For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

dvgrn wrote:
Dean Hickerson wrote:... it could just as easily have been p19...
Not quite as easily, right? Is there some kind of power law governing how likely it is that a period-N oscillator will show up in a drifter search -- similar to the law governing the appearance of N-bit still lifes on Catagolue?
I haven't done any statistical analysis, but my sense is that large period oscillators show up less often than low period ones. There's one exception: Period 2 oscillators are very rare in drifter searches, much less common than p3 or p4. I don't know why.
Maybe more interesting, is there an even-odd bias like the one for N-bit still lifes, that would make p19 relatively less likely?
I haven't noticed anything like that. P.S.: Actually that's not true. Sometimes an oscillator will have a section with a lower period. For example, the p6 oscillator that I just posted in a reply to Scorbie (below) has 5 p3 cells which are needed to make it work. So probably composite periods are more common than nearby prime periods. It's not just an even-odd thing; I've also seen p9s supported by p3 parts.
Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done?
I did a lot of them many years ago, as soon as I found the single 2c/3 to double 2c/3 turn. My copy of the knownrotors file has 33 "sep-3 fizzles" in it. The names of them refer to the pattern below; e.g. "sep-3 fizzle 0.4" means the one in the top row, rightmost column. (I don't remember why 2.2 is missing or why some lower rows have fewer than 5 patterns.)

