Code: Select all
x = 2, y = 68, rule = B3/S23:T0,68
2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$
2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$b
o$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o$2o$bo$bo$2o!
-doesn't have a grewing and retracting bounding box, it is always 2-cells wide.
-has attach points in the form of 2-cell rows.
All started with this pattern:
Code: Select all
x = 24, y = 68, rule = B3/S23:T0,68
16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo
$15b2o$15b2o$16bo$16bo$15b2o$11bobob2o$12bo3bo$10b4o2bo$11b2o2b2o$10b
2o3b2o$16bo$16bo$4bo2b2o6b2o$2b2ob2obo6b2o$bo4b3o7bo$o4b2o9bo$15b2o$b
3o11b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$
15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b
2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$16bo$16bo$15b2o$15b2o$
16bo!-the pattern moves right at the same speed as the wall
-the pattern also shows a 2c/3 movement going up
-the debris left behind(a pond and a ship) form a 2c/3 slope.
I call those patterns "parasites".
Made enthusiastic by the discovery, I made some further searches.
Trying to put several engines together to make something different, I found a clean, 2 engine crawler. It is an high period sparker.
Code: Select all
x = 61, y = 68, rule = B3/S23:T0,68
40b2o$41bo$41bo$40b2o$40b2o$41bo$41bo$40b2o$40b2o$41bo$41bo$40b2o$40b
2o$41bo$41bo$40b2o$40b2o$41bo$41bo$40b2o$40b2o$41bo$41bo$40b2o$40b2o$
41bo$41bo$40b2o$40b2o$38bo2bo$36bobo2bo$34bo3bob2o$34bo2bo2b2o$37b2o2b
o$34b3o4bo$40b2o$40b2o$27b2o9bo2bo$27bo7b2obo2bo$27bo4b3o3bob2o$20b2o
6bo2b3o3bo2b2o$19bobo9b2o4b2o2bo$14bo3b2o14b3o4bo$12b2ob2o2bobo7bo2bo
7b2o$15b2o3b2o6bo2bo8b2o$7b2o2bo2bo10b3o13bo$6bob3o13b2o15bo$5b2obo3bo
bo6b3o4b2o10b2o$3bobobob2ob4o3b4o4bo12b2o$2bob2o9bo2bo8bo13bo$2bobo12b
o8bo14bo$9bo7bo7bo14b2o$9bo7bo4b2o16b2o$b3ob6o7b3o20bo$b2obobo34bo$40b
2o$40b2o$10bo30bo$10bo30bo$40b2o$40b2o$41bo$41bo$40b2o$40b2o$41bo$41bo
$40b2o!
Code: Select all
x = 12, y = 68, rule = B3/S23:T0,68
8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8b
o$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$
8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b
2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$7b2o$8bo$8bo$7b2o$3b3ob2o$3b2o3bo$2o
3bo2bo$ob2o3b2o$ob2o3b2o$8bo$8bo$7b2o$7b2o$8bo!
Code: Select all
x = 180, y = 68, rule = B3/S23:T0,68
55b2ob2o96b2o$56bob2ob3o93bo$157bo$33bo2bo20bo2bo95b2o$32b2o2bo119b2o$
21b2o7bo5bo22b2o96bo$20bobo6bo6b2o119bo$22bo6bo6bob2o116b2o$28bo3bo3b
2o118b2o$28b2o29bo97bo$30bo27b3o93bo2bo$57b2o2bo88b2ob2ob2o$26b2o122b
2obo2b2o$27b2o15b2o15b2o88bobo3bo$28bo15b2o15b2o89b2o3bo$3b2o56b2o85bo
b3o3b2o$2bobo7bo135b3o5b2o$4bo8b2o19bobo107b2o3b2o6bo$13b3o13b3obo111b
o11bo$14bobo12bo4bo2bo104b2ob2o9b2o$14bobo13bo4b3o103bobo12b2o$14b3o
15bo107bobo14bo$16bo15b2o105bo2bo14bo$12b2o3bo15bo122b2o$11bobo2bobo
117bob2obo14b2o$11bo2bo17bo103b2ob2o16bo$12b2o18bo102bo2bo18bo$32bo
103b2o18b2o$36bo99bo19b2o$20b2o14bo94bo25bo$20b2o109bo25bo$31b3o88b2o
7bo24b2o$127b2o27b2o$127b2o28bo$b2o124b2o28bo$bobo110b2o40b2o$2b2o108b
2obo40b2o$112bo44bo$112bobo42bo$113b2o41b2o$156b2o$157bo$157bo$156b2o$
9bo103bo42b2o$9b2o101bobo42bo$9b3o145bo$9b2o96b3o46b2o$9bo71b3o19b2o4b
2o45b2o$80bo3bo7b2o8bo6bo47bo$79bo3b2o3bo3b2o9b5o49bo$79b3o6bo67b2o$
81bo74b2o$80b2o75bo$57b3o21bo75bo$56bo3bo95b2o$61bo94b2o$55bo3b2o22b3o
71bo$55bo25b2o2bo71bo$56bobo23b3o71b2o$57bo25bo72b2o$157bo$157bo$39b2o
115b2o$38bobo22bo92b2o$40bo14b3o5bo4b2o87bo$55bo12b2o87bo$58bo97b2o!But the TTT hadn't finished yet to impress me. I found that a single cell can travel orthogonally, moving up and down. I realised that I could put not only a domino, but also n ants, or some more complicated patterns.
