(1-n,43+n)c/199+4n
Code: Select all
x = 9, y = 233, rule = B3/S23
3o$o2bo$o$o3bo$o3bo2bo$o5b2o$bobo2bobo50$2bo$b3o$2obo$3o$3o$3o$b2o51$
2b3o$bo2bo$4bo$o3bo$o3bo$4bo$bobo50$4bo$3b3o$3bob2o$4b3o$4b3o$4b3o$4b
2o51$4b3o$4bo2bo$4bo$4bo3bo$4bo3bo$4bo$5bobo!
In a spaceship like this, all the tracks must be made at the very bottom, and it's possible to make arbitary adjustments to the output. It would also be Life's first non-self-synthesizing SMOS. EDIT: No it won't, i just rediscovered Caterloopillars, but slighty different. Still, it would be nice to see an oblique caterloopillar.
Clean example:
Code: Select all
x = 70, y = 1320, rule = B3/S23
3o$o2bo$o$o3bo$o3bo2bo$o5b2o$bobo2bobo50$2bo$b3o$2obo$3o$3o$3o$b2o9$
45bo$44b3o$43b2obo$43b3o$43b3o$44b2o37$2b3o$bo2bo$4bo$o3bo$o3bo$4bo$bo
bo9$45b3o$44bo2bo$47bo$43bo3bo$47bo$44bobo36$4bo$3b3o$3bob2o$4b3o$4b3o
$4b3o$4b2o9$47bo$46b3o$46bob2o$47b3o$47b3o$47b2o37$4b3o$4bo2bo$4bo$4bo
3bo$4bo3bo$4bo$5bobo9$47b3o$47bo2bo$47bo$47bo3bo$47bo$48bobo36$6bo$5b
3o$4b2obo$4b3o$4b3o$4b3o$5b2o9$49bo$48b3o$47b2obo$47b3o$47b3o$48b2o37$
6b3o$5bo2bo$8bo$4bo3bo$4bo3bo$8bo$5bobo9$49b3o$48bo2bo$51bo$47bo3bo$
51bo$48bobo36$8bo$7b3o$7bob2o$8b3o$8b3o$8b3o$8b2o9$51bo$50b3o$50bob2o$
51b3o$51b3o$51b2o37$8b3o$8bo2bo$8bo$8bo3bo$8bo3bo$8bo$9bobo9$51b3o$51b
o2bo$51bo$51bo3bo$51bo$52bobo36$10bo$9b3o$8b2obo$8b3o$8b3o$8b3o$9b2o9$
53bo$52b3o$51b2obo$51b3o$51b3o$52b2o37$10b3o$9bo2bo$12bo$8bo3bo$8bo3bo
$12bo$9bobo9$53b3o$52bo2bo$55bo$51bo3bo$55bo$52bobo36$12bo$11b3o$11bob
2o$12b3o$12b3o$12b3o$12b2o9$55bo$54b3o$54bob2o$55b3o$55b3o$55b2o37$12b
3o$12bo2bo$12bo$12bo3bo$12bo3bo$12bo$13bobo9$55b3o$55bo2bo$55bo$55bo3b
o$55bo$56bobo36$14bo$13b3o$12b2obo$12b3o$12b3o$12b3o$13b2o9$57bo$56b3o
$55b2obo$55b3o$55b3o$56b2o37$14b3o$13bo2bo$16bo$12bo3bo$12bo3bo$16bo$
13bobo9$57b3o$56bo2bo$59bo$55bo3bo$59bo$56bobo36$16bo$15b3o$15bob2o$
16b3o$16b3o$16b3o$16b2o9$59bo$58b3o$58bob2o$59b3o$59b3o$59b2o37$16b3o$
16bo2bo$16bo$16bo3bo$16bo3bo$16bo$17bobo9$59b3o$59bo2bo$59bo$59bo3bo$
59bo$60bobo36$18bo$17b3o$16b2obo$16b3o$16b3o$16b3o$17b2o9$61bo$60b3o$
59b2obo$59b3o$59b3o$60b2o37$18b3o$17bo2bo$20bo$16bo3bo$16bo3bo$20bo$
17bobo9$61b3o$60bo2bo$63bo$59bo3bo$63bo$60bobo36$20bo$19b3o$19bob2o$
20b3o$20b3o$20b3o$20b2o9$63bo$62b3o$62bob2o$63b3o$63b3o$63b2o37$20b3o$
20bo2bo$20bo$20bo3bo$20bo3bo$20bo$21bobo9$63b3o$63bo2bo$63bo$63bo3bo$
63bo$64bobo36$22bo$21b3o$20b2obo$20b3o$20b3o$20b3o$21b2o9$65bo$64b3o$
63b2obo$63b3o$63b3o$64b2o37$22b3o$21bo2bo$24bo$20bo3bo$20bo3bo$24bo$
21bobo9$65b3o$64bo2bo$67bo$63bo3bo$67bo$64bobo51$67bo$66b3o$66bob2o$
67b3o$67b3o$67b2o!
More reactions but with the WSS going the opposite way:
Code: Select all
x = 8, y = 7, rule = B3/S23
4o$o3bo$o$bo2bo$6bo$6b2o$5bobo!
Code: Select all
x = 7, y = 9, rule = B3/S23
b3o$3bo$2bo2$3b2o$bo4bo$o$o5bo$6o!
This gave me an idea: reinterpreting the HBK reaction as a (21+n,23+n)c/131+4n
Code: Select all
x = 52, y = 47, rule = B3/S23
bo$obo$o2bo$b2obo$3bobo$3bo2bo$4b2o2$17bo$16bobo$16bo2bo$17b2obo$19bob
o$19bo2bo$20b2o9$22bo$21bobo$21bo2bo$22b2obo$24bobo$24bo2bo$25b2o2$27b
3o8bo$27bo9bobo$28bo8bo2bo$38b2obo$40bobo$40bo2bo$41b2o7$50bo$49b2o$
49bobo!
P.S.: Can the standard spaceship be replaced with something else?
Code: Select all
x = 8, y = 25, rule = B3/S23
2o$b2o$2o$o17$4b3o$4bo2bo$4bo$4bo$5bobo!