## 17-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Also, something's telling me that #170 should be solved from the corresponding 18-bitter with tubs on both ends.

EDIT: #374 from a (presumably) trivial 19-bitter:

Code: Select all

``````x = 27, y = 33, rule = B3/S23
5bo\$6bo\$4b3o3\$2bo\$obo6bo\$b2o5bo\$8b3o4bo\$15bobo\$15b2o\$6b2o\$7b2o2bo\$6bo
4b3o\$14bo\$13bobobo\$6b2o4bo2b2obo\$7b2o3bobo3bo\$6bo6b2o3b2o3bobo\$23b2o\$
24bo\$10bo\$10b2o4b2o\$9bobo5b2o\$16bo8bo\$24b2o\$17b2o5bobo\$17bobo\$17bo2\$
20b2o\$20bobo\$20bo!
``````
EDIT 2: #217 from a trivial 21-bitter:

Code: Select all

``````x = 101, y = 46, rule = B3/S23
10b2o\$10b3o\$9bob2o\$9b3o\$10bo6\$26bo\$8bobo13b2o\$9b2o14b2o\$9bo4\$79bo\$19b
2o56b2o\$5bo12bo2bo56b2o\$3bobo13b2o\$4b2o9bo35b2o16bobo3b2o\$14bobo26bo8b
o17b2o4bo\$6b3o4bobo25bobo7bo18bo4bo\$8bo4bo4b3o21b2o7b2o22b2o18b2o\$7bo
6bo30b2o6bo16b2o5bo16bo2bo\$13b2o29bobo4b2obo15b2o3b2obo14bob2obo\$12bo
2b2o29bo3bo2bobo18bo2bobo14bo2bobo\$13bobobo33bobo2bo18bobo2bo14bobo2bo
\$2bo11bo2bo34bo2b2o19bo2b2o15bo2b2o\$2b2o13bobob2o\$bobo14b2ob2o5b3o\$28b
o\$29bo\$9b3o\$9bo\$10bo\$3o\$2bo\$bo16b3o\$20bo\$12b2o5bo\$11bobo\$13bo12b2o\$25b
2o\$27bo!
``````
EDIT 3: Very good partial of #191:

Code: Select all

``````x = 8, y = 10, rule = B3/S23
2b2o\$bo2bob2o\$obobobo\$bobo2bo\$2bo3b2o2\$b2o4bo\$b2o\$2o\$2o!
``````
EDIT 4: #297 from a 22-bit pseudo, using a method similar to that of #146:

Code: Select all

``````x = 55, y = 53, rule = B3/S23
9bo35bo\$10bo33bo\$8b3o33b3o6\$32bo\$22b2o9bo\$21b2o8b3o\$17bobo3bo12b2o\$18b
2o16bobo\$18bo18bo2\$4bo45bo\$5b2o41b2o\$4b2o43b2o3\$10bo33bo\$11bo31bo\$9b3o
31b3o4\$25b2ob2o\$24bobobobo\$24bo5bo\$25bo3bo\$26bobo\$24bobobobo\$24b2o3b2o
4\$2o51b2o\$b2o49b2o\$o53bo4\$b2o49b2o\$obo49bobo\$2bo49bo\$17b2o\$10b3o3bobo
23b3o\$12bo5bo23bo\$11bo31bo2\$20b3o\$22bo\$21bo!
``````
I'm leaving it on the list for now, at least until I see a synthesis of that 22-bit pseudo.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#140 from a trivial 17-bitter:
The base 17-bit stillife is formed via eater-to-integral applied to a 15. The block can be added while this is forming, saving one glider:

Code: Select all

``````x = 44, y = 16, rule = B3/S23
bo19bo\$bbo18bobo\$3o18boo\$\$4bo\$4bobo\$3oboo\$bbo\$bo37booboo\$9bo30boboo\$7b
3o27b3o\$6bo29bo\$5boboobo24boboobo\$4bobboboo7boo14bobboboo\$5boo11bobo
14boo\$18bo!``````
Extrementhusiast wrote:#297 from a 22-bit pseudo, using a method similar to that of

#146:
I'll have to look at the predecessor; pseudo-objects with multiple bonding sites tend to

be much more difficult to synthesize than ones with only one.

Despite limited time this week, I found (and/or dredged up) a few mechanisms that were of general use, solving 8 items from the list.

The following 17 (top row) is not on the list, because it is a trivial cousin of #117. #117 does not yet have a synthesis, but this fairly obvious method can be used instead, removing 4 of the 21 remaining trivial derived still-lifes (this plus three other cousins, w/bun and/or carrier). After some finagling, I was also able to synthesize #117 (and its remaining trivial cousin w/carrier) from it:

Code: Select all

``````x = 158, y = 81, rule = B3/S23
86bobo\$87boo\$87bo\$90bobo\$90boo\$91bo\$137bo\$90bo46bobo\$88bobo46boo\$89boo
\$\$6bobo92bo14boo18boo18boo\$6boo18bo19bo19bo22bo6bo4bobo11bobbo16bobbob
3o12bobo\$7bo17bobo17bobo17bobo22bo4bobo3boo12bobo17bobobbo14bo\$25boo
12bobo3boo18boo21b3o4boo15booboo15booboo4bo10booboo\$5b3o32boo71bo19bo
19bo\$7bo32bo72bo19bo19bo\$6bo36bo20boo15boo5b3o3boo18boo18boo18boo\$43b
oo20bo16boo6bo4bo19bo19bo19bo\$42bobo19bo16bo7bo4bo19bo19bo19bo\$48bo15b
oo28boo18boo18boo18boo\$46boo\$43boobboo\$43bobo\$43bo9\$7bo\$7bobo\$7boo\$5bo
29bo\$6bo29bo\$4b3obbo24b3o\$bo7bobo\$bbo6boo11bo14boo3bo\$3o3boo13boboboo
9bobobboboboo15booboo15booboo15booboo\$5bobo14boobobo10bo3boobobo15bobo
bo15bobobo15bobobo\$5bo19bobo17bobo15bobobo15bobobo15bobobo\$bbooboo15b
ooboo15booboo15booboo15booboo15booboo\$3bo19bo19bo15bo3bo15bo3bo19bo\$3b
o19bo19bo15bo3bo15bo3bo19bo\$4boo18boo10boo6boo13bo4boo13bo4boo18boo\$5b
o19bo11boo6bo19bo19bo19bo\$4bo19bo11bo7bo19bo12boo5bo19bo\$4boo18boo18b
oo18boo10bobo5boo18boo\$78bo12\$78bo\$79boo\$5bo72boo52bo\$5bobo75bo48bobo\$
5boo3bobo68boo49boo\$10boo70boo3bobo20bo19bo\$11bo38bo36boo20bobo17bobo\$
48boo38bo20bobo17bobo\$bbooboo3b3o9boo18boo5boo11boo18boo6b3o11bo5bo13b
o5bo13bo\$3bobobobbo12bo19bo10bo8bobbo16bobbo3bo12bobo17bobo17bobo\$3bob
obo3bo11boboo16boboo3bobbo9bobobo15bobobo3bo11bobo17bobo17bobo\$bbooboo
15booboo15booboobboobb3o6booboo15booboo15booboo15booboo15booboo\$3bo19b
o19bo5bobo11bo19bo19bo19bo19bo\$3bo19bo19bo19bo19bo19bo19bo19bo\$4boo18b
oo18boo18boo18boo18boo18boo18boo\$5bo19bo19bo19bo19bo19bo19bo19bo\$4bo
19bo19bo19bo19bo19bo19bo19bo\$4boo18boo18boo18boo18boo18boo18boo18boo!
``````
It turns out that the related #123 was implicitly known long ago. Dave Buckingham's old original synthesis of 14.78 builds two inducting copies of the snake w/tail (as in the above synthesis) and then welds both ends. Welding only one of the two end yields #123 from 72 gliders. Streamlining some of the steps reduces this to 63:

Code: Select all

``````x = 229, y = 115, rule = B3/S23
194bo\$148bo46boo\$149boo43boo\$148boo10bobo\$105bo54boo30bo26bo\$103bobo
55bo30boo25bo\$104boo27bo19bo5bo31bobo25bo\$21bo88bobo19bobo17bobo3boo5b
o18boo18boo18boo\$22boo86boo19bobo17bobo4bobo3boo15bobobo15bobobo15bobo
bo\$14bo6boobbo85bo19boo18boo11bobo14boo18boo18boo\$15boo8bobo\$14boo9boo
11boo18boo18boo18boo9b3o16boo18boo28boo18boo18boo\$35bobobo15bobobo15bo
bobo15bobobo9bo15bobobo15bobobo25bobobo15bobobo15bobobo\$35boo3boo13boo
3boo13boo3boo13boo3boo8bo14boo3boo13boo3boo23boo3boo13boo3boo13boo3boo
\$12boo27bo19bo19bo19bo29bo19bo29bo19bo19bo\$11bobo26bo19bo19bo19bo29bo
19bo29bo19bo19bo\$13bo8bo16bo19bo20boo18boo28boo18boo28boo18boo18boo\$
21boo16boo18boo\$21bobo\$16b3o45bo\$18bo36boo6boo\$17bo36bobo6bobo\$56bo\$
60b3o\$62bo\$61bo13\$25bo\$24bo\$24b3o\$189bobo\$10bo17bo161boo\$8bobo16bo162b
o\$9boo16b3o\$\$194bo\$187bo5bo\$188boo3b3o\$11bo175boo\$12boo182boo\$11boo
108bobo72bobo\$121boo22bo50bo4bo\$9bo112bo20boo56bobo\$9boo8bo29boo18boo
28boo28boo13boo13boo28boo10boo16boo\$8bobo8bo30bo19bo29bo29bo29bo29bo
29bo\$19bo29bo19bo29bo29bo29bo29bo29bo\$24boo23boo3boo8bo4boo3boo23boo3b
oo7bo15boo3boo18bo4boo3boo18bo4boo3boo18bo4boo3booboo\$21bobobo25bobobo
6bobo6bobobo3bo14boo5bobobo8bo9boo5bobobo7bo9bobo5bobobo17bobo5bobobo
17bobo5boboboboo\$21boo28boo10boo6boo6bobo12boo5boo9b3o9boo5boo9bo11boo
5boo21boo5boo21boo5boo\$60boo17boo35b3o23b3o\$18boo28boo9bobo6boo6boo20b
oo5boo11bo9boo5boo9b3o9boo5boo21boo5boo21boo5boo\$15bobobo25bobobo11bo
3bobobo6bobo16bobobo5boo10bo7bobobo5boo9bo8bobobo5bobo17bobobo5bobo14b
oobobobo5bobo\$15boo3boo23boo3boo13boo3boo4bo18boo3boo23boo3boo15bo7boo
3boo4bo18boo3boo4bo15booboo3boo4bo\$21bo29bo19bo29bo29bo29bo29bo29bo\$
20bo29bo19bo29bo29bo29bo29bo29bo\$20boo28boo18boo28boo13boo13boo28boo
16boo10boo28boo\$116boo20bo38bobo\$115bo22boo39bo4bo\$137bobo42bobo\$183b
oo\$192boo\$185b3o3boo\$187bo5bo\$186bo3\$190bo\$189boo\$189bobo7\$78bo\$76bobo
\$77boo\$\$19bo61bo81bo\$14bo3bo25boo28boo3boo80boo\$15boob3o22bobbo26bobbo
3boo80boo\$14boo27bobbo16bo9bobbo78bo\$9boo28boo3boo15bobo5boo3boo23boo
9bo8boo18boo12bobo3boo\$10bo29bo21boo6bo29bo7bobobbobo4bo19bo13boo4bo\$
9bo29bo29bo29bo9boo3boo3bo19bo19bo\$4bo4boo3booboo15bo4boo3booboo10bo4b
o4boo3booboo20boo13bo4boo14bo3boo14bo3boo19bo\$3bobo5boboboboo14bobo5bo
boboboo8bobo3bobo5boboboboo22bo19bo12bobo4bo12bobo4bo17bobo\$4boo5boo
21boo5boo15boo4boo5boo28bo10boo7bo11bobo5bo11bobo5bo16bobbo\$98booboo8b
obo4booboo11bo3booboo11bo3booboo15booboo\$8boo5boo21boo5boo21boo5boo4b
oo16bo13bo5bo19bo19bo19bo\$bboobobobo5bobo14boobobobo5bobo14boobobobo5b
obo3bobo15bo19bo19bo12boo5bo19bo\$bbooboo3boo4bo15booboo3boo4bo15booboo
3boo4bo4bo18boo18boo18boo9bobo6boo18boo\$11bo29bo29bo29bo19bo19bo11bo7b
o19bo\$10bo29bo29bo6boo21bo19bo19bo19bo19bo\$10boo23boo3boo23boo3boo5bob
o20boo18boo18boo18boo18boo\$5boo27bobbo26bobbo9bo\$3oboo28bobbo21boo3bo
bbo\$bbo3bo28boo23boo3boo\$bo57bo\$\$62boo\$62bobo\$62bo!``````
(The original method did the welds with tub+blinker+2 gliders, with the blinker coming from a glider into a block-pair. If only one weld is done at once, the blinker can be made directly from two gliders, saving one glider. Furthermore, as shown above, barge+3 gliders removes another glider, and also works with an attached table, as shown below).

