rulestring where every pattern goes downwards solved by cvojan
5. a cellular automata that makes music
6. a cellular automata that moves on the beat of a preset song concept by wzkchem5
7. ventrella's "clusters" made in cellular automata
8. a convolutional neural network that creates it's own cellular automatas
9. a cellular automata that does a dance solved by saka and their atrocity of a blob
10. a pattern that looks like an oscillator, spaceship, wickstretcher, etc. but will stabilise after an abnormally short amount of generations already in day & night
11. a self-aware cellular automata concept by wzkchem5
12. a cellular automata but the grid is composed of circles concept by moosey
13. a cellular automata simulation inside of a cellular automata already exists as the 0e0p metacell
14. langton's ant but ants create baby ants behind them which die after a short amount of time, yet still long enough to affect some of the other ant's paths, as baby ants act just like ants
15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
16. a cellular automata that rickrolls you solved by saka
17. a cellular automata that does my taxes concept by wzkchem5 probably already exists actually
18. a two cell pattern that has some interesting properties already exists as the on/off trigger
19. cell machine made in cellular automata
20. a pattern resembling a unipole (bipole, tripole, etc.) solved by saka
21. a 5 dimensional cellular automata (apparently 3 and 4 dimensional has already been done)
22. a cellular automata that apgsearches itself
23. one from wzkchem5, two inequivalent cellular automata A and B such that both are turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
create any of these 23 concepts mentioned above and you'll get a free ice-cream of your choosing here
you can also make your own random concepts :D
Last edited by SquishyBoi on September 15th, 2020, 3:33 am, edited 8 times in total.
i is squishyboi, a professional dumbass hiding in the sandbox
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
Re: random cellular automata concepts
1. I don't know what your definition of interesting is, but in a one-state automaton, nothing can ever change. However, purple is an interesting color, so if you change the cell's colors to purple it'll be interesting enough for you.SquishyBoi wrote: ↑September 13th, 2020, 8:24 pm1. an (interesting) one-state cellular automata
2. a spaceship that goes backwards
3. a pattern that will survive forever, yet will never return to any of it's prior positions
4. a rulestring where every pattern goes downwards
10. a pattern that looks like an oscillator, spaceship, wickstretcher, etc. but will stabilise after an abnormally short amount of generations
13. a cellular automata simulation inside of a cellular automata
16. a cellular automata that rickrolls you
18. a two cell pattern that has some interesting properties
20. a pattern resembling a unipole (bipole, tripole, etc.)
2. What does it even mean for a spaceship to go backwards? Does this count (reposted from discord, found with LLS)?
Code: Select all
x = 3, y = 3, rule = B2ckn3acjky4-qy5-jn678/S012ein3ciny4-ntwy5-cj6-k78
bo$2bo$3o!
[[ STEP 3 ]]4. Possible with MAP rules but I don't have the appropriate one on-hand so I'll let someone else do it.
10. Also not sure, something like the Day and Night temporary rockets? Those bugs that die out after a while in LTL kind of like this?
Code: Select all
x = 11, y = 11, rule = R5,C0,M1,S37..59,B33..49,NM
4b2o$2b6o$b8o$b9o$b10o$4o3b4o$3o4b4o$b2o4b4o$b2o3b4o$2b2o2b2o$3b4o!
16. Closest thing I have is this: viewtopic.php?f=4&t=4383
18. What is "interesting"? Maybe you wanna take a look at snowflakes: viewtopic.php?f=11&t=3202 ?
20. This?
Code: Select all
x = 4, y = 4, rule = B3/S2-n3
2b2o$3bo$obo$2o!
- SquishyBoi
- Posts: 172
- Joined: August 3rd, 2020, 11:22 pm
- Location: the middle of australia, where we fry koala on the barbie
- Contact:
Re: random cellular automata concepts
1. purple is not interesting enough (apologies to any diehard purple fans), but maybe a one-state cellular automata where the only state is a colour wavelength that is not visible by humans but can be comprehended by computers?Saka wrote: ↑September 14th, 2020, 12:38 am1. I don't know what your definition of interesting is, but in a one-state automaton, nothing can ever change. However, purple is an interesting color, so if you change the cell's colors to purple it'll be interesting enough for you.
2. What does it even mean for a spaceship to go backwards? Does this count (reposted from discord, found with LLS)?3. Not sure what this means. So, an indestructible spaceship? Certainly possible in a MAP rue.Code: Select all
x = 3, y = 3, rule = B2ckn3acjky4-qy5-jn678/S012ein3ciny4-ntwy5-cj6-k78 bo$2bo$3o! [[ STEP 3 ]]
4. Possible with MAP rules but I don't have the appropriate one on-hand so I'll let someone else do it.
10. Also not sure, something like the Day and Night temporary rockets? Those bugs that die out after a while in LTL kind of like this?13. Perfectly done with the 0E0P metacellCode: Select all
x = 11, y = 11, rule = R5,C0,M1,S37..59,B33..49,NM 4b2o$2b6o$b8o$b9o$b10o$4o3b4o$3o4b4o$b2o4b4o$b2o3b4o$2b2o2b2o$3b4o!
16. Closest thing I have is this: viewtopic.php?f=4&t=4383
18. What is "interesting"? Maybe you wanna take a look at snowflakes: viewtopic.php?f=11&t=3202 ?
20. This?Code: Select all
x = 4, y = 4, rule = B3/S2-n3 2b2o$3bo$obo$2o!
2. this one was a big fat joke, however you made me laugh with the backwards glider thing so you can have the ice cream i guess
3. also a joke, but the concept was a pattern (regardless if it's an oscillator, spaceship, wickstretcher, etc.) that keeps on moving but never possesses the same configuration as it did to ALL the generations prior. location does not matter, only the configuration of cells. actually now that i think about it, this is technically impossible, but somebody will probably come up with something anyway
i forgot that 10., 13. and 18. already exists when writing that so they're already solved :P
16. good enough, have a second icecream
20. i just reused the idea from the random posts thread: i didn't expect the person who replied to my nopole post to be here :0
have another icecream because why not
i is squishyboi, a professional dumbass hiding in the sandbox
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
Re: random cellular automata concepts
By "never possesses the same configuration as it did to ALL the generations prior", do you mean that for any two generations M<N, the pattern at generation M is not a subset of the pattern at generation N? If yes, then many (if not all) spacefillers are trivial examples. Of course, the different generations of a spacefiller closely resemble each other, but to exclude spacefillers from consideration you have to rephrase your question to make it clearer.SquishyBoi wrote: ↑September 14th, 2020, 1:27 am
3. also a joke, but the concept was a pattern (regardless if it's an oscillator, spaceship, wickstretcher, etc.) that keeps on moving but never possesses the same configuration as it did to ALL the generations prior. location does not matter, only the configuration of cells. actually now that i think about it, this is technically impossible, but somebody will probably come up with something anyway
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
Re: random cellular automata concepts
One can make a one-state cellular automata that lives on a torus. At each step, the dimensions of the torus are modified according to some preset rule. Since it is possible to encode the evolution step of a Turing machine as a mapping from positive integers to positive integers, the cellular automaton can be made Turing complete. Which makes it interesting, IMHO.
Trivial if the song is 4/4. Imagine a glider coming at a suitable distance from a block, and eventually destroying it. This simulation will match the beat of the song (4/4 but terminating after finite time). I actually challenge anyone who can come up with a pattern that matches the beat of any song by Dream Theatre, which generally feature mixed beats, sometimes (allegedly) involving 17/16 measures.SquishyBoi wrote: ↑September 13th, 2020, 8:24 pm6. a cellular automata that moves on the beat of a preset song
My answer to the first question, plus a suitable torus size that allows the automaton to simulate our own universe, suffices.
Yes if the cellular automaton is used as the hash function of some cryptocurrency
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
Re: random cellular automata concepts
23. Two inequivalent cellular automata A and B such that both are Turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
If such a pair of cellular automata exists, this will consist of a solid evidence that there are certain aspects of the physical rules of our universe that we can never know. If however it is proved that there isn't such a pair of cellular automata, it will be the best news ever to reductionists.
If such a pair of cellular automata exists, this will consist of a solid evidence that there are certain aspects of the physical rules of our universe that we can never know. If however it is proved that there isn't such a pair of cellular automata, it will be the best news ever to reductionists.
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
Re: random cellular automata concepts
7. not possible as a conventional CA since CA aren't continuous7. ventrella's "clusters" made in cellular automata
12. a cellular automata [sic] but the grid is composed of circles
15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
17. a cellular automata [sic] that does my taxes concept by wzkchem5
19. cell machine made in cellular automata
21. a 5 dimensional cellular automata [sic] (apparently 3 and 4 dimensional has already been done)
22. a cellular automata [sic] that apgsearches itself
12. so like a hexagonal rule? Or is the grid an Apollonian gasket?
15. not possible for linear growth rakes in a 2D CA; possible in 3D CA or in 2D CA with "rakes" that have slower growth
17. a rule that does arithmetic sums should be quite neat tbh; I'd be surprised if there isn't already one engineered to do that.
19. probably not possible at a specific ratio of time to Cell machine
21. trivial, left as an exercise for the reader
22. CA can't access the internet, so the results wouldn't appear on catagolue; fortunately this doesn't matter as the apgsearching would be wondrously slow. Also, you'd probably want to do this in a nonexplosive but interesting turing-complete rule. (CHALLENGE: do this in GoL; since GoL is TC-CU it's possible)
not active here but active on discord
loves estradiol valerate
loves estradiol valerate
- SquishyBoi
- Posts: 172
- Joined: August 3rd, 2020, 11:22 pm
- Location: the middle of australia, where we fry koala on the barbie
- Contact:
Re: random cellular automata concepts
12. there are actually multiple ways to compose a grid of circles, so that's why i left the reader to run wild with the (albeit idiotic) concept. apollonian gasket is a plausible way of doing itMoosey wrote: ↑September 14th, 2020, 7:28 am
7. not possible as a conventional CA since CA aren't continuous
12. so like a hexagonal rule? Or is the grid an Apollonian gasket?
15. not possible for linear growth rakes in a 2D CA; possible in 3D CA or in 2D CA with "rakes" that have slower growth
17. a rule that does arithmetic sums should be quite neat tbh; I'd be surprised if there isn't already one engineered to do that.
19. probably not possible at a specific ratio of time to Cell machine
21. trivial, left as an exercise for the reader
22. CA can't access the internet, so the results wouldn't appear on catagolue; fortunately this doesn't matter as the apgsearching would be wondrously slow. Also, you'd probably want to do this in a nonexplosive but interesting turing-complete rule. (CHALLENGE: do this in GoL; since GoL is TC-CU it's possible)
22. a cellular automata that can apgsearch itself - as in a cellular automata that is capable of making soups within it. but then that'll require randomness and oh god we're back at square one
i is squishyboi, a professional dumbass hiding in the sandbox
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
get some icecream here - viewtopic.php?f=12&t=4666
also painfully relevant - super loaf
Re: random cellular automata concepts
3. See Total aperiodicSquishyBoi wrote: ↑September 13th, 2020, 8:24 pm3. a pattern that will survive forever, yet will never return to any of it's prior positions
4. a rulestring where every pattern goes downwards
4. Rule table:
Code: Select all
@RULE spaceship
@TABLE
n_states:2
neighborhood:Moore
symmetries:none
var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={0,1}
var g={0,1}
0,1,a,b,c,d,e,f,g,1
1,0,a,b,c,d,e,f,g,0- ColorfulGalaxy
- Posts: 407
- Joined: July 16th, 2020, 3:37 am
- Location: Hacked by Trump {Bot}
Re: random cellular automata concepts
I'm actually trying to solve #6 before you made this thread.SquishyBoi wrote: ↑September 13th, 2020, 8:24 pmexactly what the title says
1. an (interesting) one-state cellular automata solved by wzkchem5
2. a spaceship that goes backwards solved by saka
3. a pattern that will survive forever, yet will never return to any of it's prior positions
4. a rulestring where every pattern goes downwards
5. a cellular automata that makes music
6. a cellular automata that moves on the beat of a preset song concept by wzkchem5
7. ventrella's "clusters" made in cellular automata
8. a convolutional neural network that creates it's own cellular automatas
9. a cellular automata that does a dance
10. a pattern that looks like an oscillator, spaceship, wickstretcher, etc. but will stabilise after an abnormally short amount of generations already in day & night
11. a self-aware cellular automata concept by wzkchem5
12. a cellular automata but the grid is composed of circles
13. a cellular automata simulation inside of a cellular automata already exists as the 0e0p metacell
14. langton's ant but ants create baby ants behind them which die after a short amount of time, yet still long enough to affect some of the other ant's paths, as baby ants act just like ants
15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
16. a cellular automata that rickrolls you solved by saka
17. a cellular automata that does my taxes concept by wzkchem5 probably already exists actually
18. a two cell pattern that has some interesting properties already exists as the on/off trigger
19. cell machine made in cellular automata
20. a pattern resembling a unipole (bipole, tripole, etc.) solved by saka
21. a 5 dimensional cellular automata (apparently 3 and 4 dimensional has already been done)
22. a cellular automata that apgsearches itself
create any of these 22 concepts mentioned above and you'll get a free ice-cream of your choosing here
you can also make your own random concepts![]()
See "Absolutely Useless patterns not in CGoI".
