KtT wrote: ↑October 9th, 2024, 10:12 am
3-gliders reduction:
Down another 1G (to 81G) using your same slightly cheaper mazing synth in the activation step too.
Code: Select all
x = 639, y = 400, rule = B3/S23
81bo$79bobo$80b2o2$319bo$317b2o$318b2o40$63bo$21bobo40bo$22b2o38b3o$22b
o$375bo$26bo347bo$24bobo14bo332b3o$25b2o15bo$40b3o337bobo$358bo21b2o$
356b2o23bo$357b2o$377bo$68bo307bo$50bo15bobo307b3o$51bo15b2o$49b3o2$367b
o$54bo311bo$55bo310b3o$53b3o4$37bobo326bo$38b2o325bo$38bo326b3o2$363b
o$361b2o$362b2o5$152bo$153b2o$152b2o2$412bo$410b2o$411b2o13$240bo$238b
2o$239b2o2$o$b2o$2o6$213bo$214bo$212b3o2$431bo$430bo$430b3o74$633bo$634b
o$632b3o3$637b2o$637b2o11$620bo$620bo$620b3o$612b2o7b2o$612b2o2b3o2b2o
$618b3o$618b3o$613b2o$601b3o8bo2bo$601b3o8bobo$599b3o2b2o3bo3bo4b3o$604b
2o3bo$603b3o3bo$603bo17b2o3b2o$203b2o398bo11b3o2bo2bo2b2o$203b2o402bo
7bobo3bobo$606bobo6bobo4bo$602b2o2bo2bo16bo$602b2o3b2o17bo$620bo3b3o$
200b2o418bo3b2o$188b3o8bo2bo406b3o8bo3b2o2b3o$188b3o8bobo414b2o8b3o$186b
3o2b2o3bo3bo414bo2bo7b3o$191b2o3bo418bobo$190b3o3bo412b3o4bo$190bo17b
2o3b2o394b3o$190bo16bo2bo2b2o392b2o2b3o2b2o$76b2o116bo13bobo396b2o7b2o
$75bobo115bobo5bo7bo397b3o$77bo111b2o2bo2bo2bobo11bo395bo$189b2o3b2o4b
obo10bo395bo$200bo6bo3b3o$207bo3b2o$196b3o4bo3bo3b2o2b3o$202bobo8b3o$
201bo2bo8b3o$202b2o$196b3o$196b3o$194b2o2b3o2b2o$194b2o7b2o$194b3o$196b
o$196bo81$427bo$426b2o$426bobo7$4b3o$6bo399b3o$5bo400bo$407bo39$371b3o
$371bo$372bo9$390b2o$390bobo$390bo!
2024-10-10:
Should be down another 1G to 80G.
Code: Select all
x = 197, y = 186, rule = B3/S23
59bo$60bo$58b3o3$81bobo$81b2o$82bo17$54b3o$56bo$55bo21$o41bo$b2o37bob
o$2o39b2o2$4bo133bo$5bo132bobo$3b3o14bo117b2o$18bobo124bo$19b2o122b2o
$120bobo21b2o$120b2o$121bo$46bo93bo$47bo92bobo$29bo15b3o92b2o$27bobo$
28b2o2$130bo$33bo96bobo$31bobo96b2o$32b2o4$129bo$129bobo$129b2o2$125b
obo$125b2o$126bo2$8bo$9bo$7b3o$130bobo$131b2o$21bo109bo$19bobo$20b2o152b
obo$174b2o$175bo25$192bo$190bobo$191b2o$74b2o$74b2o118bo$194bobo$194b
2o$190b2o$189b2o$60bo10b2o118bo$60bo9bo2bo$58b3o9bobo$58b2o7bo3bo$58b
2o2b3o2bo$60b3o4bo$60b3o16b2o3b2o$78bo2bo2b2o84b2o$65bo13bobo88bobo$64b
obo5bo7bo89bo$60b2o2bo2bo2bobo$60b2o3b2o4bobo9b3o$71bo6bo4b3o$78bo2b3o
2b2o$67b3o4bo3bo7b2o$73bobo9b3o$72bo2bo9bo$68bo4b2o10bo$68bo$68b3o$69b
2o3b2o$64b3o2b2o3b2o$66b3o$66b3o6$16b2o$17b2o$16bo17$135b2o$135bobo$135b
o10$153b3o$153bo$154bo!
And another 1G down to 79G.
