## Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Sokwe
Moderator
Posts: 1626
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

BobShemyakin wrote:2 symmetric Cavity
The cleanup on the second can be reduced by 1:

Code: Select all

x = 28, y = 29, rule = B3/S23
bo\$2bo\$3o8\$24bo\$18bo4bo\$16bobo4b3o\$17b2o2\$25b2o\$25bobo\$11bo13bo\$12bo\$
10b3o6b2o\$18bo2bo\$18bobo\$19bo2\$10b2o\$9bobo\$11bo2b3o\$14bo\$15bo!
-Matthias Merzenich

BobShemyakin
Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Synthesising Oscillators

Bi-griddles with a different symmetry:

Code: Select all

x = 113, y = 81, rule = B3/S23
85bo\$83bobo\$84b2o4\$96bo\$94b2o\$95b2o2\$85bo\$86b2o20bo\$85b2o21bobo\$106bo
4bo\$88b2o16b6o\$87bo2bo\$88b2o16b6o\$106bo4bo\$85b2o21bobo\$86b2o20bo\$85bo
2\$95b2o\$94b2o\$96bo4\$84b2o\$83bobo\$85bo10\$84bo\$82bobo\$83b2o2\$25b3o17b3o
17bo19bo\$6bo57bobo17bobo\$4bobo16bo5bo13bo5bo14bo2bo16bo2bo\$b2o2b2o16bo
5bo13bo5bo15b2o18b2o\$obo20bo5bo13bo5bo\$2bo\$25b3o17b3o\$68bo19bo\$67bobo
17bobo\$53b2o12bobo17bobo\$53bobo12bo19bo\$53bo\$69bo19bo19bo\$51b2o16bobo
17bobo17bobo\$50bobo14bo4bo14bo4bo14bo4bo\$52bo14b6o14b6o14b6o2\$67b6o14b
6o14b6o\$67bo4bo14bo4bo14bo4bo\$68bobo17bobo17bobo\$70bo19bo19bo2\$46b3o
22bo19bo\$48bo21bobo17bobo\$47bo22bobo17bobo\$50bo20bo19bo\$49b2o\$49bobo2\$
53b3o17b2o18b2o\$53bo18bo2bo16bo2bo\$54bo18bobo17bobo\$74bo19bo\$51b3o\$53b
o41b2o\$52bo42bobo\$95bo!
Bob Shemyakin

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

BobShemyakin wrote:Bi-griddles with a different symmetry: ...
The cis form is definitely an improvement! I previously had a brute-force 30-glider synthesis of it from 2016-01-17 (I don't think I posted it, as it didn't include anything new). I reported the exact same synthesis of the trans form on 2016-01-03 (see Soup Search Results p.33).

Goldtiger997
Posts: 571
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

Here's a incomplete synthesis for an oscillator that, according to mniemiec's website, previously had no synthesis:

Code: Select all

x = 27, y = 37, rule = B3/S23
2bo\$obo\$b2o2\$13bobo10bo\$14b2o8b2o\$4bo9bo10b2o\$5bo\$3b3o\$7bo\$6bobo6bobo\$
6bobo6b2o\$7bo8bo2\$11bo\$10bobo\$10bobo\$11bo\$6b3o\$11bo\$10bobo\$10bobo\$11bo
2\$7bo8bo\$6bobo6b2o\$6bobo6bobo\$7bo\$3b3o\$5bo\$4bo9bo10b2o\$14b2o8b2o\$13bob
o10bo2\$b2o\$obo\$2bo!
'

It can probably be brought down to 16 gliders

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Goldtiger997 wrote:Here's a incomplete synthesis for an oscillator that, according to mniemiec's website, previously had no synthesis: ... It can probably be brought down to 16 gliders
That can be done with 20, saving one glider in the initial constellation and one in the cleanup. Unfortunately, I don't know of ways to make two adjacent beehives or two nearby beehives from 3 gliders each (although I am sure there are ways to do so). Extrementhusiast also found a 15-glider solution on 2015-07-04 (see end of page 14):

Code: Select all

x = 233, y = 78, rule = B3/S23
6bo\$5bo\$5b3o\$bo\$bbo\$3o\$142bo33bo\$143bo31bo\$3o40bo51bo45b3o31b3o\$bbo40b
obo47bobo53bo19bo\$bo41boo49boo51bobo19bobo\$41bo55bo50boo19boo\$29bo9bob
o7bo11boo6bo11boo6bo7bobo11boo6bo6boo23boo6bo6boo18boo3boo13boo3boo13b
oo3boo\$29bo10boo7bo10bobbo5bo10bobbo5bo7boo11bobbo5bo5bobbo21bobbo5bo
5bobbo17bo5bo13bo5bo13bo5bo\$29bo19bo11boo6bo11boo6bo21boo6bo6boo23boo
6bo6boo19bobobo15bobobo15bobobo\$\$26boo18boo18boo18boo28boo3boo33boo3b
oo23b3ob3o13b3ob3o13b3ob3o\$25bobbo16bobbo16bobbo16bobbo3boo21bobbobobb
o31bobbobobbo\$26boo18boo18boo18boo4bobo21boo3boo33boo3boo\$92bo52bo27bo
\$89boo55boo23boo\$88bobo54boo4boo13boo4boo12bo5bo13bo5bo\$90bo61boo11boo
18bobo3bobo11bobo3bobo\$151bo15bo17bobo3bobo11bobo3bobo\$186bo5bo13bo5bo
\$209boo\$208bobo\$210bo3\$146bo25bo\$146boo23boo\$145bobo23bobo15\$192bo\$
191bo\$191b3o\$\$181bo\$182bo\$180b3o\$\$194bo\$193bo\$193b3o3\$207bobo\$207boo\$
181bobo24bo17boo3boo\$181boo22bo20bo5bo\$182bo20boo22bobobo\$177bobo24boo
\$178boo46b3ob3o\$178bo19boo\$198bobo\$184bo13bo\$159boo21bobo4boo12bo\$159b
o23boo4bo12boo\$139boo16bobo27bobo12bobo\$138boo17boo12boo14boo\$135boo3b
o29bobo27bo\$134bobo35bo17bo8boo\$136bo52boo8bobo\$189bobo!

yootaa
Posts: 35
Joined: May 26th, 2016, 1:08 am
Location: Japan

### Re: Synthesising Oscillators

Synthesis of 20p3-1 (12G):

Code: Select all

x = 63, y = 43, rule = B3/S23
38bo\$39b2o\$38b2o4\$62bo\$60b2o\$61b2o\$2bo\$obo\$b2o43bo8bo\$45bobo6bo\$4b2o
39bobo6b3o\$3bobo40bo\$5bo3\$58b3o\$58bo\$59bo2\$41bo\$42bo\$40b3o3\$15bo\$15bob
o36bo\$15b2o27b3o6bobo\$46bo6bobo\$18b2o25bo8bo\$18bobo\$18bo\$38b2o\$39b2o\$
38bo4\$61b2o\$60b2o\$62bo!