- toroidalet
- Posts: 1514
- Joined: August 7th, 2016, 1:48 pm
- Location: My computer
- Contact:
Re: random cellular automata concepts
Can you clarify what you mean by this?SquishyBoi wrote: ↑September 13th, 2020, 8:24 pm3. a pattern that will survive forever, yet will never return to any of it's prior positions
Here are some patterns which may or may not qualify (EDIT: actually most of the complex Life patterns like the primer and caber tosser and exotic growth rate probably count too):
Code: Select all
x = 13, y = 5, rule = B3-y4e5a/S23-e
b2o$o2bo$b2o2b2o3b2o$5bobobo2bo$5bo4b2o!
Code: Select all
x = 3, y = 3, rule = B2ci3aer4eiqrz5i6cik8/S01c2cn3ek4nqtw5aekry6ekn78
bo$obo$bo!
Someone did do this earlier with one of the Wolfram rules (110?), but it was feeding the patterns themselves into the music player instead of something that explicitly wrote music.5. a cellular automata that makes music
9. a cellular automata that does a dance
Code: Select all
x = 30, y = 29, rule = B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
6bobo$8b2o2bobobobobobo$5bob6obobobobo3bo$3b18obob3o$2b23obo$2b25o$ob
26o$28obo$b29o$b29o$2b28o$2b26o$3b25o$6b21o$6b21o$6b20o$7b19o$7b18o$8b
17o$9b15o$12b12o$11b12o$13b10o$11b11o$14b8o$12b8o$15b5o$14b4o$16b2o!While theoretically possible, the ships would run out of room, resulting in the pattern just becoming a rake rake, exploding, or just becoming an MMS breeder.15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
Any sufficiently advanced software is indistinguishable from malice.
Re: random cellular automata concepts
22. not that hard, just hook a pseudorandom number generator up to a universal constructor and make a 16x16 grid of 0E0P metacells. This is definitely possible in GoLSquishyBoi wrote: ↑September 14th, 2020, 6:20 pm22. a cellular automata that can apgsearch itself - as in a cellular automata that is capable of making soups within it. but then that'll require randomness and oh god we're back at square one
Trivial solution: a rule and its inverse. B3/S23 and B0123478/S01234678 should work.23. one from wzkchem5, two inequivalent cellular automata A and B such that both are turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
not active here but active on discord
loves estradiol valerate
loves estradiol valerate
Re: random cellular automata concepts
No, I mean inequivalent, not non-identical. To be more precise, I'd want that there is no one-to-one mapping X<->Y between the configurations of the rules A and B, in the sense that if X<->Y, then X'<->Y', where X' is X evolved one step under rule A and Y' is Y evolved one step under rule B.Moosey wrote: ↑September 15th, 2020, 7:16 amTrivial solution: a rule and its inverse. B3/S23 and B0123478/S01234678 should work.23. one from wzkchem5, two inequivalent cellular automata A and B such that both are turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
For example, if the initial condition is chosen such that when simulated by B3/S23, no cell with eight live neighbors will ever appear, then B38/S23 and B3/S23 can be said to be equivalent in this sense (provided the intelligent beings already know that the initial condition of their universe satisfies this property). But since I'm speaking of random initial conditions, this does not count as a true example.
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
- EvinZL
- Posts: 895
- Joined: November 8th, 2018, 4:15 pm
- Location: A tungsten pool travelling towards the sun
- Contact:
Re: random cellular automata concepts
"Every cell never changes"21. a 5 dimensional cellular automata (apparently 3 and 4 dimensional has already been done)
Hey, you never said it had to be interesting!
-
MathAndCode
- Posts: 5166
- Joined: August 31st, 2020, 5:58 pm
Re: random cellular automata concepts
#17 is easy if you only have to worry about marginal tax brackets. Simply find some spaceships all going in the same direction with speed proportional to the amount of money that you get to keep for each tax bracket, make converters from each spaceship to the next at the right distances, and then send the fastest spaceship towards the first converter. If the number of generations is proportional to the amount of money that you made, then the distance of whatever spaceship from the starting point after that number of generations will be proportional to the amount of money that you keep. If there is anything more complicated than simple tax brackets, or you can't find/don't feel like finding all of the spaceships with the right speed, then use the fact that it's possible to build a universal computer in ConwayLife.
As for #5, how complicated must the music be?
As for #5, how complicated must the music be?
I am tentatively considering myself back.
- toroidalet
- Posts: 1514
- Joined: August 7th, 2016, 1:48 pm
- Location: My computer
- Contact:
Re: random cellular automata concepts
Here is an example of music from CA (not a rickroll). I think the person did this in the trivial way (where you play each frequency iff the cell is on) but I'm not sure.
Ignoring trivial examples such as Life but at 1/2 speed, one possibility is the following: a universal Turing machine (moving left and right) that sends signals that also move left and right. When 2 signals collide, the one moving right becomes a different type of signal which then destroys everything it touches (each row is independent of the others). If you did this with 2 different Turing machines, none of them would be able to determine anything about their underlying cellular automaton because the only way that the tape head can be influenced is by the tape cells and destructive signals. However, in general you need a very special cellular automaton in order to even learn about the outside world, because in most of them spaceships and stuff are far more likely to cause serious damage to circuitry than a stray photon is, and it's much harder to absorb them using eaters or converters (you have to worry about them coming in at the wrong time or one cell off, again usually messing stuff up).23. one from wzkchem5, two inequivalent cellular automata A and B such that both are turing complete, so that starting from random initial conditions and simulated on an infinite array, both will eventually give entities of at least human intelligence, but it is impossible for these entities to distinguish if their own universe is simulated by A or B; moreover they can not even tell whether their own universe has a higher probability of being simulated by A than simulated by B, or vice versa.
Any sufficiently advanced software is indistinguishable from malice.
-
MathAndCode
- Posts: 5166
- Joined: August 31st, 2020, 5:58 pm
Re: random cellular automata concepts
#23: One is ConwayLife, and the other is ConwayLife except that if a cell is alive and all other cells within the 999×999 box around it are also alive, then it survives instead of dying like it normally would if it had eight immediate neighbors.
I am tentatively considering myself back.
Re: random cellular automata concepts
You had me convinced that that was a rickrolltoroidalet wrote: ↑September 19th, 2020, 6:04 pmHere is an example of music from CA (not a rickroll).
It was not
not active here but active on discord
loves estradiol valerate
loves estradiol valerate
- toroidalet
- Posts: 1514
- Joined: August 7th, 2016, 1:48 pm
- Location: My computer
- Contact:
Re: random cellular automata concepts
Here's an example rake^3 I just made up; as you can see eventually the cubic growth eventually returns to quadratic due to running out of space:SquishyBoi wrote: ↑September 13th, 2020, 8:24 pm15. a rake, that creates rakes, which create rakes, which create spaceships (rake rakes are mentioned here but this is a rake rake rake :0 )
Code: Select all
@RULE rake^3
@TABLE
#States 1-3 stolen from a rule by BlinkerSpawn
n_states:7
neighborhood:Moore
symmetries:none
var c1={1,3}
var c2=c1
var c3=c2
var c4=c3
var c5=c4
var c6=c5
var c7=c6
var c8=c7
var C1={0,1,3}
var C2=C1
var C3=C2
var C4=C3
var C5=C4
var C6=C5
var C7=C6
var C8=C7
1,0,0,0,0,0,0,0,0,2
3,0,0,0,0,0,0,0,0,2
2,0,0,0,0,0,0,0,0,3
0,2,0,0,0,0,0,0,0,2
0,0,2,0,0,0,0,0,0,3
0,0,0,2,0,0,0,0,0,2
0,0,0,0,2,0,0,0,0,3
0,0,0,0,0,2,0,0,0,2
0,0,0,0,0,0,2,0,0,3
0,0,0,0,0,0,0,2,0,2
0,0,0,0,0,0,0,0,2,3
0,2,3,0,0,0,0,0,3,3
0,3,0,0,0,0,0,0,2,3
0,0,0,3,2,0,0,0,0,3
0,0,3,2,3,0,0,0,0,3
0,0,2,3,0,0,0,0,0,3
0,0,0,0,0,3,2,0,0,3
0,0,0,0,3,2,3,0,0,3
0,0,0,0,2,3,0,0,0,3
0,0,0,0,0,0,0,3,2,3
0,0,0,0,0,0,3,2,3,3
0,0,0,0,0,0,2,3,0,3
2,3,2,3,2,3,0,0,0,3
2,0,0,3,2,3,2,3,0,3
2,3,0,0,0,3,2,3,2,3
2,3,2,3,0,0,0,3,2,3
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,1,1,1,0,0,0,0,0
1,1,1,1,0,0,0,0,1,0
1,1,1,0,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,1,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,1,0,0,0,0,0
3,0,0,0,0,c1,c2,c3,c4,1
1,0,0,0,0,c1,c2,c3,c4,3
3,1,0,0,0,C1,C2,C3,C4,1
1,1,0,0,0,C1,C2,C3,C4,3
3,0,0,0,1,C1,C2,C3,C4,1
1,0,0,0,1,C1,C2,C3,C4,3
3,1,0,1,1,C1,C2,C3,C4,1
1,1,0,1,1,C1,C2,C3,C4,3
3,1,1,1,1,C1,C2,C3,C4,1
1,1,1,1,1,C1,C2,C3,C4,3
3,1,1,1,0,C1,C2,C3,C4,1
1,1,1,1,0,C1,C2,C3,C4,3
3,1,1,0,0,C1,C2,C3,C4,1
1,1,1,0,0,C1,C2,C3,C4,3
3,0,0,1,1,C1,C2,C3,C4,1
1,0,0,1,1,C1,C2,C3,C4,3
3,0,1,1,1,C1,C2,C3,C4,1
1,0,1,1,1,C1,C2,C3,C4,3
3,3,0,3,3,0,0,3,3,2
2,3,0,3,3,0,0,3,3,1
3,0,0,0,3,2,3,3,0,0
3,0,0,0,0,3,0,2,3,0
3,3,0,0,0,0,0,0,2,0
3,3,3,2,0,0,0,0,0,0
3,0,0,3,2,3,0,0,0,0
3,0,1,0,0,0,0,0,0,0
#states 4-5 (rake):
0,3,2,0,0,0,0,0,0,4
0,4,0,0,0,0,0,0,0,4
4,3,3,3,0,0,0,0,3,3
4,0,1,0,0,4,0,0,5,0
4,4,0,0,0,0,0,0,0,0
4,0,0,0,0,0,0,0,0,0
0,0,0,0,4,0,0,0,0,5
0,0,5,0,0,0,0,0,0,5
5,0,0,0,0,0,0,0,0,0
5,0,0,0,4,0,0,0,0,0
#state 6 (rake^3)
0,0,0,6,0,0,0,0,0,6
0,0,0,0,0,0,0,6,0,6
6,0,0,0,0,0,0,0,0,0
0,0,6,6,0,0,0,0,0,6
0,0,0,6,6,0,0,0,0,6
6,6,0,0,0,0,0,0,0,0
6,0,0,0,0,6,0,0,0,0
0,0,0,0,0,0,6,0,6,1
6,0,0,0,0,1,0,0,0,0Code: Select all
x = 127, y = 4, rule = rake^3
F2$126.F$126.F!
Alright, guys—it's been confirmed: not a rickroll. It's safe for you to watch now.Moosey wrote: ↑September 19th, 2020, 7:43 pmYou had me convinced that that was a rickrolltoroidalet wrote: ↑September 19th, 2020, 6:04 pmHere is an example of music from CA (not a rickroll).
It was not![]()
Any sufficiently advanced software is indistinguishable from malice.
Re: random cellular automata concepts
But the Turing machines will have to emerge spontaneously from a random initial condition, and it is highly unlikely that there is a CA where universal Turing machines with the destructive signals are possible but those without such signals are not.toroidalet wrote: ↑September 19th, 2020, 6:04 pmIgnoring trivial examples such as Life but at 1/2 speed, one possibility is the following: a universal Turing machine (moving left and right) that sends signals that also move left and right. When 2 signals collide, the one moving right becomes a different type of signal which then destroys everything it touches (each row is independent of the others). If you did this with 2 different Turing machines, none of them would be able to determine anything about their underlying cellular automaton because the only way that the tape head can be influenced is by the tape cells and destructive signals. However, in general you need a very special cellular automaton in order to even learn about the outside world, because in most of them spaceships and stuff are far more likely to cause serious damage to circuitry than a stray photon is, and it's much harder to absorb them using eaters or converters (you have to worry about them coming in at the wrong time or one cell off, again usually messing stuff up).
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
Re: random cellular automata concepts
I will accept this answer! This answer will probably only make sense if the initial condition is an infinitely dilute soup though (I did not explicitly require this but this is the situation I'm actually interested in, so I'm satisfied with solving this special case); otherwise the change of rule may have an extremely small but non-zero effect on the object populations in the final ash.MathAndCode wrote: ↑September 19th, 2020, 6:28 pm#23: One is ConwayLife, and the other is ConwayLife except that if a cell is alive and all other cells within the 999×999 box around it are also alive, then it survives instead of dying like it normally would if it had eight immediate neighbors.