Combining the above two techniques gives us #151 from 43 gliders:

Code: Select all

``````x = 118, y = 51, rule = B3/S23
20bo\$19bo41bo\$10bo8b3o39bobo\$10bobo48boo\$10boo\$bbobo34boo18boo39bo\$3b
oo34boo18boo37boo\$3bo8boo17boo18boo18boo18boo6boo10boo\$13bo10boo5bo19b
o19bo19bo12bo6bo4bo\$3o10boboo7bobo6boboo16boboo16boboo16boboo3bobbo9bo
bobo\$bbo9booboo7bo7booboo15booboo15booboo15booboobboobb3o6booboo\$bo11b
o19bo19bo19bo19bo5bobo11bo\$13bo19bo19bo19bo19bo19bo\$14boo18boo18boo18b
oo18boo18boo\$15bo19bo19bo19bo19bo19bo\$14bo19bo19bo19bo19bo19bo\$14boo
18boo18boo18boo18boo18boo16\$20b3o\$17bobbo\$18bobbo\$16b3o\$101bo\$11boo18b
oobboo14boobboo14boobboo14boobboo4bobo7boobboo\$11bo4bo14bo3bo15bo3bo
15bo3bo15bo3bo5boo8bo3bo\$13bobobo15bobo17bobo5bo11bobo17bobo17bobo\$12b
ooboo15booboo15booboo4bobo8booboo3bo11booboo3bo11booboo\$13bo19bo19bo7b
oo10bo5bobo11bo5bobo11bobbo\$13bo19bo19bo19bo4bobo12bo4bobo12bobo\$14boo
18boo18boo4bo13boo3bo14boo3bo14bo\$15bo19bo19bo3boo3boo9bo19bo\$14bo19bo
19bo4bobobbobo7bo19bo4boo\$14boo18boo18boo8bo9boo18boo3bobo\$99bo\$91boo\$
92boo\$91bo!``````
This also gives us #306 from 41 gliders, from a 16:

Code: Select all

``````x = 107, y = 28, rule = B3/S23
6bo77bo\$4bobo76bo\$5boo72bo3b3o\$80boo7bo\$79boo6boo\$88boo\$\$93bobo\$93boo\$
94bo\$12bo\$12bobo10bo19bo19bo19bo19boo\$oo10boo6boobbobo13boobbobo13boo
bbobo13boobbobo13boobbobo\$obboo15bobbobbo13bobbobbo3bo9bobbobbo13bobbo
bbo13bobbo\$boobo4b3o9booboo15booboo4bobo8booboo3bo11booboo3bo11booboo\$
bbo6bo12bo19bo7boo10bo5bobo11bo5bobo11bobbo\$bbo7bo11bo19bo19bo4bobo12b
o4bobo12bobo\$3boo18boo18boo4bo13boo3bo14boo3bo14bo\$4bo19bo19bo3boo3boo
9bo19bo\$3bo19bo19bo4bobobbobo7bo19bo\$3boo18boo18boo8bo9boo18boo\$\$92bo\$
91boo\$91bobo\$77boo\$76bobo\$78bo!``````
This could also potentially give us #110, if a way could be devised to turn a hat or something similar into a pair of inducting snakes:

Code: Select all

``````x = 65, y = 15, rule = B3/S23
49bo\$ooboo15booboo15booboo4bobo8booboo\$o3bo15bo3bo15bo3bo4boo9bo3bo\$bo
bo5bo11bobo17bobo17bobo\$ooboo4bobo8booboo3bo11booboo3bo11booboo\$bo7boo
10bo5bobo11bo5bobo11bobbo\$bo19bo4bobo12bo4bobo12bobo\$bboo4bo13boo3bo
14boo3bo14bo\$3bo3boo3boo9bo19bo\$bbo4bobobbobo7bo19bo4boo\$bboo8bo9boo
18boo3bobo\$47bo\$39boo\$40boo\$39bo!``````
By using loaf+5 gliders, the above mechanism can be extended to also work with an attached carrier, giving us #155 from 44 gliders, and #310 from 50:

Code: Select all

``````x = 168, y = 113, rule = B3/S23
117bo\$117bobo\$117boo\$82bo\$81bo19bo14bo4bo\$81b3o16bobo14boobobo\$100bobo
13boobbobo\$84b3o14bo19bo\$12boo38boo18boo10bo7boo18boo18boobboo\$13bo7bo
3bo27bo19bo11bo7bo19bo9bo9bo3bo\$13boboo5boobobo25bobooboo13bobooboo13b
obooboo13bobooboobbo10bobo\$12booboo4boobboo25boobooboo12boobooboo12boo
booboo12boobooboobb3o7booboo\$13bo39bo19bo19bo19bo19bo\$13bo39bo19bo19bo
19bo13boo4bo\$14boo38boo18boo18boo18boo5boo3boo6boo\$15bo39bo19bo19bo19b
o4boo6bo6bo\$14bo39bo19bo19bo19bo7bo11bo\$14boo38boo18boo18boo18boo18boo
8\$41b3o\$41bo\$42bo11\$12boobboo12bo11boobboo14boobboo4bo9boobboo\$13bo3bo
10boo13bo3bo15bo3bo4bobo8bo3bo\$13bobo13boo12bobo17bobo6boo9bobo\$12boob
oo25booboo15booboo15booboo\$13bo11bo17bo5boo12bo5boo12bobbo\$13bo10bo18b
o4bobbo11bo4bobbobboo7bobo\$14boo8b3o17boobbobo13boobbobobboo9bo\$15bo
29bo3bo15bo3bo5bo\$14bo29bo19bo\$14boo9b3o16boo18boo4boo\$25bo44bobo\$26bo
34boo7bo\$60bobo4bo\$62bo4boo\$66bobo9\$20bo\$19bo41bo\$10bo8b3o39bobo\$10bob
o48boo\$10boo\$bbobo34boo18boo\$3boo34boo18boo\$3bo8boo17boo18boo18boo18b
oo38boo\$13bo10boo5bo19bo19bo19bo9bo3bo25bo\$3o10boboo7bobo6boboo16boboo
16boboo16boboo5boobobo25bobooboo\$bbo9booboo7bo7booboo15booboo15booboo
15booboo4boobboo25boobooboo\$bo11bo19bo19bo19bo19bo39bo\$13bo19bo19bo19b
o19bo39bo\$14boo18boo18boo18boo18boo38boo\$15bo19bo19bo19bo19bo39bo\$14bo
19bo19bo19bo19bo39bo\$14boo18boo18boo18boo18boo38boo8\$121b3o\$121bo\$122b
o3\$57bo\$57bobo\$57boo\$22bo\$21bo19bo14bo4bo\$21b3o16bobo14boobobo\$40bobo
13boobbobo\$24b3o14bo19bo\$11boo11bo6boo18boo18boo3boo13boo3boo12bo10boo
3boo13boo3boo4bo8boo3boo\$11bo13bo5bo19bo11bo7bo5bo13bo5bo10boo11bo5bo
13bo5bo4bobo6bo5bo\$13bobooboo13bobooboo13bobooboobbo10bobo17bobo13boo
12bobo17bobo6boo9bobo\$12boobooboo12boobooboo12boobooboobb3o7booboo15b
ooboo25booboo15booboo15booboo\$13bo19bo19bo19bo19bo11bo17bo5boo12bo5boo
12bobbo\$13bo19bo19bo13boo4bo19bo10bo18bo4bobbo11bo4bobbobboo7bobo\$14b
oo18boo18boo5boo3boo6boo18boo8b3o17boobbobo13boobbobobboo9bo\$15bo19bo
19bo4boo6bo6bo19bo29bo3bo15bo3bo5bo\$14bo19bo19bo7bo11bo19bo29bo19bo\$
14boo18boo18boo18boo18boo9b3o16boo18boo4boo\$105bo44bobo\$106bo34boo7bo\$
140bobo4bo\$142bo4boo\$146bobo!``````
Extrementhusiast wrote:This solves #100:
By combining this with the above mechanisms, we can also make #125 from 33 gliders:

Code: Select all

``````x = 176, y = 108, rule = B3/S23
139bo\$137bobo\$138boo14\$114bo39bo\$99bo14bobo36bo\$100bo13boo37b3o\$98b3o\$
154bo\$153boo\$153bobo\$81bo\$79bobo91boo\$80boo91boo\$\$51bo35boo34boo28boo
18boo\$52booboo16bo12bobo14bo18bobbo26bobbo16bobbo\$14bo36boobbobo14bobo
13bo13bobo17bobbo26bobbo16bobbo\$12bobo40bo17boo15b3o10boo15booboo25boo
boo15booboo\$9boobboo75bo30bo29bo19bo\$10boo79bo29bo29bo19bo\$9bo22boo18b
oo18boo28boo18boo28boo18boo\$13bobo17bo19bo19bo29bo19bo29bo19bo\$13boo
17bo19bo19bo29bo19bo29bo19bo\$14bo17boo18boo18boo19boo7boo18boo28boo18b
oo\$17bo75bobo\$16boo75bo\$16bobo5\$90b3o\$92bo\$91bo15\$80bobo\$80boo\$81bo7\$
71bobo\$71boo\$67boo3bo\$66bobo\$67bo\$62bo\$63bo\$61b3o92bobo\$75bo81boo\$61bo
11boo82bo\$61boo11boo\$60bobo\$155b3o\$90boo18boo18boo18boo3bo\$3boo28boo
28boo25bobo17bobo17bobo13bo3bobo3bo16boo\$3boo28boo28boo28bo19bo19bo13b
oo4bo19bo\$94bo19bo19bo11boo6bo19bo\$3boo13bo14boo28boo28boo18boo18boo
18boo18boo\$bbobbo10boo14bobbo26bobbo26bo19bo19bo19bo19bo\$bbobbo11boo
13bobbo26bobbo26bo19bo19bo19bo19bo\$ooboo25booboo25booboo25booboo15boob
oo15booboo15booboo15booboo\$bo11bo17bo5boo13boo7bo5boo22bobbo16bobbo16b
obbo16bobbo16bobbo\$bo10bo18bo4bobbo13boo6bo4bobbo21bobo17bobo17bobo17b
obo17bobo\$bboo8b3o17boobbobo13bo9boobbobo23bo19bo19bo19bo19bo\$3bo29bo
3bo25bo3bo\$bbo29bo29bo\$bboo9b3o16boo28boo\$13bo64bo\$14bo62boo\$77bobo\$
94boo18boo\$94boo18boo\$74boo\$73boo41boo\$53boo20bo40bobo\$54boo3boo55bo\$
53bo4bobo\$60bo!``````
Back around 2000 or so, I devised a complicated 34-glider shillelagh to very-long-hat converter, specifically for the purpose of eliminating two of the last remaining difficult 17-bit pseudo-still-lifes (bottom three rows). This has subsequently been used in the syntheses of many of the difficult 15- through 17-bit still-lifes. I was just going through some of my converter files, and found one from 2011 that does the same thing in only 10 gliders (top row). I'm mystified as to why I never noticed that this would improve the above-mentioned pseudo-still-lifes (from which all the other variations were cut and pasted) but this should vastly improve several of the objects synthesized in the past year. This also improves two related 15-bit still-lifes (see subsequent section), two 16s, nine 17s, and one 19:

Code: Select all

``````x = 162, y = 140, rule = B3/S23
135bo\$133boo\$130bo3boo\$131boo\$130boo\$\$17booboo15booboo15booboo15booboo
15booboo15booboo15booboo12boobooboo\$17bo3bo15bo3bo8bobo4bo3bo10bo4bo3b
o10bo4bo3bo10bo4bo3bo10bo4bo3bo13bobo3bo\$18bobo17bobo10boo5bobo10bobo
4bobo10bobo4bobo10bobo4bobo10bobo4bobo14bobbobo\$5bo5bo4boboboo14bobob
oo9bo4boboboo10boobboboboo10boobboboboo10boobboboboo10boobboboboo14bob
oboo\$6boobobo4boo18boo18boo18boo18boo18boo18boo19bo\$5boo3boo20boo18boo
18boo18boo18boo18boo\$33bo19bo19bo19bo17bobo11boo4bobo\$7bo22b3o17b3o17b
3o17b3o19bo13boo4bo\$7boo21bo19bo19bo15bo3bo34bo\$3o3bobo78boo41boo\$bbo
83boo41bobo\$bo129bo24\$62bo\$60boo\$11bobo47boo\$12boo44bo\$12bo46bo\$17boob
oo15booboo15b3o7booboo15booboo25booboo15booboo\$10boo5bo3bo15bo3bo25bo
3bo15bo3bo25bo3bo15bo3bo\$11boo5bobo17bobo27bobo7booboo5bobo17booboo5bo
bo7booboo5bobo\$10bo5boboboo14boboboo24boboboo7bobo4boboboo17bobo4bobob
oo6boobo4boboboo\$16boo17bobo27bobo11bobo3bobo21bobo3bobo13bo3bobo\$6bo
29bo29bo13bo5bo23bo5bo14boo3bo\$4bobo7bo43bo\$5boo6boo43boo\$8boo3bobo41b
obo\$7bobo\$9bo50b3o40boo5boo\$60bo43boo5boo6boo\$61bo41bo6bo7boo\$114b3o3b
o\$116bo\$115bo17\$58bo\$57bo56bo\$57b3o53bo\$55bo57b3o\$5bobo41bo3bobo55bo\$
5boo43bo3boo56bo\$6bo41b3o59b3o18boo\$4bo126boo\$5bo11booboo15booboo25boo
boo15booboo25booboo15booboo\$3b3o11bo3bo15bo3bo25bo3bo15bo3bo25bo3bo15b
o3bo\$8booboo5bobo7booboo5bobo17booboo5bobo10boo5bobo20boo5bobo10boo5bo
bo\$8boobo4boboboo5bobobo4boboboo15bobobo4boboboo9bo4boboboo19bo4bobob
oo9bo4boboboo\$4bo6bo3bobo10bobbo3bobo20bobbo3bobo10boobo3bobo20boobo3b
obo10boobo3bobo\$4boo5boo3bo14boo3bo24boo3bo11booboo3bo21booboo3bo11boo
boo3bo\$3bobo5\$52boo\$51bobo\$53bo\$\$63boo\$62boo\$64bo16\$26boo28boo18boo28b
oo9bo\$5bobo17bobbo26bobbo16bobbo26bobbo6boo\$6boo17bobbo26bobbo16bobbo
26bobbo7boo\$6bo19boo28boo18boo28boo\$\$5boo4boo18boo28boo18boo28boo\$4bob
o4boo18boo28boo18boo22b3o3boo\$6bo10booboo15booboo25booboo15booboo15bo
9booboo12boobooboo\$17bo3bo15bo3bo25bo3bo15bo3bo14bo10bo3bo13bobo3bo\$
11boo5bobo10boo5bobo20boo5bobo10boo5bobo20boo5bobo14bobbobo\$11bo4bobob
oo9bo4boboboo19bo4boboboo9bo4boboboo19bo4boboboo14boboboo\$8boobo3bobo
10boobo3bobo20boobo3bobo10boobo3bobo20boobo3bobo19bo\$8booboo3bo11boob
oo3bo21booboo3bo11booboo3bo21booboo3bo\$105boo\$88boo14bobo11boo4bo\$68b
3o17boo10boo4bo11boobboo\$68bo30bobo10boo9boo\$69bo31bo11boo\$65b3o44bo6b
o\$67bo50boo\$66bo51bobo!``````
Upon closer examination, this also appears to be equivalant than the unzip-to-tail converter, of which I found 3 similar variations all costing 11 gliders (bottom row), so this is slightly cheaper. This likely affects quite a few objects, but I haven't had the time to find them all yet:

Code: Select all

``````x = 167, y = 66, rule = B3/S23
19bo59bo59bo\$17boo58boo58boo\$14bo3boo54bo3boo54bo3boo\$15boo58boo58boo\$
14boo58boo58boo\$\$38boo58boo58boo\$16bo22bo36bo22bo36bo6bo15bo3bo\$15bobo
3boo16boboo32bobo3boo16boboo32bobo3b3o15bob3o\$16boobbobbo16bobbo32boo
bbobbo16bobbo32boobbo3boo14bo3boo\$20boboboboo14boboboo32bobo19bo37bob
oobbo14b3obbo\$16boo3booboobo13booboobo28boo3boobo16boobo31boo3boboboo
16boboo\$9boo4bobo51boo4bobo5bobo17bobo23boo4bobo5bo19bo\$10boo4bo53boo
4bo6bobo17bobo24boo4bo5boo18boo\$9bo59bo14bo19bo24bo\$14boo58boo58boo\$
13bobo57bobo57bobo\$15bo59bo59bo19\$16bobo57bobo57bobo\$16boo58boo58boo\$
17bo59bo59bo\$11bo59bo59bo\$9bobo10bo46bobo10bo46bobo10bo\$10boo8boo48boo
8boo48boo8boo\$21boo58boo58boo\$\$13bo59bo59bo\$11bobo57bobo57bobo\$12boo
24boo32boo24boo32boo24boo\$bboo35bo22boo35bo22boo19bo15bo3bo\$o4bo15boo
16boboo17bo4bo15boo16boboo17bo4bo15b3o15bob3o\$6bo13bobbo16bobbo22bo13b
obbo11boo3bobbo22bo13bo3boo14bo3boo\$o5bo13boboboboo14boboboo12bo5bo13b
obo12boo5bo17bo5bo13boboobbo14b3obbo\$b6o6boo6booboobo13booboobo13b6o6b
oo6boobo16boobo16b6o6boo6boboboo16boboo\$12bobo57bobo8bobo17bobo26bobo
8bo19bo\$14bo59bo8bobo17bobo28bo7boo18boo\$16b3o57b3o5bo19bo31b3o\$16bo
24boo33bo59bo\$17bo23boo34bo59bo\$\$24boo58bo\$24bobo56boo\$24bo58bobo\$134b
oo\$133bobo\$135bo8b3o\$144bo\$145bo!``````
Unfortunately, this can't be used with #189, #190, nor #191, because the required predecessors wouldn't be stable.

This converter gives us 15.410 from 19 gliders, 15.390 (which is derived from it) from 28, and, ironically, if we use this method a second time (as unzip-to-tail) during the final stage of 15.390, and wiggle the cleanup glider, we get #390 from 36 gliders:

Code: Select all

``````x = 212, y = 139, rule = B3/S23
152bo\$153bo\$151b3o\$\$107bo46bobo\$107bobo17boo18boo5boo11boo18boo18boo\$
103b3oboo17bobbo16bobbo5bo10bobbo16bobbo16bobbo\$105bo20bobo17bobo9b3o
5boboo16boboo16boboo\$104bo22bo19bo10bo8bo19bo19bo\$159bo5bobo17bobo17bo
bo\$154bo10boo18boo18boo\$153bo\$153b3o9boo18boo\$141bo4b3o16boo18boo\$141b
oo5bo\$140bobo4bo35boo\$182bobo\$184bo13\$184bo\$182boo\$179bo3boo\$180boo\$
179boo\$67boo18boo18boo18boo18boo18boo18boo18boo\$66bobbo16bobbo16bobbo
16bobbo16bobbo16bobbo16bobbo13boobobbo\$66boboo16boboo9bobo4boboo11bo4b
oboo11bo4boboo11bo4boboo11bo4boboo14boboboo\$67bo19bo12boo5bo12bobo4bo
12bobo4bo12bobo4bo12bobo4bo16bobbo\$54bo5bo4bobo17bobo12bo4bobo13boobbo
bo13boobbobo13boobbobo13boobbobo17bobo\$55boobobo4boo18boo18boo18boo18b
oo18boo18boo19bo\$54boo3boo20boo18boo18boo18boo18boo18boo\$82bo19bo19bo
19bo17bobo11boo4bobo\$56bo22b3o17b3o17b3o17b3o19bo13boo4bo\$56boo21bo19b
o19bo15bo3bo34bo\$49b3o3bobo78boo41boo\$51bo83boo41bobo\$50bo129bo13\$128b
oo\$124boobbobo\$123bobobbo\$125bo\$110bo\$111bo\$109b3o8\$167boo18boo18boo\$
127boo38bo19bo19bo\$123boobobbo35boobbo15boobbo15boobbo\$124boboboo34bob
oboo14boboboo14boboboo\$124bobbo36bobbo16bobbo16bobbo\$125bobo37bobo17bo
bo17bobo\$126bo39bo19bo19bo\$143boo\$142boo\$105boo37bo\$104bobo51b3o17b3o\$
106bo67b3o\$176bo\$175bo\$109boo\$108bobo\$110bo\$130bo\$129boo\$129bobo\$108b
oo\$107bobo\$109bo13\$bbo\$obo\$boo130bo\$131bobo\$132boo\$6bobo\$bbo3boo73bobo
50bobo\$3boobbo73boo51boo\$bboo78bo52bo\$7bo121bobo12bo\$6bo16boo18boo5bo
12boo18boo45boo12bobo\$6b3o15bo19bo3boo14bo4bo14bo4bo15bo3bo20bo4bo3bo
4boo\$24bobo17bobobboo13bobobobo13bobobobo13bobobobo23bobobobo\$25boo18b
oo18booboo15booboo15booboo25booboo\$129bo16boo23bo19bo19bo\$127bobo16bob
o20b3o17b3o17b3o\$7boo18boo18boo18boo18boo18boo14b3obboo7boo7bo21bo19bo
19bo\$3boobobbo13boobobbo13boobobbo13boobobbo13boobobbo13boobobbo15bo7b
oobobbo25boobbo15boobbo15boobbo\$4boboboo14boboboo14boboboo14boboboo14b
oboboo14boboboo14bo9boboboo24boboboo14boboboo14boboboo\$4bobbo16bobbo
16bobbo16bobbo16bobbo16bobbo26bobbo26bobbo16bobbo16bobbo\$5bobo17bobo
17bobo17bobo17bobo17bobo27bobo27bobo17bobo17bobo\$6bo19bo19bo19bo19bo
19bo20b3o6bo29bo19bo19bo\$129bo\$128bo\$131boo\$130boo26b3o17b3o\$132bo41b
3o\$126b3o47bo\$128bo46bo\$127bo!``````

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#174 from a trivial 21-bitter:

Code: Select all

``````x = 169, y = 37, rule = B3/S23
78bo73bo\$76bobo71b2o\$77b2o72b2o5\$2bobo4b2o36b2o29b2o42bo\$3b2o4bo37bo
30bo44b2o\$3bo6bo4b2o31bo4b2o17bobo4bo4b2o19b2o15b2o14b2o\$11bobo2bo27bo
4bobo2bo18b2o5bobo2bo14b2obo2bo26b2obo2bo22b2obo\$b2o9b4o29b2o3b4o19bo
7b4o15bob4o27bob4o23bob4o\$obo41b2o122bo\$2bo11b2o3bo21b2o9b2o17bo11b2o
19b2o11bo19b2o27b2o\$13bo2bo2bo20bobo8bo2bo14bobo8bobo2bo15bobo2bo8bobo
5bo10bobo2bo22b2obo\$4bo7bo2bo3bo22bo5bobo2b2o15b2o8b2o2b2o7bo7b2o2b2o
9b2o6b2o8b2o2b2o22bob2o\$4b2o7b2o33b2o44bo24b2o2b2o23b2o\$3bobo66bo19b3o
23bobo9bo17bobo\$22b2o48b2o46bo8bobo16bo\$21b2ob4o15b3o25bobo21b3o31bobo
\$22b6o17bo51bo32bo\$23b4o17bo51bo2\$148b3o\$11bo10b2o5bo102b3o13bo\$10b3o
8b2o5b2o104bo14bo\$10bob2o9bo4bobo102bo\$11b3o\$11b2o3\$135b2o\$134b2o\$136b
o\$33b2o\$33bobo\$33bo!
``````
EDIT: #302 from a trivial variant of #115:

Code: Select all

``````x = 349, y = 90, rule = B3/S23
124bo\$122b2o\$69bo53b2o\$67bobo\$68b2o8\$obo23bo\$b2o22bo\$bo23b3o\$30bo\$29bo
283bo\$25bo3b3o282bo\$9bobo12bo282bo4b3o\$10b2o12b3o281b2o\$10bo160bo135b
2o6bo\$171bobo141b2o\$13bo6b3o148b2o141bobo\$14b2o40bo\$13b2o12b2o26bo112b
o21bobo84bo24bo\$28bo26b3o111b2o3bobo14b2o82b2o23bobo\$4b4o20bobo21b2o
87bo26b2o4b2o15bo84b2o23b2o\$3bo3bo21b2o20bo2bo51b2o31bobo11b2o20bo3b2o
34b2o19bo13b2o31b2o37b2o23b2o\$7bo14b2ob2o23bobobo50bobo32b2o10bobo23bo
bo33bobo19bobo10bobo16bo13bobo36bobo22bobo\$3bo2bo16bob2o23bo2bo2b3o46b
o46bo25bo28bo6bo21b2o4bo6bo16bobo6bo6bo38bo24bo\$20b3o26b2o5bo47b2o33b
2o3b2o5b2o17b2o5b2o27bobo4b2o16bobo7bobo4b2o13b2o2b2o5bobo4b2o37b2o20b
2ob2o\$19bo27bo9bo44bo35bobo2bobo3bo20b2o3bo30b2o3bo15b3o2b2o7b2o3bo17b
2o8b2o3bo38bo23bo\$15b2obob2obo19b2obob2obo46b2obob2obo33bo2bo4bob2obo
20bob2obo30bob2obo13bo2bo12bob2obo12bo5bo8bob2obo33bob2obo21b2obo\$15bo
b2obob2o19bob2obob2o46bob2obob2o37b5obob2o16b5obob2o18b2o6b5obob2o12bo
7b2o3b5obob2o17bobo3b5obob2o31b3obob2o20b2ob2o\$32b2o136bo26b2o7bo29bob
o2bo27bobo2bo39bo\$31b2o113bo25bo26bo8bo29bo4bo27bo4bo37b2o\$33bo111bobo
23b2o34b2o29b2o2b2o27b2o2b2o\$144bobo50b2o\$145bo50bobo\$148bo49bo82b2o\$
147b2o125b2o4b2o\$147bobo125b2o5bo\$274bo3\$201b2o94b2o\$109bo91bobo92bobo
\$109bobo89bo96bo\$109b2o\$93b2o\$92b2o\$94bo\$90b2o98b2o\$89bobo97bobo\$91bo
99bo33\$125b2o\$125bobo\$125bo!
``````
EDIT 2: Trivial variant of #387 from a 12-bit pseudo:

Code: Select all

``````x = 30, y = 30, rule = B3/S23
23bo\$21b2o\$bo20b2o\$2bo\$3o3\$11b2o\$10bo2bo15bo\$11b2o14b2o\$28b2o\$18b2o\$
17bo2bo\$16bo2bo\$17b2o2\$17b2o\$17b2o3\$19bobo\$19b2o\$20bo2\$10b3o5b3o\$10bo
2bo4bo\$10bo8bo\$10bo3bo\$10bo\$11bobo!
``````
Also, a partial for #175:

Code: Select all

``````x = 10, y = 10, rule = B3/S23
2obo\$ob4o\$6bo\$b2o2bo\$bo2bo3b2o\$2b2o3b3o\$6bobo\$2o3b3o\$2b3obo\$3bo!
``````
EDIT 3: EXTREMELY ugly synthesis of #331:

Code: Select all

``````x = 186, y = 153, rule = B3/S23
4bobo\$5b2o\$5bo8\$10bobo\$11b2o\$11bo13\$121bo\$121bobo\$121b2o13\$103bo\$103bo
bo\$103b2o\$62bo\$54bobo3bobo\$48bobo4b2o4b2o\$49b2o4bo\$49bo23bobo\$74b2o\$
74bo9\$68bo9bo\$69bo8b2o12bo\$67b3o8b2o10bo2bo63b2o26bo\$79bo10bo2bo55b2o
2b2o2bo21b2o2b3o\$91bo57bo2bo2bobobo19bo2bo\$151b2ob2o2b2o7bobobo9b2ob2o
\$152bo2bo26bo2bo\$152bobo27bobo\$113bo2bo36bo29bo\$112bo\$112bo3bo\$112b4o
4\$86b3o\$85b5o\$84b2ob3o\$60b2o23b2o\$59bobo\$52bo8bo\$52b2o21b2o\$51bobo2b3o
15bo2bo\$58bo16b2o\$57bo6\$47bo\$45bobo8b3ob3ob3ob3ob3ob3ob3ob3ob3ob3o\$46b
2o2\$48b3o\$50bo\$49bo6\$38b3o\$40bo\$39bo6\$106b3o\$106bo\$107bo\$57bo7bo7bo7bo
7bo\$56b3o5b3o5b3o5b3o5b3o\$55b2obo4b2obo4b2obo4b2obo4b2obo\$55b3o5b3o5b
3o5b3o5b3o\$56b2o6b2o6b2o6b2o6b2o13\$42b2o\$43b2o\$42bo5\$5b3o\$7bo\$6bo13\$3o
\$2bo\$bo!
``````
I have a feeling that this synthesis could be reduced by 90 or even 95 percent. But at least this pushes it off the unsynthesized list!

