Here's a
p10. As it's a pentadecathlon hassler, it should be possible for 10+15n given the right sparkers, but I can't get it to work with Beluchenko's p40.
Code: Select all
x = 19, y = 26, rule = B3/S23
4b2o4b2o$4bobo2bobo$6bo2bo$5bo4bo$5b2o2b2o$7b2o4$2o6b3o6b2o$o2b3o2bobo
2b3o2bo$b2o5b3o5b2o$6bob3obo$6bob3obo$b2o5b3o5b2o$o2b3o2bobo2b3o2bo$2o
6b3o6b2o4$10b2o$8b2o2b2o$8bo4bo$9bo2bo$7bobo2bobo$7b2o4b2o!
p16 phi spark hassler
Code: Select all
x = 33, y = 37, rule = B3/S23
13b2o3b2o$12b2obobob2o$11b3obobob3o$10bo3b2ob2o3bo$10bo11bo$11bo9bo2$
14b2ob2o$13bobobobo$14bo3bo2$5b2o$4bo2bo$5bo2bo5b2o10b2o$bo6bo4bo11bo
2bo$obo3bo2bo4b3o7bo2bo$b2o3b3o6bo8bo6bo$23bo2bo3bobo$b2o3b3o15b3o3b2o
$obo3bo2bo$bo6bo8bo6b3o3b2o$5bo2bo7b3o4bo2bo3bobo$4bo2bo11bo4bo6bo$5b
2o10b2o5bo2bo$25bo2bo$26b2o2$14bo3bo$13bobobobo$14b2ob2o2$11bo9bo$10bo
11bo$10bo3b2ob2o3bo$11b3obobob3o$12b2obobob2o$13b2o3b2o!
The two most likely to be completed partials:
A p120 Z-hexomino flipper. Banana sparks are shown; a few other configurations work. Works at any compatible period 6+ except 15 (it interferes at generations 45 and 52, preventing 5 and 4 respectively).
Code: Select all
x = 17, y = 10, rule = B3/S23
o15bo$o15bo$bo2b2ob2o6bo$3bo3b2o$3bo3bo3b2o$4b2o3bo3bo$8b2o3bo$bo6b2ob
2o2bo$o15bo$o15bo!
p5 (or p7) obo sparker needed. That's it. (p35)
Code: Select all
x = 53, y = 19, rule = B3/S23
38bo$37bobob2o$37bobob2o$24bobo9b2obo8b2o$36bo2b4o5bo$b2o4b2ob2o13b2o
3b2o5b2o3bo6bo$2bo4bob2obo11b3o3bobo3bo2b3o6b2o$2bob2obo4bo11bo11b2obo
2bo2b2o3b2o$2o2bobob4ob2o10b4o3bo4bobo2bo5b2o2bo$bobo2bobo4bobo5b4o3b
4o5bobo4bobo2bobo$o2b2o5bo2bobo4bo3b4o10b2ob4obobo2b2o$b2o3b2o2bo2bob
2o11bo11bo4bob2obo$3b2o6b3o2bo3bobo3b3o11bob2obo4bo$3bo6bo3b2o5b2o3b2o
13b2ob2o4b2o$4bo5b4o2bo$3b2o8bob2o9bobo$10b2obobo$10b2obobo$14bo!
Other partials:
p15; the tricky part is the generation before the spark
Code: Select all
x = 19, y = 16, rule = B3/S23
3o3bo$bo$bo5b3o$3o7b2o$10b2o4b3o$3o7b2o5bo$3o4b3o7bo$9bo6b3o$3o6bo$bo
7b3o4b3o$bo5b2o7b3o$3o4b2o$7b2o7b3o$9b3o5bo$17bo$12bo3b3o!
p21
Code: Select all
x = 47, y = 18, rule = B3/S23
14bo$10b2obobo$10b2obobo8b2o$3b2o8bob2o$4bo5b4o4bo4bo11b2ob2o4b2o$3bo
5bo4b3obo4b2o9bob2obo4bo$3b2o2b3o2b2o4bo5bo9bo4bob2obo$b2o3bob2obobob
2o5b2o8b2ob4obobo2b2o$o2b2obob2o2b2obo6b3o6bobo4bobo2bobo$bobo2bobo4bo
bo6b3o6bob2o2b2obob2o2bo$2o2bobob4ob2o8b2o5b2obobob2obo3b2o$2bob2obo4b
o9bo5bo4b2o2b3o2b2o$2bo4bob2obo9b2o4bob3o4bo5bo$b2o4b2ob2o11bo4bo4b4o
5bo$30b2obo8b2o$21b2o8bobob2o$31bobob2o$32bo!
p24
Code: Select all
x = 16, y = 40, rule = B3/S23
7b2o$3b2obobo$4bobo$4bobo$3b2o3bob2ob2o$2bo3b4obobo$3b3o3bo3bo$6b4ob2o
$3b2obo$2bobo2bo2b5o$2bo3bo3bo4bo$3b3o6b3o$5bob4obo$6b6o$7b4o3$7b2o$6b
o2bo$6bo2bo$4bobo2bo$4bo2b2o4$5b4o$4b6o$3bob4obo$b3o6b3o$o4bo3bo3bo$b
5o2bo2bobo$9bob2o$3b2ob4o$2bo3bo3b3o$2bobob4o3bo$b2ob2obo3b2o$9bobo$9b
obo$7bobob2o$7b2o!