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

yootaa wrote:Synthesis of 20p3-1 (12G): ...
This is much better than the previous 28-glider synthesis. Very good!

Extrementhusiast
Posts: 1817
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Much cheaper way to add a triple block:

Code: Select all

x = 27, y = 37, rule = B3/S23
26bo\$24b2o\$25b2o15\$7bo\$8bo\$6b3o\$15bobo\$15b2o5bo\$8bo7bo4bo\$9b2o10b3o\$8b
2o3bo\$11b2o\$12b2o\$7bo\$obo5bo15bo\$b2o3b3o15bobo\$bo12b2o8b2o\$13bobo4b2o\$
13b2o5bobo\$20bo\$3b2o\$4b2o4b2ob2ob2o\$3bo6b2ob2ob2o!
EDIT: Finished that one two-CS combination:

Code: Select all

x = 174, y = 40, rule = B3/S23
obo\$b2o\$bo5bo\$6bo\$6b3o\$4bo102bo\$2bobo59bo41bo\$3b2o6bo51bo42b3o\$11bobo
49b3o\$11b2o\$34bobo\$34b2o2b3o19b2o\$4b2o21b2ob2o3bo2bo17b2obobo31b2ob2o
35b2ob2o30b2ob2o\$3bobo20bobob2o7bo15bobob2o31bobob2o34bobobobo6bo21bob
obobo\$2bo22bo8b2o18bo13bo22bo6b2o31bo6bo4b2o21bo6bo\$bo22bo9bobo16bo14b
obo19bo7b2o30bo6bo6b2o19bo6bo\$bobobo18bobobo5bo18bobobo6b2o2b2o20bobob
o35bobobo2b2o26bobobobo\$2b2ob3o17b2ob3o23b2ob3o3b2o6b2o18b2ob3o34b2ob
3o29b2ob2o\$8bo22bo28bo4bo5bobo23bo39b2o\$7bobo20bobo26bobo9bo24bobo37bo
2bo\$8b2o21b2o27b2o35b2o38bobo6b2o\$138bo7bobo\$108b3o35bo\$108bo\$91b2o16b
o30b2o\$90bobo48b2o\$92bo47bo3b2o\$94b3o47bobo\$94bo49bo\$95bo8\$125b2o\$126b
2o\$125bo!
EDIT 2: This solves two related P3s:

Code: Select all

x = 27, y = 26, rule = B3/S23
25bo\$24bo\$24b3o\$9bo\$10bo\$8b3o\$12bo\$12bobo\$12b2o\$9bo6bo\$10bo4bo\$8b3o4b
3o2\$19b3o\$2b2o2b2o11bo\$2bo3bo2b2o9bo\$3bo3b2obo5b2o\$3o12b2o\$o4bo11bo\$4b
obo\$4bobo6b2o\$5bo8b2o\$13bo\$4bo\$4b2o\$3bobo!
Some small improvements could perhaps be made from this predecessor:

Code: Select all

x = 18, y = 23, rule = B3/S23
9bo\$10bo\$8b3o\$12bo\$12bobo\$12b2o\$9bo6bo\$10bo4bo\$8b3o4b3o3\$2b2o2b2o\$2bo
3bo2b2o\$3bo3b2obo\$3o\$o\$11bo\$10b2o\$10bobo2\$7b2o\$6bobo\$8bo!
I Like My Heisenburps! (and others)

Kazyan
Posts: 937
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Final step for the last 14-bit oscillator:

Code: Select all

x = 53, y = 54, rule = B3/S23
36bo\$36bobo\$36b2o\$43bo\$41b2o5bo\$42b2o3bo\$47b3o9\$23b2o\$22bobo\$22bo\$21b
2o3b2o\$16b2o8b2o\$15bo2bo\$15bo2bo10b2o\$16b2o11bobo\$30bobo\$28bobobo\$26b
3ob2o\$25bo\$24bobo\$24bo2bo16bo\$22b2o2b2o15b2o\$22bo20bobo\$20bobo\$20b2o\$
11b3o\$13bo36b3o\$5b2o5bo37bo\$6b2o43bo\$5bo40bo\$45b2o\$45bobo\$4b3o34b2o\$6b
o34bobo\$5bo35bo2\$7b3o3bo\$9bo3b2o3b3o\$8bo3bobo5bo\$19bo\$3o\$2bo\$bo\$41b2o\$
40b2o\$42bo!
IIRC, there is a component to add an R-bee-siamese-tub, so the large still life should be easy.
Tanner Jacobi

Posts: 1942
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Synthesising Oscillators

Kazyan wrote:Final step for the last 14-bit oscillator:

Code: Select all

too-big reaction?
This should work:

Code: Select all

x = 29, y = 25, rule = B3/S23
12bo\$11bo\$11b3o2\$17bobo\$9b2o6b2o4bo\$8bobo7bo4bobo\$8bo14b2o\$7b2o3b2o5b
2o\$2b2o8b2o4b2o\$bo2bo15bo\$bo2bo10b2o\$2b2o4b2o5bobo\$7bobo6bobo7b2o\$2bo
6bo4bobobo7bobo\$2b2o8b3ob2o8bo\$bobo7bo\$10bobo8b2o\$10b2o8b2o\$16b2o4bo\$
16bobo\$3o8b3o2bo\$2bo3b2o\$bo5b2o3b2o\$6bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Goldtiger997
Posts: 571
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

Kazyan wrote:Final step for the last 14-bit oscillator:

Code: Select all

x = 53, y = 54, rule = B3/S23
36bo\$36bobo\$36b2o\$43bo\$41b2o5bo\$42b2o3bo\$47b3o9\$23b2o\$22bobo\$22bo\$21b
2o3b2o\$16b2o8b2o\$15bo2bo\$15bo2bo10b2o\$16b2o11bobo\$30bobo\$28bobobo\$26b
3ob2o\$25bo\$24bobo\$24bo2bo16bo\$22b2o2b2o15b2o\$22bo20bobo\$20bobo\$20b2o\$
11b3o\$13bo36b3o\$5b2o5bo37bo\$6b2o43bo\$5bo40bo\$45b2o\$45bobo\$4b3o34b2o\$6b
o34bobo\$5bo35bo2\$7b3o3bo\$9bo3b2o3b3o\$8bo3bobo5bo\$19bo\$3o\$2bo\$bo\$41b2o\$
40b2o\$42bo!
IIRC, there is a component to add an R-bee-siamese-tub, so the large still life should be easy.
I couldn't find the component to add an R-bee-siamese-tub, so I made my own inefficient (15 gliders) one. The following synthesis can probably be easily improved through that.