Code: Select all

``````x = 140, y = 232, rule = B3/S23
6bo2bo19bo2bo18bo2bo18bo2bo15bo2bo\$4b6o17b6o16b6o16b6o13b6o\$3bo19b2obo
18b2obo18b2obo15b2obo\$3bobob5o11b2obobob5o10b2obobob5o10b2obobob5o7b2o
bobob5o\$2obobo6bo13bobo6bo12bobo6bob2obo7bobo6bo9bobo6bo\$2obobobob4o
13bobobob4o12bobobob4obob2o7bobobob4o9bobobob4o\$4b2obo7b2o10b2obo18b2o
bo18b2obo15b2obo7bo\$7bo2b6o14bo2b5ob2o11bo2b4o15bo2b5o11bo2b8o\$7bobo7b
o12bobo4bob2o11bobo4bo14bobo4bo11bobo8bo\$6b2obo2b6o11b2obo2bobo13b2obo
2b2o2bo11b2obo2bo12b2obo2b6o\$9bobo20bobob2o12bo3b2o2bob2o14bobob4o11bo
bo\$9bobo2b4o14bobo15b2obo4bo17bobo4bo11bobo2b4o\$10b2obo4bo14b2o16bob2o
bobo15b2o3b4o13b2obo4bo\$13bo2b2obo31bo2bob2o16bo24bobo2bo\$13bobo3bo32b
2o21bo3b2o18b2obob2o\$14bo2b2o55b2o3b2o21bo2bo\$15b2o85b2o\$16bo\$15bo\$15b
2o3\$6bo2bo22bo2bo22bo2bo22bo2bo19bo2bo\$4b6o20b6o20b6o20b6o17b6o\$2obo
22b2obo22b2obo22b2obo19b2obo\$2obobob5o14b2obobob5o14b2obo2b6o14b2obobo
b5o11b2obobob5o\$3bobo6bob2o13bobo6bo2b2o12bobo6bo16bobo6bo13bobo6bo\$3b
obobob4ob2o13bobobob4o2b2o12bobobob4o2bo13bobobob4o3b2o8bobobob4o3b2o\$
4b2obo22b2obo22b2obo7b3o12b2obo7bo2bo8b2obo7bo2bo\$7bo2b6o17bo2b7o16bob
ob4o3bo14bo2b6o2bo11bo2b6o2bo\$7bobo6bo16bobo7bo15bobo6b2obo13bobo6b2o
12bobo6b2o\$6b2obo2b5o15b2obo2b6o14b2obo2b4obobo12b2obo2b3o14b2obo2b3o\$
9bobo23bobo9b2o12bobo5bobobo13bobo3b3o14bobo3b3o\$6b2obobo2b5o16bobo2b
4o4bo12bobo2b4o2bobo12bobo2bo3bobo11bobo2bo3bobo\$6b2obobobo4bo15b2obob
o4bobo15b2obo4bobobo11b2obobo2b2ob2o10b2obobo2b2ob2o\$10b2obobo2bob2obo
13bobobo2bob2o17bo2b2obobo14bobob2obo15bobob2obo\$14bobobobob2o13bo2bob
obobo2bo15bobo3bo16bobo4bo15bobo4bo\$16bobo8bo8b2o4bobo3b2o16bo2b2obo
14b2obob3o14bobobob3o\$16bo2bo7b3o12bo2bo21b2o3bo15bo2bo16bobo3bo\$17b2o
11bo12b2o24b3o14bobo3b3o13bo2b2obob2o\$29bo2bob2o33bo16b2o6bo12b2o4bo2b
o\$28bob3obobo76bobo2bo\$16b2o11bo4bobo2bo2b2o70b2ob2o\$16b2o12b5ob4o2b2o
73bo\$35bo81bobo\$32b2o2b2ob5o74b2o\$32bo4b2o4bo\$30bobo2bo4bo\$30b2o3b6o2\$
37b2o\$37b2o3\$6bo2bo16bo2bo54bo2bo26bo2bo\$4b6o14b6o52b6o24b6o\$2obo16b2o
bo57bo29bo\$2obobob5o8b2obobob5o49bobob5o21bobob5o\$3bobo6bo10bobo6bo45b
2obobo6bo12b2o3b2obobo6bo\$3bobobob4o10bobobob4o2bo42b2obobobob4o12bo4b
2obobobob4o\$4b2obo7bo8b2obo7b3o44b2obo7bo10bo7b2obo7bo7b2o\$7bo2b6o11bo
2b5o3bo46bo2b8o7b2o10bo2b8o6bo\$7bobo17bobo6b2o47bobo8bo3b2o13bobo8bo4b
o\$6b2obo2b4o10b2obo2b4obobo44b2obo2b6o4bob3o9b2obo2b6o5b2o\$9bobo4bo12b
obo5bob3o45bobo15bo11bobo\$9bobobo2bo9b2obobo2b4o4bo44bobo2b6o6b2o11bob
o2b6o10b2o\$7b2o3bobob2o8b2obobobo4b5o45b2obo5bo5bo14b2obo5bo5b2obo2bo\$
7bo6bobo13b2obo2b2o53bo2b3o5bob2o15bo2b3o5bobob3o\$8bo5bobo16bobo3b4o
45b2obobo5bo2bobo13b2obobo5bo2bobo\$7b2o3bobob2o15bo2b3o4bo44b2obo2bo4b