Code: Select all
x = 436, y = 70, rule = B3/S23
435bo$433b2o$403bo30b2o$404bo$402b3o2$400bo29bo$398bobo29bobo$399b2o29b
2o2$47bo$47bobo$47b2o212bo$259bobo$260b2o11$2b3o137b3o137b3o117b3o$2b
3o137b3o137b3o117b3o$3o2b2o3bo129b3o2b2o3bo129b3o2b2o3bo109b3o2b2o3bo
$5b2o3bo134b2o3bo134b2o3bo114b2o3bo$4b3o3bo133b3o3bo133b3o3bo113b3o3b
o$4bo17b2o120bo17b2o3b2o115bo17b2o3b2o95bo17b2o3b2o$4bo16bo2bo119bo16b
o2bo2b2o115bo16bo2bo2b2o95bo16bo2bo2b2o$8bo13bobo123bo13bobo123bo13bo
bo103bo13bobo$7bobo5bo7bo123bobo5bo7bo123bobo5bo7bo103bobo5bo7bo$7bo2b
o2bobo11bo119bo2bo2bobo11bo119bo2bo2bobo11bo95b2o2bo2bo2bobo11bo$8b2o
4bobo10bo120b2o4bobo10bo120b2o4bobo10bo95b2o3b2o4bobo10bo$14bo6bo3b3o
126bo6bo3b3o126bo6bo3b3o106bo6bo3b3o$21bo3b2o134bo3b2o134bo3b2o114bo3b
2o$10b3o4bo3bo3b2o2b3o118b3o4bo3bo3b2o2b3o118b3o4bo3bo3b2o2b3o98b3o4b
o3bo3b2o2b3o$16bobo8b3o126bobo8b3o126bobo8b3o106bobo8b3o$15bo2bo8b3o125b
o2bo8b3o125bo2bo8b3o105bo2bo8b3o$16b2o138b2o138b2o118b2o$10b3o137b3o137b
3o117b3o$10b3o137b3o137b3o117b3o$8b2o2b3o133b2o2b3o133b2o2b3o2b2o109b
2o2b3o2b2o$8b2o138b2o138b2o7b2o109b2o7b2o$8b3o137b3o137b3o117b3o$10bo
139bo139bo119bo$10bo139bo139bo119bo3$50b2o$50bobo$50bo212b2o$262bobo$
264bo9$176b3o$176bo$177bo$135b3o$137bo$136bo!
Chris857 wrote: ↑July 4th, 2024, 5:14 pm
Variant of gourmet (where all four sides have the same catalyst) completed in 62G. I found another soup result that let me insert the PT8P catalyst with room for one of the pi synths (but also had to make use of the above synth for the left-side catalyst for the synth to have room).
2024-07-05:
6G reduction to above gourmet variant, down to 56G.
And down another 1G through cheaper cleanup, down to 55G.
Should be a big reduction by 10G, down to 45G, by making things more directly and using a different pi synth, and which should also now make this the cheapest of any gourmet variant.
Code: Select all
x = 427, y = 98, rule = B3/S23
387bo$386bo$386b3o2$348bo$349bo33bo$347b3o32bo$382b3o4$349bo$350bo$348b
3o4$340bobo16bo$341b2o14bobo$341bo16b2o$obo$b2o343bo$bo342bobo$345b2o
3$347bo$16b2o6b2o100b2o6b2o90b2o6b2o109bobo28b2o6b2o$17bo7bo101bo7bo91b
o7bo23bo86b2o29bo7bo$17bob2ob3o102bob2ob3o92bob2ob3o23bo118bob2ob3o$18b
obobo9bo95bobobo9bo85bobobo9bo15b3o117bobobo9bo$21bo8b3o98bo8b3o88bo8b
3o138bo8b3o$29bo109bo99bo16bo132bo$30bo109bo99bo13b2o134bo$29b2o108b2o
98b2o14b2o132b2o$28bo109bo99bo149bo$29b2o108b2o98b2o148b2o$30bo109bo99b
o149bo$30bobo107bobo97bobo147bobo$31b2o98bo9b2o88bo9b2o138bo9b2o$130b
obo97bobo147bobo$131b2o98b2o148b2o5$231bo149bo$230bobo147bobo$230b2o148b
2o2$386b2o$386b2o$382b2o$360bo21bobo$352b2o6b2o21b2o$353b2o4bobo$352b
o2$41b3o295b3o$41bo299bo$42bo297bo4$348bo$348b2o$347bobo5b2o$114b2o240b
2o$115b2o35b2o201bo56b2o$114bo36b2o259bobo$153bo258bo2$416b3o$116b2o298b
o$115bobo299bo$117bo2$214bo117b2o$214b2o115bobo67b2o21b3o$213bobo117b
o67bobo20bo$401bo23bo2$405bo$353b3o48b2o$355bo48bobo$354bo5$347bo$347b
2o$346bobo3$325bo$325b2o$324bobo!