Here is the full synthesis in 49 gliders:

Code: Select all

x = 765, y = 36, rule = B3/S23
599bo\$600b2o\$599b2o128bo\$729bobo\$375bo159bo193b2o\$376bo115bo40bobo200b
o\$132b2o180bo59b3o114bo42b2o198b2o5bo\$128b2o2bobo58bo118bobo63b2o111b
3o142b2o21bo6b2o28b2o28b2o7b2o3bo\$127bobo2bo55bobo2bobo117b2o63bobo49b
obo56bo45bo29b2o28b2o38bobo19bobo5bobo27bobo27bobo12b3o\$129bo59b2o2b2o
61bo59bo61bo47bo3b2o58bo44b2o27bo2bo26bo2bo37bo22b2o5bo29bo29bo\$189bo
66bobo57bobo108b2o2bo56b3o28b2o13bobo12b2o13bo2bo11b2o13bo2bo11b2o23b
2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o6bo21bo\$193bo62b2o58b2o108b2o91b2o28b
2o14b2o12b2o9b3o2b2o12b2o28b2o18bo9b2o18b2o8b2o18b2o8b2o5b2o21bo\$194bo
29bo29bo337bo66b2o27bo2bo26bo2bo14bobo18bo2bo\$65bobo124b3o28bobo27bobo
87b2o28b2o28bo29bo28b2o28b2o28b2o28b2o28b2o7bo20b2o28b2o14bobo11b2o14b
o2bo10b2o14bo2bo10b2o28bo\$13bo52b2o5bobo147bobo27bobo27b2o28b2o28bo29b
o4b2o22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo14b2o
11bobo14b2o11bobo22b2o3bobo\$11b2o53bo6b2o149bo29bo29bo29bo29bo29bo3bob
o22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo18b
3o6bobo27bo\$12b2o60bo86bo29bo4bobo22b3o27b3o27b3o27b3o6b2o19b3o27b3o4b
o22bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bob
obo25bobobo25bobobo20bo4bobobo7b3o13bobobo\$39b2o28b2o88b3o27b3o4b2o21b
3o27b3o27b3o27b3o7b2o18b3o27b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o13b2o5bo3b3ob2o8bo
17bo\$40bo29bo27bo29bo29bo29bo8bo20bo29bo29bo29bo12bo16bo29bo17b2o10bo
29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo20b2o7bo15bo\$9b3o25b3o27b3o27b
obo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo16bobo8bobo
27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo18bo8bobo
9bo\$9bo27bo29bo29bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2b
o26bo2bo26bo2bo15bo10bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo
26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo7b2o\$10bo24b2o28b2o28b2o2b2o24b2o2b
2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o
2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b
2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o7bobo\$35bo29bo4b2o23bo29bo
29bo29bo11b3o15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo21b3o5bo8b2o\$5b2o26bobo27bobo5b2o2bo17bobo27bobo27bobo27bo
bo11bo15bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bo
bo27bobo27bobo27bobo27bobo27bobo27bobo23bo3bobo8bobo\$5bobo25b2o28b2o5b
o3b2o17b2o28b2o28b2o28b2o13bo14b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o23bo4b2o9bo\$bo3bo68bobo
67b3o\$b2o141bo575b3o3bo\$obo142bo576bo3b2o3b3o\$721bo3bobo5bo\$732bo\$713b
3o\$715bo\$714bo\$734b2o\$733b2o\$735bo!
EDIT:
Kazyan wrote:Final step for the last 14-bit oscillator:

Code: Select all

too-big reaction?
This should work:

Code: Select all

x = 29, y = 25, rule = B3/S23
12bo\$11bo\$11b3o2\$17bobo\$9b2o6b2o4bo\$8bobo7bo4bobo\$8bo14b2o\$7b2o3b2o5b
2o\$2b2o8b2o4b2o\$bo2bo15bo\$bo2bo10b2o\$2b2o4b2o5bobo\$7bobo6bobo7b2o\$2bo
6bo4bobobo7bobo\$2b2o8b3ob2o8bo\$bobo7bo\$10bobo8b2o\$10b2o8b2o\$16b2o4bo\$
16bobo\$3o8b3o2bo\$2bo3b2o\$bo5b2o3b2o\$6bo!
This yields a cheaper synthesis of 41 gliders:

Code: Select all

x = 651, y = 54, rule = B3/S23
617bo\$616bo\$616b3o2\$622bobo\$622b2o4bo\$623bo4bobo\$628b2o3\$475bo\$476b2o\$
475b2o2\$251bo159bo\$252bo115bo40bobo\$190bo59b3o114bo42b2o\$69bo118bobo
63b2o111b3o142b2o21bo6b2o28b2o28b2o\$64bobo2bobo117b2o63bobo49bobo56bo
45bo29b2o28b2o38bobo19bobo5bobo27bobo27bobo\$65b2o2b2o61bo59bo61bo47bo
3b2o58bo44b2o27bo2bo26bo2bo37bo22b2o5bo29bo29bo\$65bo66bobo57bobo108b2o
2bo56b3o28b2o13bobo12b2o13bo2bo11b2o13bo2bo11b2o23b2o3b2o23b2o3b2o23b
2o3b2o23b2o3b2o38bo\$69bo62b2o58b2o108b2o91b2o28b2o14b2o12b2o9b3o2b2o
12b2o28b2o18bo9b2o18b2o8b2o18b2o8b2o38bo\$70bo29bo29bo337bo66b2o27bo2bo
26bo2bo45bo2bo\$9bo58b3o28bobo27bobo87b2o28b2o28bo29bo28b2o28b2o28b2o
28b2o28b2o7bo20b2o28b2o14bobo11b2o14bo2bo10b2o14bo2bo10b2o38bo\$8bo90bo
bo27bobo27b2o28b2o28bo29bo4b2o22bobo27bobo27bobo27bobo27bobo27bobo27bo
bo27bobo27bobo27bobo14b2o11bobo14b2o11bobo32b2o3bobo\$8b3o89bo29bo29bo
29bo29bo29bo3bobo22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bob
o27bobo27bobo27bobo37bo\$37bo29bo4bobo22b3o27b3o27b3o27b3o6b2o19b3o27b
3o4bo22bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo
25bobobo25bobobo25bobobo25bobobo33bobobo\$7bo27b3o27b3o4b2o21b3o27b3o
27b3o27b3o7b2o18b3o27b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o36bo\$6b2o26bo29bo8bo
20bo29bo29bo29bo12bo16bo29bo17b2o10bo29bo29bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo\$6bobo24bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo16bo
bo8bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27b
obo\$2o31b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o17bo10b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o\$b2o\$o72b3o548b2o\$73bo549b2o\$
4b3o67bo550bo\$6bo\$5bo583b2o\$588bobo40b2o\$583bo6bo40bobo\$583b2o46bo\$
582bobo\$626b2o\$595bo29b2o\$596bo24b2o4bo\$594b3o24bobo\$581b3o37bo\$583bo
3b2o\$582bo5b2o11bo\$587bo14b2o\$601b2o2\$599b2o\$598bobo\$600bo!
@Kazyan, what is the component to add an R-bee-siamese-tub you were referring to?