4obo13b2obo2bo4b4ob3o\$12b2o20b2o3bo2b2o48b2o9bo18b2o9bo3bo\$35bob2obo
58b4o26b4o2b3o\$30b2obobo2bob4o56bo29bo2b2o\$30bob2ob2o2bo3bo54bo29bo4bo
2b2o\$40bo57b2o28b2o4b2obo\$39b2o8\$6bo2bo23bo2bo22bo2bo22bo2bo24bo2bo\$4b
6o21b6o20b6o20b6o22b6o\$2obo23b2obo22b2obo22b2obo24b2obo\$2obobob5o15b2o
bobob5o14b2obobob5o14b2obobob5o16b2obobob5o\$3bobo6bo17bobo6bo16bobo6bo
16bobo6bo18bobo6bo\$3bobobob4o17bobobob4o16bobobob4o16bobobob4o18bobobo
b4o\$4b2obo7bo15b2obo7bo14b2obo7bo14b2obo7bo16b2obo7bo\$7bo2b8o16bo2b8o
15bo2b8o15bo2b8o17bo2b8o\$7bobo8bo15bobo8bo14bobo8bo14bobo8bo16bobo8bo\$
6b2obo2b6o15b2obo2b6o14b2obo2b6o14b2obo2b6o16b2obo2b6o\$9bobo24bobo23bo
bo23bobo25bobo\$6b2obobo2b4o15b2obobo2b4o17bobo2b4o17bobo2b4o2b2o15bobo
2b4o2b2o\$6b2obobobo4bo14b2obobobo4bo17b2obo4bo17b2obo4bo2bo2bo13b2obo
4bo2bo2bo\$10b2obobo2bo18b2obobo2bo20bobo2bo2bo17bobo2b2obobobo15bobo2b
2obobobo\$14bobobob2o19bobobob2o12b3obobobobobobo11b3obobobobo2bo2bo11b
3obobobobo2bo2bo\$16bobob2o21bobob2o11bo2bobo3bobobo2bo9bo2bobo3bo3b2o
13bo2bobo3bo3b2o\$16bobo24bobo14b2o3b2o2bo2bob2o10b2o3b2o2bo18b2o3b2o2b
o\$17b2o25b2o18bo2bob2obobo15bo2bobobo20bo2bobobo\$9b2o25b2o27b3obo2bo3b
o14b3obob3o19b3obob3o\$9bo2bob2o20bo2bob2o25bo2b2o2b2o19bo3bo2b2o17bo5b
o\$11b2obo5b2o16b2obo25bo23b5o2b2obo2bo16bo5b2o\$12bobo6bo17bobo5b2obo
16b2o21bo8bobobo17b2o\$12bob3o3bo16bo3b3o3bob2o39b2o2b2o3bobob2o\$13bo3b
o2bobob2o11b4o3bo49b2o4bo\$14b3obobob2obo15b4o\$16bob2o17b2o2bo\$37bobobo
b2o\$40bo2bo\$43bobo\$44b2o3\$6bo2bo22bo2bo22bo2bo22bo2bo\$4b6o20b6o20b6o
20b6o\$2obo22b2obo22b2obo22b2obo\$2obobob5o14b2obobob5o14b2obobob5o14b2o
bobob5o\$3bobo6bo16bobo6bo16bobo6bo16bobo6bo\$3bobobob4o16bobobob4o16bob
obob4o16bobobob4o\$4b2obo7bo14b2obo7bo14b2obo7bo14b2obo7bo\$7bo2b8o15bo
2b8o15bo2b8o15bo2b8o\$7bobo8bo14bobo8bo14bobo8bo14bobo8bo\$6b2obo2b6o14b
2obo2b6o14b2obo2b6o14b2obo2b6o\$9bobo23bobo23bobo23bobo\$6b2obobo2b4o14b
2obobo2b4o14b2obobo2b4o14b2obobo2b4o\$6b2obobobo4bob2o10b2obobobo4bob2o
10b2obobobo4bob2o10b2obobobo4bob2o\$10b2obobo2bobo15b2obobo2bobo15b2obo
bo2bobo15b2obobo2bobo\$14bobobo2bo18bobobo2bo18bobobo2bo18bobobo2bo\$16b
ob2obo20bob2obo20bob2obo20bob2obo\$16bo2bob2o19bo2bob2o14b2o3bo2bob2o
14b2o3bo2bob2o\$17b2o4bo19b2o4bo13bo5b2o4bo13bo5b2o4bo\$18bob3o21bob3o
11b2obo6bob3o11b2obo6bob3o\$13b2o3bobo16bob2o3bobo14bobob2o3bobo14bobob
2o3bobo\$14bo4bo15b3ob2o4bo15bobobo5bo15bobobo3b2o\$11b3o20bo27b2obobo
20b2obobo3bo\$11bo23b3ob2o25b2o24b5o\$37bobo\$37bobo54bo\$38bo54bobo\$94bo
8\$6bo2bo23bo2bo23bo2bo23bo2bo\$4b6o21b6o21b6o21b6o\$2obo23b2obo23b2obo
23b2obo\$2obobob5o15b2obobob5o15b2obobob5o15b2obobob5o\$3bobo6bo2b2o13bo
bo6bo2b2o13bobo6bo2b2o13bobo6bo2b2o\$3bobobob4o2b2o13bobobob4o2b2o13bob