And your solution can be generalized to any CA where the rule deviates from GoL only when encountering a Garden of Eden, and the Garden of Eden is too rare in the initial soup to have a non-zero impact on the global dynamics.
But still, I would be interested in some more non-trivial solutions, i.e. two CAs that do not resemble each other at all at the first glance.
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
-
MathAndCode
- Posts: 5166
- Joined: August 31st, 2020, 5:58 pm
Re: random cellular automata concepts
There's a design for a Turing machine that works in a variety of fairly common rules, such as ConwayLife, PedestrianLife, and DryLife, but they probably have at least slightly different commonnesses for different types of gates, which could lead to the equivalent of different laws of physics being more likely. Of course, any Turing complete cellular automaton could simulate any cellular automaton, including other Turing-complete cellular automaton, but the question also requires that hypothetical intelligent beings would not be able to detect a difference in probabilities.wzkchem5 wrote: ↑September 23rd, 2020, 11:15 amI will accept this answer! This answer will probably only make sense if the initial condition is an infinitely dilute soup though (I did not explicitly require this but this is the situation I'm actually interested in, so I'm satisfied with solving this special case); otherwise the change of rule may have an extremely small but non-zero effect on the object populations in the final ash.MathAndCode wrote: ↑September 19th, 2020, 6:28 pm#23: One is ConwayLife, and the other is ConwayLife except that if a cell is alive and all other cells within the 999×999 box around it are also alive, then it survives instead of dying like it normally would if it had eight immediate neighbors.
And your solution can be generalized to any CA where the rule deviates from GoL only when encountering a Garden of Eden, and the Garden of Eden is too rare in the initial soup to have a non-zero impact on the global dynamics.
But still, I would be interested in some more non-trivial solutions, i.e. two CAs that do not resemble each other at all at the first glance.
19. ConwayLife has universal Turing machines, so simply program it on one of them.
22. I found a pattern whose shape resembles a capital I, which is also its apcode.
I am tentatively considering myself back.
Re: random cellular automata concepts
Yes, and this makes the question less trivial than it seemsMathAndCode wrote: ↑September 23rd, 2020, 3:03 pmThere's a design for a Turing machine that works in a variety of fairly common rules, such as ConwayLife, PedestrianLife, and DryLife, but they probably have at least slightly different commonnesses for different types of gates, which could lead to the equivalent of different laws of physics being more likely. Of course, any Turing complete cellular automaton could simulate any cellular automaton, including other Turing-complete cellular automaton, but the question also requires that hypothetical intelligent beings would not be able to detect a difference in probabilities.
The Red Phoenix, The Yellow Phoenix, The Pink Phoenix And The Multicolored Phoenix
- hotcrystal0
- Posts: 2828
- Joined: July 3rd, 2020, 5:32 pm
- Location: United States
Re: random cellular automata concepts
found a spaceship and an oscillator in Suicidal BugsSquishyBoi wrote: ↑September 14th, 2020, 1:27 am1. purple is not interesting enough (apologies to any diehard purple fans), but maybe a one-state cellular automata where the only state is a colour wavelength that is not visible by humans but can be comprehended by computers?Saka wrote: ↑September 14th, 2020, 12:38 am1. I don't know what your definition of interesting is, but in a one-state automaton, nothing can ever change. However, purple is an interesting color, so if you change the cell's colors to purple it'll be interesting enough for you.
2. What does it even mean for a spaceship to go backwards? Does this count (reposted from discord, found with LLS)?3. Not sure what this means. So, an indestructible spaceship? Certainly possible in a MAP rue.Code: Select all
x = 3, y = 3, rule = B2ckn3acjky4-qy5-jn678/S012ein3ciny4-ntwy5-cj6-k78 bo$2bo$3o! [[ STEP 3 ]]
4. Possible with MAP rules but I don't have the appropriate one on-hand so I'll let someone else do it.
10. Also not sure, something like the Day and Night temporary rockets? Those bugs that die out after a while in LTL kind of like this?13. Perfectly done with the 0E0P metacellCode: Select all
x = 11, y = 11, rule = R5,C0,M1,S37..59,B33..49,NM 4b2o$2b6o$b8o$b9o$b10o$4o3b4o$3o4b4o$b2o4b4o$b2o3b4o$2b2o2b2o$3b4o!
16. Closest thing I have is this: viewtopic.php?f=4&t=4383
18. What is "interesting"? Maybe you wanna take a look at snowflakes: viewtopic.php?f=11&t=3202 ?
20. This?Code: Select all
x = 4, y = 4, rule = B3/S2-n3 2b2o$3bo$obo$2o!
2. this one was a big fat joke, however you made me laugh with the backwards glider thing so you can have the ice cream i guess
3. also a joke, but the concept was a pattern (regardless if it's an oscillator, spaceship, wickstretcher, etc.) that keeps on moving but never possesses the same configuration as it did to ALL the generations prior. location does not matter, only the configuration of cells. actually now that i think about it, this is technically impossible, but somebody will probably come up with something anyway
i forgot that 10., 13. and 18. already exists when writing that so they're already solved
16. good enough, have a second icecream
20. i just reused the idea from the random posts thread: i didn't expect the person who replied to my nopole post to be here :0
have another icecream because why not
Code: Select all
x = 240, y = 184, rule = Suicidal Bugs
2b3obobo2b6obobo2bo2bobob5obo4b2o2bob2ob5o2b5o4bo3bo2b3o2bo4b2obobo6b
2o2b2o2b2obob4ob3o2b3o4bobo2bob3ob4o3bobo3b2o2b3obob2ob7o2b4obo3b3obo
3bob3ob3o3b4ob5ob3o11b3obob2o2b2obo$2bob2o3bo3bo2bob2ob2obo2b3o8bo4b2o
3bo2bobo2b2ob6o2b3ob2o3bo2b2o3bob5obobo2bo2b2ob8ob2ob2o7b3ob2obobo2bo
bo2bo2bo3bobo2b3o3b2o2bobo4bobob2o2b2o4bob2o3b2ob4obo2b2o2b3o8bob3obo
b2o3bobo4bo$obo2bo2b3o2b2o6bob2ob2o2bo4b2o2b8obo3b3o3bo3b3o3b2o2b3obo
b3obo2bobobobo3bob5obo4b3ob2obobob5ob4o3bobo2bo3b3o2bobo2bo4bo2b3ob3o
b2obobobobo2bo4b2ob2o2bo4b3ob7obo2b2o3b3o2b2o3b2ob11o$o10b3obo2b5ob3o
2b2o2b2ob4obob4o4b2ob2o2bo4bobobo3bob2ob3ob3ob3o2bobob2ob2obobobob5ob
obob3ob2o4bo5bobo3bob4obo3bobob5obobobo2b2o4bob4o2bo2b3o5bo3bo2b2ob3o
2b2ob2ob3obob2o3b3ob3obob8o$bobo3bo2bo4bo2bo4b7obo2bo2bo4bob2obobobob
obo2b4ob2o3b2o2bobobo2bo2bob3o2b3obo2bo2b2o3bobob4obo3b2obobo2b2o4bo2b
ob5o5bo3b3o3b3o2b3o3bo4b2o3b3ob4o3bob2obobob2o2bo2b5ob2o2bo2b2obo2bob