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Kayzan wrote:Final step for the last 14-bit oscillator: ...
Goldtiger997 wrote:Here is the full synthesis in 49 gliders: ...
Great work, guys! This was the last loose end from Dave Buckingham's massive synthesis project. In the 1990s, he had synthesized all stable objects up to 14 bits, and all still-lifes up to 14 bits for no more than 1 glider/bit. Due to one bookkeeping error, one still-life ws actually 15 (which I believe was reduced last year), and this one P2 was not in his synthesis list. (He said he had a synthesis on a notebook in his attic somewhere, but he never found it).
Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub, so I made my own inefficient (15 gliders) one.
It seems like yours adds bun-siamese-tub in 13, and bun-siamese-boat in 15. The current converter I have adds bun-siamese-tub in 15, so yours is better.
You can save 1 glider by using a different diagonal-bit-spark:
(-4 for unnecessary eater, +1 for pond to ship, +2 for spark):
EDIT:
Goldtiger997 wrote:This yields a cheaper synthesis of 41 gliders: ...
This fix also reduces this one to 40.

Code: Select all

x = 137, y = 54, rule = B3/S23
73bo\$74boo\$73boo\$\$100bo7bobo\$71bo27bo8boo4bo\$69bobo27b3o7bo4bobo\$70boo
42boo5\$14bobo\$bo13boo\$bbo12bo\$3o25bo\$12bo5bo7boo5bo\$13bo4bobo6boo3bo\$
11b3o4boo12b3o\$\$21boo6bo21bo39boo38bo\$21boo5boo21bo39boo38bo\$12boo14bo
bo18bobbo29boo45bobbo\$11bobo10boo28bo26bobo10boo38bo\$11boo11bobo22boo
3bobo24boo11bobo32boo3bobo\$16b3o6bobo27bo39bobo37bo\$18bo4bobobo7b3o13b
obobo37bobobo33bobobo\$10boo5bo3b3oboo8bo17bo37b3oboo36bo\$11boo7bo15bo
53bo\$10bo8bobo9bo57bobo\$19bobbo7boo57boo\$17boobboo7bobo\$9b3o5bo8boo82b
oo\$11bo3bobo8bobo80boo\$10bo4boo9bo84bo\$\$12b3o3bo56boo\$14bo3boo3b3o48bo
bo40boo\$13bo3bobo5bo43bo6bo40bobo\$24bo44boo46bo\$68bobo\$112boo\$81bo29b
oo\$26boo54bo24boo4bo\$25boo53b3o24bobo\$27bo39b3o37bo\$69bo3boo\$68bo5boo
11bo\$73bo14boo\$87boo\$\$85boo\$84bobo\$86bo!

Sokwe
Moderator
Posts: 1626
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub
I suspect he was referring to this reaction by Bob Shemyakin:

Code: Select all

x = 99, y = 14, rule = B3/S23
66bo\$62bo2bo\$2bobo58bob3o\$3b2o56b3o\$3bo\$9bo24b2o28b2o\$8bo25bobo27bobo
28b2o\$8b3o24bobo27bobo27bobo\$12b3o21bobo27bobo27bobo\$4bo7bo21bobobo25b
obobo25bobobo\$2b3o8bo18b3ob2o24b3ob2o24b3ob2o\$bo29bo29bo29bo\$obo27bobo
27bobo27bobo\$2o28b2o28b2o28b2o!
-Matthias Merzenich

Goldtiger997
Posts: 571
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

Sokwe wrote:
Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub
I suspect he was referring to this reaction by Bob Shemyakin:

Code: Select all

x = 99, y = 14, rule = B3/S23
66bo\$62bo2bo\$2bobo58bob3o\$3b2o56b3o\$3bo\$9bo24b2o28b2o\$8bo25bobo27bobo
28b2o\$8b3o24bobo27bobo27bobo\$12b3o21bobo27bobo27bobo\$4bo7bo21bobobo25b
obobo25bobobo\$2b3o8bo18b3ob2o24b3ob2o24b3ob2o\$bo29bo29bo29bo\$obo27bobo
27bobo27bobo\$2o28b2o28b2o28b2o!
Great!

Here it is with that converter to make a synthesis in 30 gliders:

Code: Select all

x = 381, y = 54, rule = B3/S23
317bo\$318b2o\$317b2o2\$344bo7bobo\$315bo27bo8b2o4bo\$313bobo27b3o7bo4bobo\$
314b2o42b2o8\$158bo\$157bo\$99bo57b3o45bo\$95bo2bo56bo47bobo57bo\$35bobo58b
ob3o55bo47b2o55bobo\$36b2o56b3o57b3o28b2o28b2o28b2o15b2o11b2o28b2o28b2o
38bo\$36bo148b2o18bo9b2o18b2o8b2o18b2o8b2o28b2o28b2o38bo\$42bo24b2o28b2o
106b2o27bo2bo26bo2bo28b2o28b2o45bo2bo\$9bo31bo25bobo27bobo28b2o28b2o28b
2o14bobo11b2o14bo2bo10b2o14bo2bo10b2o15bobo10b2o15bobo10b2o38bo\$8bo32b
3o24bobo27bobo27bobo27bobo27bobo27bobo14b2o11bobo14b2o11bobo14b2o11bob
o14b2o11bobo32b2o3bobo\$8b3o34b3o21bobo27bobo27bobo27bobo27bobo27bobo
27bobo27bobo27bobo27bobo37bo\$37bo7bo21bobobo25bobobo25bobobo25bobobo
25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo33bobobo\$7bo27b3o8bo
18b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o36bo\$6b2o26bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo\$6bobo
24bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo\$2o
31b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o\$b2o\$o353b2o\$
353b2o\$4b3o348bo\$6bo\$5bo313b2o\$318bobo40b2o\$313bo6bo40bobo\$313b2o46bo\$
312bobo\$356b2o\$325bo29b2o\$326bo24b2o4bo\$324b3o24bobo\$311b3o37bo\$313bo
3b2o\$312bo5b2o11bo\$317bo14b2o\$331b2o2\$329b2o\$328bobo\$330bo!
EDIT:
BlinkerSpawn posted the same synthesis below 12 minutes later.
Last edited by Goldtiger997 on April 22nd, 2017, 3:53 am, edited 2 times in total.

Posts: 1942
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Synthesising Oscillators

Full 30G synthesis:

Code: Select all

x = 421, y = 54, rule = B3/S23
357bo\$358b2o\$357b2o2\$384bo7bobo\$355bo27bo8b2o4bo\$353bobo27b3o7bo4bobo\$
354b2o42b2o8\$188bo\$187bo\$129bo57b3o\$125bo2bo56bo49bo\$65bobo58bob3o55bo
46bobo56bo\$66b2o56b3o57b3o28b2o17b2o57bo81b2o38bo\$66bo148b2o28b2o28b2o
14b3o11b2o28b2o38b2o38bo\$72bo24b2o28b2o106bo9b2o18b2o8b2o18b2o8b2o28b
2o29b2o45bo2bo\$9bo61bo25bobo27bobo28b2o28b2o28b2o15b2o27bo2bo26bo2bo
28b2o37bobo10b2o38bo\$8bo62b3o24bobo27bobo27bobo27bobo27bobo13bobo11b2o
14bo2bo10b2o14bo2bo10b2o15bobo10b2o25b2o11bobo32b2o3bobo\$8b3o64b3o21bo
bo27bobo27bobo27bobo27bobo26bobo14b2o11bobo14b2o11bobo14b2o11bobo38bob
o37bo\$37bo29bo7bo21bobobo25bobobo25bobobo25bobobo25bobobo27bobo27bobo
27bobo27bobo35bobobo33bobobo\$7bo27b3o27b3o8bo18b3ob2o24b3ob2o24b3ob2o
24b3ob2o24b3ob2o26bobobo25bobobo25bobobo25bobobo33b3ob2o36bo\$6b2o26bo
29bo29bo29bo29bo29bo29bo30b3ob2o24b3ob2o24b3ob2o24b3ob2o33bo\$6bobo24bo
bo27bobo27bobo27bobo27bobo27bobo27bobo28bo29bo29bo29bo38bobo\$2o31b2o
28b2o28b2o28b2o28b2o28b2o28b2o28bobo27bobo27bobo27bobo37b2o\$b2o240b2o
28b2o28b2o28b2o\$o393b2o\$393b2o\$4b3o388bo\$6bo\$5bo353b2o\$358bobo40b2o\$
353bo6bo40bobo\$353b2o46bo\$352bobo\$396b2o\$365bo29b2o\$366bo24b2o4bo\$364b
3o24bobo\$351b3o37bo\$353bo3b2o\$352bo5b2o11bo\$357bo14b2o\$371b2o2\$369b2o\$
368bobo\$370bo!
Great work everybody!
EDIT: Oops.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Much cheaper way to add a triple block: ...
You had posted this one before; I had added it to my 3x3 block synthesis no later than 2016-12-13.
Extrementhusiast wrote:Finished that one two-CS combination: ...
Nice! This may also solve some of the other difficult cis-shillelagh syntheses, or at least provide alternate paths to some of them. (Of 10 syntheses I have that lack such alternate paths, this solves 6 of them).
The mechanism to add a cis-shillelagh starting from an inducting mouth used to take 28 gliders (27 if boat-bit can be used), and this reduces it to 19 in most cases, so even those syntheses where an alternate path exists, this usually improves it.
Extrementhusiast wrote:This solves two related P3s: ...
Very nice! Instantiated syntheses from 21 and 19 gliders:

Code: Select all

x = 162, y = 130, rule = B3/S23
7bobo\$8boo\$8bo3\$32boo18boo18boo18boo18boo18boo18boo\$33bo19bo19bo19bo
19bo19bo19bo\$14bo18boboo16boboo16boboo16boboo16boboo16boboo16boboo\$13b
o20bobo17bobo17bobo17bobo17bobo17bobo17bobo\$13b3o63boo18boo18boo18boo
18boo\$60boo16bobbo16bobbo16bobbo16bobbo16bobbo\$15bo44bobo16boo18boo13b
oo3boo13boo3boo13boo3boo\$14boo44bo53bobo17bobo17bobo\$14bobo40boo33boo
21bo19bo9bo10bo\$8boo46bobo32bobo50bo10bo\$9boo47bo34bo43boo5b3o8boo\$8bo
87boo40boo\$97boo38bo3b3o\$96bo3boo39bo\$100bobo39bo\$100bo15\$12boo13bo14b
oo18boo18boo\$13bo13bobo13bo19bo19bo\$13boboo10boo14boboo16boboo16boboo\$
14bobo27bobo17bobo17bobo\$19boo\$obo3bobo9bobbo22bobo17bobo17bobo\$boo4b
oo5boo3boo23bo19bo19bo\$bo5bo6bobo26bobboo15bobboo15bobboo\$16bo26bo19bo
19bo\$15bo8bo20bo19bo19bo\$15boo6bo19bobo17bobo17bobo\$23b3o17boo18boo18b
oo4\$3boo35boo18boo\$4boo34boo18boo\$3bo\$7bo50boo\$7boo10b3o35bobo\$6bobo
10bo39bo\$20bo\$17bo\$16boo\$16bobo11\$7bobo\$8boo\$8bo3\$32boo18boo18boo18boo
7bobo18boo\$33bo19bo19bo19bo8boo19bo\$14bo18boboo16boboo16boboo16boboo5b
o20boboo\$13bo20bobo17bobo17bobo17bobo27bobo\$13b3o54boo18boo9b3o16boo\$
49boo18bobbo16bobbo10bo15bobbo\$15bo32bobo19boo18boo10bo17boo3boo\$14boo
34bo73bobo\$14bobo35boo70bo\$8boo42bobo70bo\$9boo41bo71boo\$8bo\$95boo\$94bo
bo\$96bo4\$102boo\$101boo\$103bo10\$3bo8boo28boo18boo18boo\$bobo9bo29bo19bo
19bo\$bboo9boboo26boboo16boboo16boboo\$14bobo27bobo17bobo17bobo\$10boo\$9b
obbo9bobo3bobo13bobo17bobo17bobo\$10boo3boo5boo4boo16bo19bo19bo\$14bobo
6bo5bo13boobbo15boobbo15boobbo\$14bo32bo19bo19bo\$6bo8bo29bo19bo19bo\$7bo
6boo29bobo17bobo17bobo\$5b3o38boo18boo18boo4\$26boo21boo18boo\$25boo22boo
18boo\$27bo\$23bo47boo\$9b3o10boo47bobo\$11bo10bobo46bo\$10bo\$13bo\$13boo\$
12bobo!
EDIT: The same method solves another 20-bit pseudo-still-life for 31 gliders:

Code: Select all

x = 170, y = 68, rule = B3/S23
19bo\$17bobo\$18boo3\$21bo\$19bobobbo\$20boobbobo\$24boo4\$19bo22boo18boo18b
oo18boo18boo18boo18boo\$20bo21bobo17bobo17bobo17bobo17bobo17bobo17bobo\$
18b3o22bo19bo19bo19bo19bo19bo19bo\$44b3oboo14b3oboo14b3oboo14b3oboo14b
3oboo14b3oboo14b3oboo\$46boobo16boobo16boobo16boobo16boobo10bo5boobo16b
oobo\$138bobo\$139boo\$33b3o50boboo16boboo13booboboo5bo7booboboo13boobob
oo\$23boo8bo36b3o13boobo16boobo13booboobo6bobbo3booboobo12boboboobo\$24b
oo8bo31boobbo63b3obboo21boo\$23bo37b3o3boobbo66bobo\$35bo27bobbo32boo\$
34boo26bo9bo25bobo\$34bobo34boo27bo4bo\$71bobo29bobo\$104boo\$113boo\$106b
3o3boo\$108bo5bo\$107bo12\$64bo\$65boo29bo45bo\$64boo28bobo45bobo\$68bobo24b
oo3bo41boo\$68boo28boo19boo18boo\$50bo18bo29boo18bobo17bobo\$51boo67bo19b
o\$50boo42bo\$82bo9bobo7bo\$12boo18boo28boo17bobo9boo6bobo\$bbo9bobo17bobo
27bobo16bobbo16bobbo\$obo5bo4bo19bo29bo18boo18boo\$boo6boo3b3oboo14b3ob
oo24b3oboo14b3oboo14b3oboo15booboo15booboo15booboo\$4boobboo6boobo16boo
bo26boobo12boobboobo12boobboobo14boboobo14boboobo14boboobo\$3bobo25boo
28boo20bo11boo6bo19bo19bo19bo\$5bo25bo29bo20bo13boo4bo19bo19bo19bo\$13b
ooboboo14boboboo24boboboo12boboboboo5bo6boboboboo12boboboboo12bobobob
oo12boboboboo\$12boboboobo13booboobo23booboobo13booboobo13booboobo13boo
boobo13booboobo13booboobo\$12boo3\$8b3o\$10bo41boo\$9bo43boo\$52bo!
Here's another unrelated one from 45 gliders. The only new step is the one that adds the boat:

Code: Select all

x = 152, y = 101, rule = B3/S23
76bo\$74bobo\$75boo8\$135bo\$135bobo\$135boo4\$91bo\$90bo\$90b3o39bo\$122bo8boo
\$91bo30boo3bo3bobo\$3bo86boo29boboboo\$bobo86bobo33boo22boo\$bboo146bo\$9b
o100boo18boo19bo\$9bobo98boo18boo8b3o7boo\$9boo129bo\$25boo3boo13boo3boo
13boo3boo13boo3boo13boo3boo13boo3boo9bo3boo3boo\$10bo15bobbobo14bobbobo
14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo\$oo8boo3bo10bobobo15bobob
o15bobo17bobo17bobo17bobo17bobo\$boo6bobo3bobo9bobo17bobo17bo19bo19bo
19bo19bo\$o14boo11bo19bobboo\$51bobo\$47boobbo\$46bobo\$48bo5\$46bo\$46bobo\$
46boo\$\$42bo\$40bobo\$41boo3bo\$44boo77bobo\$45boo72bo3boo\$38bobo79boobbo\$
39boo3bo74boo\$39bo5bo\$43b3o4boo14bo3boo14bo3boo14bo3boo14bo3boo13boo3b
oo\$50bo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo\$51bo9bo4boo3bo9bo
4boo3bo14boo3bo14boo3bo14boo3bo\$50boo8bobo7boo8bobo7boo18boo18boo18boo
\$40boo18bobo17bobo\$39bobo3boo3boo9bo3boo3boo9bo3boo3boo13boo3boo13boo
3boo13boo3boo\$41bo4bobbobo14bobbobo5boo7bobbobo14bobbobo14bobbobo14bo
bbobo\$46bobo17bobo7bobo7bobo17bobo17bobo17bobo\$47bo13boo4bo10bobboo4bo
19bo19bo19bo\$41bo19boo18boo\$40b3o\$40boboo\$41b3o\$41boo11\$88bo\$86boo28bo
\$87boo25bobo\$80bo34boo16bo\$78boo40bobo8boo\$76bobboo40boo9boo\$32bo41bob
o44bo\$33bo41boo61bobo\$31b3o84bo19boo\$24bo13bo80bo19bo\$25bo11bo74bo4b3o
\$23b3o11b3o57boo14boo12boo11boo\$30bobo63bobbo12boo12bobbo10bobo\$26b3o
bboo63bobbo26bobbo10bo\$28bobbo65boo28boo\$27bo110bo9bo\$35boo3boo12boo4b
oo12boo4boo12boo4boo22boo4boo5boo8bobo\$35bobobbo13bobbobbo13bobbobbo
13bobbobbo23bobbobbo6bobo7bobbo\$28boo6boo3bo14boo3bo14boo3bo14boo3bo
24boo3bo14boo3bo\$27bobo10boo18boo18boo18boo28boo18boo\$29bo\$35boo3boo
13boo3boo13boo3boo13boo3boo14bo8boo3boo13boo3boo\$36bobbobo14bobbobo14b
obbobo14bobbobo14boo8bobbobo14bobbobo\$36bobo17bobo17bobo17bobo16bobo8b
obo17bobo\$37bo19bo19bo19bo29bo19bo!
EDIT 2: Another cis-shillelalgh one from 26:

Code: Select all

x = 171, y = 54, rule = B3/S23
143bo\$142bo\$142b3o\$108bo\$105bobbobo30bo\$103bobobboo32bo\$24bo79boo34b3o
\$25bo39bo33b3o\$23b3o35bo3bobo33bo36bo23boo\$62bobboo33bo22boo13boo3boo
17bobo\$60b3o60bo13bobo3bo19bo\$48boo18boo15booboo15booboo14b3oboo14b3ob
oo14b3oboo\$48bobo12boo3bobo13bobobobo13bobobobo15bobobo15bobobo15bobob
o\$50bo11bobo5bo14bo4bo8bo5bo4bo19bo19bo19bo\$49bo14bo4bo19bo9boo8bo19bo
19bo19bo\$48bo19bo19bo9bobo7bo19bo19bo19bo\$47bo19bo19bo19bo19bo19bo19bo
\$20b3o24boo18boo18boo18boo18boo18boo18boo\$22bo7bo\$21bo7bo\$29b3o\$\$30bo\$
29boo\$29bobo5\$64bo\$65boo29bo45bo\$64boo28bobo45bobo\$68bobo24boo3bo41boo
\$68boo28boo19boo18boo\$50bo18bo29boo18bobo17bobo\$51boo67bo19bo\$50boo42b
o\$82bo9bobo7bo\$12boo18boo28boo17bobo9boo6bobo\$12bobo17bobo27bobo16bobb
o16bobbo\$13bo19bo29bo18boo18boo\$14b3oboo14b3oboo24b3oboo14b3oboo14b3ob
oo15booboo15booboo15booboo\$16bobobo15bobobo25bobobo11boobbobobo11boobb
obobo13bobobobo13bobobobo13bobobobo\$8bobo9bo10boo7bo20boo7bo12bo6bo4b
oo6bo6bo12bo6bo12bo6bo12bo6bo\$o8boo8bo11bo7bo21bo7bo12bo6bo6boo4bo6bo
12bo6bo12bo6bo12bo6bo\$boo6bo8bo15bo3bo25bo3bo13bobo3bo6bo6bobo3bo13bob
o3bo13bobo3bo13bobo3bo\$oo15bo15boobbo25boobbo15boobbo15boobbo15boobbo
15boobbo15boobbo\$4boo11boo18boo28boo18boo18boo18boo18boo18boo\$5boo\$4bo
\$\$52boo\$53boo\$52bo!

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

I just noticed that not only are there the 3 basic trivial stator variants of 29P9.1 (with table, trans- and cis- carriers), but there are also three others, with a different bottom right corner. Extrementhusiast created a synthesis for the first one on 2016-08-06, and #3 and #2 can be made trivially from this. #6 and #5 could similarly be made trivially from #4. A synthesis for #4 could probably be done by altering the synthesis of #1, but it's a bit beyond my expertise.