obob4o2b2o13bobobob4o2b2o\$4b2obo23b2obo23b2obo23b2obo\$7bo2b7o17bo2b7o
17bo2b7o17bo2b7o\$7bobo7bo16bobo7bo16bobo7bo16bobo7bo\$6b2obo2b6o15b2obo
2b6o15b2obo2b6o15b2obo2b6o\$9bobo24bobo24bobo24bobo\$6b2obobo2b4o15b2obo
bo2b4o15b2obobo2b4o15b2obobo2b4o\$6b2obobobo4bob2o11b2obobobo4bob2o11b
2obobobo4bob2o11b2obobobo4bob2o\$10b2obobo2bobo16b2obobo2bobo16b2obobo
2bobo16b2obobo2bobo\$14bobobo2bo19bobobo2bo19bobobo2bo19bobobo2bo\$16bob
2obo21bob2obo21bob2obo21bob2obo\$16bo4bob2o18bo4bob2o13b2o3bo4bob2o13b
2o3bo4b2o\$17b2ob2ob2o19b2ob2ob2o13bo5b2ob2ob2o13bo5b2obo\$18bobo24bobo
14b2obo6bobo14b2obo6bob3o\$13b2o3bobo17bob2o3bobo15bobob2o3bobo15bobob
2o3bo4bo\$14bo4bo16b3ob2o4bo16bobobo5bo16bobobo3b2o3b2o\$11b3o21bo28b2ob
obo21b2obobo\$11bo24b3ob2o26b2o25b5o\$38bobo58bo\$38bobo54b2o\$39bo55b2o3\$
6bo2bo23bo2bo\$4b6o21b6o\$2obo23b2obo\$2obobob5o15b2obobob5o\$3bobo6bo17bo
bo6bob2o\$3bobobob4o17bobobob4ob2o\$4b2obo7bo15b2obo\$7bo2b6o18bo2b6o6b2o
\$7bobo8bob2o12bobo6bo4bobo\$6b2obo2b7ob2o11b2obo2b5o4bo\$9bobo24bobo7bob
2o\$9bobo2b8o14bobo2b6o\$10b2obo8bo10b2obobobo7b2o2bo\$13bo2b6o2bo8b2obob
obo2b5ob4o\$13bobo5bob2o12b2obobo\$12b2obo2bo2bo18bobo2b6o\$15bobobobo18b
obobo5bo\$15bobob2o20b2obob4o\$14b2ob2o26bo\$20b3o24bo\$21bo2bo21b2o\$19bo
3b2o\$19b2o6\$6bo2bo22bo2bo22bo2bo23bo2bo\$4b6o20b6o20b6o21b6o\$2obo22b2ob
o22b2obo23b2obo\$2obobob5o14b2obobob5o14b2obobob5o15b2obobob5o\$3bobo6bo
16bobo6bo16bobo6bo17bobo6bo\$3bobobob4o16bobobob4o16bobobob4o17bobobob
4o\$4b2obo7bo14b2obo7bo14b2obo7bo15b2obo7bo\$7bo2b6o17bo2b6o17bo2b6o18bo
2b6o\$7bobo6b2o15bobo6b2o15bobo24bobo\$6b2obo2b4o2bo13b2obo2b4o2bo13b2ob
o2b4o17b2obo2b4o\$4bo2bobobo4b2o12bo2bobobo4b2o12bo2bobobo4bob2obo9bo2b
obobo4bob2obo\$4b2o3bobobo2bo13b2o3bobobo2bo13b2o3bobobo2bobob2o9b2o3bo
bobo2bobob2o\$9bo2bobobo2b2o14bo2bobobo2b2o14bo2bobobo19bo2bobobo\$7b3o
4bob2o2bo12b3o4bob2o2bo12b3o4bob2o16b3o4bob2o\$6bo7bo2bobo12bo7bo2bobo
12bo7bo18bo7bo\$6b2o7b2o2b2o11b2o7b2o2b2o11b2o7b2obo14b2o7b2obo\$4b2o10b
obo11b2o10bobo11b2o10bob3o10b2o10bob3o\$3bo2b4ob2o3bobo10bo2b4ob2o3bobo
10bo2b4ob2o3bo4bo8bo2b4ob2o3bo4bo\$2bobo4bobobo3bo10bobo4bobobo3bo10bob
o4bobobo3b4o8bobo4bobobo3b4o\$2bobob2obobobo14bobob2obobobo14bobob2obob
obo15bobob2obobobo\$3b2o2bobobob3o13b2o2bobobob3o13b2o2bobobob3o3b2o9b
2o2bobobob3o3b2o\$5bo2bobobo3bo14bo2bobobo3bo14bo2bobobo3bo3bo11bo2bobo
bo3bo2b2o\$5b2obobobobo2bo13b2obobobo2b2o14b2obobobobo2bo2bobo9b2obobob
o2b2o\$7bobob2ob2obo16bob2o21bobob2ob2obo3b2o12bob2o\$7bobo3bo2bo17bo24b
obo3bo2bo18bo\$8b2o3bobo17b2o25b2o3bobo18b2o\$14bo51bo!
``````
Unfortunately I never found any way to turn such a signal or convert it to a single 2c/3 or to a 5c/9.
Last edited by Dean Hickerson on January 6th, 2016, 8:35 am, edited 1 time in total.