2024-10-13:
A
p32 traffic light hassler in 23G.
Code: Select all
x = 387, y = 63, rule = B3/S23
386bo$384b2o$385b2o$172bobo104bo$119bo52b2o103b2o59bo$117bobo53bo104b
2o59b2o$118b2o117bo100b2o$124bo113b2o$122bobo112b2o$123b2o47bo$170b2o
$171b2o11$10bo109bo119bo109bo$2bo6bobo100bo6bobo110bo6bobo100bo6bobo$
10bo109bo119bo109bo$ob3o105bob3o115bob3o105bob3o$2b2obo7bo98b2obo7bo108b
2obo7bo98b2obo7bo13b2o$2bob2o6bobo97bob2o6bobo107bob2o6bobo97bob2o6bo
bo11bo2bo$3b3obo3bo2bo98b3obo3bo2bo108b3obo3bo2bo18bo79b3obo3bo2bo12b
2o4bo$11b3o107b3o117b3o20b2o85b3o20b2o$5bo6bo102bo6bo112bo6bo19b2o81b
o6bo19b2o$264bo109bo$11b2o108b2o118b2o108b2o$11b2o108b2o118b2o108b2o$
133b2o118b2o108b2o2$132bo3bo115bo3bo105bo3bo$131bo4bo114bo4bo104bo4bo
$130bobobo115bobobo105bobobo$129bobobo115bobobo105bobobo$127bo4bo114b
o4bo104bo4bo$127bo3bo115bo3bo105bo3bo2$129b2o118b2o108b2o5$6bo$6b2o$5b
obo2$29b3o$29bo$30bo$6bo$6b2o35b3o$5bobo35bo$44bo2$39b2o$39bobo$39bo!
A
p32 LOM hassler in 58G. Challenging mix of a compact oscillator surrounded by eaters, clocks, and Rob's p16. Edit: initially missed that center boats aren't actually dead center so I messed up a bit when I rotated a portion of the pattern, should be fixed now.
Code: Select all
x = 1779, y = 224, rule = B3/S23
1685bo$1683bobo$1684b2o19$1736bo6bo$1734bobo4b3o$1735bobo2bo$1735bo4b
2o2$1746b2o$1746b2o2bo$1728b3o8bo6bo4bo$1738bobo5bo4bo$1723b2ob2o10b2o
6bo$1723b2obobo18bobob2o$1729bo5b2o11b2ob2o$1724bo4bo4bobo$1724bo4bo5b
o9b3o$1725bo2b2o$1728b2o2$1740bo$1738bobo$1739bobo$1739bo20$1714bo$1715b
o$1713b3o6$1701b2o$1702b2o$1701bo5$1695b3o$1697bo$1689bo6bo$1689b2o$1688b
obo8$1689b2o86b2o$1688bobo85b2o$1690bo87bo4$1683b2o$1684b2o$1683bo6$1714b
o$1714b2o$1713bobo$1753bo$1752b2o$1752bobo22$709bo$708bo$708b3o$668bo
906bo$669bo113bobo789bobo$588bo78b3o114b2o789b2o$16bo569b2o196bo$14bo
bo570b2o$15b2o$547bobo891bobo90bo34bobo$76bo471b2o39bo851b2o89bobo34b
2o$76bobo469bo38b2o817bo35bo90b2o35bo$76b2o510b2o817bo$12bobo1390b3o$
13b2o180bo1239bobo$13bo141bo38bo1240b2o$156bo37b3o1239bo$154b3o298bo$
455bobo$158bo296b2o$159b2o$158b2o281bo20bo$442bo18bo$24bo415b3o18b3o$
22bobo782b2o$23b2o782b2o$558b2o118b2o118b2o$558b2o118b2o118b2o2$687bo
119bo$686bobo117bobo$561b2o118b2o3bobo112b2o3bobo896bo$561b2o118b2o4b
o113b2o4bo108bo129bo119bo119bo129bo129bo156bobo30bo6bo$914bobo127bobo
117bobo117bobo127bobo127bobo4b2o151b2o28bobo4b3o$915bobo127bobo117bob
o117bobo127bobo127bobo2bo2bo181bobo2bo$915bo129bo119bo119bo129bo129bo
5bobo181bo4b2o$1552bo$186b2o128b2o148b2o108b2o118b2o118b2o108b2o128b2o