Code: Select all

x = 111, y = 10, rule = B3/s23
boo37boo19boo37boo\$bbo16boo19bo21bo16boo19bo\$bboboo13bobboboo16boboo
16boboo13bobboboo16boboo\$boobobo14boobobo14boobobo14boobobo14boobobo
14boobobo\$7bo19bo19bo19bo19bo19bo\$5b3o17b3o17b3o17b3o17b3o17b3o\$oo6boo
10boo6boo10boo6boo10boo6boo10boo6boo10boo6boo\$obboboobo11bobboboobo11b
obboboobo11bobbob3obbo9bobbob3obbo9bobbob3obbo\$bboobobbo13boobobbo13b
oobobbo13boobo3boo11boobo3boo11boobo3boo\$6boo18boo18boo!

Kazyan
Posts: 937
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Unoptimized final step for #4:

Code: Select all

x = 31, y = 37, rule = B3/S23
8bo\$6bobo\$7b2o4\$15bo\$15bo3b2o\$15bo4bo\$20bob2o\$19b2obobo\$16b2o5bobo\$16b
o7b2o\$8b2o7b3o6b2o\$9b2o8bo2b4o2bo\$8bo14bo3b2o\$12b2o7bo\$12b2o3bo3b2o\$
16bobo\$16bobo\$17bo3\$3o25b2o\$2bo25bobo\$bo13bo12bo\$7b2o6b2o\$8b2o4bobo\$7b
o\$18bo\$17b2o\$17bobo3\$b2o23b2o\$obo23bobo\$2bo23bo!
EDIT: I'm not sure that eater placement is trivial, so here's another way:

Code: Select all

x = 31, y = 31, rule = B3/S23
\$19b2o\$20bo\$20bob2o\$19b2obobo\$23bobo\$24b2o\$16bob2o6b2o\$9bo6b2obo2b4o2b
o\$9b2o12bo3b2o\$8bobo10bo\$17bo3b2o\$16bobo\$16bobo\$7b2o8bo\$8b2o\$7bo\$28b2o
\$28bobo\$15bo12bo\$7b2o6b2o\$8b2o4bobo\$7bo\$18bo\$17b2o\$17bobo3\$b2o23b2o\$ob
o23bobo\$2bo23bo!
Tanner Jacobi

Posts: 1942
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Synthesising Oscillators

Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way:

Code: Select all

x = 31, y = 31, rule = B3/S23
\$19b2o\$20bo\$20bob2o\$19b2obobo\$23bobo\$24b2o\$16bob2o6b2o\$9bo6b2obo2b4o2b
o\$9b2o12bo3b2o\$8bobo10bo\$17bo3b2o\$16bobo\$16bobo\$7b2o8bo\$8b2o\$7bo\$28b2o
\$28bobo\$15bo12bo\$7b2o6b2o\$8b2o4bobo\$7bo\$18bo\$17b2o\$17bobo3\$b2o23b2o\$ob
o23bobo\$2bo23bo!
Minor reduction:

Code: Select all

x = 24, y = 28, rule = B3/S23
12b2o\$13bo\$13bob2o\$12b2obobo\$16bobo\$17b2o\$9bob2o6b2o\$2bo6b2obo2b4o2bo\$
2b2o12bo3b2o\$bobo10bo\$10bo3b2o\$9bobo\$9bobo\$2o8bo\$b2o\$o\$21b2o\$21bobo\$8b
o12bo\$2o6b2o\$b2o4bobo\$o\$11bo\$10b2o\$10bobo\$b2o\$obo\$2bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way: ...
Thanks, guys! (The eater-based solution would be more expensive; the snake takes 5 gliders, and the eater takes only 2, but it takes 2 more each for blinker and block.) Here's the 51-glider full synthesis:

Code: Select all

x = 187, y = 157, rule = B3/S23
17bo\$18boo\$17boo\$59bo\$58bo\$58b3o10\$114bo\$113bo41bo10bo\$113b3o37bobo11b
o\$103bobo48boo9b3o\$89boo13boo4bobo6boo18boo18boo\$33bo56bo13bo6boo7bo
19bo19bo18bo\$34boo53bo21bo7bo19bo19bo4b3o11bobo\$33boo54boo28boo18boo
10boo6boo3bo14boo\$91bo15bo13bo19bo10boo7bo3bo15boo\$85bob4o16boo6bob4o
16b4o10bo5b4o16b4obboboo\$85boobo17bobo6boobo16bobbo16bobbo16bobbo3boob
oo\$135boo18boo9bo8boo\$39bo125boo\$39bobo123bobo\$39boo73boo\$36bo71boo3b
oo\$37boo68bobo5bo\$36boo71bo7\$148bobo\$148boo12bobo\$149bo12boo\$163bo\$
150boo\$151boo\$150bo4\$177boo\$119bo19bo19bo17bobo\$108bo9bobo7bo9bobo17bo
bo17bobo\$109bo9boo7bobo8boo18boo18boo\$107b3o11boo5boo11boo18boo18boo\$
63b3o51b4obboboo10b4obbo13b4obbo13b4obbo\$63bo51bobbo3booboo11bo3boo14b
o3boo14bo3boo\$64bo50boo19bo19bo19bo\$136boo18boo18boo5\$115boo\$108b3o5b
oo6boo\$110bo4bo7boo\$109bo9b3o3bo\$121bo\$120bo11\$161bo\$160bo\$160b3o\$156b
o\$108bo48bo\$108bobo44b3o3bo15bo\$108boo49boo15bobo\$160boo15bobo\$107bo
70bo\$105bobo\$57bo48boo\$58boo7boo18boo28boo18boo18boo18boo\$57boo8bobo
17bobo27bobo17bobo17bobo17bobo\$68bobo17bobo27bobo17bobo17bobo17bobo\$
55bo13boo11bo6boo21bo6boo18boo18boo18boo\$55boo14boo9bo8boo19bo8boo8bob
oo6boo8boboo6boo8boboo6boo\$54bobo10b4obbo8bo4b4obbo18bo4b4obbo7boobobb
4obbo7boobobb4obbo7boobobb4obbo\$68bo3boo14bo3boo6boo16bo3boo14bo3boo
14bo3boo14bo3boo\$66bo19bo14boo13bo19bo19bo19bo\$66boo18boo12bo15boo18b
oo18boo18boo10\$28bo\$28bobo\$28boo\$bbo\$obo\$boo3\$obo\$boo\$bo4\$29bo\$29bobo
26b3o\$17bo11boo29bobbo\$16bobo7boo31bobbo\$17bobo5boo4boo29b3o\$18bo8bo3b
obo\$31bo52boo18boo18boo28boo18boo\$44bo19bo20bo19bo19bo29bo19bo\$17boo
24boboboo14boboboo16boboo16boboo16boboo26boboo16boboo\$17bobo24boobobo
14boobobo14boobobo14boobobo14boobobo24boobobo14boobobo\$18bobo27bobo17b
obo17bobo17bobo17bobo27bobo19bo\$19boo28boo18boo18boo18boo18boo28boo17b
3o\$11boboo6boo18boboo6boo8boboo6boo8boboo6boo8boboo6boo8boboo6boo18bob
oo6boo10boo6boo\$11boobobb4obbo17boobobb4obbo7boobobb4obbo7boobobb4obbo
7boobobb4obbo7boobobb4obbo17boobobb4obbo9bobbob3obbo\$18bo3boo24bo3boo
14bo3boo14bo3boo4bo9bo3boo14bo3boo24bo3boo11boobo3boo\$16bo29bo19bo19bo
12bo6bo19bo15boo12bo\$16boo28boo18boo18boo9b3o6boo14bo3boo13bobo8bo3boo
\$121bobo19bo7bobo\$100b3o18bobo27bobo\$102bo19bo29bo\$101bo\$140b3o\$142bo\$
141bo\$165boo\$164boo\$148boo16bo\$140b3o4bobo\$142bo6bo\$141bo\$154boo\$154bo
bo\$154bo\$141boo\$142boo\$141bo!