EDIT 4: #172 from a 15-bitter:

Code: Select all

``````x = 398, y = 63, rule = B3/S23
112bobo\$113b2o\$113bo\$95bo\$8bo87bo5bo19bo\$9b2o83b3o6bo5bobo10bobo\$8b2o
91b3o6b2o10b2o\$110bo16bo\$27bo45bo40bo12bobo\$27bobo44bo40b2o10b2o\$27b2o
43b3o39b2o\$76bo\$76bobo29bo\$76b2o31bo\$102b2o3b3o\$40b2o61b2o\$39b4o23bo
35bo41b2o46b2o\$7bo30b2ob2o21b2o43b2o7b2o24bo47bo\$5bobo31b2o24b2o3b2o
36bobo7bo26bobo45bobo69bo\$6b2o61bo2bo37bo9bo27bo47bo37b2obo28bo7b2obo
26b2obo24b2obo29b2obo22b2obo\$70b3o46b2o26b2o46b2o37bob2o26b3o7bob2o26b
ob2o24bob2o29bob2o22bob2o\$18b2o53b2o7b2o37b2o26b2o11bobobo30b2o39b2o
38b2o28b2o11bobo12b2o31b2o24b2o\$17bo2bo51bo2bo6bobo34b2o2bo23b2o2bo43b
2o2bo35b3o2bo34b3o2bo24b3o2bo11b2o9b3o2bo27b3o2bo20b3o2bo\$16bo2bo51bo
2bo7bo36bo2bo24bo2bo44bo2bo36bo3bo35bo3bo24bo4bo12bo9bo4bo27bo4bo20bo
4b2o\$10b2o5b2o53b2o46b2o26b2o46b2o38b3o37b3o9bo16b4o24b4o29b4o4bobo14b
2o\$10bobo6b3o40bo11b3o45b3o25b3o45b3o38b3o37b3o5bo86b2o\$10bo8bo2bo39b
2o10bo2bo44bo2bo24bo2bo44bo2bo36bo2bo36bo3bo4b3o17b2o26b2o7bo21b2o7bo\$
21b2o38bobo12b2o46b2o26b2o46b2o36b2o38b2ob2o24b2o25bobo7bobo19b2o\$8b2o
325bo8b2o\$7bobo\$9bo184bobo93b2o11bo37b3o32b3o\$16b2o177b2o93bobo10b2o4b
2o30bo19b2o13bo\$15b2o44b2o132bo40b2o52bo11bobo3b2o15b3o14bo17bobo14bo\$
2o15bo44b2o136b2o33bobo6b2o64bo16bo34bo5b2o\$b2o58bo114b2o21bo37bo6bobo
19b2o58bo42b2o\$o7b2o165bobo11bo12bo41bo20bobo38b2o32b2o26bo\$9b2o166bo
10bobo9b2o65bo5b2o30bobo32bobo\$8bo180b2o49b2o30bobo32bo32bo35b3o\$240bo
bo31bo101bo\$172b2o20bo45bo136bo\$173b2o17bo2bo89bo\$172bo19bo2bo88b2o\$
193bo90bobo2b3o\$289bo\$174b2o114bo\$173bobo26b2o\$175bo25bo2bo3bo\$202b2o
2b2o\$207b2o12\$216b2o\$215b2o\$217bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

Extrementhusiast wrote: EXTREMELY ugly synthesis of #331:
The row of 10 blinkers costs 20 gliders if made the usual way, and 19 if the first two are made simultaneously, but a row of any number of blinkers can be extruded for only 11, making this the method of choice for 7 or more in a row. My instantiation of this synthesis costs 94 gliders (with the above two improvements reducing it to 93 and 85 respectively):

Code: Select all

``````x = 59, y = 106, rule = B3/S23
obo\$boo\$bo40\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$58bo\$58bo\$58bo\$\$58bo\$58bo
\$58bo\$\$58bo\$58bo\$58bo\$\$35bobo20bo\$35boo21bo\$36bo21bo\$\$58bo\$58bo\$58bo\$
19bo\$bbo17boo36bo\$obo16boo37bo\$boo55bo\$36bo\$35bo22bo\$35b3o20bo\$10boobb
oo42bo\$11boobobo\$10bo3bo43bo\$58bo\$58bo12\$17boo\$18boo\$17bo6\$34b3o\$34bo
bbo\$34bo\$34bo3bo\$34bo\$35bobo!``````
Extrementhusiast wrote:I have a feeling that this synthesis could be reduced by 90 or even 95 percent.
I think that getting it down from 94 to 10 (let alone 5) would be quite a feat, as even the "easy" hard 17s are usually much more expensive.
Extrementhusiast wrote:#172 from a 15-bitter:
Wow! I don't recall ever seeing that tie-bun mechanism; I have been looking for something that would tie a bun or bookend onto the corner of a beehive/loaf/pond/mango/mold/jam etc. for a long time. This works on mangos; a simpler reduction works on beehives (and the narrow side of loaves). I am working on tweaking it to work on ponds (and the wide side of loaves, molds, jams, etc.) but haven't had time to find a working solution.

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

mniemiec wrote:I am working on tweaking it to work on ponds (and the wide side of loaves, molds, jams, etc.) but haven't had time to find a working solution.
Done, by forming the boat predecessor further on down the line:

Code: Select all

``````x = 28, y = 16, rule = B3/S23
8bo\$6bobo\$bobo3b2o\$2b2o\$2bo13bobo\$16b2o\$2o7bo7bo\$b2o6bobo11b4o\$o8b2o
12bo3bo\$23bo\$7b2o15bo2bo\$6bo2bo\$7b2o3b2o\$11bo2bo\$11bo2bo\$12b2o!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#227 from 41 gliders, based on one of the hard 15s. Sadly, although this method solves many larger still-lifes with feathers, it doesn't work for any of the other remaining 17-bit ones, nor does it improve any of the already-solved ones:

Code: Select all

``````x = 40, y = 24, rule = B3/S23
10bobo\$13bo\$9bo3bo\$6bo6bo\$7boobobbo\$6boo3b3o3\$3boo3bo\$3oboo3boo\$5o3boo
\$b3o3\$11bo\$3bobo4bobo\$4boo4bobo3boo14boobboo\$4bo6bo3bobbo13bobbobbo\$
15boobbo13boboobbo\$13boobboo15bobboo\$13bobbo9b3o7bo\$7boo6boo18boo\$6bob
o\$8bo!``````
Incomplete partial synthesis of #350 based on a trivial (but expensive at 41 gliders) 19-bit pseudo-still-life:

Code: Select all

``````x = 58, y = 31, rule = B3/S23
17bo\$16bo\$bbo9boobb3o13bo3bo15bo\$boboboo5bobo16boboboboo12bobo\$obboobo
5bo17bobb6o11bobbo\$boo17boo9boo3bo14boo\$bboboo13boo11boboo16bobobo\$bo
bboo15bo9bobboo15bobboo\$boo28boo18boo14\$11b3o18bo3bo15bo\$10bo3bo16bobo
boboo12bobo\$14bo15bobb7o10bobbo\$12boo17boo3bobboo10boo\$12bo19boboobboo
12boboboo\$31bobboobboo11bobboobo\$12bo18boo5b3o10boo\$39boo\$39boo!``````

dvgrn
Moderator
Posts: 8917
Joined: May 17th, 2009, 11:00 pm
Contact:

### Re: 17-bit SL Syntheses

mniemiec wrote:#227 from 41 gliders, based on one of the hard 15s.
Looks like there are ways to reduce the construction cost by at least one MWSS:

Code: Select all

``````#C found with Paul Chapman's Seeds of Destruction Game
x = 40, y = 34, rule = B3/S23
38bo\$37bo\$37b3o2\$23bo\$24b2o\$23b2o3\$13b2o\$10b3ob2o\$10b5o3bobo\$11b3o5b2o
\$19bo2\$31bo\$30bobo\$30bobo3b2o\$31bo3bo2bo\$35b2o2bo\$33b2o2b2o\$33bo2bo\$
12b2o21b2o\$11bobo\$13bo3\$22b2o\$21bobo\$23bo2\$b2o\$obo\$2bo!``````

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

dvgrn wrote:Looks like there are ways to reduce the construction cost by at least one MWSS:
Nice! This is also the unaltered put-pre-block mechanism I have used in many other syntheses (that, in this case, interferes with the still-life in such a way that it just happens to obviate the other spark that would otherwise be necessary). I will have to look at all the other syntheses to see how many can benefit from this improvement! (the downside is the mixed blessing in all such improvements - I will have to look at many syntheses!)

dvgrn
Moderator
Posts: 8917
Joined: May 17th, 2009, 11:00 pm
Contact:

### Re: 17-bit SL Syntheses

mniemiec wrote:Nice! This is also the unaltered put-pre-block mechanism I have used in many other syntheses...
This particular variant takes advantage of the extra blinker in the southwest, so it may not be generally useful. But there are quite a few other gliders, from three different directions, that do basically the same thing. Here are two variants that tighten up the post-construction sparks, and one of them doesn't affect the blinker:

Code: Select all

``````x = 64, y = 22, rule = B3/S23
48bo\$47bo\$47b3o\$16bo39bo\$16bobo37bobo\$6b3o7b2o28b3o7b2o\$5b5o35b5o\$5b3o
b2obobo30b3ob2obobo\$8b2o3b2o33b2o3b2o\$13bo39bo3\$15bo39bo\$2o6bo5bobo31b
o5bobo\$b2o6b2o3bobo3b2o27b2o3bobo3b2o\$o7b2o5bo3bo2bo25b2o5bo3bo2bo\$19b
2o2bo35b2o2bo\$17b2o2b2o34b2o2b2o\$17bo2bo36bo2bo\$11b3o5b2o30b3o5b2o\$13b
o39bo\$12bo39bo!``````
Most of the other reactions that I saw left a little more junk behind. But I'm just looking around manually using the SODGame, which is not really designed for this kind of thing -- e.g., I can only check two out of four glider phases at a time (!) So there could still be a lucky single glider that cleans up everything.

Synthesizing #227 takes out another row in the index table -- and if you've done about a third of #350, that's a significant milestone: 90% of the original 297 17-bit still lifes are now solved.

dvgrn
Moderator
Posts: 8917
Joined: May 17th, 2009, 11:00 pm
Contact:

### Re: 17-bit SL Syntheses

dvgrn wrote:So there could still be a lucky single glider that cleans up everything.
Hey, wait a minute! What's wrong with this option for #227?

Code: Select all

``````x = 19, y = 19, rule = B3/S23
7bobo\$8b2o\$8bo3\$10bo\$3bo5bobo\$4b2o3bobo3b2o\$3b2o5bo3bo2bo\$14b2o2bo\$12b
2o2b2o\$12bo2bo\$6b3o5b2o\$8bo\$7bo2\$3o\$2bo\$bo!``````

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

dvgrn wrote:Most of the other reactions that I saw left a little more junk behind. But I'm just looking around manually using the SODGame, which is not really designed for this kind of thing -- e.g., I can only check two out of four glider phases at a time (!) So there could still be a lucky single glider that cleans up everything.
I typically solve that problem by moving the whole pattern back four generations to start, and then forward two to get the other two phases of glider.