o3b6obob2o$2bob3o2b4ob3obob2o3b2o2b2obob3o2bob3o2bob3o3b2ob2o3b2o2bob
obob2obo2bo3bo2b3obobobo3bo3b3o2b2ob2o4b4o4bob4o4b4o4bo3b2obo2bob4o2b
2obobo3b4o2b2o2b3ob5ob3ob2ob3o2b3obo2bobob2obo2bobob4obobob2o2bo3b2o$
2bobobo2b3ob2ob2ob4o4b4o2b2obobob6o3b2o3bo2bo2b2o3b3o5bo6bo4bo2b2o2b2o
3bo2bo8bobo3b4o2bob2o3b2ob2o2b2o3b2obo2b2o3b5ob4o3bob2obobobo3b7o2b2o
8b3o4bobo2b4o4b3ob2o2b2o6b2ob3o$3o2b4o2b3o2b6o2bo2b2ob2ob2o6bo2bo5b3o
2bob4obob2o3bob8o2b2ob2o8b5o2b3o2bo5b4ob4o3bo3bob2o2bob3obo3bob3o4bo2b
5o3bobo4bo2b3o2b5o3b3ob3o7bobo3bob5o2bob2o3b6o2b3obo$obobobo2bo3b3obo
b2o4bob2obobobobobobo6bo6b3ob4o4b3obo2b5o2b2ob2obo3bobob2ob2ob2o5b3ob
o2bo6bob2o2bo2bobob2ob2ob4o3b2ob3obobo5b3o4b2obo8bo2bobo2b4o2bo3bo7bo
2b2obob4o5bob4ob2ob2obobo$7o4b2ob2ob5ob2ob2o4bo2bo5bo2b2o2bobo4bo2b5o
bob3ob7o3bobo3b2obo3bo4b3o5b2o3b3o2b2o4b2ob2obobobo5b6o3bo2bo2bo3b4ob
o3bobo3b2o2b2o4b2obob2o3b2obo2bo2bo2b4obo4b3o5bob5o4bobo3bo$ob3obo2b4o
4bobo3b4o2b5o2b2ob3o2bo6b2ob3o3bob2o2bob7o4b7ob4o4b4o2b4obob2obo2b2ob
o3bo2bobo2b4ob4o6bobobobo2bob2obob9o2bob2ob2obo3b2ob4ob2o6bob4ob2obo4b
obobobo2b4ob2o2b2obobobo$4b3o2b3obobo2b3o2bo6bo4b4o3bo2bo2b3obo2b2ob3o
3bo2b2o2bo6b2o2bob4obobob2o3bo2bob2ob2ob2o3b2ob3ob2o2b7o8bo6bo2b2obob
2o2b2ob2obob3o3b3ob5ob4o4b2obob2obo3bo2bob3o2bob3ob4o2b2ob3ob2o2bo2bo
$3o6bobo5bo2b3obo2b4o4b10obob2o3b5o4bo2bo5bo2b2o4bo2b5obo2bo2b2o5bo2b
ob2o3bob2obo2bo2b4obobo3bob3obo3bo5b3ob4ob2o4b3ob3o2b3o7b2o5bo3bo2b2o
3bobo4b2o5bo2bo3bobo4b2o2bobo$2b2o2b4obobo3b3o2bobo2b3obob3ob6ob4o2b2o
bo2bob8ob5ob3obobobo3b5ob3o2b2o3bobobobobo2bo2bo7b2o2bo3bo2b2o3b5o3b2o
b5o2bo4bob4ob4obobobob2o2bobobobo2bo2bobobobo3b6obo2b2o3b2obobobobob4o
bo$o4bob2obo3bobobo6bob2o2bob2obo3bo2b2ob7o2bobo2bob2o3b2o3b2o3b2o2bo
b2o4b2o2bobobobobob4o3bo4bo3bobo6b2obob3o2b2obob3o2b6o2bobob4o3b5ob3o
bob2o2b2ob2o2bo3bobo4bo2b2ob2o2b3o5b3o3b3obob2obo$bobo2bob3o2bo2bobob
o5b2ob2o2b3o2bo4b2ob2o2bo3b2o2bo3b2o2b2ob6o6b7ob2o3bo3b4o4bo4b3o2b3ob
5o8b3o3bob2obo2b2o4b3ob3o5b2ob5obobo2bobobo2bo5bo2b3o2b2ob2obo4b2obob
ob2o4b3obo5b6o$4bo4b4o2bo2b3obobo3bob2o3bob3ob2o2b3o3b3o3bo3b5o2bob2o
2b3obobob2o2bo3bo2bobobo3bo4b2obobo2bobobobo4b3ob2o4b4obo2bo2b3o2b3ob
ob4ob3o2b4o2b3obo2bo5b3o6bo3bo2bob3o4bo3bobo2bobobob2o2bo3bob2o$b4obo
bo2b3ob2ob3obob2obo4bob4ob2obob2ob2ob5ob3o8bo4bo2bo2bobobob2ob2o4b3o2b
2ob2obobobo3bobobo3bobob2o5bo3b2obobo3b4ob2o2b3o3b6obo2b2o2bo4b3o3b2o
b4o2b3o3bo3bo2bob2o5b2ob2obo2b8obo2b2obo$obob3o3bobobo2b3o2bo2bo4b3ob
2ob6obo3bob2o2bob2ob3o2bobo2b2obo3bo2bo2b2o2b4ob6ob2obob4o4bo3bo3b2o6b
ob3ob2obo2bobob4obob2o4b3ob2obo3bo2b3o3bo3b2o4bobobobo3bo2b5o2bo2bo2b
obobo3bo2bo2bo7bo3bo$obo2b3ob2o2bo2bo3b4o3bobobo4b2obobob3o3bo2bobo5b
2obobob2obo2bo2bo2bob2o4bo2bo3b2o2bo2bo2bob2obob2ob5o3b2o2bob3ob3ob4o
4bo2b3o2b2o2b5obo3b2ob2obob3o2bo3b4o3bob4obo3bobo4bo3bobo3b2o3b2o3b2o
4b3ob2o$2b2o3bobob2obo2bobo4b2o2bo4bo3b2ob2o5b3o2bobo3bobo4b3obob3obo
bob4o3b9o2b3o2bob3ob4o2bo2bo5b6ob2obobob8o4bobob5o5b6o2bobo4b2ob3o3b2o
2b3o2b2o2bo3b2o5b2ob3o3bo4b3o2b2obob2o2bo$o5bo2bo3b2obobo2b3obo3bo2bo
bo5b4o3bo2bo3bobo2b2o2bo8bob2o3b2obobob3o2bo3b3o4bo2b2o2bo2b2ob2o2b3o
2b2obo2b2o2b2o4bob9o3b7o6bo6bo2b5ob2o4b3ob2ob2o2bo3b4obob4o7b5o2b4o2b
obo$o2b2o5bob3o3bo2bobo2bobob4ob2o2bobobob2ob3obo3bo2bo6b2ob4obo2bo2b
o2b4o2b3o2bobo10b2o3b2obobobo2bo3bob5o2b2ob3o3b2o6bob3o5b2o2bo2bo3bo2b
2o4bo2bo2b2ob2obo3bo4bo6bo2b2o2bobo3b5obo3b4obo$2b2ob3obo2b5o3b2ob2ob
o2bob4ob2o2bo3bo2bo2b3obo2b4o2bobob6o2bo2b3o4bo2b2ob2o2bobob3ob2o3bob
obo7bob2obobobobobob6ob3ob2o6b7obobob2obob2obobo2bobob6obo3b2o4b2o4bo
2bo3bo2b3obo2b9o2bo2b2o$obo2bobob2o5b2ob2o2b4ob3o4b3ob2obob4o2bobobo2b
ob2o2b2o2bob2o2bo2bo2b3ob4o3bobob2o2bo2b4o3b5o4bo2bo3bobobo3bobo2b3ob
ob2obo4bo2b2ob2ob3obobo2bobo2b2o2bob2ob2o5bo2bo2b4o3b3o3bob2o3b3obob9o
b3o2bo$4bobob2o5b2o2bob4ob2obo2bo2b5o4bobobob3ob2o4bo2bob2obo3b2o2bob
o4bobobob5o5bob2o3bobo3bob4o3bo5b3o2b2o5bob3ob2ob4ob2obo4b5o6bob2obo2b
3o3bob4ob3o2b3o2b2ob3ob2o5b2o2bob3o3b5o2bo2bo$obo2bo3bobobob4o2b4o2b5o
2b2ob3o4bo2b3obo2b2ob2obobobobobobo3b2o3b4obo3b2o4bo3b2ob2o4bob2o4b2o
b3obo3bo2b2ob4obob2o3bo2bob2o6bobo2bob3o5b2o2bobo2b3o5b3o5bo2bobob2o3b
o3bob5obob3o3bobob4ob2o$2b3obobobo2bo3bobobo2bo11b2ob2o3bo2b2obob2o3b
o2bo4b5obo2bob3o2b5o3b3o3b2o2b4ob5o2b2o2bo4bob3o3bobobobob2o5b5o2bob4o
2b2o2b3o2bob2obobobob5o2b2o2b2ob6obo2b2o4b2o2bobobobo4bobo3bob3obo3bo
$ob7obo4bobo2bo4bob3o2bobo3bo4b3obo2b7o2b4o5b2o3bobobobo5bo2b2o2bo3b3o
2b2obo2bo3bobob2ob2o5bo2b2o4bo2bo2b2o2b3o6bo4bo7b2o3bo3bo2b6ob3ob3o3b
o2bo3bobob2ob2ob3ob2o2b2obobobob3ob2o3b2o$3ob2o6bobo2b2o2bo2bobob2o5b
o3bobo2bobobo2bobo2bob7ob7obobo4bobo2bob2o2bo2bo3bo3bo4b2o2b2obo2bo2b
2ob2ob2obo2b2obo2b7obo4bo2b2obobo2b2o6bobo3bo2bo8bob2o2b2o2bob2obobob
4obo2b2obo2bobo2b2o5bobobo$3ob2o3bob4o4bob2o5bob4o2b5o9bob4ob5obob6ob
obo2b5o2bobobob2o5b2o3bobo2bo5bo2bo3b2o3b3ob3ob2obo2bob2ob6ob2obo2bob
4o3b2ob3o2b7o2bob4ob2obo3bo3b3o4b3o4b4obobo2b3o2bo2b2o2b2o$b3o4bob2ob
2o4bo4bobob5o2bob2o2b3o7b3ob3ob3o2b3o2b2o4b4o3bob2o3bob4ob3o2bo6bo2bo
5b3ob3ob5o3b3ob4obobo3bo2b2o3bo2b2ob2o4bob5o2b4o2bo2bobo2bo5bo3b3obo2b
3o2bob2o7bob2o3bobobo2bo$5bo2b2obob2o4bo3bobobobobob3ob3o3b2ob3o2b3ob
ob2ob3obo3bob5ob3o2b4ob2o5b2obo9bo2bob2o3bo2bobo3bo2b3o3b2obo5bo6b2o2b
3o2bob3o2bob5obo2bobo4bo4b4o3bo2b4o2b2ob2obob2obob2obo2bo3bob2o4b2obo
$4o2b3ob3obo8bo2bo4bo5bob6obo2b3o2b2obob3obo2bobobo7b2o2bob5o3bob5o2b
10ob3o2bo6b3ob2obobo2b2o3bo6bob2o3bo2b4o2bob2ob2ob3o2b3obob3ob3o3bo2b
ob4o2bobob2ob2ob8ob4o2bobo2b3ob2o$bob3o3b3o2b4ob2o2bo5bobo6bo3bo5bo2b
obo2bobo3b3o4b2ob3o11b2o2b2o3b2ob6o2b2o2bo2bo2bob2o3bob2o2b4obo3bo3bo
b5obo2bobo4bobo2bo2bob2ob2o2b9ob3o10bob2ob2ob3o2b4ob3o2b5o3bob6o$bobo
b3ob4obo3bo4bo3bobo4b3ob6ob2ob3o3b2o2bo2bo2bo4b3o2bob5o2b9obo3bo3bob2o
3bobo7b6ob2ob4o2b7o3b2o2b2ob2obo2b5obo2bobo7bo5b2o2bo5bo3bo3b2ob2obob
3o4b3obobo2b2o3bob2obobobo$bo3b3o3b5o3bo3b3ob2ob2o5b3o3bobob4o2bo4bo5b
3o2b3ob3ob2o2b2obo2bo2bob4obob2o4bob3obo5b2obo3b2ob2obo2b2obob4ob4o2b
o2bo4b4obobob3o2b7ob2ob2ob2ob2o2bob2ob2ob2o2bob2o3b2o2b3ob2o3bo3b3o2b
3o$o2b3obobo3bobobo2bobobobo2bo2b2ob4o2b6obo2b5ob2ob2o5b5o4bob5o6bobo
b5o3b2ob2obo2b2obob4o3b4ob4o2bobobo2bobob2obo4b2obobobob2o2bo3b2o3bo2b
o4b2ob2ob2o2bob2o3bo2b2ob3obob3o2bobo5bo4b3o3bo2bo$2b4o2b5o6b4ob8o4b2o
2bo2b7o2bo2bobo2b2o2bob3o2b4o2b3o3b2o2b6o2b2ob2o3bobo3bobobobo3bo2bob
o5bobob2obobo2b2ob4o2bobo2bob2o6bobo2b6o4b5ob3ob2obo3b2obob2ob2o3b3ob
2ob5o4b3ob2ob2o2bo$o2b2o4bo5b3obo2b2o4bob4o2bobobo4b2o3bobo2b2o2b3ob2o
3bobo3b8obo4bobo3bob2o2b2ob2o5b2o4bobo2b2o2b2obo2b2ob2o3b2obo3bob3ob3o
bo2bo4b4o3b3ob4o4b6ob2o2bo3bob3ob2o2b2obo2b2o2bo3b3ob2o2b3obob2o$2o4b
2o7b2o4b3obob2ob5ob2ob2ob5o2b2o4b2ob4obo2b2o2bob3o2bob2o4b2o3bo8bo7b2o
b2obo3bob3ob2ob2o2bo2bo4bob4o2bo4bobo3bo5bobo3b2obobob2o2b2ob4ob2o2b3o
4bo2bob4ob2o5bo4bo4bob3obob3ob2o$bob2obobob2o12bob9o8bob2o2b2o3bo2bo2b
2o3bo3b3ob4obo2b2o4b2o2bo2bobobo4b3o8bobo2b2ob2ob2ob3obo2bobo3bobo2bo