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

Scorbie wrote:I wonder how the single signal to double signal turner was found. (By Dean Hickerson, right?) I'm pretty sure one let the signals to split through.
That was way back in 1997, and I don't remember exactly how I found it. I probably did hundreds of searches starting with the single 2c/3 signal, with different values of the parameters max width, max height, and max change count. Plus lots of experiments in which I added other parameters using the "var" array. Since the signal splits into two, one of which fizzles out (in two possible ways), I'd guess that I used the var[112] or var[113] parameter.
What searches have you conducted starting from the single signal?
I didn't keep track of them.
Another question: A typical dr search I did outputs few (one or two) new/distinct oscillators multiple times. Why is it like that? It's not looking at the same search space over and over, is it?
Not quite. Sometimes there are two or more slightly different ways for the same initial signal to produce the same oscillator. For example, in these two patterns a 5c/9 signal becomes a p6 oscillator:

Code: Select all

``````x = 61, y = 20, rule = B3/S23
22b2o2bo18b2o7b2o2bo\$14b2ob2o2bob4o18bo3b2o2bob4o\$10b2o2b2obo3bo20bo3b
o2bo3bo\$9bobo6b3obob3o13b3o2b2o3b3obob3o\$9bo4b4o2bobo4bo11bo7b3o2bobo
4bo\$6b2ob2o2bo4bobo3bo2bo9b3ob5o4bobo3bo2bo\$5bobo5b3o2bob4obob2o7bo4bo
2bob2o2bob4obob2o\$4bo2bob2o5bobo6bo10bob2obo6bobo6bo\$3bob2obob4obo2bob
4obo8b2ob2obob4obo2bob4obo\$3bo4bo4bobob2obo2bob2o8bo4bo4bobob2obo2bob
2o\$2b2ob2o2bobobobo3bo2bo3bo8bob2o2bobobobo3bo2bo3bo\$3bobob2ob2o2bob3o
4b3o6b2obobob2ob2o2bob3o4b3o\$3bobo2bo3bobo3bobo12bobobo2bo3bobo3bobo\$
2obob2o2b3obobobo2b4o8bo2bob2o2b3obobobo2b4o\$2obo3b2o2bobob2ob2o3bo8b
2obo3b2o2bobob2ob2o3bo\$3bo3bo2bo2b2o3bo2bo13bo3bo2bo2b2o3bo2bo\$3bobobo
b2obo3b2o2b3o12bobobob2obo3b2o2b3o\$4b2ob2o2bob3o2b2o16b2ob2o2bob3o2b2o
\$10bo2bo3bo2bo21bo2bo3bo2bo\$11b2o5b2o23b2o5b2o!
``````
In each one, there's a pair of cells just above the final oscillator that change state, but the pair is in different positions in the two forms. You can see this in the 2-dimensional forms of their rotor descriptors:

Code: Select all

``````u30 r55 13x22
...................1A.
................B.A.1.
...............2@.2.B1
............1...@A....
...C........B1A10.....
...2..........A.AB....
....A.......2A........
...10A2..A.A..........
...BA..B10@0A.........
.A11....A0A1..........
.@A......A............
301...................
.1.C..................

u30 r55 13x22
...................1A.
................B.A.1.
...............2@.2.B1
............1...@A....
.....C......B1A10.....
.....2........A.AB....
....A.......2A........
...10A2..A.A..........
...BA..B10@0A.........
.A11....A0A1..........
.@A......A............
301...................
.1.C..................``````

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

The new p21 honey farm hassler can support the p42 from the osc-supported section of jslife:

Code: Select all