EDIT: #136 from a trivial variant of #181 (which is already solved):

Code: Select all

``````x = 831, y = 55, rule = B3/S23
266bobo\$266b2o\$267bo\$632bo\$633bo\$631b3o2\$258bo\$209bo46bobo\$210bo46b2o
400bo\$208b3o439bobo6bobo\$100bo156bo392b2o7b2o\$101bo143bobo9b2o392bo\$
99b3o85bo18bo39b2o8bobo\$150bo35bo20b2o37bo\$39bo111b2o33b3o17b2o20bo
126bo285b3o\$37bobo110b2o32bo42bo127bobo308bo\$38b2o117bo27bo23b2o7bo8b
3o125b2o48bo227bo30b2o\$157bobo23b3o22bobo2b2ob2o129bobo24bo28bobo228b
2o16b2o11b2o\$157b2o51bo2b2o2b2o129b2o22b2o30b2o227b2o6b2o3bo4bobo\$161b
o60bobo123bo24b2o254b2o9bobo2bobo3bo\$161bobo58b2o121bo282bobo10bo4b2o
2b2o\$bo33bo28bo4bo29bo4bo20bo21bo13b2o19bo6b2o20bo6b2o3bo39bo79bobo28b
o255bo6bo57b2o19b2o28b2o26b2o28b2o19b2o\$obo2b2o27bobo2b2o6b2o14bobo2bo
bo27bobo2bobo19bobo18bobo2b2o2bo25bobo2b2o2bo19bobo2b2o2bo42bobo2b2o
28b2o23b2o20b2o9b2o17b2o3b2o2b2o29b2o2b2o16b2o19b2o21b2o44b2o22b2o15b
2o26b2o41bo11b2o42bo2bo17bo2bo26bo2bo24bo2bo26bo2bo17bo2bo\$bo2bobo28bo
2bobo6bobo14bo2bob2o4bo23bo2bob2o19b2o20bo2bob4o26bo2bob3o21bo2bob3o
44bo2bob3o22bo2bob3o17bo2bob3o15bo9bo2bob3o14bobo3bo2bob3o27bo2bob3o
13bob3o16bob3o18bob3o41bob3o19bob3o12bob3o23bob3o37b3o10bob3o41bob3o
16bob3o25bob3o7bobo13bob3o25bob3o16bob3o\$2b3o31b3o8bo17b3o7bobo22b3o
17bo27b3o32b3o26b3o7bo41b3o4bo21b4o4bo16b4o4bo14b2o8b4o4bo20b3o4bo27b
3o4bo10b3o4bo13b3o4bo15b3o4bo27bo10b3o4bo16b3o4bo9b3o4bo20b3o4bo47b3o
4bo39b2o4bo14b2o4bo23b2o4bo6b2o13b2o4bo23b2o4bo14b2o4bo\$6bo33bo28b2o4b
2o27b2o13b2o31b4o31b3o26b3o3bobo43b3o27b3o22b3o14bobo13b3o25b3o17bo4b
2o8b3o10bo4b3o13bo4b3o15bo4b3o4bo22bo10bo4b3o16bo4b3o9bo4b3o20bo4b3o
14bobobo28bo4b3o6b3o4b2o28b3o14bo3b3o23bo3b3o8bo12bo3b3o17bo5bo3b3o15b
o2b3o\$4b3o31b3o26b2obo31b2obo13bobo28b3o2bo29b3o2bo23b3o2bo2b2o42b3o
26b4o21b4o29b4o23b5o20bo2bobo4b5o12b6o15b6o17b6o6bobo13b2o5b3o8b6o18b
6o11b6o22b6o49b6o8bo5b2o26b4o17b4o26b4o24b4o20b2o4b4o19b2o\$3bo33bo28bo
2bo5bo25bo2bo4b2o38bo11b2o21bo4b2o22bo4b2o45bo29bo24bo24bobo5bo26bo22b
3o3bo5bo72b2o13bobo155bo6bo21bo2bo102b2o\$3b2o4b2ob2o23b2o4b2ob2o18b2o
6b2o25b2o5bo2bo37b2o10bobo20b2o27b2o10b2o38b2o29bo24bo24b2o6b3o14bo11b
2o33b2o12b2o2b2o15b2o2b2o17b2o2b2o23bo16b6o16b8o13b4o7bo16b2o53b2o38bo
bo2bobo19b2o20bo7b2o28b2o28b2o\$8bobobobo28b2ob2o26bobo31bo2bo49bo62b2o
69b2o25bo3bobo17bo9bo14b2o10b2o33b2o12b2o2b2o15b2o2bobo15bobo2bobo29b
3o6bo2bo2bo15bo4bo2bo13bo2bo7bobo14b2o53b2o39b2o3b2o19b2o18bobo7bobo
27b2o18bo8bobo\$10bobo76bo19b2o46b2o67bo94b2o3b2o42bobo27b3o4bo50bo17bo
4bo30bo8b2o20bobo30b2o54b2o102b2o8bo47b2o9bo\$87bobo14b2o51bobo142bobo
22bo19b2o53bo5b2o30bo9bo62bo30b2o87b2o55b2o102bobo\$34bo15b2o17b2o17b2o
3bo9bo2bo50bo144b2o42b2o53bo5b2o26b2o2b2o9b2o2b2o117b3o56bo56bobo28bo
17b3o30bo41b2o\$35b2o13bobo11b3ob2o24bo8bo2bo14b2o27b2o151bo24b3o17bo
87b2obobo7bobob2o17bo69b2o29bo117bo21b2o4b2o19bo30b2o4b2o34bobo\$34b2o
14bo15bo3bo21b3o9b2o14b2o6b2o21b2o163b3o9bo25bo59b2o19bo19bo16b2o11b3o
53bobo30bo139b2o3bobo17bo14b3o13bobo3b2o35bo\$65bo56bo5bobo19bo137b3o
12b2o13bo4b2o4bo23b2o54b3ob2o56bobo11bo57bo169bo40bo23bo\$41b2o50bo34bo
161bo12bobo11bo6b2o27bobo55bo3bo20b2o15b2o24b3o4bo268bo51b3o\$36b3ob2o
51b2o161b2o31bo9bo3bo19bo86bo25bobo13bobo19b3o2bo79b2o11bo143b2o22b2o
32b2o31bo\$38bo3bo49bobo162b2o40b2o135bo17bo19bo5bo77bobo10b2o143bobo
20bobo31bobo32bo\$37bo218bo41bobo174bo84bo10bobo142bo24bo33bo12b3o\$271b
2o517bo\$270b2o211b3o76bo226bo\$272bo210bo78b2o\$484bo76bobo\$109b3o\$109bo
\$110bo2\$97b2o\$98b2o\$97bo\$111b2o\$110b2o\$112bo!
``````
I Like My Heisenburps! (and others)

dvgrn
Moderator
Posts: 8917
Joined: May 17th, 2009, 11:00 pm
Contact:

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:I typically solve that problem by moving the whole pattern back four generations to start, and then forward two to get the other two phases of glider.
That's basically what I did, using the glider rewinder (which rewinds blinkers and *WSS with no trouble, too). Just finally got around to assigning a keyboard shortcut to that script -- I'm making a New Year's resolution to be more efficient about this kind of thing.
Extrementhusiast wrote:#136 from a trivial variant of #181 (which is already solved):
Ah, good -- now we're safely above the 90%-complete mark for the indexed 17-bitters, without any of my questionable fractional math. Looks like the last 10% will be quite a challenge...!

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Possible predecessor for #243:

Code: Select all

``````x = 33, y = 25, rule = B3/S23
14bobo5bo\$15b2o3b2o\$15bo5b2o2\$8bo11bo\$9b2o10bo\$8b2o9b3o\$3bo\$4b2o\$3b2o
8b2o12bo\$13b2o12bobo\$9b2o8b2o6b2o\$9b2o2b4obobo\$2o3bo7bo2bobo\$b2o3b2o6b
2o2bo\$o4b2o4b3o2b2o\$11bo2bo15b2o\$12b2o10b2o4bobo\$24bobo3bo\$24bo2\$6b2o\$
7b2o7b3o\$6bo9bo\$17bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#281 from 86 gliders, based on #237 (and thus also one of the three remaining unsolved 22-bit molds):

Code: Select all

``````x = 176, y = 82, rule = B3/S23
58bo\$57bo\$57b3o\$55bo\$53bobo\$54boo7bobo\$63boo\$64bo3\$45bo\$43bobo52bobo
39bo\$44boo53boo40bo\$o98bo39b3o\$boo3bo\$oobboo37bobo76boo18boo\$5boo37boo
29boo28boo15boo18boo\$44bo30bobo21bo5bobo18boo18boo18boo\$13bo11boo6bo
21boo6bo13bo5bo16boo5bo5bo13bo5bo13bo5bo13bo5bo\$bbobobboboobobo11bobb
oobobo21bobboobobo11booboobobo14boo5booboobobo12boboobobo12boboobobo
12boboobobo\$3boobboobobobbo10bobobobobbo20bobobobobbo9bobbobobobbo19bo
bbobobobbo12bobobobbo12bobobobbo12bobobobbo\$3bo8b3o12bo4b3o22bo4b3o11b
oo4b3o21boo4b3o17b3o17b3o17b3o\$11bo19bo29bo19bo29bo19bo19bo19bo\$4b3o4b
oo18boo28boo18boo12b3o13boo18boo18boo18boo\$4bo92bo\$5bo90bo\$\$101bobo\$
102boobboo\$102bobboo\$107bo\$\$47b3o\$49bo\$48bo15\$138bobo\$139boo\$139bo\$
142bo\$142bobo\$142boo\$\$141bo\$96boo18boo24bo3boo\$97bo5bo13bo5bo16b3o4bo
5bo19bo\$97boboobobo12boboobobo22boboobobo14boobobo\$98bobobobbo12bobobo
bbo22bobobobbo14bobobbo\$102b3o17b3o15bobbo8b3o14bobb3o\$101bo19bo22bo6b
o17bobo\$101boo17bobo17bo3bo5bobo17bobo\$121bo19b4o6bo19bo4\$147boo\$97bo
43b3o3bobo\$95bobobbo42bo3bo\$96boobbobo39bo\$100boo7\$94bo\$94boo\$93bobo!
``````
The same final step also gives us #342 from 29 gliders:

Code: Select all

``````x = 168, y = 69, rule = B3/S23
28bo\$27bo\$27b3o\$\$135bo\$134bo\$134b3o\$\$131bobo\$132boo5bo\$132bo6bobo\$139b
oo\$\$43bo19bo19bo19bo19bo9bobo7bo14boo3bo\$oobboo37b3o17b3o6bo10b3o17b3o
17b3o8boo7b3o13bo3b3o\$boobobo34boo3bo14boo3bo4bo9boo3bo14boo3bo14boo3b
o7bo6boo3bo12boboo3bo\$o3bo35bobobboo13bobobboo4b3o6bobobbobo12bobobbob
o12bobobbobo12bobobbobo12bobobbobo\$41bo19bo19bo4bo7boo5bo4bo13bo5bo13b
o5bo19bo\$95boo22boo18boo\$69bo24bo\$68boo20boo\$68bobo20boobboo6boo30boo\$
90bo4bobo4boo30bobo\$65b3o27bo8bo31bo5boo\$67bo74bobo\$66bo75bo\$\$136boo\$
137boo\$30boo104bo\$29boo\$31bo14\$130bobo\$131boo\$131bo\$134bo\$134bobo\$134b
oo\$\$133bo\$48boo3bo14boo3bo14boo3bo14boo3bo20bo3boo3bo19bo\$49bo3b3o13bo
3b3o13bo3b3o13bo3b3o16b3o4bo3b3o17b3o\$49boboo3bo12boboo3bo12boboo3bo
12boboo3bo22boboo3bo14boo3bo\$50bobobbobo12bobobbobo12bobobbobo12bobobb
obo22bobobbobo14bobbobo\$56bo19bo19bo19bo15bobbo10bo14bo4bo\$113bo22bo6b
o17bobo\$112bobo17bo3bo5bobo17bobo\$113bo19b4o6bo19bo3\$96boo\$71boo18boo
bboo42boo\$51boo17bobbo16bobbo3bo35b3o3bobo\$52boob3o12bobbo16bobbo41bo
3bo\$51bo3bo15boo18boo41bo\$56bo!``````
This might also be useful for #142, although it would likely take a lot more work.

All of these could be done much more cheaply if a way were found to do this from the snake, without having to convert it into a hook-w/tail.

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

This removes the dependency of #268 on #187, via a method like that of #260 and #336:

Code: Select all

``````x = 27, y = 32, rule = B3/S23
16bobo\$16b2o\$17bo\$11bobo\$12b2o\$12bo3\$14bo\$13bobo\$2bo11b2o\$obo5bo15b3o\$
b2o6b2o3b2o2b2obo2bo\$4b2o2b2o4bo3bob2o3bo\$3bobo9b3o\$5bo10bo\$16bo\$15b3o
\$14bo3bo\$14b2ob2o4\$12b3o3b3o\$14bo3bo\$13bo5bo4\$7b3o\$9bo\$8bo!
``````
However, I think #187 can be solved in a similar way.

Also, that RLE zip really needs to be updated.