bobob3o2b2obobo2bob2obo2bo3bobob4ob2obobob2ob2obobo2b5o2bob5o4bo3b3ob
2o4b2obo$bo2b3o4b4ob2o2b5ob2o2bobo2b2ob3o4bobob8ob2ob2o2bo2bo5bo2b4ob
o3bobo2bobobobobo2b2obo2b5ob2ob2obo4b3obo3bo2b2ob4obobob4o2bo3b2obob2o
bo8b2o5b2ob2obob3obo2b8obo3b6obo4b4ob4obobobo2bo$4bobobob5o4bo2b3ob2o
2b3o3b3o6b7o2b2o3b2o2bob3ob2o4bo2bobo2b4ob4obo2b2o3bo2bo4b2o2b7o8b4ob
o2b2o4bo2b4obo2bo4bo2b2o3b2ob2ob2o2bo2bobobobobo2b5ob2o2b5obo4bobo3b2o
b4ob2obobobo2bobo$o2bobobo2b3obo2b2obob3obob2o5bo2bob4ob2o2bo2bo3bobo
2b2o2bo2b5o3b3o2b3obobo2bo5bo2bob5o2b3obo3bob3o2bobo5bo2bo2b2ob5obob4o
bob2o4bobo3b2o2b3ob3obob2o3b2ob2o2b3obob6o2bo2b2o2bobo2b2ob2o2bo3b5o4b
o$2bo2bob2o2bo4bob5o3b2o2bobo2bobo8bob3o3b2o2bobo2bobo2b4o3bo4bobo2b2o
b2obob3o8bo2bo5bo2bo2b2obobob2o2bo2b4o2bob3o2b2o4b2ob7o2bo2bob2obo2b3o
bo3bob4o3b2o3b2ob2o4b2obob3obobo2bo6bo2bobobob2o$b3o2b2o4b2o4bobo2b3o
b3ob2ob4ob4o3b3obo4bo2bo3b4ob2o4b3o3bobo3b3obo3bob2o3b2ob2ob3ob2o6bob
2obobob2o2bob4o3bo2b3ob2o3bobo2b3obobobob5ob2o2bo2b3ob2ob4o3b2obobob2o
4b3o2bob2o2b2obo2bobob2o2bo2b3obo$ob7o4bo2b3o3bob2o3bobo2b2ob4ob2o3b3o
b2o3b3obob2o2b2o2bob2ob4o2bob3obo2bo2bob2o3b3ob2o3b5obob2o2bo2b3obob2o
2b5ob3o2bobobob5o4b2ob3obob5obobo4b5obobob4o3b2o2b5ob3o4bo5b2o4b2obo7b
o$ob2obob7o3b4o2bob5obo3bo3bo2bo2bo2bo2b2o3bobobob2o2bo3bo2b2o4bo2bo2b
o2bo4bob4o2b2o2b2obobobob3ob3o7bo3bobobo5b5o4b2ob2o3bo3bob4o2bo3bobob
o3b2ob3o2bo4bo4b2ob2o3bo4b3obo2bob2ob2o2b2ob3o2b2o$2o2bo4b2o4b3obo2bo
2bobob4o4bo2bobobo2bob2o2b2ob4o2bob2o3bobobo3bo2bob6obo3bo5bob4ob2o2b
obo6bob3ob3obob3ob7o6bob2ob2o2b2ob3obob2o3bob3obobo3b2o3bo2b4o4bob4o2b
6obo2bob2ob2ob7ob2obo$2bobo7bo5bobo2b2ob6o3b5o2b3obo4b2ob2o2bo3b2o3bo
3b2ob2ob5o2bo2b4obob2obob2o2bobo5b2ob2o3bobob2obobo3b4o5b2o2bob3o5b4o
2b5o3bobobobobo2b2ob2ob2o2bobo2bob2obobo3bo2b2ob5obo4b4o2bob2o4b2o$bo
b2o4b2obo4bobobo2bo11b2o3bo2bo2b4ob3ob2o2b2o2bobobo3bo2b5ob2ob2o3b2o5b
o2b2o2bob3o3bo2bo2b2o9b2o2b3ob3ob6o3bo4bob2obob4ob2obob4ob3o3b2o3bobo
bo4b2ob3o3bo4b2o3bobobo2b2ob6obo3b3o$bob2o7b3o3b5o2bobobo2bo2b5o2b2o2b
o2b2ob5obobobobobob2o2b2o3b3o4bo2bob2o2bobo2b2o2bo2bob5obo6b7o2b2o2b3o
b5o2b2ob2ob3obobob2obob2o3b2ob4o2bo5b2o3bobo2b4o2b2ob4o3bobobobo2bo6b
4o2bob5o$o4bo2b2o3bob2obobob3obo2bobo3bobobo4b2ob2obobobo2bobo2bobob2o
b2obob2o3b2o4bo2b3o2bo2bob3obob3o2b2o3b2o3b2o2bo4b3obo4bob3o5b2obobob
2ob3o6bo2bo2b4o3bo2b3o2bob2obo4bo4bob2ob3obo5bo3b5o3bo2bob2obo$2o5bob
ob5o3b2obob2o2b5obobob2o8b3o2bo2bo5b3obo4bo4bobo2bo7b3o3b2ob2o2bo3bo2b
3o2b7obo2b2obo2b6o2bo3bobob2ob2o6bo2bo2bo5bob2obob2o5bo2b3ob4o2b2obob
o4b5o2b4obobo2b7o3b2o2bo$b2ob4obob2ob3obo2bob4obo2b3o7bobob3obo2bo2b2o
3bob2obo3b5o2bo8b3o2bobob2obo2bo2bob4ob2o2b2obo4bobob6ob2ob2o4b2ob2ob
2ob2o2b5o2bobo2b2ob7obo2bo2b2ob5o2b3o4bob4o2bobob2obob4ob4obo8bobo$bo
bob5o2bobo2bo4b8ob2o6b4obo2b3ob6o2b4o2b2o2b2o5b5obo4b3o2b2ob8obo2bobo
3b3obobob3o4b2o2b3o3b3o3b5obo4b2ob3o2bo3bobo2bob5ob2ob2ob2obo2b2ob2o2b
3o6bob2ob4o2b2obo3b2obob2ob2o2b2o$bobob2o2b2ob2o2bo2b2ob4obo2b2o3bobo
2bo2b2o3bobobob7ob3o4bo2b2o5b2o4b3obob2o3b4obobo2b3o4bob3obobo4b2obob
o2b2o2b3o2b2o7bob2o4b2ob3o4b2o3b3ob2o4b3ob2o3bob2obobob2o4b2o3b5o7b4o
4b4obo$5bobo4b2o9b2o6bo2b5o4bo2bobob2o2bob3obob4o3b3obo5b3o2bob2ob3o3b
o2bobo3bob2o2bo2b4ob2ob3ob2o2b8o2b3o2b4obobobobo3bo2bobob3o2bobobo2b3o
bob3o2bob6o4b2ob2ob2o2b2o2bo2bo2bob5ob3o4b2obo$o2bo6b5obobobo3bo3b3ob
3o2bo3b4o3bo2bob3obo4b3o2bo5b7obo2bo2bo2b3o3b3o5bo3b3o2b3o2bo3b2ob5ob
o2bobobo6bo2b3o4b2o2b4obob3obo2bo3bob2ob4o2bob3ob4o3bo2bob2o2bob3ob3o
b3o4bobo2bobo2b3o$2obo3b2ob2o4bo3b6ob4o2b2o2b2o3b2o3b2ob4o6bo2bo3b5o4b
obob4obob2o2b3obo6b2obobo4bo3b3o2b2obo3bo2bobo3b2o2bob4ob2o3b2o4bobo3b
o4bobobo2bo3b2o10b4o7bo2b2ob2ob3o2bob3o4bo8bob2o$obo2b3ob2obobo4bobob
ob3obo2b3o2b3o2bo4b2o2b4ob2o3bob3o4b2obo3b2obobob2o2bo2bo9bo3b4o4bo2b
2obob3o2b4ob3o2bo2b3obobob3o3b2obo4b4o4b5obo2b2o2bo10bobob5o2b2ob2o2b
o3b4o3bo3bob3obo5bo$2ob2o3bo2b3ob3obo3b2o6b3ob2o2b3obo7bobo6b4o2b2o5b
2obo2b3obo4b2o2b3obobo3b5o2b2ob5ob3o4b5obob4o2bob4obob2obo2bo2b2o4bob
obob7obo2bobo2b2o3b2o3b2o3b3o4b2o6bob2o2bob2o4b3obo2bob2o$2ob3ob2o4bo
bo2bob2o2bobo5bo4bob2o2bo4b2o2bob3ob3o2bob2obob5obo2b3ob2ob3obo5b4o2b
3o2b4o2b2o5b5obob2obob3o2bo3b2o2b3obobob2o3bo5bob2o2b2ob2o2bob2o2bob2o
b5obo3b2obob2obob8o2bob2o2b3obo2b2ob2o2bo$b6o5b3o4b4o3b5obo5bobo2b2ob
3ob3o3bob2ob2o4b2o3bo3b4o4bob4o2b5ob4obobobob3ob2obob2o3bo2bob6o4b2ob
ob4obo4b4o3bo5bo2bo2b3o2b2obobo3b2ob2obo2b3o7b10o2bo2bo2bo2bobobobob2o
3bo$o2bob3o2b4o3bo2bobobobo2bo3bob3ob2obo2b3obob4o3bobobo2b4obo2bob5o
bo2b8ob2obo2bobob2obobo3b3ob2o2b2o4b2o2bob10o2b7o3b2obo4bob4ob2ob2o2b
o2b2obo4b3obo2bo3b4obo2bo2bo3bob4obo2bo5bo7b3o$2b2ob2obobob2ob3o3b3o3b
2ob2obobo4bob2o2b5o3b2o2bo3bo4bo4b3obobo5bobo5b4ob2obo2bobobo3b2o3bo3b
2o2b2o2b2ob3o3bo2b3o4b2o7bob2ob4o2b3o2bo4bobob3obo4b3o2bob5obo2bo3bo8b
5obob3obo4bo2bo$4b3o2b2obobob6o6b4o2b5obo4b2obobo4bo2b3obob2obobobo4b
2obo3b5ob3ob2obobo3b2obo3b6o2b6o2bobob3obo2bobob2o5bob2o2bobo2b2o2b2o
3bob2o2b2obobob10ob2o5b3obob2o2b2ob2obobo2b4ob2o3bo2b2o2b2obo$2o4bobo
2bo7bob3obo2b2ob3ob3obo2b3o3bo3bo2bob2obob2o2bob2o4b2obobob3o2bo5b2ob
o3b3obob7obobo4b2obobo4bobo3b2o2bo2b2o5bobob3ob3obo4bobo4bo5b2o3bo3bo
b3o2bobo2b4o2b2ob3obo2bob4o2b4ob3obobo2bo$obobo2b2o3bobob3obob3o4bobo
b2o2b3o2b3obobo3bo2bo2bobo3b2ob5o5b2ob2obo4bob4o5b2obo2bobobo4b3o2b2o
2b5o2b3obo2bo2b8o2bo2b2obobob2ob7o2b3o2bobo2b2o2b2o4b2o2bob6o2bob4o5b
o2b3ob2o5bo3bo2bo$o2bobo3bo3bo2b2obo2b2obo4b2o4bo4b2o3b7obobo2bo3bo5b
ob5o4bobob4o2b3o3bo2bob9ob4o3bobo2bobo2bobobo6bobo2b2ob2o2bo2b3ob2obo
bob2obo3bob2obo9b2o2bobo3b3obob2o3b6ob2o3bo2b2o2bo2b3obob2o$o2bo2bo3b
o3b8obobobobobo3b3o3b2o3bo2b2ob4obo5b2ob2ob2o3b3o3b2o6b6o4b4obo6b2ob2o
3b3o2bo2b2o3b4ob2ob6ob3obobo9bo2bob3ob4o2bob2ob3obob2ob3o4bo2b2obob2o
b3ob2o2b4o3b2ob2o5b2ob2o$obobobobo4b3o2bobo2b2o2bob4ob4o2bo2b10o9b3o2b
2o2bo5b2obo3bob2o3bob6o2bo3bo6bo2bo2b4o4bobo6b2o3b3o2bo4bob2obob4o4b3o
bo3b4obobo5bo3b2o2bo4bo2bobob2obo3bobo2bo2b2o3b6o3b3obo$2bob5o3bob4o2b
4o2bo5bo6bobob5o2b3obo2bo2bo2bo2b3obo2bobo3b4o4b2o2bo4bo2bob2o5bo2bo3b
o2bo2b5obob2o3bo2b3obo2bo2bo2bo2b3o2bo6b2o4bo4bobob2ob2o2bob5o2b2obob
o2bo2b2ob2obobobo2b3o2b2obob2obob3o$2o2b2obob3o3bob2o5b4o3bob4o4b3o2b
2ob2o3b3ob2ob4o2b3obo2b2o4bo3bo3bobo7bobob2ob2o3b2o2b3o3b4ob2o6bo4b4o
bo2b3ob2o3bo2b2ob6obo2b6o2bob5ob2obobo2b3o2b2o3b5o2b2o2b3o3bob2obob2o
2bo2bo$2o4b4obo3bo2bob2o2bo2b2ob7o3bo3b3o3b3ob2o3b2o2b2ob3obo2b3o2b3o
b3ob4o5bob2o2bo2bobo2b2obo2bo3bo3b2o2bo2bo6bobo2bo2bo3bo7b4obob5ob4o3b
ob3o2b5obo5bo2b5ob4o2bob2ob4ob3o4b9obo$b2obo7bo4b4o2bobobob5o2b4o2b2o
2bobob2obo5bo6bo2b4obo2bo2bobo2bob3obo5bo2b3obo2bo3b2ob2o2bobo4bob3ob
4obo4bobo2b2ob2obo4bo2bob4o2b2o3bob3o5bo2bo2bo3b2o3b4o6bobo2b4o2b3o3b
3o3b2ob2obobo$ob3o3bo2b2ob3obo2b2ob6obo2b2o2b2obobobob2o3b3o2bo3b2o2b
ob2o3b7obobobob3o2bo2b4ob2ob6obob2o2bobo2bo2b4o3bo4bo2bob2ob3ob5ob3ob
obo2b3o2b3obo2bobob2o2bobob2ob2o2b2ob5ob2o4b3o2bo4bobo3b2ob2o2b2o2b2o
bo$o2bo2bobobobob6ob3o5b2o3b2ob2obo4bobob2o2b3ob5ob2obobob2o8bo3b2ob4o