118b2o118b2o128b2o128b2o188b2o$186b2o2bo125b2o2bo145b2o2bo105b2o2bo115b
2o2bo115b2o2bo105b2o2bo125b2o2bo115b2o2bo115b2o2bo125b2o2bo125b2o2bo185b
2o2bo$28b3o137b3o15bo4bo106b3o8bo6bo4bo126b3o8bo6bo4bo86b3o8bo6bo4bo96b
3o8bo6bo4bo96b3o8bo6bo4bo86b3o8bo6bo4bo106b3o8bo6bo4bo96b3o8bo6bo4bo96b
3o8bo6bo4bo106b3o8bo6bo4bo106b3o8bo6bo4bo166b3o8bo6bo4bo$186bo4bo116b
obo5bo4bo136bobo5bo4bo96bobo5bo4bo106bobo5bo4bo106bobo5bo4bo96bobo5bo
4bo116bobo5bo4bo106bobo5bo4bo106bobo5bo4bo116bobo5bo4bo116bobo5bo4bo176b
obo5bo4bo$23b2ob2o135b2ob2o18bo106b2ob2o10b2o6bo126b2ob2o10b2o6bo86b2o
b2o10b2o6bo96b2ob2o10b2o6bo96b2ob2o10b2o6bo86b2ob2o10b2o6bo106b2ob2o10b
2o6bo96b2ob2o10b2o6bo96b2ob2o10b2o6bo106b2ob2o10b2o6bo106b2ob2o10b2o6b
o166b2ob2o10b2o6bo$23b2obobo134b2obobo18bobob2o100b2obobo18bobob2o120b
2obobo18bobob2o80b2obobo18bobob2o90b2obobo18bobob2o90b2obobo18bobob2o
80b2obobo18bobob2o100b2obobo18bobob2o90b2obobo18bobob2o90b2obobo18bob
ob2o100b2obobo18bobob2o100b2obobo18bobob2o160b2obobo18bobob2o$29bo139b
o18b2ob2o106bo18b2ob2o126bo5b2o11b2ob2o86bo5b2o11b2ob2o96bo5b2o11b2ob
2o96bo5b2o11b2ob2o86bo5b2o11b2ob2o106bo5b2o11b2ob2o96bo5b2o11b2ob2o96b
o5b2o11b2ob2o106bo5b2o11b2ob2o106bo5b2o11b2ob2o166bo5b2o11b2ob2o$24bo
4bo134bo4bo124bo4bo144bo4bo4bobo97bo4bo4bobo107bo4bo4bobo107bo4bo4bob
o97bo4bo4bobo117bo4bo4bobo107bo4bo4bobo107bo4bo4bobo117bo4bo4bobo117b
o4bo4bobo177bo4bo4bobo$24bo4bo134bo4bo15b3o106bo4bo15b3o126bo4bo5bo9b
3o86bo4bo5bo9b3o96bo4bo5bo9b3o96bo4bo5bo9b3o86bo4bo5bo9b3o106bo4bo5bo
9b3o96bo4bo5bo9b3o96bo4bo5bo9b3o106bo4bo5bo9b3o106bo4bo5bo9b3o17bo148b
o4bo5bo9b3o$25bo2b2o135bo2b2o125bo2b2o145bo2b2o105bo2b2o115bo2b2o115b
o2b2o105bo2b2o125bo2b2o115bo2b2o115bo2b2o125bo2b2o125bo2b2o34b2o149bo
2b2o$28b2o138b2o128b2o148b2o108b2o118b2o118b2o108b2o128b2o118b2o118b2o
128b2o128b2o34bobo151b2o2$1420bo129bo189bo$1418bobo127bobo187bobo$1419b
obo127bobo187bobo$1053b2o113bo4b2o113bo4b2o124bo129bo189bo$1053b2o112b
obo3b2o112bobo3b2o$1167bobo117bobo$1168bo119bo2$1056b2o118b2o118b2o$1056b
2o118b2o118b2o$1287b2o$1287b2o432b2o$912b3o18b3o786b2o$914bo18bo787bo
$325b2o586bo20bo$324b2o$326bo592b2o$918bobo$16b3o61b2o246b3o589bo794b
3o$18bo11b2o48bobo205b3o37bo1388bo$17bo13b2o47bo209bo38bo1379bo6bo$12b
2o16bo258bo1419b2o$13b2o1693bobo$12bo1013b2o$1027b2o38bo$1026bo39b2o$
1066bobo2$1027b2o$1028b2o281bo$1027bo158b3o121b2o397b2o46b2o$1186bo123b
obo395bobo45b2o$1187bo522bo47bo$2o1143b3o$b2o1144bo$o1145bo$1703b2o$1704b
2o$1703bo2$1733bo$1732b3o$1732bob2o$1733b3o$1733b3o$1733b2o!
p148 long bun hassler in 46G.