``````x = 71, y = 20, rule = B3/S23
31b3o3b3o2\$29bo4bobo4bo\$29bo4bobo4bo\$8b2o6bo12bo4bobo4bo12bo6b2o\$8bo6b
obo35bobo6bo\$2o3b2obo7bo14b3o3b3o14bo7bob2o3b2o\$o4bobo55bobo4bo\$b3obo
16b2o23b2o16bob3o\$3bob2o14bo2bo21bo2bo14b2obo\$21bobo23bobo\$21b3o23b3o\$
8b3o49b3o\$8bobo49bobo\$7bo2bo14b2obo13bob2o14bo2bo\$8b2o16bob3o9b3obo16b
2o\$24bobo4bo7bo4bobo\$15bo7bob2o3b2o7b2o3b2obo7bo\$14bobo6bo23bo6bobo\$
15bo6b2o23b2o6bo!``````
Has anyone tried using gencols to find a p21 gun or reflector using this new oscillator? Those large sparks look promising.

Edit: It can also support the p21 in the osc-supported section:

Code: Select all

``````x = 45, y = 59, rule = B3/S23
31b2o\$31bobo\$33bo\$33b2o2\$31b5ob3o\$31bo8bo\$32bo8bo\$29b3o6bo3bo\$29bo4bo
2bobo2bo\$34bo3bo3bo\$35bo5bo\$36bo3bo\$37b3o\$43bo\$30bo11bobo\$29bobo11bo\$
30bo\$34b3o\$33bo3bo\$32bo5bo\$31bo3bo3bo\$31bo2bobo2bo4bo\$7b2o22bo3bo6b3o\$
8bo23bo8bo\$8bobo22bo8bo\$9b2o8b2o13b3ob5o\$2b2o14bobo\$2bobo13bobo18b2o\$
4bo13b2o5b2o13bo\$4b2o18bobo13bobo\$24bobo14b2o\$2b5ob3o13b2o8b2o\$2bo8bo
22bobo\$3bo8bo23bo\$3o6bo3bo22b2o\$o4bo2bobo2bo\$5bo3bo3bo\$6bo5bo\$7bo3bo\$
8b3o\$14bo\$bo11bobo\$obo11bo\$bo\$5b3o\$4bo3bo\$3bo5bo\$2bo3bo3bo\$2bo2bobo2bo
4bo\$2bo3bo6b3o\$3bo8bo\$4bo8bo\$5b3ob5o2\$10b2o\$11bo\$11bobo\$12b2o!``````
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

@Sokwe Thanks and congrats for the discoveries!! They look real nice!! I did see those supported p21 and p42s but just thought it was impossible to support them How did you find them? by rubbing them with gencols?

I peeked an ongoing 3-catalyst search and here's another one (p16):

Code: Select all

``````x = 20, y = 22, rule = B3/S23
4bo7bo\$3bobo4b3o\$4bo4bo\$9b2o2\$6b2o\$2o3bo2bo\$2o\$6b3o5\$11b3o\$18b2o\$11bo
2bo3b2o\$12b2o2\$9b2o\$10bo4bo\$7b3o4bobo\$7bo7bo!``````
It's halfway done, so I'm hoping there be one more oscillator hidden inside the other half of the search space to be found.
I didn't cover all the search area. I coudn't find the p22 HF hassler from the 2-catalyst search, for example. (Which I'm not sure why. All parts seem to work well when tested independently.)
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Scorbie wrote:How did you find them? by rubbing them with gencols?
Nope, I found them by hand. The p21 was easy. I just needed one simple spark in the right place, and your new honey farm hassler provided it.

The p42 was slightly different. The file in jslife has a pulsar essentially interacting with a block. Since the spark provided by the p21 is complex, I thought it might be able to mimic the block reaction. I first tried interactions with part of the spark that looked most like the side of a block:

Code: Select all

``````x = 105, y = 24, rule = B3/S23
5b3o3b3o51b3o3b3o2\$3bo4bobo4bo47bo4bobo4bo\$3bo4bobo4bo47bo4bobo4bo\$3bo
4bobo4bo47bo4bobo4bo\$5b3o3b3o51b3o3b3o2\$5b3o3b3o51b3o3b3o\$3bo4bobo4bo
12bo6b2o26bo4bobo4bo12bo6b2o\$3bo4bobo4bo11bobo6bo26bo4bobo4bo3bo7bobo
6bo\$3bo4bobo4bo2b3o7bo7bob2o3b2o18bo4bobo4bo2bo7bobo7bob2o3b2o\$2o15bob
4obob2o9bobo4bo15b2o15bo4bobo3bo8bobo4bo\$2o3b3o3b3o3bo4bob4o11bob3o16b
2o3b3o3b3o3bobo2bo5bo10bob3o\$18bo2bo2b4o10b2obo39b2obo2bo10b2obo\$22bo
60b2o2bo\$24bobo4bo53bo6bo\$26bo4bobo51bo6bo\$35bo54bo2b2o\$16bob2o10b4o2b
o2bo36bob2o10bo2bob2o\$14b3obo11b4obo4bo33b3obo10bo5bo2bobo\$13bo4bobo9b
2obob4obo32bo4bobo8bo3bobo4bo\$13b2o3b2obo7bo7b3o33b2o3b2obo7bobo7bo\$
21bo6bobo50bo6bobo7bo\$21b2o6bo51b2o6bo!``````
Obviously, this didn't work (although the second one was close). So why did I try the other interaction? The only answer I can give is "it looked right". Basically, I just got extremely lucky.

As I've mentioned before, one possible idea is to start with the following (honey farm + eater) -> (glider + junk) reaction:

Code: Select all

``````x = 12, y = 9, rule = B3/S23
2b3o\$bo3bo\$o5bo\$o5bo\$o5bo\$bo3bo2b2o\$2b3o3bobo\$10bo\$10b2o!``````
With this you could get a gun instead of an oscillator. Have you tried anything like this?
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Sokwe wrote:Obviously, this didn't work (although the second one was close). So why did I try the other interaction? The only answer I can give is "it looked right". Basically, I just got extremely lucky.
When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition
Sokwe wrote:With this you could get a gun instead of an oscillator. Have you tried anything like this?
With vanilla ptbsearch-symm (by Chris), I did try that with spartan catalysts but got no interesting results. After my ptbsearch tweak I tried them with both the mirror- and rotation- symmetric versions but that version was buggy, so I must have missed a "lot" of search space. And as soon as I got it fixed, saw it work and discover new oscillators, I posted the source and results here. So to answer your question, I still haven't searched in detail.

I think the supported oscillators came from RandomAgar, and if it did, one could probably extend those two oscillators.
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Scorbie wrote:I think the supported oscillators came from RandomAgar, and if it did, one could probably extend those two oscillators.
The p21 probably came from Jason Summers' spark-assisted agar program, likely in a form similar to this:

Code: Select all

``````x = 73, y = 25, rule = B3/S23
2o\$bo\$bobo4b2ob2o2bo4bo\$2b2o7b3o5bobo\$6b2o3bo5bo4bo2bo\$6b2o9b2ob3o\$6b
3o3b3ob3o3b3o\$8b3ob2o9b2o\$5bo2bo4bo5bo3b2o4b2ob2o2bo4bo\$9bobo5b3o12b3o
5bobo\$10bo4bo2b2ob2o4b2o3bo5bo4bo2bo\$27b2o9b2ob3o\$27b3o3b3ob3o3b3o\$29b
3ob2o9b2o\$26bo2bo4bo5bo3b2o4b2ob2o2bo4bo\$30bobo5b3o12b3o5bobo\$31bo4bo
2b2ob2o4b2o3bo5bo4bo2bo\$48b2o9b2ob3o\$48b3o3b3ob3o3b3o\$50b3ob2o9b2o\$47b
o2bo4bo5bo3b2o\$51bobo5b3o7b2o\$52bo4bo2b2ob2o4bobo\$71bo\$71b2o!``````
Unfortunately, the new p21 does not allow for this particular extension.

It's hard to say how the p42 was found. It is possible that someone once manually placed two blocks next to a pulsar and discovered that the pulsar reappeared in the same location. If it came from an agar, I'm not sure what the agar looked like.
Scorbie wrote:When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition
It only took staring at life patterns almost daily for 10 years.
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Sokwe wrote:It's hard to say how the p42 was found. It is possible that someone once manually placed two blocks next to a pulsar and discovered that the pulsar reappeared in the same location. If it came from an agar, I'm not sure what the agar looked like.
Sokwe wrote:The p21 probably came from Jason Summers' spark-assisted agar program, likely in a form similar to this:
Ah, that make sense! I think you're right... Speaking of Randomagar, I wish I had more time to pick it up and tweak it more...
Sokwe wrote:
Scorbie wrote:When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition
It only took staring at life patterns almost daily for 10 years.
Enough time to be an outlier in Life pattern recognition...

EDIT: I'm not sure if I'm doing the search right, but these are the only non-trivial collisions with a glider:

Code: Select all