2b2o3b2ob3obobob4o2b3o7b3ob2obo3bo3bob4obo5bo2bobobobo2bobo2bo3b2ob4o
b4o2bo3b4o3b2o3bo6bobo2b2o2b2o2b4obo2bo3b2obo$obo2b2ob2obobo3b2o4bo5b
2ob3o2bob4obob3obob2o2b2o2b4o2bobo4b2o3b5o2b2o2b3ob2o3b3ob6o4bo2b4obo
2b2o2bo2b2ob3o3b4o3b3ob2ob2o6bob3obobo2b2ob2obob3o3b4o4b3o3b2o2b2o5bo
2bo3b4ob2ob2o2b3ob3obo$b2o6bob2obo2b2o2b2obob3obobo2bo3b5ob2ob2o2b2ob
2ob5o3b2o4b2obob2ob2ob3o4bo4b3obo2b3ob2obo3bo3b2ob4obobob2o6b2o3b5o3b
2ob4o4bobobo2b2o5bobo4b2obobobobo2bobo2bobob2o3b2obobo2b3o3bo2b2o2b5o
2b3o$o3bob2ob2ob3obobo2bo4b3obob4o2b2o3b2ob3ob2obob4obo2b2ob2o4bo2b2o
b5obo2bob2o2bobo4b2o2b2obobob4o2b3o3b4ob2o2bob4ob2o2bob5o3b2ob2o2b5ob
o2bo4b8obob2o3bob4obo4b2ob2o2b2ob2o2bo2b2o2bobob5o6bo$2bo2b9o3b3obobo
bo2b4obo3bo4bo3b2o2b2o3b2o2bobobo3bobo2b2ob3obo5bo4b3o2b2o2b4o2bo3bob
3o4b4o2bo2b2o2bo2b3ob2o2b2o5b3o2bob2o3bo3bo2b3obob2o11bo3bobo2bo2b2ob
o2b2o2b3obo2bo7bo4b2ob5o$o4bo2bobo2b3obobobo2bob2o2b3o2b4o2b2o5bobobo
bobobobob8o3b2o2b3ob7ob3o2b2o2bo3bo2b3obob3obo3b3o3b2ob2o2b2obob2o2bo
bo6bo2b4o3b2obo2bo5b5o4b4ob4obo4b4o2b2o3bobo2b2o3b2ob2o3b2ob4obo4b2o$
b5obo3b5o2bo2bo2bobob2ob3o2b2ob2o3bobob2obo3bo3b2o3bobo3bo2bobo3bobo2b
2obob2o3bob3obo3b2o2b2o3b2o3b5o4b2obobo3bob3ob3ob2o3bo2bob3o2b2obo2b3o
4b2ob2ob2o2b4o5bobobo3b7o4bo2bo7b4obo10bo$6bob2ob4obob2ob3obo4bo3bo2b
o2bobo2bobo2b3ob3ob7o3b2ob2ob2o2b3obo3b3o2bo2b4o2bo4b5o2bo2b2ob3o3b4o
bo2b4obo2b3o8b3o3b3ob2o5b2o3bo5bo3b3o3bob3ob2obob2ob3obo2b3o2b3ob2obo
4bob2ob7o$o2bobo2b4obo4bo2b3o2bo3b2o2b4obo2b3o6bo3b5o2b3o5b2obo3b2o3b
2obobo2bob3o2b2o2bobob2obobobob4o5bo2b2obobo2bobob3ob3ob4obo2bobobo2b
3o2bobo4bobob2ob2ob8o2b4obo2bo2bob3obobo2bobob2o3bob2obo4b2o$o3b3ob2o
bob3o2b5o2bo2bobo2b2ob2o4bo4b2ob11o3b6ob2o2b3obobo3b5o2bo2bo2bobob2ob
3o2b3obo4bobobo2b3o3b2o3bo3b3o3b3ob3obo2bo2bobo2b3o2b2o2bo2b3obo3b2o2b
2o3b3ob2o2b3ob3o4bob2o3b2ob2o2bo6bo2bo$bobobobobo4b2ob2o3bo2bobo7bob8o
4bobobo6b3ob4o4b2o4bob5obo3bobob2ob7ob5o2b2ob6ob2ob4obo3bob3o2bobobob
o2bob2o5bob4ob3ob2o3b2obo3b3obob3obobo2bo3bobo3b2ob7o5bo3bobobobob6o$
2o2bob2o3bo2bo3b6o2b3o5b3o2b5o3bobo2bob4obobo4bo4b3ob2o2bob3o2bo2bob3o
2b4obobob4obob2obob3obo2bo2bobobo3bo2bo5bob3o6bob5obob3ob4obobo3b2o2b
2obo2bobob3o2bob2obobob4o3bobo6bo3b6o4b2o$3b5ob2ob3obo2bo2b2obo2b2o2b
6o3bo2b2obob7ob3o5b3obo3bob2obo2bobobo2bo3bo3b3o2b2o2b3ob4o3b2o3bobob
8o2b2obo2b3o2b5obob6o5b2ob8ob3o2bobo5bo2b2o2bo5bob3obob3ob3obo2b3ob2o
3bobo4b2o$o5bobo5b2o3bo4bo2bo4bo2b2o5bo2b3o2b3ob2o5b6ob2o2b3o3b2o2b2o
bobo2b3ob4o2bobo2bob2obob5obo2bo2bob2o6b6o2b2ob2o4bo2bo2bobob3o4b3ob2o
b5o2bo2b4ob2o4b2o3bob3o2bob2o2bob4obob7o2b3o2b2o$2o4b2o2b2o3b6o5bobo3b
ob2ob3ob8obo3bob3obo2b2o2bob4o3bo3b6o2bo2b3ob6o3bo2b2obo2b2o4bo2b3o2b
obobob3ob2o2bobo2b4ob4obobo3b3obob2o2b2ob3obo5b2o2b5ob3o4bobo3b2obo4b
ob2obob2obo2bo4bo2bo$b7o3b4o2bo2bo2bobo5bobob2o3b8o2bo4bob5o4bo2bobo4b
4obob6obob3o6b5o6bo4b3ob3o2b4o3b3ob2o4b3o2bob2o2b3obo2b7obo2b2ob6o2b2o
b2ob2ob2obob2o2bo2bob3ob2obo6bo3bo2b2ob5obo2bo$ob2ob2obo2b2o2bo2bobo5b
o2b2obob3o4b5ob3o2bo2b2o8bo3b3o2bo3bo2bobobobobob5ob3o5b2o3bo3bo4b3o2b
obobo2bob2ob2ob3o2b2o2b4obo2bo5bo2bob2obobo2b2obobo5b2obob2ob2o3bo5bo
2b2o2b2obo3b3o5bo2bo2bo3b2o$3o2bobob4o3bob2obo2b2o2bob3o3b2o4bob2obo3b
2o2bo4b2ob3o4b2o2bo3b2ob3o3b2o2bo2b2o2b4o2bob2obo2bob6ob2o3bo2bobo2b3o
2bob3o3b2obob2o3b2o5bo4bob4o3b2obo4bobob5ob2obob2o2b2o2b2o3bo4bob2o2b
4o3bob2ob2o$5o4bobo6bobobobo2bobob3o2b2o4bo12bo4b3o2bo4bo4bo2bo3b2o5b
2o4bo2b2o3bob2o4b3obo2bo4b3ob2ob2obob3ob6ob3o2bobo2bo2bob3ob3obob4obo
b2o3bo2bob3o3b3o2b3o3b3obo3b2obobobobo2b2o5b5ob2o$2b4o3bo2bob2o2b2o4b
3o3b4o4bob3obob4o3bo3bob2obo4b2o2bob3ob5obobo5b2o3b3obo2bobob4o2bobob
o4bo3bo2bob5ob2o2b3ob5o2b2o4b2o4b3ob2o2b2ob3o2b3ob2o4bo2b4ob3ob2o3b2o
2b2ob2o4bo2bobo3bo2bo2b2ob2o$4o5b2o2bobob3obo7bobob2o3bob2obo4b5ob2ob
7o3b2o3bobo4bo2bob2o2bo3bob3ob2o2bo2bo10bobob3obob3ob5o2b3o2bobobobo2b
2o2b4o3b2ob2ob5obo2b2o3b5ob10o4bob3o2bo3bobob5o2bo2b6ob2ob2o$bo3bob2o
b10obo3bo2bobobobo2bo3bobo3bo4bo2b3o2b3obo2b2ob2o2bo3bo3b2obob4o3b3ob
3ob2obobo3bob2ob3o5b3obob4ob2o2b6o3bob4o3bob3o2bob2o2b3o2b2o3b4o2b4o2b
3o2b4ob3ob2o2bobobobo2b4ob4o2b3obo4bo$o2b2o2b2o2bo2b2o6b2obob4obob2o2b
2o3bob2o3b3o2b3obo3bobob2obo3b4obob5ob9o2b4o3b2o3b2o3b2obo2b3o2b2obob
2ob9o2bobob2obo3bobo2bobo2b3obob8obobob3obo2bob2o2bobobobobo3b2obo4bo
bo2b2o4bob2o2bo3bo$3o2bo4b4o2bob6o2b3ob4obo2b3obob2o4bo2bobo2b2obob4o
b7o2bob3o3bo2bob2o2b2o5bo3bobo2bo4b3o4bo2b2o2b3o8b2ob2ob2obob4o3bobo2b
2ob8o4b4obo3bob9o5bob2obo2b4o2b2ob2ob6o3bobo3bo$bo2bobob2o2b3o2b2ob2o
5b4o4bob2o5b3ob2obob3ob2o2bobob3o2b4obo3b3obo5b3ob2obo2bobo4bob2ob4o6b
5o3bo2b2obobo2bo2bob2ob2obobo2bo2b2o3b2o3bob3obo2bob2ob6o11bo2b2o2b3o
6b2o4bo3bobo2bo2b6o$o2b3obob2o2bob2obo4b2ob3ob5ob2ob6ob3obobob2ob2o2b
3o2b8o2b2o2bob2o3b3ob3ob5ob2ob3o3bob3ob2o3bo3bo2b2o3bobo3bob2obobobo3b
ob7o2b2o2bo4bobo8bo2bo3b3o4b5o2bo2b2obo3b2obobobo4b2obo8b2o$3bobob4ob
obo2bo2b7o2b3o2b2o2b2o4b3o2bo2b3o4b3o2b2ob2obo4bobo2b2o2bob2o5b2obob3o
2b2o2bobob3obo5bobo3bob4o3bobo2b3ob3ob2ob6obobob3o2bob3obo5b3o7bo2bob
obo2b2o3b3o6b3obobo3bob2o5bo3b2o$ob2ob2obobobobobo2b2o2bo3b3o2b2obob4o
3b2obo2b7o2bob2o2b2o3b3ob3obo3bo5bo2b2o2b3o2b3o3bo3b5o2bobobobobo3bo2b
2o8bo2b2o4b2o2bo4b2ob2o3bo3bo2bo2bob2ob3obob3o2bobo2b3obobobobo2bobo2b
2ob2ob2obo3bo2bob2ob2o$5obob3o2b2o2b3obo2bo3bobo2bob2obo3b5o2bob4o2bo
b2o4b2o2bobobob2ob2o4b2obo2b2o2b2o3bobo3b2o3bobo2bob2obobobob2ob4o3bo
bob4o2b4o2bo2bob3obob2obob3o2b5ob2o3b2obo2b2o3b2obo5b2obobobo2b5o2bob
o3bob2o3bo3b2o$obob4o4b2obob4o3bob2ob2o2bo2b7o2b2obobob4o2bob2ob2obob
9o4bo2bobobob3ob5o2b2o2b6obo3bo4b3o2b5o4b2o2b2o2b3o3b5obobo3bobo2b4ob
4o4bobo3b4o3b3o5b3ob2o5b3obobo3bo2b2obobob3o2bo$3bobob5ob3o2bobo2bo2b
2o2b2o5b2o2b3ob2obobobob2o2bo3b3o3bo3b2ob3o4b3o2b2o11b3o2bob2ob4ob2ob
2obob3o2b5o2b2ob6o2b2o3bo2b2obobo6b3o2bobo2bob6o2b2ob2obo3b4ob2o2bob4o
3bo6bo2b6ob3o$2bob3o2b3o2b2ob2ob2o4b3obob7ob2o5bo4bo2b2o4bo2bo3bo2bo4b
ob4o3bo2b2o2b2ob2o2bob4o2b3o4bob3o2bob2o6bob4obo2bo4b3o5bo3bo5bo3bo2b
o2bo2bobo3b4o2b3o2bo2bob2o2bob2o2b3o2b2obobobobobo2b2obob5obo$b2o3b2o
4b4o3b5obo2bo2bobobo7b2ob4obobob4o3b3ob3ob4o2bo3b2obo5b3o4b2o5b2obobo
2b3o2bobobo2b2o3b2obob2obo2bobo3b2ob4o4bo2b3o3b2ob2ob2o2bo3bob2o4bo2b
2o2bobobob2ob2o6bob2ob2o2b2obo2b2o6b3o$2bobo2bobob2o4bobo3bobo2b2obob
o2bo3bobob3o6bobobob7ob4ob2obo2bobob2o2b4o2b2ob4o2bo4b4o2b2ob2o3bobob
2o2b2obo3b6o2b4o2b2obobo4bobob7o2bo3bo2b4obo3bo4bobo4bo2b3o2b2ob3o2bo
bo3b3ob3o6b2o$3b6o2b5o2bo2b2o2bo2b2obo4bo4bo4bobo3bo6bob3ob5o4b2obob3o
2b2obo2b4obob4obobob3o2b2obo4bo4bob2o4bob2ob4obob2o2bobo5b3o2b2obo2b3o
bobob3obob2obo3b3o2bob3o2bobo5b5obo5bob2o4bobobob3ob2o$bob2o4b2obob2o
bob3ob2o2bo3bo2bob2o3bobobo2bob3ob10ob4obobobo3bob2o2b2obo2bo4b2obo8b
7o3bo2bobobo3bo2bo2bo2bob3o2b5obo6bob4o3b7obob2ob7o2b4o5b5o2b4o3b2obo
4bo2bob5ob3ob2ob2o$bob2ob3o2bo2b8ob2o2bo2b2obob4obo2bob3o2b2o2b2o2bo5b
o4b2o4b4ob2ob3obob4obo2b6ob2obo10b3obobob3ob2obo3b3o5bo2bo3b4o2b2obo2b