Code: Select all
x = 811, y = 350, rule = B3/S23
757bo$756bo$756b3o2$750bo$750bobo$635bobo112b2o$636b2o$636bo2$640bo$641b
o$639b3o2$653bo$651bobo$642bo9b2o$640bobo$641b2o7$754bobo$655bobo96b2o
$656b2o97bo$656bo10$666bo$666bobo$666b2o3bo$671bobo$671b2o26$810bo$722b
o85b2o$721bobo85b2o$721bobo$720b2ob3o$726bo$720b2ob3o$720b2obo3$691b2o
$690bobo27b2o$690bo29bobo$689b2o31bo$722b2o5$695b2o$696bo31b2o$696bob
o29bo$697b2o27bobo$726b2o3$695bob2o$693b3ob2o$692bo$693b3ob2o$695bobo
$608b2o85bobo$609b2o85bo$608bo13$166bobo$167b2o$167bo5$173bo$171bobo$
172b2o4$207bo538b2o$205b2o538bobo$206b2o14bo524bo3b2o$184bo36bobo526b
obo$185bo35bobo528bo$183b3o34b2ob3o$226bo$220b2ob3o$220b2obo4$220b2o$
178bo41bobo$179b2o3bo37bo539bo$178b2o5b2o35b2o439bo97b2o$184b2o477b2o
96bobo$662bobo7$776b2o$776bobo$765b2o9bo$765bobo$765bo2$777b3o$777bo$
778bo2$782bo$781b2o$667b2o112bobo$666bobo$200b2o11bo454bo$200bobo9b2o
$200bo11bobo445b3o$662bo$661bo4$181b2o$182b2o$181bo28b3o$210bo$211bo63$
727bo$726bo$726b3o2$720bo$720bobo$665bobo52b2o$666b2o$666bo2$670bo$671b
o$669b3o2$683bo$681bobo$672bo9b2o$670bobo$671b2o6$316bobo$317b2o405bo
bo$317bo367bobo36b2o$686b2o37bo$491bo194bo$489b2o$453bo36b2o$323bo130b
o$321bobo128b3o$322b2o4$357bo$355b2o$22bo199bo133b2o14bo129bo219bo$21b
obo197bobo110bo36bobo127bobo137b2o78bobo$21bobo197bobo111bo35bobo127b
obo133b4ob2o77bobo$20b2ob3o194b2ob3o107b3o34b2ob3o124b2ob3o131b6o77b2o
b3o$26bo199bo149bo129bo131b4o84bo$20b2ob3o194b2ob3o144b2ob3o124b2ob3o
214b2ob3o$20b2obo196b2obo146b2obo126b2obo216b2obo3$691b2o$220b2o148b2o
128b2o188bobo27b2o$178bo41bobo147bobo127bobo187bo29bobo$179b2o3bo37bo
149bo129bo186b2o31bo$178b2o5b2o35b2o148b2o128b2o218b2o$184b2o4$475b2o
218b2o$476bo219bo31b2o$476bobo217bobo29bo$477b2o218b2o27bobo$726b2o3$
345bob2o126bob2o216bob2o$343b3ob2o124b3ob2o214b3ob2o$342bo129bo219bo84b
4o$343b3ob2o124b3ob2o214b3ob2o77b6o$bo343bobo127bobo217bobo77b2ob4o$b
2o342bobo127bobo217bobo78b2o$obo343bo129bo219bo2$40b3o$b2o37bo$obo38b
o$2bo197b2o11bo$200bobo9b2o$200bo11bobo309b3o$42b2o480bo$41b2o444b2o36b
o$43bo444b2o$487bo244bo$693bo37b2o$181b2o510b2o36bobo$182b2o508bobo$181b
o28b3o$210bo$211bo4$746b2o$746bobo$735b2o9bo$735bobo$735bo2$747b3o$747b
o$748bo2$752bo$751b2o$697b2o52bobo$696bobo$698bo2$690b3o$692bo$691bo!
2024-10-14:
p56 long bun hassler in 56G.