Code: Select all
x = 98, y = 100, rule = B3/S23:T0,100
96b2o$97bo$94bo2bo$96b2o$96b2o$97bo$92bobo2bo$92bo3b2o$96b2o$97bo$97bo
$84b2o10b2o$86b2o8b2o$86b2ob2o6bo$84b2o5b2obo2bo$91b2o3b2o$89b2o5b2o$
81bo15bo$81b2o14bo$80bo3b3o9b2o$82b3o11b2o$83bo4b3o6bo$10b2o10b2o10b2o
10b2o10b2o10b2o12bo3bo2b2obo2bo$10b2o10b2o10b2o10b2o10b2o10b2o12bo3bo
2b2o3b2o$83bo4b3o5b2o$82b3o12bo$80bo3b3o10bo$81b2o13b2o$81bo14b2o$97bo
$97bo$96b2o$96b2o$97bo$97bo$96b2o$81bo14b2o$6b3o71bo16bo$5bo3bo34bo10b
2o23bobo4bo9bo$26bo12b2o3bo9bo2bo8b2o13bo4bo4b2o3b2o$10bo8bo5bobo7b3ob
3ob3o9b2o3bobobo2bo18b2o4b2o2b2o$4bo13bobo3bo2bo12bob2o2bo2b3o15bo7b3o
7b2o5b3o2bo$5bo3bo7bo7b2o8b2ob2o6b2obo2bo6bo4b2o8b3obo5bo5b2o5bo$17bo
4bo14b4o2b2obo2bob2o7b2ob3o7bo4bo6bobo2bo5b2o$7b2o9b2o9b3o6b2ob3o7b2o
19bo2b3o7b3o8b2o$7bobo8b2ob2o5b2o2bo18b2o6bo4bobo5bob3o20bo$8b3o9bo8bo
3bo22b2obo5b2o6b2o22bo$8b2obo17bo2bo23bo8bo30b2o$7bo2bo17b4o8b3o8bo4b
2o38b2o$7bobo18b3o9b2o10b3o42bo$7b3o32b3o52bo$43b2o51b2o$96b2o$97bo$
97bo$96b2o$96b2o$97bo$97bo$96b2o$96b2o$97bo$97bo$5b3o9b3o9b3o9b3o9b3o
9b3o28b2o$96b2o$3bo11bo11bo11bo11bo11bo5bo8bo18bo$3bo11bo11bo11bo11bo
11bo6b2o5b3o7bo9bo$3bo11bo11bo11bo11bo11bo5b3o5b3o6b4o6b2o$86bob2ob3o
2b2o$bo11bo11bo11bo11bo11bo11bo7bob2o2b4ob3o2bo$obo9bobo9bobo9bobo9bob
o9bobo3b3o3bobo4bo3bo3b2ob2o5bo$obo9bobo9bobo9bobo9bobo9bobo3b2o4bobo
5b3o4b4o5b2o$bo11bo11bo11bo11bo11bo11bo6bo15b2o$97bo$97bo$96b2o$96b2o$
97bo$97bo$96b2o$96b2o$97bo$86bobo8bo$86bob3o5b2o$91b2o3b2o$91b2obo2bo$
86bob3o6bo$86bobo7b2o$96b2o$97bo$97bo$96b2o$96b2o$97bo$97bo$96b2o$96b
2o$97bo$97bo$96b2o!