3ob6o2bo3b4o3b2ob2o2bo4b6o2b2obobob4ob2ob5ob2o3b2obo$4b3o2b2o2b3obo5b
2o2b2o3b2ob3o2b3o2bo2b2ob2o5bob2o4b2ob3o4bob2obo2b4obobobob2o2bob9obo
b5ob3obo2b2ob2ob2o2b3o2b2o2bobo2b2ob2obob4o2bo3bo3bob3ob3ob6o3b2o4b2o
4b2ob7o3b6o3b2o5bobob3o$3ob2o4bobob7obo4b3ob2o4bo2b2ob2obob3ob5o4b3ob
obobo4b2o3b5ob3obo2bobobobobob4o4b2obobo2b2ob4obo3bo5bob3o2b3o3bob2o2b
obo2b3o2b3obo7bo2bob3o2b4o6b2o2b2o4bo7b4ob2obo5bob3obo2bo$2bo4bo4b3ob
o7b3obob4o6bo3bo6b2ob2o3bob3ob2ob2o2bo2bobobo2b2ob2ob8ob3ob3o3bobobob
ob3o7b4o2bo4bob2obob2ob4obob5o2bobobo2bo4bo7bobo2bo2bo3b2o2bo3bobo2bo
b4o3b3o2bobo2b2o2b2o5bobo$b2o3b3obobo3bobobo3b3o5b2obo2bob2obobobo2b2o
b3o4bobob6ob4o5bobob2ob4o3bo2b4o2bo3bo3bob3o2b2o2b2ob3o7bo4bobobo4bo3b
ob2o3bobobo3b3o3b2o2b4obob3ob4obobob3o5b3obo3bob2o3b2obo5b10o$3bobo2b
2o8bo3b3o3bobo2bo2b7o3b5ob4ob3o3b2ob2o5bobobo2b2obo2bobo2bo2bob2o2bo5b
o6bo2b2o4b2obo3b2obobob2o2bobob3ob2o2b4o2bo2bo2bo2bob3o2bob3o2bobo4b2o
4bo3bobo3b6obob2o2b2o2b3o2bob2o2bobo2b3o$2obo3bobo2b2obo3b2o2bobo4bob
2ob3ob2obob3ob3o3b2ob5ob3o6b4o4bo3bo2b2o3b3obobo2b2obo2b2o2bo4bo3bob5o
b2obo2bob3o3bob2o2bo2b4o3b3o4b2obo3b2o2b2o5bo2b3o3bob3ob2ob3o2b3obo3b
obobo3bo2bob4o3bo2b3o$bo3bobo3b2ob4o3bobo2b2o3b5obo2b2o2b2o4b3ob3o2b2o
2bob3obo5bob2o2bobob3o3b4ob2obobo3b3o2b2ob2ob3ob2o2b4ob5obob2obo2b2ob
2ob2obo3b2o2bobob2obo3b3o2bo5b3o2b2o12bo4b3o3b3o3b4o2bobobobobo2b3obo
$o2b2obobo2b6o2b2ob6o5b2ob6ob2ob2obo2bob2ob2ob2o2b2ob2ob2ob2obo3b3ob3o
2b3ob2ob4obobo4bo2b3ob3ob2o2bobo3b2obob3ob6ob2ob2obo3b2obobo2bo2b2o2b
ob3obob3o2bo3bo6bo6bob2obob2o3b2o3bo2b2ob2ob2ob2obo4b2o$2bo4b2obo3bo2b
o2bo2b2o3bob3obo3bo7bobob4o2bo3b5o4bo4b2o6bob2o2bobo2b2o2bo3b6ob2ob3o
bo2bo2b2o2b4o4bob2o4bo6b2ob2o2bob2o3bobobobo6b5o3bo7b3o3b3o3b2obob5ob
2o2bobo2bo2bob2o6bo2bo$2o2bo2b4o3b3obobo3b2ob2obobo2bobo3b2o4bo2b3o2b
obob2o4bobo3b3obobo3bob2o3b2obobo2bo4b2obo6bobo3b5o2bo2bo4b2o2bob4ob3o
bo2b2ob2obobob3o3bo3b4o2bob3o3bo3bo2bo2bo5bobobob2o2b8o6b2obob3o2bob2o
$b3ob4obob2obob3o4bob3obobobo4b2obo4bo2b5o3b4o4b2ob3o2b2o2bo3bo4b2o3b
o2b5o2bob5obob2o2bo2b4o3bob3o2b2obo2bob2o2bo3b3ob2ob3o4bo5b2ob3ob7obo
2b3o6bo3b5ob2o3bob2o3b3o2bo3bobobo4bo$2bo3b2obobo3b5ob2o3b2ob2obo3bob
ob2obo3b2obob2ob4obobob4ob2o5b5obob2o3b3ob2obo2b3o3b3o4b3o5b2obobo3b2o
b2ob3o2bo2bo3bob4o4bob2obobo2bo2b3ob2o2bo3b6ob2ob2ob6o2b2o2b5ob6obob3o
2b3ob3obob3o$ob2o3b2ob3obob6obobo2bobo4bo4bob3o3bob5o2b2ob2o2b3o2bo2b
o2b6ob7obobob3obo2bob5o3b7obobo3b6o2bobo2b3obo7b2obob2obo4b2o2bo2b4o6b
o6b3ob2ob2o2b2ob2o3bob3o2bob3o2bobobob4ob3o5bo$ob2ob2obobo3b2o5bo4b2o
b5obob2ob2obob3o3bo2b5ob2obobobobo2bo2bo5b2ob3ob2o2bo5b2ob2o2bo2bo2bo
2b2o2bo2bob2o5bob4o5bob3o3b4o2b3ob6obobo4b2ob3o6b2o4b5o2b2o3b4ob3o7b3o
bobobobo2bo6b2o$bo2b4ob4o2b4ob2ob4o3b3ob14ob5obob3o2bo3bob2ob2o2bo3b2o
2bobob2ob2ob2obo4b5ob4o4bo2bo2bo3b6o2b8o2b2ob2obo2bo2b4o2bob2o3b3obob
o4bobo2b2obob2obob3o4bo2bob2ob3obobobo2b2ob2o4bo2b3obo2bo$obob2o2b2o2b
2o2b5obo3b2o2bo5bobo2b5obobobo6bo2b3obob4ob3ob4obo7bob2ob3o4b5o4b2ob3o
b3o5b2o6bobobob5o2b2o5b2obo2bo3b2o2bob3o3b4o2b3obo2bo3bob2obo3b3o2b2o
bob3ob5ob4o3b7ob2o$2o2bob3obob2obob2obo3bobo3b2ob4obobo2b2o2bo3bo2bo6b
o2bob2o4bo4bob9o2bob3o2bob2obo2bo8b3o2b2o3bo2b6o2b2obo2b2ob2obo6bo4bo
b3o2b5o3b4o3bobo2b4obo3bob2o2bo2bo6b2o2bo4bo2bob4ob3o2b3obo$2b2ob4o4b
o3b2ob2o7b2ob2o2b4o7b8o4b2o3b4obob2o2bob6o5b2obo3b2o2b2o2b3o2bo3b2ob3o
b2o2b3obobo6bo5bobo2b2obobo4b6obob4obobo2b3o2bo2b2ob4o3bobobo2b3o4b2o
3b2ob3ob2o3bo2b2ob3obobo$obobob5ob2o4b5o3bob5o2b2o2bo2bob2ob4o4bob2ob
6ob3ob2o3b3o10bob2o2bob4obo4b4o3b2obo3bo2b2ob4obo6b4o3bo2bob4o2b3obob
obobobob6o2b2o2b6obob7o2bo4bo2bo2b3o2b6obo3b3o3b4obo$2bob3ob2o3bo2bo2b
o2b2ob4obo3b3obo5bo2b2o3bob5o4b2o3b4o4b2o2bob2ob4o3b2o2bob2o3b2ob3obo
3bo4b2o4b4ob6o2b3o3bo2b2o2bob5o3b2o2bob7ob2o4b3obo4bobob5o3b3o2bo3bob
o3b2o2bobob2ob2o8bo$o3b12ob3obo2b3obob2obo6b2o2bo2bob3ob6o2b4ob3obo2b
4o5bo2bo2b6ob2o2b2ob3o2bo2bo2bo3bobo6bobobo2bob3o2bob3obobob4obob8o2b
3o2bo7b3ob2o4bobo2b3o5b3o4bo3b4ob5o2b4o2b2o4bo$4b2obobo10b2ob2o2b3o3b
2o2b2ob2o2bo3bo4bobo3bo4bo2b3o4b3obobo2b2o2bo2b2obo2bob2ob4o2bo5b2obo
2bo4bob2obo2b3o2bob2o2b2o4b2o3b2o4bo4b4o3b4obo2b3o4b3obob2obobobo3bo2b
2ob4ob5o3bo3b7o2b2obo$bobo6bobob3obobobo2b2o2b4obo4b6o4bo9b5ob3obobo2b
2o2b2o2b7o6bob6o2b6ob3ob3o2b2obob2ob2o2b2obo2bo2bo4bo2bobobo3b4obo3bo
b7ob2obobobo2bo3b2ob3o2bob2o2b2obobob2obo7b3o3bob4o2bo$ob2ob4ob8obo3b
ob3ob3o4bo2bo3b2ob6obob5o2b4ob3ob5o2bobo2b3o3b2ob2obo2b2o3bobo2b8ob4o
b3o2bo2b2o2b2o4b4o2b3o2b3ob2ob2ob2o4b4o3b2obo7b3obo2b2o4bo3b2o2b5o5b3o
b3o2b5obobo3b3o$ob2ob4o2b7o3b2o5bob2o2bo2b2ob2ob4obob4o2b2o2bo3b6o4b6o
3b2o3bobo3bob3o2bo2b2ob3obo2bo3b4obo3b2obo4b2obo2bob2o9b2obo2bobobo2b
3o3b2o2b3o2b2o5bobobob3obo3bo2bobobo2b3o2bo3bo2bo2b3ob3obo2bo$o3b3o2b
2obobob4ob3o3b2ob7obo2b7ob3o2b2obob2ob3o4bo2b2o3bo3bob4obo2b2obobo2bo
bo4bo2bobob2o3b6o8bob2ob3o4bobo4bobob3o4b3ob2o3b3ob2obobo2bo4bo5bobob
4obo3bo2b5ob2o4b2o3b3o2bob2o3bo$2b4o2bo4bobobo2bob2ob2o3b2ob3ob2ob4ob
o2bo5bo4bobo3b2obobobo8bobo2bo2bo2b2obo2bo2bo2bo2bobo2b2ob2ob3obob3ob
4o2bo6b2obo5b3o5bobob2o2bobob2o2bob2o3bo3b5ob2obo2b2o2b2o3bo3bo5bob2o
bob3ob2ob3o3b2o$2bob2o4bob3ob3o5bob2o2bob4o2bo2bo3bob2o2b2o4b3ob2o2b7o
bo2b4o2b3ob2o4bo2bobo2bo3bobo2bo5bo2bobo3bobo2bo2bob7o2b2obo2b2ob2o4b
o3bo3b2o2b6o2b2obo5bob6obob3o2b8obobobob6ob2o3b2o2b3o$bob6obob3ob2o2b
obo4b5o2b2obob2o6bobo3b2ob3o3b2ob3obo3bo3bo2bob2obobobo6bo2bobo3bobo3b
o3b2ob2ob2obo4bo3b3obob6o2bobobob4o3bo2bo3b2obo3b2o2bobob5o4bob2ob6ob
ob2o2b3o2b2o8bob4obobobob2o$obobob3ob2obo4bob2o3b4o2bobob2obob3o4bo4b
2ob4ob2obobo2b2o3b3ob2ob3o9bob3o2bob3obob6ob4o4bob2ob2o3b3o2b2o3bo4bo
6b3o2bobo3bob5o2b2o2bobo2bob2o2b2o4bobobob2ob5obo2bobob2o2bo2bobobob2o
bo2bo2bo$3obo4bobo2bob3o7b2o3bobobobo3b2o2b2o9b3ob7ob3ob3obo2bob2o3b3o
bobobob4o3b2ob5o2bobo3bobob2o2bob3o3bo2b2obo3bo2bobobob4o3bob5o3bobob
2ob3o3b2ob2o4bo2bo2b5ob3o3b6obo2bo2bo3b2o2bo2bo2bo$3o3b2o3bo2bob5o2bo
b2obo2b3ob9ob2ob3o2b2obobobo7b2o5bobo4bo2b2o3bob2o3bo2bo3bo8b3ob5obo2b
o4b2o2bobo2bob7o2bo2bo6b4o3b5o2b3o4b4ob2obob2o3bob2obo10bob2obo3b3o2b
o2b2ob5obo$3ob4obobo2bo2bob2obobob2obo2bob3o2bo3b2ob2o2b3ob2obo3bo2b4o
3b2obob3o2b3obo2b2o5bo5bobobo2b4o2b2o2b3o3bob3o2bo4bo5bob2obo2bo3b2o2b
3obo2bob3obobob2obobob3o2bobob2o2b3o2bob4o7bo5bobo4bo2bo2bob2obobo$o3b
obo2b2o2b5obobobo2b2o2bo5b2o2bobo3bob3o3bob3obo2bobobo3b2ob2ob2o3b2ob
4obo7b3ob3o2b2obo2bobo2bob4o2b2obo3b6o3b2obobob2obobo2bo6bob5o2bobobo
4bo2bo2b2o2bob3obo3b2o3bo2bob2ob4obobobo2b5o2bobob2o$2ob2o2bob2obob2o
2bobobo2bo2b3obob5o3b2o2bob2ob4ob2ob2obobob2o2bo3b3ob3o2bobob5obobo2b
obob2o2b2o2b2o2bob2obo4bo6bob2obo2b4o2bo3b5o2b2obobo3b2obobo3b2obob3o
bo2b3ob3obo3b2o4bob4obo2bo2b2obob2o3bo5b2ob3o$obo4bo4b3obo2b2o3bob3ob
3o2b2o3bo4bobo2bo2b3o3b2obobo3bo4b8o3bob2o2b3obobo2bob11o2bo2b2ob2o2b
5o3b2obob2obobob2o5b2o2b2o2bo3bo3bob3o2b2ob2o3b5o2b3obob2o2bo2b4obo2b
obob2o2bobobobob6obo2b3o$b2obobo2b4o3bob7obob3ob4ob4o2b4o2bo2b3o4b2o3b
ob2obo2b2o3bobob2ob4o4b5ob3obobob2obob2o2b4ob2ob2o2bobob4ob2obobo2b2o