Code: Select all
x = 1198, y = 172, rule = B3/S23
1123bo$1121bobo$388bo733b2o$389bo$387b3o64bo$454bobo716bo$454b2o669bo
bo45bobo$1126b2o45b2o$462bo663bo$460b2o716bobo$461b2o715b2o$1179bo2$453b
obo518bo$453b2o520b2o$454bo519b2o3$1015bo$816bo159bo38bobo$530bo286b2o
158bo37b2o$528bobo285b2o157b3o$118bo410b2o607bo$119b2o894bobo121b2o$118b
2o480bo256bo157b2o121b2o$142bobo453b2o218bo38bobo156bo$142b2o455b2o218b
o37b2o$143bo673b3o$718bo$bo717bo137bobo$2bo38bo656bobo16b3o137b2o$3o37b
o658b2o157bo$40b3o656bo$246bo$38bo208b2o$36b2o208b2o18bo5bo133bo5bo183b
o5bo133bo5bo123bo5bo143bo5bo143bo5bo$37b2o227b2o3b2o133b2o3b2o183b2o3b
2o133b2o3b2o123b2o3b2o143b2o3b2o143b2o3b2o$266b2o3b2o133b2o3b2o183b2o
3b2o7bo125b2o3b2o7bo115b2o3b2o7bo135b2o3b2o7bo135b2o3b2o7bo$267bo3bo135b
o3bo185bo3bo7bobo125bo3bo7bobo115bo3bo7bobo135bo3bo7bobo135bo3bo7bobo
$609bobo137bobo127bobo147bobo147bobo$608b2ob3o134b2ob3o124b2ob3o144b2o
b3o144b2ob3o$614bo139bo129bo149bo109b2o38bo$410b2o188b2o6b2ob3o126b2o
6b2ob3o116b2o6b2ob3o136b2o6b2ob3o111bo24b2o6b2ob3o$410bobo187bobo5b2o
bo128bobo5b2obo118bobo5b2obo138bobo5b2obo113bobo22bobo5b2obo$411bo189b
o139bo129bo149bo124b2o23bo3$868b2o116b2o30b2o116b2o30b2o$868bobo116bo
30bobo8b2o106bo30bobo8b2o$137b2o710bo19bo117bobo9bo19bo9bobo105bobo9b
o19bo9bobo$136b2o9bo700bobo137b2o8bobo30bo106b2o8bobo30bo$138bo7b2o701b
2o148b2o30b2o116b2o30b2o$146bobo2$107bo139bo139bo189bo139bo129bo149bo
149bo23b2o$106bobo137bobo137bobo187bobo128bob2o5bobo118bob2o5bobo138b
ob2o5bobo138bob2o5bobo22bobo$107b2o138b2o138b2o188b2o126b3ob2o6b2o116b
3ob2o6b2o136b3ob2o6b2o136b3ob2o6b2o24bo$704bo129bo149bo149bo38b2o$705b
3ob2o124b3ob2o144b3ob2o144b3ob2o$707bobo127bobo147bobo147bobo$17bo3bo
85bo3bo135bo3bo135bo3bo185bo3bo125bobo7bo3bo115bobo7bo3bo135bobo7bo3b
o135bobo7bo3bo$16b2o3b2o83b2o3b2o133b2o3b2o133b2o3b2o183b2o3b2o125bo7b
2o3b2o115bo7b2o3b2o135bo7b2o3b2o135bo7b2o3b2o$16b2o3b2o83b2o3b2o133b2o
3b2o133b2o3b2o183b2o3b2o133b2o3b2o123b2o3b2o143b2o3b2o143b2o3b2o$16bo
5bo83bo5bo133bo5bo133bo5bo183bo5bo133bo5bo123bo5bo143bo5bo143bo5bo$272b
2o$272bobo$272bo486bo$758b2o100bo$739b3o16bobo99b2o$277b2o460bo119bob
o$276b2o462bo$278bo620b3o$388b2o470b2o37bo$389b2o468bobo38bo101bo$388b
o472bo140b2o175b2o$1001bobo174b2o$458b2o720bo$458bobo440b2o138b3o$458b
o441b2o100b2o37bo$902bo98bobo38bo$1003bo3$534bo508b2o$534b2o506b2o$533b
obo508bo2$1139bo$526b2o611b2o$527b2o609bobo$526bo665bo$1144b2o45b2o$533b
2o608bobo45bobo$532bobo610bo$534bo64b3o$599bo$600bo594b2o$1195bobo$1195b
o24$258bo$259b2o$258b2o$282bobo$282b2o$283bo6$246bo$247b2o$246b2o14$277b
2o$276b2o9bo$278bo7b2o$286bobo2$247bo$246bobo$247b2o4$247bo3bo$246b2o
3b2o$246b2o3b2o$246bo5bo$272b2o$272bobo$272bo3$277b2o$276b2o$278bo!
2024-10-15:
p31 traffic light hassler down 4G to 83G.