EDIT: Looking back through my old posts, I found this excellent predecessor for #279:

Code: Select all

``````x = 8, y = 7, rule = B3/S23
3bo\$2bobo\$2bobo\$b2ob2o\$o2bo3bo\$bobo3bo\$2bo2bo!
``````
EDIT 2: And the synthesis for that step:

Code: Select all

``````x = 29, y = 29, rule = B3/S23
26bo\$26bobo\$26b2o\$9bo\$8bobo\$8bobo\$7b2ob2o14b2o\$6bo2bo15b2o\$7bobo17bo\$
8bo14b2o\$22bobo\$24bo10\$2o20b2o\$b2o19bobo\$o21bo2\$16b2o\$16bobo3b2o\$16bo
5bobo\$22bo!
``````
Also, I found that spark I was looking for:

Code: Select all

``````x = 13, y = 8, rule = B3/S23
5bo\$4bo\$4b3o\$2bo\$obo\$b2o7bobo\$10b2o\$11bo!
``````
...which improves this step in #143, and probably several others:

Code: Select all

``````x = 29, y = 26, rule = B3/S23
2bo\$obo\$b2o\$16bo\$14b2o\$15b2o\$23bo\$21b2o\$22b2o4\$26bo\$26bobo\$26b2o\$6b2ob
2o\$5bobobobo11b3o\$5bo5bo11bo\$6b5o13bo2\$6b2ob2o\$7bobo2b2o\$7bo2bobo\$8bob
obo\$9bobo\$10bo!
``````
EDIT 3: #187, again using the same general method:

Code: Select all

``````x = 152, y = 42, rule = B3/S23
65b2o\$65b3o\$64bob2o\$64b3o\$65bo6\$81bo\$63bobo13b2o\$64b2o14b2o\$64bo\$43bo\$
41bobo\$8bo33b2o\$8bobo34bo85bo\$8b2o35bobo26b2o53b2o\$45b2o13bo12bo2bo53b
2o\$5bo52bobo13b2o\$3bobo6bo27bo18b2o9bo31b2o17bobo3b2o\$4b2o5bobo25bobo
27bobo22bo8bo18b2o4bo\$10bobo25bobo20b3o4bobo21bobo7bo19bo4bo\$10bo9b2o
16bo24bo4bo24b2o7b2o23b2o17b2o\$5b2o4bo8bobo16bo22bo6bo26b2o6bo17b2o5bo
15bo2bo\$5b2o3b2o2b2obo2bo17b2o2b2o24b2o2b2o21bobo4b2o2b2o14b2o3b2o2b2o
11bob2o2b2o\$10bo3bob2o19bo5bo23bo5bo23bo3bo5bo18bo5bo12bo5bo\$11b3o24b
5o25b5o29b5o20b5o14b5o\$2o3b2o5bo27bo16bo12bo33bo24bo18bo\$b2obobo5bo44b
2o\$o3b2o5b3o42bobo\$10bo3bo\$10b2ob2o\$64b3o\$64bo\$9b2o3b2o49bo\$8bobo3bobo
38b3o\$10bo3bo42bo\$2b3o51bo\$4bo\$3bo!
``````
EDIT 4: #110 from a 15-bitter:

Code: Select all

``````x = 26, y = 13, rule = B3/S23
5bo\$6bo\$4b3o3bob2o\$9bob2obo\$9bo5bo\$10b5o\$5b2o5bo8bo\$5bobo9bo2bo\$5bo6bo
3b2o2b3o\$2o9b2o3bobo\$b2o8bobo9b3o\$o22bo\$24bo!
``````
EDIT 5: #244 can be trivially derived from #245:

Code: Select all

``````x = 79, y = 16, rule = B3/S23
4b2o25b2o20b2o15b2o\$4bo2b2o22bo2b2o17bo2b2o12bo2b2o\$5b2o2bob2o19b2o2bo
b2o14b2o2bob2o9b2o2bob2o\$6bo2b2obo20bo2b2obo15bo2b2obo10bo2b2obo\$4bo
27bo21bo16bo\$4b2o25bo21bo17b2o\$o29bo22b2o\$b2o27b2o\$2o56bo\$35bo13b2o6b
2o\$2bo23b2o6b2o12bobo6bobo\$2b2o21bobo6bobo13bo\$bobo23bo26b3o\$31b3o22bo
\$33bo21bo\$32bo!
``````
EDIT 6: Possible method for #196:

Code: Select all

``````x = 121, y = 20, rule = B3/S23
6bobo43bo19bo\$7b2o42bo21bo\$7bo42bo23bo\$50bo23bo\$16b2o16b2o13bo9b2o2b2o
10bo19b2o2b2o13bo2b2o\$17bo17bo13bo8bobo3bo10bo18bo2bo2bo12bobo2bo\$11b
2o3bo13b2o2bo14bo9b2o2bo11bo18bob2obo14b2obo\$5bo4bobo2bob3o10bo2bob3o
11bo9bo2bob3o8bo19bo2bob3o13bob3o\$6bo4bo3bo3bo11bobo3bo11bo10bobo3bo8b
o14bobo3bobo3bo13bo3bo\$4b3o7b2o16b2o15bo11b2o12bo15b2o4b2o16b2o\$3o46bo
25bo15bo\$2bo47bo23bo\$bo48bo23bo16b2o\$8b3o40bo21bo16bobo\$10bo41bo19bo
19bo\$9bo73b2o\$82bobo\$14b2o68bo\$14bobo\$14bo!
``````
EDIT 7: #243 from #244 (which is itself from #245):

Code: Select all

``````x = 46, y = 37, rule = B3/S23
3bo36bo\$4b2o33bo\$3b2o34b3o5\$19b2o\$19bo2b2o\$20b2o2bob2o\$21bo2b2obo\$15b
2o3bo\$15bobo2b2o8b2o\$17bo11bo2bo\$17b2o4b2o4bo2bo\$23bobo4b2o\$24b2o\$10bo
\$2o6bobo\$b2o6b2o3bo9b2o\$o14bo7bobo\$13b3o8bo19bo\$43b2o\$43bobo2\$14bo\$14b
2o\$13bobo2\$42b2o\$37b2o2b2o\$29b3o5bobo3bo\$29bo7bo\$30bo\$12b3o\$14bo\$13bo!
``````
EDIT 8: This actually solves #196:

Code: Select all

``````x = 33, y = 34, rule = B3/S23
obo\$b2o6bo9bo\$bo8b2o7bobo\$9b2o8b2o3\$bo\$2b2o23bobo\$b2o17b2o5b2o\$20bobo
5bo\$21bo2\$14bo2bo\$14b4o2b2o\$5b3o13bo9bo\$7bo8b2o2bo9b2o\$6bo5b2o2bo2bob
3o6bobo\$11bobo3bobo3bo\$11bo6b2o\$10b2o5\$4bo15bo\$4b2o13b2o\$3bobo13bobo\$
14b2o\$13b2o\$15bo2\$6b2o\$7b2o\$6bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

Extrementusiast wrote:This removes the dependency of #268 on #187, via a method like that of #260 and #336:
Extrementusiast wrote:#187, again using the same general method:
I can get to the spark-coil with eater, but I'm not sure how to get from the eater to the snake, as the usual method involves a glider passing through the other half of the spark coil.

It might also be possible to somehow get to #244 by adapting the synthesis of 20.5655:

Code: Select all

``````x = 122, y = 22, rule = B3/S23
79bo16bo\$10bo69bo14bo\$9bo68b3o14b3o\$9b3o\$7bo106b2o4b2o\$8bo66b3o20b3o
13bo2b2o2bo\$6b3o18b2o18b2o18b2o8bo3b3o3b2o3b3o3bo16b2o2b2o\$bo12bo12b2o
18b2o18b2o7bo6bo3b2o3bo6bo16bo2bo\$2bo10bo68bo10bo20bo6bo\$3o10b3o9bo4bo
14bo4bo14bo4bo14bo4bo23b2o4b2o\$24bobo2bobo12bobo2bobo12bobo2bobo12bobo
2bobo\$3b3o4b3o11bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$5bo4bo14bo
4bo14bo4bo14bo4bo14bo4bo\$4bo6bo68b2o12b2o\$40bo40b2o10b2o\$41bo38bo14bo\$
39b3o22bo19bo\$63bobo17bobo4b2o\$42b3o18bobo17bobo5b2o\$44bo19bo14b3o2bo
5bo\$43bo37bo\$80bo!``````
One glider can be saved in #193 (and similar syntheses) by clipping the carrier directly, rather than first turning it into a very long snake (5 gliders new way, 6 gliders old way):

Code: Select all

``````x = 129, y = 18, rule = B3/S23
14boo18boo18boo18boo28boo18boo\$bbo11bobo17bobo17bobo17bobo15bo11bobo
17bobo\$obo5bo7bo19bo19bo19bo13bobo5bo7bo19bo\$boo6boo4boboo16boboo16bob
oo16boboo12boo6boo4boboo16boboo\$4boobboo5bobbo16bobbo16bobbo16bobbo15b
oobboo5bobbo16bobbo\$3bobo8boobo16boobo16boobo16boobo15bobo8boobo16boob
o\$5bo10bo16bobbo19bo19bo18bo10bo16bobbo\$14boo18boo18boo18boo28boo18boo
\$14bo39bo19bo29bo\$16bo39bo18bo29bo\$15boo38boo19bo29bo\$10bo49bo16bo29bo
\$10boo46boo16boo22boo4boo\$9bobo7boo38boo40boo\$19bobo78bo\$19bo38bo\$57b
oo\$57bobo!
``````
Slightly altering the synthesis for #193 gives us #248 from 35 gliders:

Code: Select all

``````x = 149, y = 114, rule = B3/S23
78bo\$78bobo\$53bo24boo\$51bobo\$52boo29bobo\$83boo\$84bo\$51bo\$52boo\$51boo5\$
36boo28boo\$15boo18bobbo26bobbo\$14bobo19boo28boo\$16bo\$18boo\$18bobo63bo
3boo\$18bo65boobbobo\$83bobobbo12bo19bo19bo\$100bobo17bobo17bobo\$99bobbo
16bobbo16bobbo\$100booboo15booboo15booboo\$101bobo17bobo17bobo\$101bobo
17bobo17bobo\$102bo19bo19bo4\$71bobo\$53b3o16boo\$55bo16bo\$54bo\$72boo29boo
18boo\$71bobo29boo18boo\$73bo\$125boo\$125bobo\$125bo7\$27bobo\$5bo21boo\$6boo
20bo\$5boo3\$4bo\$bbobo121bo\$3boo122boo\$126boo\$130bobo\$130boo\$37bo93bo\$
36bo\$21bo14b3o11boo28boo18boo18boo18boo\$20bobo27bobo15bo11bobo17bobo
17bobo17bobo3b3o\$19bobbo29bo13bobo5bo7bo19bo19bo19bo\$20booboo26boboo
12boo6boo4boboo16boboo16boboo16boboo\$21bobo27bobo16boobboo5bobo17bobo
17bobo17bobo\$21bobo26boobo15bobo8boobo16boobo16boobo16boobo\$22bo29bo
18bo10bo16bobbo16bobbo16bobbo\$50boo28boo18boo18boo18boo\$50bo29bo\$52bo
29bo\$51boo28boo\$76bo\$76boo\$75bobo7boo\$85bobo\$3o3b3o76bo\$bbo5bo\$bo5bo3\$
20bobo\$20boo\$21bo\$13bo\$14boo4boo\$13boo5bobo\$20bo4\$37bo11bo\$38boo8bo\$
37boo9b3o\$41bobo\$41boo\$42bo5\$30boo28boo18boo18boo18boo18boo\$30bobo3b3o
21bobobboobo11bobobboobo11bobobboobo11bobobboobo11bobobboobo\$32bo29bo
bboboo13bobboboo13bobboboo13bobboboo13bobboboo\$31boboo26boboo16boboo
16boboo16boboo16boboo\$31bobo27bobo17bobo17bobo17bobo17bo\$30boobo26boob
o16boobo16boobo16boobo16boo\$29bobbo19boo5bobbo16bobbo6bo9bobbo3bo12bo
bbo3bo\$30boo20bobo5boo18boo6bo11boo3bobo12boo3bobo\$52bo32boob3o13bobbo
16bobbo\$48boo34bobo18boo8boo8boo\$48bobo35bo29boo10b3o\$48bo66bo12bo\$
129bo!``````

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

mniemiec wrote:
Extrementhusiast wrote:This removes the dependency of #268 on #187, via a method like that of #260 and #336:
Extrementhusiast wrote:#187, again using the same general method:
I can get to the spark-coil with eater, but I'm not sure how to get from the eater to the snake, as the usual method involves a glider passing through the other half of the spark coil.
Then use the eater:

Code: Select all

``````x = 29, y = 66, rule = B3/S23
16bobo\$16b2o\$17bo\$11bobo\$12b2o\$12bo3\$14bo\$13bobo8bo\$2bo11b2o8bobo\$obo
5bo15b2o\$b2o6b2o3b2o2b2o\$4b2o2b2o4bo3bobo\$3bobo9b3o2bo\$5bo10bo3b2o4b3o
\$16bo9bo\$15b3o9bo\$14bo3bo\$14b2ob2o4\$12b3o3b3o\$14bo3bo\$13bo5bo4\$7b3o\$9b
o\$8bo9\$12bo\$12bobo\$12b2o2\$9bo\$7bobo6bo\$8b2o5bobo\$14bobo7bo\$14bo8bo\$9b
2o4bo7b3o\$9b2o3b2o2b2o\$14bo3bobo\$15b3o2bo5b2o\$4b2o3b2o5bo3b2o4bobo\$5b
2obobo5bo9bo\$4bo3b2o5b3o\$14bo3bo\$14b2ob2o3\$13b2o3b2o\$12bobo3bobo\$14bo
3bo\$6b3o\$8bo\$7bo!
``````
EDIT:
mniemiec wrote:It might also be possible to somehow get to #244 by adapting the synthesis of 20.5655:

Code: Select all