Extrementhusiast
Posts: 1817
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

mniemiec wrote:
Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way: ...
Thanks, guys! (The eater-based solution would be more expensive; the snake takes 5 gliders, and the eater takes only 2, but it takes 2 more each for blinker and block.) Here's the 51-glider full synthesis:

Code: Select all

RLE
Further reductions:

Code: Select all

x = 142, y = 45, rule = B3/S23
26bo\$27b2o\$26b2o4\$28bo\$29bo\$27b3o6\$20bobo\$21b2o\$21bo\$64b3o\$45bo4bo15bo
2bo\$46b2obo15bo2bo\$45b2o2b3o16b3o2\$107b2o23b2o\$70bo37bo24bo\$33b2o34bob
ob2o33bob2o21bob2o\$33bobo34b2obobo31b2obobo19b2obobo\$34bobo37bobo34bob
o24bo\$35b2o38b2o35b2o22b3o\$obobo22bob2o6b2o28bob2o6b2o25bob2o6b2o15b2o
6b2o\$27b2obo2b4o2bo27b2obo2b4o2bo24b2obo2b4o2bo14bo2bob3o2bo\$34bo3b2o
34bo3b2o31bo3b2o16b2obo3b2o\$32bo39bo36bo\$32b2o38b2o20b2o9bo3b2o\$95b2o
7bobo\$94bo10bo3\$64b2o27bo\$65b2o2b2o22b2o\$29b2o33bo3bo2bo20bobo6b2o\$30b
2ob3o32bo2bo28bobo\$29bo3bo35b2o31bo15b3o\$34bo69b3o11bo\$104bo14bo\$105bo
!
I Like My Heisenburps! (and others)

Goldtiger997
Posts: 571
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

Is there any reason why chris_c's glider_synth script could not be extended to oscillators as well. We have syntheses for all oscillators up to 14-bits now. Here is what I think are the cheapest for all oscillators up to 14 bits:
oscill3-14.7z
There are probably heaps of mistakes.

P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1:

Code: Select all

x = 7, y = 7, rule = B3/S23
2o\$obob2o\$5bo\$bo2bo\$2bo\$2bobobo\$5b2o!

mniemiec
Posts: 1094
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Goldtiger997 wrote:Is there any reason why chris_c's glider_synth script could not be extended to oscillators as well. We have syntheses for all oscillators up to 14-bits now. Here is what I think are the cheapest for all oscillators up to 14 bits:
oscill3-14.7z
There are probably heaps of mistakes.
I didn't see any errors, although there are a few minor stylistic things:
- in "9G fox", the final step takes a while before the gliders interact. I usually have them placed in such a way so that the "before" and "after" images are in phase (so when run simultaneously, there are two synchronized objects), the "after" image is the specific phase I want, and it is impossible to run the "before" image by a full cycle (in this case, 2 generations) without the gliders interacting.
- in "30G 14 bit P2 #4" - the last step's "before" image shares a column with the previous step's "after" image. These should probably have more separation. Also, there is an "after" image for all steps except the first.

You are missing one improved synthesis: Phoenix from 6 gliders, by Extrementhusiast 2015-03-01:

Code: Select all

x = 33, y = 14, rule = B3/S23
6bo\$6bobo\$6boo\$28bo\$16bo11bobo\$11bo3bo10bo\$5boo5boob3o13boo\$3oboo5boo
12boo\$bbo3bo24bo\$bo25bobo\$29bo\$10boo\$9bobo\$11bo!
I am curious, when and where did the synthesis for "8G 14-bit P2 #1" come from? The best one I had was 12 gliders, by Extrementhusiast 2015-01-05. Also, "30G 14 bit P2 #4"? The best one I had was from 40 gliders. Where did the improved base still-life synthesis come from?

There are now syntheses for most oscillators up to 21 bits, except 3 20-bit P3s, and many P2s (because P2s are simple enough that many viable ones exist, yet are complicated enough that they are difficult to synthesize. Larger oscillators are usually easier because they are so much rarer).
Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
Sadly, not that I am aware of. (Once solved, this will also solve the last two unsolved 19-bit P2 pseudo-oscillators).

Posts: 1942
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Synthesising Oscillators

mniemiec wrote:
Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
Sadly, not that I am aware of. (Once solved, this will also solve the last two unsolved 19-bit P2 pseudo-oscillators).
Well...

Code: Select all

x = 44, y = 31, rule = B3/S23
5bo\$6bo\$5bo\$5bo\$7bo\$5b2ob2o\$6bobo\$7bo\$20b2o\$19bo2bo\$20b2o4\$2o7bo\$2o6bo
bo\$9bo6b3o2\$34bo\$33bobo\$33bobo\$32bo\$17b2o13b3o5b3o\$17b2o11b2o3bo2b2o3b
o\$29bo5bo6bo\$33bob3ob3o\$31b2obo2b4o\$27bo3bo\$28bo3bo\$29b2obo\$31bo!
Unfortunately I'm pretty sure our barberpole-shortening isn't *that* good just yet,
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Extrementhusiast
Posts: 1817
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

mniemiec wrote:
Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
Sadly, not that I am aware of. (Once solved, this will also solve the last two unsolved 19-bit P2 pseudo-oscillators).
Oh yeah, just forgot to post the file:

Code: Select all

x = 57, y = 44, rule = B3/S23
36bobo\$36b2o\$37bo6\$12bo\$10bobo\$11b2o2\$6bobo11bo\$7b2o10bo5bobo\$7bo11b3o
3b2o\$26bo\$15bo\$13b2o\$14b2o17bobo\$33b2o\$34bo\$23bobo\$23b2o\$24bo\$13b2o35b
2o\$11bo2bo35bo3b2o\$11b3o11bo25bobobo\$24b2o\$b2o8b5o8bobo24b2o2bo\$obo7bo
2bo2bo36bo2bo\$2bo7b2o3b2o38b2o3\$25b3o\$25bo\$26bo\$b2o\$obo6bo\$2bo6b2o\$8bo
bo9bo\$19b2o\$5bo13bobo\$5b2o\$4bobo!
I Like My Heisenburps! (and others)