Code: Select all
x = 190, y = 75, rule = B3/S23
185bo$184bo$184b3o14$43b2o108b2o$43bobo2b2o103bobo2b2o$45bo3bo105bo3b
o$41b4ob3o102b4ob3o$41bo2bobo104bo2bobo5$26b2o108b2o$26bobo107bobo$28b
o109bo6bo$28b2o108b2o5bo$26b2o108b2o7bo$25bo2b2o105bo2b2o$25b2obo106b
2obo$28bo25b2o82bo25b2o$28b2o25bo82b2o25bo$55bob2o106bob2o$54b2o2bo105b
2o2bo$56b2o108b2o$54b2o108b2o$55bo109bo$55bobo107bobo$56b2o108b2o5$37b
obo2bo104bobo2bo$35b3ob4o102b3ob4o$34bo3bo105bo3bo$34b2o2bobo103b2o2b
obo$39b2o108b2o16$72b2o$72bobo$72bo$3o$2bo$bo2$187b2o$187bobo$187bo!
p25 pi hassler down 1G to 20G.
Code: Select all
x = 187, y = 56, rule = B3/S23
20bo$20bobo$20b2o5$107bo$107bobo$107b2o8$81bo89bo$81b3o66bo20b3o$84bo
66b2o3bo17bo$83b2o65b2o5b2o14b2o$156b2o2$2o78b2o88b2o$2o78b2o88b2o4$179b
2o$178bo2bo$178bobo$179bo6$23bo$22b2o$22bobo4$172b2o11bo$172bobo9b2o$
172bo11bobo2$69b3o$71bo$70bo2$153b2o$154b2o$153bo28b3o$182bo$183bo!
A
p16 century hassler down 2G to 33G.
Code: Select all
x = 87, y = 87, rule = B3/S23
5bo79bo$6b2o76bo$5b2o77b3o5$2bo72bobo$obo72b2o$b2o73bo4$14bo$15b2o$14b
2o27$63bo$62bobo6bo$61bo2bo5b3o$69bob3o$60bo2bo4bo3bo$60bo6bo3bo$60bo
bo3b3obo$61b2o4b3o$68bo2$61b2o$61b2o21$11b3o$13bo$12bo$b2o73bo$obo72b
2o$2bo72bobo5$5b2o77b3o$6b2o76bo$5bo79bo!
2024-10-16:
Extrementhusiast wrote: ↑March 21st, 2014, 6:41 pm
Key step for two copies of the Gray code (with a different stator):
Code: Select all
x = 75, y = 43, rule = B3/S23
2bo$3b2o$2b2o6$2bo11bo$3bo8b2o$b3o5b2o2b2o15bo$8bobo18bo$9bo19b3o5$6bo
$7b2o13b2o$obo3b2o14b2o8bobo$b2o29b2o$bo20b2o9bo$22b2o$59b2ob2o3b2ob2o
$15b2o43bobobobobobo$16bo2bo37bo2bo3bobo3bo2bo$2b2o12bobobo10b2o23bobo
b2ob2ob2ob2obobo$bo2bo12bobo10bo2bo23bo2bo3bobo3bo2bo$bo2bo13bo11bo2bo
26bobobobobobo$2b2o27b2o26b2ob2o3b2ob2o$11b2o9b2o$11b2o9b2o2$11b2o9b2o
$11b2o9b2o6$3b3o23b3o$5bo23bo$4bo25bo!
However, I don't yet know how to do the singular case.
xp4_ogiligoz6a888a6zmlhhhlmz104a401 in 25G.
Code: Select all
x = 694, y = 83, rule = B3/S23
621bo$622b2o$621b2o6$621bo51bo$622bo48b2o$620b3o49b2o15bo$499bo188bo$
498bo189b3o$498b3o4$625bo$626b2o$619bobo3b2o64bobo$620b2o69b2o$620bo71b
o2$302bo67bo$303bo65bo$301b3o65b3o3$222bo$220b2o$221b2o425b2o$647bobo
$648bo6$341b2o148b2o168b2o$341b2o148b2o168b2o$o121bo$b2o117b2o219b2o148b
2o168b2o$2o119b2o218b2o148b2o168b2o2$14b2o88b2o98b2o128b2o148b2o168b2o
$15bo2bo86bo2bo96bo2bo126bo2bo146bo2bo166bo2bo$15bobobo85bobobo95bobo
bo125bobobo131b2o12bobobo10b2o139b2o12bobobo10b2o$16bobo87bobo97bobo127b
obo131bo2bo12bobo10bo2bo137bo2bo12bobo10bo2bo$17bo89bo99bo129bo132bo2b
o13bo11bo2bo137bo2bo13bo11bo2bo$458bo12b2o27b2o139b2o27b2o$100b2o98b2o
9b2o8b2o107b2o9b2o115b2o20b2o9b2o157b2o9b2o$100b2o98b2o9b2o7b2o108b2o
9b2o114bobo20b2o9b2o157b2o9b2o$222bo$100b2o98b2o9b2o117b2o9b2o137b2o9b
2o157b2o9b2o$100b2o98b2o9b2o117b2o9b2o137b2o9b2o157b2o9b2o8$2o119b2o$
b2o117b2o$o121bo$302b2o65b2o$303b2o63b2o$302bo67bo13$622b3o63b3o$624b
o63bo$623bo65bo!