p26
Code: Select all
x = 39, y = 32, rule = B3/S23
5bo$3b5o$2bo5bo$2bo2b3o13b2o$b2obo16bo$o3b2o13bobo$bobo2b2o7b2ob3o$2ob
5o6bo2b2o$8bo4b6o$2ob5o6bo2bo$bobo2b2o7b2o$o3b2o$b2obo13bobo$2bo2b3o8b
2o$2bo5bo6bob2ob3o$3b5o7bo5b3obo7bo$5bo7bob3o5bo7b5o$16b3ob2obo6bo5bo$
21b2o8b3o2bo$18bobo13bob2o$33b2o3bo$22b2o7b2o2bobo$21bo2bo6b5ob2o$20b
6o4bo$20b2o2bo6b5ob2o$18b3ob2o7b2o2bobo$17bobo13b2o3bo$17bo16bob2o$16b
2o13b3o2bo$30bo5bo$31b5o$33bo!
p45
Code: Select all
x = 21, y = 37, rule = B3/S23
4b6o$3bo6bo$2bo8bo$3bo6bo$4b6o3$19b2o$19bo$6bob3o6bobo$8bobo6b2o$8bo2b
o$9bobo$9b3o10$9b3o$9bobo$9bo2bo$2b2o6bobo$bobo6b3obo$bo$2o3$11b6o$10b
o6bo$9bo8bo$10bo6bo$11b6o!
p48 flipper
Code: Select all
x = 21, y = 22, rule = B3/S23
o19bo$3o15b3o$3bo13bo$2b2o13b2o$9bo$7bo2bo$6b2ob2o$5bo3bo$5b2obo$3bo2b
ob2o$3bo3b2o$12b2o3bo$11b2obo2bo$12bob2o$11bo3bo$10b2ob2o$10bo2bo$11bo
$2b2o13b2o$3bo13bo$3o15b3o$o19bo!
p120 flipper
Code: Select all
x = 45, y = 38, rule = LifeHistory
2A3.A2.A3.2A17.2A3.A2.A3.2A$5A4.5A17.5A4.5A$2A3.A2.A3.2A17.2A3.A2.A3.
2A$19.2C.C.2C2$21.A2.2A$3.2A4.2A9.A13.2A4.2A$2.A8.A8.2A4.A6.A8.A$.A2.
A4.A2.A9.3A.A5.A2.A4.A2.A$2.A8.A7.3A.2A8.A8.A$3.2A4.2A9.2A12.2A4.2A2$
18.A$19.A$23.A$23.A7$21.A$21.A$25.A$26.A2$3.2A4.2A12.2A9.2A4.2A$2.A8.
A8.2A.3A7.A8.A$.A2.A4.A2.A5.A.3A9.A2.A4.A2.A$2.A8.A6.A4.2A8.A8.A$3.2A
4.2A13.A9.2A4.2A$19.2A2.A2$19.2C.C.2C$2A3.A2.A3.2A17.2A3.A2.A3.2A$5A
4.5A17.5A4.5A$2A3.A2.A3.2A17.2A3.A2.A3.2A!
p139 which is prime but emits
six gliders that could be reflected
Code: Select all
x = 39, y = 48, rule = B3/S23
9bo$8bobo$8bobo$9bo12$14bo$13b3o$12bo3bo20b2o$12bo3bo6bo13bo$12b2o3bo
4b3o10bobo$12b3o6bo3bo9b2o$9bob2o2b2ob3o4bo$11b5o2b3obo3bo$13b2o6b3ob
2o$12b2ob3o6b2o$12bo3bob3o2b5o$13bo4b3ob2o2b2obo$2b2o9bo3bo6b3o$bobo
10b3o4bo3b2o$bo13bo6bo3bo$2o20bo3bo$23b3o$24bo12$29bo$28bobo$28bobo$
29bo!
This was originally a p187 gun, but it doesn't work at p11. However, the junk shown simply needs to become a specific pi cousin in 5 generations; once we have something that does that plus a working sparker at the top and bottom (it's going to need to be high-period because the loaf stays there for a while), we can have a glider gun of whatever period was found.
Code: Select all
x = 24, y = 37, rule = B3/S23
7bo2$8b2o$7bo2bo$8bobo$9bo3b2o$13bobo$14bo$7b2o$6bo2bo$5b3ob2o$6b2ob2o
$7b2obo$8b2o$7b2o$6b2o$6b2o14bo$21bobo2$obo$bo14b2o$16b2o$15b2o$14b2o$
13bob2o$13b2ob2o$13b2ob3o$14bo2bo$15b2o$9bo$8bobo$9b2o3bo$13bobo$13bo
2bo$14b2o2$16bo!
User:HotdogPi/My discoveries
Periods discovered: 5-16,⑱,⑳G,㉑G,㉒㉔㉕,㉗-㉛,㉜SG,㉞㉟㊱㊳㊵㊷㊹㊺㊽㊿,54G,55G,56,57G,60,62-66,68,70,73,74S,75,76S,80,84,88,90,96
100,02S,06,08,10,12,14G,16,17G,20,26G,28,38,44,47,48,54,56,72,74,80,92,96S
217,300,486,576
S: SKOP
G: gun