Code: Select all
x = 42, y = 68, rule = B3/S23:T0,68
28bo$27b2o$27b2o$28bo$28bo$27b2o$27b2o$28bo$28bo$27b2o$27b2o$28bo$28bo
$27b2o$27b2o$28bo$28bo$27b2o$27b2o$28bo$28bo$27b2o$6bo20b2o$4b3o4bo16b
o$4b4o2bo17bo$4bob3o5bo12b2o$6bobob2o3b3o2bo6b2o$7bo5bobobo2b2o6bo$9bo
3bobobobo2b2obo2bo$9bo3bobobobo2b2o3b2o$7bo5bobobo2b2o5b2o$6bobob2o3b
3o2bo7bo$4bob3o5bo13bo$4b4o2bo16b2o$4b3o4bo15b2o$6bo21bo$28bo$27b2o$
27b2o$28bo$28bo$27b2o$27b2o$28bo$28bo$27b2o$27b2o$28bo$28bo$27b2o$17bo
2bo6b2o$17bo2b2o6bo$8bo6bobobo2b2obo2bo$7bobo5bobobo2b2o3b2o$13bobobo
2b2o5b2o$4bo2bo3bo3b3o2bo7bo$3bobo8bo13bo$3bobo2b2obo15b2o$3b2o22b2o$
28bo$28bo$27b2o$27b2o$28bo$28bo$27b2o$27b2o$28bo!Code: Select all
x = 163, y = 68, rule = B3/S23:T0,68
162bo$161b2o$161b2o$162bo$162bo$161b2o$161b2o$162bo$162bo$161b2o$161b
2o$162bo$162bo$161b2o$161b2o$162bo$162bo$161b2o$161b2o$162bo$162bo$
161b2o$161b2o$142b3o17bo$2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o10b
2o10b2o10b2o8bo2b2o15bo$2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o10b
2o10b2o10b2o9bo3b2o12b2o$4b2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o10b2o
10b2o10b2o10b2o5bobobob3o2bo6b2o$4bobo9bobo9bobo9bobo9bobo9bobo9bobo9b
obo9bobo9bobo9bobo9bobo5b2obobobo2b2o6bo$5bobo9bobo9bobo9bobo9bobo9bob
o9bobo9bobo9bobo9bobo9bobo9bobo5bobobobobo2b2obo2bo$6bo11bo11bo11bo11b
o11bo11bo11bo11bo11bo11bo12bo5bobobobobo2b2o3b2o$143bobobobobo2b2o5b2o
$139bo3bo5b3o2bo7bo$140b2o2b5o13bo$139b3o3b3o13b2o$161b2o$162bo$162bo$
161b2o$161b2o$162bo$78b3o81bo$45b2o114b2o$44bo2bo28bo5bo78b2o$46bo29bo
5bo79bo$43bo2bo29bo5bo79bo$9b3o25b3o3bobo32bo35bobo44b2o$78bo35bo2bo
11bo31b2o$36bo40b2o35bobo10b2o33bo$36bo71bo18b3o32bo$38bo65bo3b2o15b2o
bo7bo6b3o15b2o$102b2o4b3o3b3o8b2o9bo3bo2b3ob2o2bo2bo6b2o$76bobobobo19b
2obo3bo14b2o2b2ob3o4b2ob4o2bobobo2b2o6bo$76b4obobo19bo2bobo5bobo4b3obo
b2o10bo4b2obobobobo2b2obo2bo$77b4o2bob2o16bob2o8bo8bob2o10b2o7bobobobo
2b2o3b2o$49b3o27b2obo3b2o9b2o5bo15bo3bo3b2o9bo4b2obobobo2b2o5b2o$14bo
24bob3o5b5o28b3o2b2o7b2obo21bo7bo10bo5b2ob3o2bo7bo$b2o11b2o3bo7b2o11bo
3bo2bo4b2o9b2o18bo3bo7b2ob2o15b2o24b3o3b2o13bo$3bo10b2o4bo6b2o12bo5b2o
2b4o8b2o19b3o7b3ob2o15b2o44b2o$o2bo11bo4bo12b2o5bo5bobo20b2o14bo9bo2bo
6b2o28b3o23b2o$o2bo6b2o3b5o12bobo5bobo3bobo4bobo12bobo25b2o6bobo28bobo
24bo$bo7bo2bo3bobo14bo6bo2b2o5bob3o14bo35bo29b3o24bo$2b2o5bobo4bobo21b
2o3b2ob3o110b2o$10bo7b2o25bo3bo111b2o$45bobo114bo$162bo$45b3o113b2o$
161b2o$162bo!-Are there other speeds for a moving parasite than 2c/3?
-Are there parasites only tossing gliders?
-Are there parasites only tossing XWSS?
-Are there parasites actially being fusestretchers?
-Are there parasites actually being wickstretchers?
-Is it possible for a parasite to toss uncommon objects, like puffers sometimes do?
-Are there parasites which continuously toss smaller parasites in the opposite directions, eventually being destoyed by ditto parasites because of the universe being finite?
-Can parasites exist on another TTT, and, furthermore, on a slower one?
Let's try to answer!
P.S. I may have a poor spelling, but I'm actually french.