Extrementhusiast wrote: ↑June 19th, 2018, 2:09 am
mniemiec wrote:The following Silver's P5 (which just happens to be the smallest basic oscillator involving two Silver's P5s on a still-life that I don't know how to synthesize) has popped up on Catagolue twice
[url=
https://catagolue.appspot.com/object/xp ... y111/b3s23].
The first soup is useless, but the second could lead to a synthesis:
Done with a lot of finagling:
Code: Select all
x = 69, y = 69, rule = B3/S23
12bo$13b2o$12b2o46bo$58b2o$59b2o4$43b2o$42b3o$42b2obo$43b3o$obo41bo$b
2o$bo39bobo$40bo12bo$40bo7bobo2bobo3bo$28bo11bo2bo4b2o3b2o3bo$26bobo
11b3o6bo8b3o6bo$27b2o37bo$66b3o$49bo$48bo$48b3o$34bo$33bobo$18bo9bo3bo
bo$19bo7bobo3bo$17b3o6bobo$27bo16b4o$44bo3bo$44bo$26bo18bo2bo$25bobo$
24bobo22b2o$25bo11b2o9b2o$36bobo11bo$35bobo$35b2o2$15b4o39b2o$14bo3bo
39bobo$9b2o7bo39bo$8b4o2bo2bo$8b2ob2o16b3o$10b2o17bo2bo$29bo$29bo$16b
2o4b2o6bobo2bo$17b2o2bobo10b2o$16bo6bo10bobo3$15b3o$17bo$16bo3$3bo13b
2o21b3o$3b2o11bobo21bo$2bobo13bo22bo6$19b2o$18bobo$20bo!
Done and submitted to catagolue in 51G.
Code: Select all
x = 784, y = 409, rule = B3/S23
470bo$468bobo$469b2o2$708bo$706b2o$707b2o18$406bo$407b2o$406b2o346bo$
752b2o$753b2o2$446bo$444bobo$445b2o4$394bobo$395b2o$395bo$747bo$742bo
bo2bobo3bo$422bo319b2o3b2o3bo$420bobo320bo8b3o6bo$421b2o337bo$760b3o$
743bo$742bo$742b3o3$412bo$413bo$411b3o32$391bo$392bo256bobo$390b3o256b
2o$650bo3$563bo$564b2o$563b2o2$783bo$781b2o$782b2o8$579bo$578bo$578b3o
2$361bo$362bo$360b3o68$455bobo$27bo428b2o$27bobo426bo$27b2o17$108bo129b
o339bo$107bobo127bobo337bobo$2bo99bo3bobo123bo3bobo333bo3bobo$bobo97b
obo3bo123bobo3bo333bobo3bo$obo97bobo127bobo337bobo$bo99bo129bo339bo3$
230bo339bo$229bobo337bobo$228bobo337bobo$229bo339bo11b2o$580bobo$579b
obo$579b2o7$26bo$25b2o3b2o$25bobo2bobo222b3o$30bo224bo$256bo2$120b2o107b
2o$119b2o107bobo$79b3o39bo108bo$81bo179b2o$80bo141bo38bobo$120b3o99b2o
37bo$120bo100bobo$121bo6$465b2o$464bobo$466bo67$725b2o$725bobo$445b2o
278bo$446b2o$445bo2$777b3o$777bo$778bo11$365bo$365b2o$364bobo17$647b3o
$647bo$648bo11$743b2o$742b2o$744bo4$752b2o$752bobo$752bo6$410b2o4b2o311b
o$411b2o2bobo310b2o$410bo6bo310bobo3$409b3o$411bo$410bo3$397bo13b2o321b
3o$397b2o11bobo321bo$396bobo13bo322bo6$413b2o$412bobo$414bo10$688b2o$
688bobo$688bo2$460bo$460b2o$459bobo!