``````x = 122, y = 22, rule = B3/S23
79bo16bo\$10bo69bo14bo\$9bo68b3o14b3o\$9b3o\$7bo106b2o4b2o\$8bo66b3o20b3o
13bo2b2o2bo\$6b3o18b2o18b2o18b2o8bo3b3o3b2o3b3o3bo16b2o2b2o\$bo12bo12b2o
18b2o18b2o7bo6bo3b2o3bo6bo16bo2bo\$2bo10bo68bo10bo20bo6bo\$3o10b3o9bo4bo
14bo4bo14bo4bo14bo4bo23b2o4b2o\$24bobo2bobo12bobo2bobo12bobo2bobo12bobo
2bobo\$3b3o4b3o11bobo2bobo12bobo2bobo12bobo2bobo12bobo2bobo\$5bo4bo14bo
4bo14bo4bo14bo4bo14bo4bo\$4bo6bo68b2o12b2o\$40bo40b2o10b2o\$41bo38bo14bo\$
39b3o22bo19bo\$63bobo17bobo4b2o\$42b3o18bobo17bobo5b2o\$44bo19bo14b3o2bo
5bo\$43bo37bo\$80bo!``````
Sure enough:

Code: Select all

``````x = 68, y = 35, rule = B3/S23
4bo\$5bo8bobo\$3b3o9b2o9bo\$15bo8b2o\$25b2o2\$44bo\$35b2o7bobo3bo8b2o\$35bo2b
2o4b2o4bobo6bo2b2o2b2o\$15b2o19b2o2bo9b2o8b2o2bo2bo\$15b2o20bo2bo6b2o12b
o2b2o\$3o32bo5b2o4bobo9bo\$2bo3b3o4bo21b2o5bo4bo11b2o\$bo6bo3bobo3b2o22bo
bo\$7bo4bobo2bobo19bo3b2o\$13bo4bo20b2o\$38bobo2\$25b2o\$5b2o5bo5b2o5bobo\$
6b2o3bobo4bobo4bo\$5bo5bobo4bo\$12bo2\$18b3o\$4b3o11bo2bo\$6bo11bo\$5bo12bo\$
19bobo4\$26b2o\$26bobo\$26bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

By slightly altering the key step for #248, we can start from #305 and get #365 from 53 gliders:

Code: Select all

``````x = 106, y = 39, rule = B3/S23
5bobo\$6boo\$6bo\$\$4bo\$bbobo\$3boo4\$37bo\$36bo\$24boo10b3o15boo28boo18boo\$
19boobbobo27bobo12bo14bobo17bobo\$19bobbo29bo13bobo5bo7bo19bo\$20booboo
26boboo12boo6boo4boboo16boboo\$21bobbo26bobbo15boobboo5bobbo16bobbo\$21b
obo26boobo15bobo8boobo16boobo\$22bo29bo18bo10bo16bobbo\$50boo28boo18boo\$
50bo29bo\$52bo29bo\$51boo28boo\$76bo\$76boo\$75bobo7boo\$85bobo\$3o3b3o76bo\$
bbo5bo\$bo5bo3\$20bobo\$20boo\$21bo\$13bo\$14boo4boo\$13boo5bobo\$20bo!
``````

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#120 from a trivial variant of #329:

Code: Select all

``````x = 545, y = 34, rule = B3/S23
383bo14bo\$383bobo13bo97bo\$383b2o12b3o96bo\$496b3o\$254bobo22bobo98bo105b
o\$191bobo60b2o23b2o25bo72b2o105bobo\$113bo77b2o62bo24bo3bo20bo38bo34bob
o104b2o\$111b2o48bo30bo48bo42bobo18b3o37b2o\$76bo35b2o45bobo77bobo42b2o
17bo40b2o31b2o\$75bo33bo50b2o3bo44bo29b2o3bobo53bobo72bobo102bo\$53bo21b
3o29b2o54b2o23b2o7bo13bo34b2o54b2o74bo48b2o27b2o15b2o4bobo5b2o\$52bo20b
o34b2o54b2o22bobo4b2o12b3o29bo4bo27b2o74b2o36b3o36bo28bo15b4o4b2o5bo\$
52b3o19bo115bo5b2o28b2o12bobo10b2o18bobo30b2o28bo12bo2bo27b2o6bo39bo
28bo14b2ob2o11bo18b2o\$26bo45b3o26b2o78bobo6b2o7b2o11b3o11bo2bo10bobo
10bo2bo16bo4bo5bobo19bo2bo27bo12b3o27b2o7bo37b2o27b2o16b2o11b2o19b2o2b
o\$4bo15bo4bo75b2o79b2o15bobo12bo12b3o11bo12b3o17b5o5b2o21b3o25b3o4bobo
14bobo80bo64bo4bobo\$5bo12bobo4b3o27bo121b2o3bo16bo13bo71bo57b2o5b3o6b
2o17b4o43b4o11bobo11b4o27b4o23b2o6b2o19b2o\$3b3o13b2o19b2ob2o9b2o11b2ob
2o23b2ob2o34b2ob2o10bobo9b2ob2o12b2o7b2ob2o33b3o12b2o10b3o19b3o30b3o
33bo5bobobo6bo16bo2bobo31b2o2b2o4bo2bobo11b2o7b2obo2bobo22b2obo2bobo
26b2o2bobo12bob2o2bobo\$41bobobo8bobo11bobobo17bo5bobobo5bo28bobobo9b2o
11bobobo10bo10bobobo31bobobo10bobo9bobobo17bobobo9bo18bobobo27b3o8bo4b
o22bo5bo29bobob2o5bo5bo13b2o4b2obo5bo16b2o3b2obo5bo24bobo5bo11b2obo5bo
\$b2o38bo2bo23bo3bo15bobo5bo3bo5bobo26bo4bo9bo11bo4bo20bo4bo30bo4bo11bo
9bo4bo16bo4bo8bobo16bo4bo28bo9b4o7b2o15b5o32bo3bo5b5o13bobo8b5o17b2o7b
5o24bo3b5o16b5o\$obo17b3o2b2o15b2o25b3o17b2o6b3o6b2o28b4o23b4o22b4o32b
4o23b4o18b4o9b2o18b4o28bo20b2o18bo46bo17bo10bo30bo25bo6bo20bo\$2bo21b2o
25b3o127b2o169b2o8bo150b2o\$26bo24bo76bo7b2o27b2o15b2o7b2o34b2o25b2o20b
2o8bo22b2o41b2o2b2o121b2o\$52bo16b3o25b3o13bo12bobo7bobo26b2o14bo9b2o
34b2o25b2o20b2o7b2o22b2o45b2o121bobo2b2o29bo\$68bo3bo23bo3bo12bobo11b2o
8bo47b2o98bobo191bo4bobo28b2o\$68b2ob2o23b2ob2o8b2o2b2o62b3o5bobo288b2o
6bo29bobo\$108b2o6b2o11b3o47bo5bo163bo12b2o111bobo\$110bo5bobo12bo46bo
170b2o4b2o4b2o114bo\$39b2o75bo13bo14b3o200bobo5b2o5bo\$38bobo104bo209bo\$
40bo64b2o39bo\$94b2o9bobo23b2o\$45b2o48b2o8bo24bobo\$45bobo46bo37bo\$45bo!
``````
However, there is the possibility of using this predecessor to dramatically reduce the cost:

Code: Select all

``````x = 17, y = 11, rule = B3/S23
14bo\$12b2o\$14bo\$6bo4bo3bo\$4bo2bo2b3o2b2o\$o3b3o2b2obo3bo\$10b2o\$b2o\$b3o
10b2o\$2b2o8b2o\$12bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

This brings us down to just 17 more to go (plus 5 additional trivial variants formed by adding a snake-to-carrier conversion).

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

mniemiec wrote:This brings us down to just 17 more to go (plus 5 additional trivial variants formed by adding a snake-to-carrier conversion).
Since we have so few left, I've decided to compress the table, by removing all empty rows.

EDIT: #218 from a 12-bitter:

Code: Select all

``````x = 148, y = 33, rule = B3/S23
72bobo\$73b2o4bobo\$73bo6b2o\$75bo4bo36bo\$50bo24b2o11bo29b2o\$5bobo6bo33bo
bo23bobo10bo29b2o4bo\$6b2o4b2o35b2o3bo32b3o31bobo5bo\$6bo6b2o37b2o13b2o
10b2o13b2o26b2o3b2o\$53b2o13b2o9bobo11b2ob2o30b2o\$67bo13bo12b4o22bo\$obo
78b2o12b2o22bobo\$2o72bo45b2o18b2o\$bo11bo19b2o21b2o16b2o8b2o25bo10b2o
16bo2b2o\$12bobo14b2obo2bo16b2obo2bo14bobo4b2obo2bo22bobo8b2o2bo16b2o2b
o\$2b2o7bobobo14bobobobo16bobobobo21bobobobo22b2o2b2o5bobobo16bobobo\$3b
2o6bobo2bo11bobobobo2bo15bobobo2bo20bobobo2bo18b2o6b2o4bobo2bo15bobo2b
o\$2bo9bo2b2o11b2o3bo2b2o12b2obo2bo2b2o17b2obo2bo2b2o17bobo5bo7bo2b2o
16bo2b2o\$50bo2bo24bo2bo26bo\$51b2o26b2o2\$72b3o\$74bo\$33b2o38bo\$32b2o\$34b
o2\$29b2o\$28bobo\$30bo\$32b2o\$23b2o7bobo\$22bobo7bo\$24bo!
``````
EDIT 2: A pretty good partial for #350:

Code: Select all

``````x = 148, y = 34, rule = B3/S23
7bo\$8bo\$6b3o\$3bo22bo\$4bo19b2o87bo\$2b3o3bo16b2o84bobo\$9bo102b2o\$7b3o\$
88bo28bo\$86b2o22bo6bobo\$11b3o6bo66b2o19bobo6b2o\$18b2o16bo72b2o\$5b2o12b
2o16bo\$5bo29b3o89bo\$3bobo33b2o84b2o\$3b2o33bo2bo32b2o31b2o4b2o11b2o12b
2o\$7b2ob2o26bobobo31bobo14b2o14bobo3bobo24bobo\$7b2obo23b3o2bo2bo14bobo
16bo13bo2bo15bo5bo6bobo17bo\$11b3o22bo5b2o13b2o17b2o12bo2bo15b2o4b2o5b
2o18b2o\$14bo20bo9bo12bo20bo11b2o2b3o14bo10bo21b2o\$10bob2obo25bob2obo
28bob2obo14bo12bob2obo27bob2o2bo\$10b2obobo6b2o17b2obobo11b2o15b2obobo
15bo11b2obobo7b2o18b2obobo\$2o12bo6b2o22bo12bobo18bo32bo7b2o23bo\$b2o20b
o34bo63bo\$o80b2o31b2o\$47b3o31b2o31b2o\$47bo\$48bo71b3o\$44b3o73bo\$46bo74b
o\$45bo\$113b2o\$114b2o\$113bo!
``````
However, the eater then needs to be converted into a snake.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

Extrementhusiast wrote: A pretty good partial for #350: ... However, the eater then needs to be converted into a snake.
I had tried this approach too - it makes one of the hard 18s, but there's no obvious way to reduce the eater to a snake or even a carrier. One thing that looked more promising is using a hook-w/tail instead of an eater. The beehive-to-loaf converter does attack it, but it might be possible to get this attack to leave a snake and nothing else.

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#142 from a 17-bitter not on the list:

Code: Select all

``````x = 198, y = 35, rule = B3/S23
110bo\$110bobo\$95bo14b2o\$95bobo\$95b2o\$85bo20bo22bo\$86b2o16b2o21b2o\$85b
2o18b2o13bo7b2o\$121b2o\$62bo57b2o3bo\$36bo7bo18bo3bo27b2o26b2o\$37b2o3bob
o3bo12b3ob2o27bo2bo26b2o\$10bo25b2o5b2ob2o18b2o26bo2bo\$10bobo34b2o46b2o
\$10b2o3b2o23b2o40bo\$2bobo9bobo22bobo38bobo43b2o\$3b2o9bo2b2o20bo2b2o20b
o2b2o12b2o10bo2b2o27bo2bo2b2o17b2obo2b2o14b2obo2b2o12b2obo\$3bo9b2o3bo
18b3o3bo18b3o3bo22b3o3bo26bob3o3bo16bo2b2o3bo13bo2b2o3bo11bo2b2o\$12bo
2b3o18bo3b3o18bo3b3o15b3o4bo3b3o28bo3b3o12bo5bo3b3o14b2o3b3o2b3o7b2o3b
2o\$3o10bobo21b2obo21b2obo19bo5b2obo31b2obo15b2o4b2obo18b2obo4bo11b2obo
\$2bo11bo24bo24bo19bo8bo34bo15b2o7bo19bo2bo5bo10bo2bo\$bo4bo32bobo22bobo
26bobo32bobo22bobo18b2o18b2o\$7bo32b2o23b2o27b2o33b2o15bo7b2o\$5b3o138b
2o\$89b3o53bobo\$89bo62bo\$14b3o4bo68bo61b2o\$14bo5b2o129bobo\$15bo4bobo
134b2o\$157bobo\$157bo2\$23b2o\$23bobo\$23bo!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1450
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

Here are some possible predecessors for constructing #170 from the related 16. (This could also be used to turn one side of a house into a tub, although there are already much cheaper ways to do that.)

Code: Select all

``````x = 32, y = 43, rule = B3/S23
9b3o\$9b3o\$9b3o\$9b3o\$oobboo3b3o8boobboo\$obobbo3b3o8bobobbo\$bboo5b3o10b
oo\$obbobo3b3o8bobbobo\$oobboo3bo10boobbobo\$25bo\$4b7o\$bb4oboboo18boo\$bb
7o20boo\$7bo\$6bo15\$10bo\$10bo\$10bo\$10bo\$10bo\$oobboo4bo9boobboo4boo\$obobb
o4bo9bobobbo4boo\$bboo6bo11boo\$obbobo4bo9bobbobo\$oobboo4boo8boobbobo\$
10boo13bo4bo\$4b4o21bobo\$3bo3bob3o17boo\$boo6boobo!``````