2bob2ob2o3bo3bo2bo5b2o3b3obob2ob2o5b3o3b14ob2o3b2o2b2o3b2o2bobo3b3o$b
2o2b5ob5o7b2o2bobo3bob5o3b2o2bob2obo3bobobob2o2bobob2o4bob4o2bobo2bo2b
o8b2o2bob4o3b3o3bo2b2ob3o2b4ob5obo8b2o4bobo2bobob2o5b2o4bob2o4b2obobo
b3ob4o2b3o2b5o2b5o3bob2o2bobo3bobo$2bob3o3b5o2bobo2b2obo6bob2ob2obobo
b2o8bobobobob3obob2obobobo4bo3b3obo2b4o5b3obobobob3o5b3ob4o2bobo5b2o2b
2o2bo2bobob2o3bo2b2obo3bobo6b3o7bobo5b2o2b3o4bobo3b2o7bob2ob2o6bobob4o
$3o2bobo3b4ob3o3b3o9bobobob2ob2o6b6obo2bo2b2o3b3o3b2ob2obobob2ob10ob4o
2b2ob4obobo2b3o4b2ob4ob3o2b3obo2b2obobobob2obobo2b2o4bo5bo4b3o2bo2b2o
7b3o5b3ob2o3b2obob2obo6bob2o2bo3b2o$bo3b2o3bo4bo2bo4b4o2bob3ob2o8b3ob
obobo3bob3o4bobobo2b5o2bob4obob4o3b2o3b2o2b3obo2b4obob2o4bo4b2ob3o2b2o
b2o3b3o3bob2o2b2obobo2b4obo2b3ob4ob2ob3o7b2ob2o3b2o3b2obo2bo2b2ob2ob2o
2b3obo3b2o$ob3ob2obob4obobobo3bob2obobo2b4o2bob3ob2o2b5obo2b2o2bob2o3b
o2b2obo3bob2obob4ob2o2bo2bo6bobo3bob6o2bo3b4ob3ob3o2bobob3o2bob3ob3ob
ob2o2b3o4b2obo6b2o7b3obobob4o2b2o2bo5b2obob3ob4o2bo2bobo2bo$4o2b2ob2o
5bob3obo2b4o4bo2b2ob2ob2ob5obobob3ob2obobo2bobo2b2o4bo2bo2bob2o3bob2o
b5o2bo2bobo2bo2bo3bo2bob3ob2ob3o2b4ob2o4b4obo4bo5bo3b2ob2o2b2o2bo2bob
o2b5ob2o2bo2bo2bo2bobob3obob3o2bo2b3o2bob2o2bo2b3o$b2obobo3bob2obobob
o3b7ob2o2bobo2bob3ob2ob6o3bobobob3obobob3o2b5o3bo3b2obobobob3o2bob2ob
o2b3o2bo2bob2obo2bo2b2obo3b3ob2ob3obobo3bo2bo4b2obob2obobo3b3o2b2obob
o3bobobobob4o3bo2bo2bob3ob3obo2bo2bo4b2obob3o$4obo7bo2b3o2bobob5ob3o2b
ob4o3bo2b3o3bo4b2ob2o2bo4bo3b2o3bob3ob2obob4obo2b2ob2o2bobobob3o3bo2b
o3b2o3bo2b2o2b2o4b5o2bo4b4o2b4ob2obob5o2bobob3o3bobob2o2b4obo2bob2o2b
3o2bobob2obo2b3o2b3obo2bobo$bob4ob3ob3o2bob2o2b4ob2o2bo4b2o3bob2o3b2o
3b4o2bo4bobobo5b2o2b2o4bo2bo2bobo2b3o2b3o3bob2ob2ob6ob2obob4o3bobobob
o2b5o2b3o3b2o2bo3bo3b4ob2ob2o4b5o3bobobo4bob2o4bobo2bo2b3o3bo4b3o4bob
2ob2o$o3b2ob2ob2o2bo5bobobob2o4bobob2ob2o3bo3bob2o2b4obo4b2obob2o5b2o
bo2b2ob2o4bo3b4ob2obo2b2o3b3o2b2obobo4b3obo2bo2bob3obo3bobob4ob2obo4b
4o2b3o4b2ob2o2b2ob2o7b2obo2b3o2bo4bo6b4o2b2obob2o4bobo$obob2obobobob2o
3b2obob4o2b2ob3obobo4bobob2ob5o2b3o9bob2o2b2ob4o2bo5b2obo3b2o2bob3o2b
2obo3bobob2ob4o2b2ob3obobob3ob2obo5b4ob3ob2o2b2obo3bobobobo2bob2o2bo3b
2o3bobo3bobo2bob2o3bo4b2o3b2obobo2bob5o$2o4b5o2bobo2bo3b2ob3o4bo5bob5o
bobob2obobo3b2o3bo2bo2bo3b3o2b2ob4ob2ob5o2bo2b3ob4obobob5o3bobo2bo4bo
bob2o2bob2ob4ob4obo4bo2bobobo2b2o3bob3o2b4o3b2o2bob7o2bo3b4o2b2o4b2ob
obob2o4b2o2bo2bo$o2b2o2b2obo3b2o4b3o2bo3bo3b2obobo2b2o2bob3o4bob3o3b2o
2bo3bobo4b2ob3o2b2ob2o2b2obob3ob2o2bo5b3obo3bob2obobo2bobo5bob4o4b2ob
o5bo2b6obo2b2obo7bobob3o3b5o3bo5bo3b4o3b2ob6ob2o6bobo2b2o$ob5o5b3o4b4o
3b2obo2bo3bobo3bob2obo3b2o2b4o3b3o2bobobobobob3ob4o2bobobo2b2obobobob
3obo2bobo3bo5b2o2bo2bobob3obobo2b3o4b4obob2o2b2o2bob2ob2ob2ob3o3bo2b5o
b8o2b3obo4b5ob2ob3obob2o2bob3o2bobo$4ob3obo3bobo5bo3bo4bo2bob2obo3b2o
b4obobo5b2ob2ob3o3bo2b2o5bobob2ob2ob3obo7b2ob2obob3o3b3o3b2o2b3o3b3ob
6obo3bobo2bo2bo2bobo2bo3b2o2b2o4bo7b2ob2o4bo2b2o2bob2o2bo2bobo2b4o2bo
bobobob3ob2ob3o$o2bobo3b2obo3bobo2bo2b2o3bo2b5ob2ob2ob2o3bobobobo2b2o
5bo2bo2bo2bobobobob2obo2b3obo2b2o5bob8o3bobo3b2ob2o2b2obob2obobob2o2b
o3b4o2b2obo2bobo2b2o3bo2b3o3bo2bo3b2obobo4bob3ob8obobo3bobo3bobo3bo2b
ob2o2bo$2ob2o3b2o2bo2b3o2b2o4b2o3bo2bo2b2o3bobo3bob2o4bob3ob3o2bob3o2b
o2b2o2b4o2b2ob2ob7o4bobo3b2o4bo3b3o2bobob2o2b3o6bo3bo2bobob3obo5b2o3b
ob2o2b8ob2o2b2obo2b2o2b4obo2bobo2b2o6b2o2b2ob2o3bo3b3obo$b2obob2o4bob
2o2bobo2b4obobobo2bo2b3o3b4o3b3ob2obo3b2ob7ob3o7b2o3bo2b4o3bobo2b3o2b
2obob3o2b3obobo2bo2bobob2ob6o2b3obob3o2b2ob2o3bob3obo4b2o2b2ob11obob2o
2bo3bo2b2o2b5o4b2ob4o3bo5b2obo$4bo6b4ob2obob2obo2b2o2bob4ob2o2b2obo3b
ob2ob3ob4obo2b4obo2b2o2bo2bo2bo6bo2b2ob7ob3o6b3ob2o3bo2bo6b2obo2b3ob3o
b3ob2o3bo2b2o5bobob2o7bob3o5b3ob4obo2b2ob2ob2obob2o2bobo2b4obobobobo2b
2o2bo$obobob4ob3obobob4o3b4o2bo2bobobo3b2o2b2o2b6obo5b3o2b4o4bo3b2ob2o
4bo4bobo2b2o3b4o3b2o3bo5bo3b4obo2b2o2b4ob2ob3ob4o3b3o3bo2bobo5bo6b2ob
obob2ob3o5bob2obobob2obobo2bobobobo2b2o2bo2b3o2bo$o2b2o4b4o2bo6b4obo3b
2obob3ob2ob2ob3ob2o4bo2b4ob2o4b2o3b5ob2ob2obob2o3b2ob3ob2o2b2ob3obob2o
b4ob2o3bob3o4bobo2bob3o2b3o5bo2b3o2b2obo2b4o2bobo2b5o3b2obo3b2obo2bob
o3bo5bo3b2o4b2o2b2obo2b3o$5b2ob2o2b2obob2o4b2o3bob2o5bobobo2bo6b2o5b2o
3b3ob2ob2obob2ob3o3bob3o2b2obo4b2ob4ob4o3bob3o2bobob2o4bob5o4bo3bob2o
b2o3b2ob2ob3o3b3o2b2ob2o2bo4b2o2b3obo4b2o2b3o2b3o4bobobo2bobob2obobob
2o2b2obo$4obobo2bo2b2o2b4obobo2b2o2b3ob2obo2bob3ob2ob3ob5o6b2obo4b2ob
o2b2o2bo3b2obob3o2bo2bo2bobobo6bobo4b3obo3bobo5bo3bo2bo3b3o3b3o4b2obo
bob2ob8obobobo2b6ob2o2b2o2b2o3bob5ob2obo2bob3obob4o2b2o$bo5b2ob2o3bo2b
obob3o2bo2b7obob3ob16obobo5b3obo3bo4bobo2bo2bo3bo4b2o2b2o3b5obobo6b4o
2b2ob2ob2o3bobobo2b2ob3ob2obo9bobo3bo2b2ob4o3b3o3bo3bobob3ob2o5b5ob2o
2b3o2b8ob3obo$3o2b4obo3b7obo2b3obo3bo4b2ob2ob2ob2ob2o3b2o2b3obo3bob2o
b2obob5o3b2o3b2ob3o4bo5b2o2b5obob7o4bob2o2b2o2bo2b2o5b3o2bo6bo3bo2b2o
2bobo2bo2b2ob2obo3bo3bo2bo2b6o3bobobo3b5obob2o2bobobobo$o5bobo2bob6ob
3ob2o2bo2bobobob4ob2ob3obo4bobo2b5ob3o3b2o2bo4bobobo3bob3o2bob2ob3o3b
ob3o7b4ob2ob2ob2o2b2o2bobob3o2b3o2b3obo2b2o2b3o10bob2ob4ob3obobobobo2b
obo6bob4obo2bobo2b5obob2o2b6o$3ob6obobob2obobo2bobobobo2bobobo4bo3b7o
b3o2bo3bo6bob2obo3bobo2bobobo2b3o3b4ob2o3bobobo3bo2b3o3bob3ob2o3bob2o
bob3ob2obo4b2o9b5o2b4ob2obobo2bobo2b2ob3o3b6o3bob2o3b2o2b4o3b4obo4bob
obo$4b6ob2o3b2o3bob6obo2bob2ob3o2b2o2bobobobo2bob3obobobo4bo4bob5ob2o
2bobobobo2b5o6bo2b4o2bob2o7bob2obob8o2b7obobob2ob3o2b2obob5ob3o2b3obo
bo2b7o4b5obobo5b3o6b2o3bob2o5b2o$b2ob2o2bo2b5ob8o4bo4bobo3bo2b2o3bo3b
ob6o2bo2bobo2b4ob3o2bo2bob2ob3obo4bo3bob2ob3o2bo2b2obob4obo2b2ob2o2bo
bo2b4obo3bobo2bob4o5b2o4b4ob2obob2o8b6ob2o4b3obobob4obobob2o3bob4ob2o
$3bo2bob5obo2bo5b3obobobo6b2o2b3o4bobobo2bo2bo7b3o3b2o3b2obo2b3obo2bo
2b3o3b2ob3ob2obo5bobo3bo4bobobobo5b2ob3o2bob3o2bo4b3obobo2bo2b2ob5obo
bo2b4o2b5o2bo2bo7bobob6o2bo4bob2o3b3ob2o$ob2ob2obobobo2b6obob2obo8b5o
b3ob2ob2o4b2obo8b2o2bo2bobo5b2ob2ob6o2b3obo3bo2bobo2b3ob2o2bo2bo2b2ob
4o4b4ob3o3bobo2b4o5b5obobo4b5obo2bo2b2obo4b2o2bo3b3ob4obo3b2obob2o3b3o
bobo4b3o$4o3b2obo2b3obobo3bo4b4obob2ob2o2bo2bobo3bobob3ob2obob3o2b2o2b
ob2ob2obo3b2o3bo3b2ob5obo2bobob7obo2bob2obob3o2b7o2bo2b2o2bo2b5o2b2o2b
o5bo3bo2bo5bo3b2obo2bo3b3obo4b4o2bo2b2ob6o3bo2b2o2b5o!Code: Select all
x = 192, y = 53, rule = B3/S23
33$42b4o$41b6o$40b2ob4o$41b2o3$41b2o$39bo6bo$38bo8bo$38bo8bo$38b9o3$42b
4o$41b6o$40b2ob4o$41b2o!- hotcrystal0
- Posts: 2828
- Joined: July 3rd, 2020, 5:32 pm
- Location: United States
Re: random cellular automata concepts
SquishyBoi wrote: ↑September 13th, 2020, 8:24 pm
a pattern that will survive forever, yet will never return to any of it's prior positions
Code: Select all
x = 4, y = 5, rule = B3-cek4-ceijz5-aik6cik7e/S2-ac3-y4ejktz5ck6e
bo$o2bo$o2bo$o2bo$b3o!Code: Select all
x = 192, y = 53, rule = B3/S23
33$42b4o$41b6o$40b2ob4o$41b2o3$41b2o$39bo6bo$38bo8bo$38bo8bo$38b9o3$42b
4o$41b6o$40b2ob4o$41b2o!