Extrementhusiast
Posts: 1944
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

While messing around with one of the 16-bitters, I found this line:

Code: Select all

``````x = 432, y = 52, rule = B3/S23
294bo\$294bobo\$294b2o2\$275bo\$273bobo\$274b2o97bo\$42bo329bo\$40bobo253bo
31bo43b3o\$41b2o253bobo30bo\$296b2o29b3o23bo\$52bo18bo115bo143bo22bo\$52bo
bo14b2o117bo26bobo112bo21b3o11bo\$10bo32bo8b2o8bo7b2o114b3o12bo14b2o12b
o99b3o34bo\$11bo29bobo19b2o135bo15bo12bo135b3o\$9b3o30b2o18b2o3bo121bo
10b3o26b3o36bo35bobo62bo\$33bo31b2o122b2o7bo70bo35b2o21bobo37bo\$34b2o
30b2o120bobo8bo17bo3bo45b3o35bo23b2o8bo28b3o\$33b2o132bo29b3o18bobobo2b
2o46bo55bo7b2o26bo\$16bo119bo29bo49b3o2b2o2b2o44bobo64b2o26bo\$15bo119bo
30b3o22b3o78b2o90b3o\$15b3o50b2o22b2o32b2o7b3o22b2o31bo57bo31bo42b2o42b
2o4bo28b2o4bo11b2o4bo\$10bo35bo20bo2bo19bo2bo30bo2bo30bo2bo2b2o26bo6bo
18bo7bo23bobo29bobo16b2o2b3o19bo3bob2o36bo3bobo21bo6bo3bobo11bo3bobo\$
8b3o7b2o24b3o20b3o20b3o31b3o31b3o2b2o34b3o17b2o5b3o21bob3o27bob3o15b2o
bo21bob3obo2bo34bob3obo22bo5bob3obo11bob3obo\$7bo10bobo22bo21b2o21b2o
32b2o32b2o7bo31b2o3bo15b2o4b2o3bo21bo3bo27bo3bo13bo4bo21bo3bo2b2o35bo
3bo10bo10b3o6bo3bo13bo3bo\$7bob2o7bo24bob2o18bo2b2o18bo2b2o29bo2b2o29bo
2b2o36bo2b2o22bo2b2o24b2o17b2o11b2o43b2o42b2o9b2o22b2o16b2o\$8b2obo24bo
7b2o2bo18b2o2bo18b2o2bo29b2o2bo29b2o39b2o25b2o24b2o19b2o9b2o43b2o42b2o
11b2o20b2o16b2o\$11bo22bobo10b2o21b2o21b2o32b2o4b2o26bo40bo26bo17bo7bo
16bo10bo3bo40bo3bo6b3o11bo4bo13bo3bo26b2o2bo3bo13bo3bo\$8b3o24b2o7b3o
20b3o20b3o31b3o5b2o24b3obo36b3obo22b3obo17b2o2b3obo27b3obo40b3obo5bo
14bob2o15b3obo25bo2bob3obo11bob3obo\$8bo34bo2bo19bo2bo19bo2bo6bo23bo2bo
7bo22bo2bobo35bo2bobo21bo2bobo16b2o2bo2bobo29bobo42bobo6bo11b3o2b2o16b
obo27b2obo3bo11bobo3bo\$37b3o4b2o21b2o20b2o7bo24b2o32b2o2bo36b2o2bo12b
3o7b2o2bo21b2o2bo31bo4b3o37bo43bo35b2o11bo4b2o\$39bo58b3o116bo26b3o45bo
93b2o\$38bo87b2o2b2o2b3o20b2o57bo29bo46bo92bobo11b2o\$20b2o70b3o31b2o2bo
bobo22b2o86bo44b2o94bo14b2o7bo\$19b2o48b2o21bo8bobo17bo9bo3bo153bobo62b
o35b3o7bo8b2o\$21bo48b2o21bo7b2o18b2o34b2o132bo61b2o35bo18bobo\$11b2o31b
o24bo3b2o14b3o10bo17bobo34b2o194bobo35bo\$11bobo29b2o27b2o17bo44bo\$b2o
8bo31bobo19b2o7bo15bo12b3o29b2o17b3o5b3o242b3o\$obo63b2o35bo18b3o10bobo
18bo5bo142b3o2b3o96bo\$2bo62bo38bo17bo32bo7bo141bo4bo97bo\$123bo182bo4bo
50b2o46b3o\$12b2o105b3o239bobo46bo\$12bobo106bo241bo47bo\$12bo107bo\$384b
2o\$384bobo\$384bo2\$364b2o\$363bobo\$365bo!
``````
Another, shorter line:

Code: Select all

``````x = 65, y = 15, rule = B3/S23
40bo\$15bo25bo2bo\$13bobo23b3obo\$14b2o2b2o23b3o\$17b2o\$7b2o10bo13b2o4b2o
15b2o2bo\$7bo2bob2obo17bo2bobo2bo14bo2bobob2o\$4b2obob2obob2o14b2obob2ob
ob2o11b2obob2obob2o\$4bob2obo2bo17bo2bobo2bo14b2obobo2bo\$o10b2o18b2o4b
2o18bo2b2o\$b2o\$2o2b2o20b3o\$4bobo21bob3o\$4bo22bo2bo\$31bo!
``````
These might give some ideas for #170.

EDIT: #341 from the recently-synthesized trice tongs siamese loaf siamese tub:

Code: Select all

``````x = 21, y = 19, rule = B3/S23
2b2o\$bo2bo\$obob3o\$bobo3bo6bobo\$3bo2bo7b2o\$3bob2o8bo2b3o\$4bo2b2o9bo\$7b
2o10bo4\$14b3o\$14bo\$15bo3\$7b3o\$9bo\$8bo!
``````
EDIT 2: #190 from a trivial 25-bitter:

Code: Select all

``````x = 447, y = 110, rule = B3/S23
bo\$2bo\$3o13\$25bo\$26bo23bo\$24b3o21bobo\$49b2o34bo\$85bobo\$61bo23b2o\$62b2o
17bo\$61b2o18bobo\$81b2o6\$16bo\$14bobo41bobo\$15b2o41b2o\$59bo4b2o\$18bobo
44bo\$19b2o43bo\$19bo43bo\$62bo5bo\$61bo5bo\$48bo11bo6b3o\$48bobo8bo12bo\$48b
2o8bo13bobo\$57bo14b2o\$10bobo43bo\$11b2o42bo\$11bo42bo\$53bo\$52bo\$51bo\$50b
o79bo\$49bo81b2o\$48bo57bo23b2o32bo198bo\$47bo56bobo55bobo197bo\$46bo58b2o
25bo30b2ob2o66bo7bo119b3o\$45bo86b2o6bobo23bobo66b2o5bobo115bo\$44bo63bo
bob4o15bobo6b2o24bo31bo35b2o3bo2b2o114bobo71bo\$43bo58bobo3b2o2bo3bo24b
o19b2o34bobo12bo25bobo118b2o71bobo\$42bo60b2o4bo2bo15b2o5bo24bobo33bob
2o5bobo4bobo22bob2o5bo123bo61b2o\$41bo61bo9bo2bo12b2o3bobo7b2o14bo35bo
8b2o5b2o23bo8bobo121bobo53bobo\$41b2o85bo6b2o7bobo12b2o34b2o9bo29b2o8b
2o122b2o19bo35b2o\$46b2o52b2o5b2o28b2o5bo16b2o34b2o39b2o4bo25b2o32b2o
24b2o24b2o21b2o11b2o7b2o16b2o6bo13b2o\$33b3o2b2o6bo54b2o4bo2bo26bo2bo
20bo2bo32bo2bo37bo2bobobo2b3o18bo2bob2o27bo2bob2o19bo2bob2o19bo2bob2o
16bo2bob2o6b2o7bo2bob2o11bo2bob2o15bo2bob2o\$37bo2bo2b2obo53bo4b2o2b2o
24b2o2b2o18b2o2b2o30b2o2b2o35b2o2b2ob2o3bo5b3o11bo2b2ob2o26bo2b2obobo
17bo2b2obobo17bo2b2obobo14bo2b2obo15bo2b2obo4bo6bo2b2obo15bo2b2obo\$38b
2o4bob2o56bo2b2o25bo2b2o19bo2b2o31bo2b2o31bo4bo2b2o9bo4bo14b2o32b2o5bo
18b2o5bo18b2o5bo15b2o4bo8bo6b2o4bo3bo7b2o4bo2b2o11b2o3bo\$40b4o60b2o3b
4o21b2o3b4o15b2o3b4o27b2o3b4o6bo20b2o3b2o3b5o10bo15b5o29b5o7bo13b5o21b
5o18b4o8b2o8b4o4bo9b4o2bo2bo12b3o\$40bo68bo2bo26bo2bo20bo3bo31bo3bo5bob
o2bo14bobo8bo4bo25bo4bo2bo25bo10bo14bo18bobo4bo22bo11bobo7bo17bo6bobo
12bo\$41bo68bo55b2o3bo30bobo4b2o2b2o28bobo28bobo2bobo26b2o6b3o14bo17b2o
6bo21bo21bo6b2o9bo6bo\$38b3o66b3o60bo31b2o9bobo17b3o7b2o29b2o3b2o27b2o
22b2o17bo6b2o22bo21bo5bobo9bo\$38bo68bo62b3o62bo147bo21bo4bo12bo\$234bo
43b2o102b2o20b2o16b2o6b3o\$110b3o55b3o107bobo149bo\$110bo32b2o25bo107bo
22b3o58b2o5b2o60bo\$107b2o2bo31bobo23bo133bo32b3o23b2o5bobo49b2o\$106bob
o26b2o6bo158bo11b2o20bo32bo50b2o\$108bo25bobo177bobo20bo84bo\$136bo167b
3o7bo18b3o18bo\$304bo30bo18b2o\$144b2o155bo3bo28bo18bobo\$143b2o156b2o\$
43bo101bo154bobo\$44bo\$42b3o23b3o\$68bo\$14b2o53bo\$13bobo292b2o\$15bo291b
2o\$309bo3\$5b2o\$4bobo\$6bo3\$43bo\$43b2o\$27b2o13bobo\$28b2o\$27bo8\$15b2o\$16b
2o\$15bo13b2o\$30b2o\$29bo!
``````
The portion that places the boat at the bottom could probably be improved by another two gliders.

EDIT 3: #186 from a known 22-bitter:

Code: Select all

``````x = 43, y = 55, rule = B3/S23
34bo\$33bo\$33b3o7\$32bo\$31bo\$31b3o6\$14bo10bo\$7bo7bo8bo\$8bo4b3o8b3o\$6b3o
2\$40bo\$bo8bobo26bo\$2bo8b2o26b3o\$3o8bo\$4b3o\$6bo\$5bo2\$22b2o\$22bo\$23bo2b
2o\$24bo2bo\$22bob3o\$21bobo\$21bobob2o\$6b3o9bo3b2ob2o\$8bo8bobo\$7bo9bo2bo\$
18b2o17b2o\$36b2o\$38bo4\$22bo14b2o\$8b2o12b2o13bobo\$7bobo11bobo13bo\$9bo2\$
18b3o\$20bo19b3o\$19bo20bo\$41bo!
``````
EDIT 4: #361 from a trivial 20-bitter:

Code: Select all

``````x = 132, y = 38, rule = B3/S23
108bo\$108bobo\$108b2o\$78bo15bo\$79bo13bo\$9bo67b3o13b3o9bo\$7bobo81bo12bo\$
8b2o79bobo12b3o\$90b2o3\$88bo\$87bobo\$87b2o\$4bo7b2o80b2o\$5b2o5b2o2bo2bo
23bo46bo2bo2bo\$4b2o10b4o21b3o44b3o2b4o27b2o\$2o38bo46bo36bo\$b2o15b2o2b
2o17b3o2b2o12bobobo23b3o2b2o30b3o2b2o\$o16bobo3bo19bo3bo42bo3bo32bo3bo\$
17bo2b3o5bo15b3o44b3o34b3o\$18bobo5b2o14bobo44bobo34bobo\$6b2o11bo7b2o
13b2o45b2o35b2o\$7b2o\$6bo\$12bo91b2o\$11bobo6b2o82bobo\$12bo7bobo81bo\$20bo
\$16b3o\$18bo71b3o\$17bo74bo\$91bo3\$110b2o\$110bobo\$110bo!
``````
EDIT 5: #350 from the suggested predecessor:

Code: Select all

``````x = 24, y = 39, rule = B3/S23
10bo\$9bo\$9b3o6\$7b2ob2o\$7b2ob2o3\$2bo\$bobob2o\$o2b2obo\$b2o\$2bob2o\$bo2b2o\$
b2o2\$16bo\$15b2o\$15bobo5\$9bo\$8bobo\$b3o5b2o2b2o\$3bo8b2o\$2bo11bo5\$22b2o\$
21b2o\$23bo!
``````
EDIT 6: #292 from #294, which is already solved:

Code: Select all

``````x = 45, y = 50, rule = B3/S23
15bo\$13bobo\$14b2o5\$42bo\$24bo17bobo\$24bobo15b2o\$24b2o2\$25bo\$24b2o\$24bob
o4\$bo\$2bo10b2o\$3o9bo2bob2o\$5bo6bobo3bo\$6bo6bob2o\$4b3o8bo3bo\$13bobo2bob
o\$13b2o3b2o\$36b2o\$35b2o\$16b2o19bo\$16b2o16\$21b3o\$21bo2bo\$21bo\$21bo\$22bo
bo!
``````
I Like My Heisenburps! (and others)