``````x = 185, y = 24, rule = B3/S23
22bo\$23bo56bo\$21b3o57bo44bobo46bobo\$79b3o45b2o47b2o\$127bo48bo3\$65b2o6b
o37b2o6bo\$8b2o6bo48bo6bobo36bo6bobo40b2o6bo\$8bo6bobo39b2o3b2obo7bo29b
2o3b2obo7bo41bo6bobo\$2o3b2obo7bo40bo4bobo38bo4bobo42b2o3b2obo7bo\$o4bob
o50b3obo16b2o23b3obo16b2o26bo4bobo\$b3obo16b2o36bob2o14bo2bo24bob2o14bo
2bo26b3obo16b2o\$3bob2o14bo2bo53b3o43b3o29bob2o14bo2bo\$21b3o55bo45bo48b
3o\$22bo43bo45bo62bo\$9bo55b3o43b3o48bo\$8b3o53bo2bo14b2obo24bo2bo14b2obo
29b3o\$7bo2bo14b2obo36b2o16bob3o23b2o16bob3o26bo2bo14b2obo\$8b2o16bob3o
50bobo4bo38bobo4bo26b2o16bob3o\$24bobo4bo40bo7bob2o3b2o29bo7bob2o3b2o
42bobo4bo\$15bo7bob2o3b2o39bobo6bo36bobo6bo41bo7bob2o3b2o\$14bobo6bo48bo
6b2o37bo6b2o40bobo6bo\$15bo6b2o144bo6b2o!``````
Couldn't figure out about rubbing the two together, but the oscillator seems pretty connected...
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Half of the new p30 can be replaced by a unix:

Code: Select all

``````x = 29, y = 22, rule = B3/S23
17b2o\$17bobo\$19bo\$15b4ob2o\$15bo2bobobo\$20bobo\$20bo2b2o\$4b2o13b2o4bo\$2o
bo17b5o\$2o2bo2bo13bo4b2o\$5bobo16b2o2bo\$6bo8bo2bo6bob2o\$15bo2bo6bo\$5b2o
7bo3bo5b2o\$5b2o8bo4\$18b2o\$18bo\$19b3o\$21bo!``````
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Huh?!! Again, ingenious intuition! I glanced at the original p30 and the two halves react for about 2~3 generations, so I just didn't think it can be replaced by another spark.
I like that miraculous unix reaction with that part of the unix.
(Related)

Code: Select all

``````x = 18, y = 18, rule = B3/S23
11b2o\$9bo2bo3\$9b2obo\$11bobo2b2o\$12bo4bo\$13bo\$13bo2bo\$bo2bo\$4bo7b2o\$o4b
o6b2o\$2o2bobo3b2o\$5bob2ob2o3\$5bo2bo\$5b2o!``````
Edit: Kazyan's discovery almost works, except for a problematic single bit that doesn't seem to get away.

Code: Select all

``````x = 29, y = 20, rule = B3/S23
18bo\$17bobo4b2o\$17bobo5bo\$18bo6bob2o\$2b2o18b2obob2o\$b4o17b2obo\$obo2bo
19bo\$2o2bobo8b3o7b2o\$5bobo6bo3bo\$7b2o4bo5bo\$6b3o4bo5bo\$5bobo5bo5bo\$5b
2o7bo3bo\$15b3o3\$18b2o\$18bo\$19b3o\$21bo!``````
Edit: Whoops, no, it doesn't work even if that was solved... sorry.

Code: Select all

``````x = 29, y = 20, rule = B3/S23
18bo\$17bobo4b2ob2o\$17bobo5bobo\$18bo6bobo\$2b2o18b2ob2o\$b4o17b2o\$obo2bo
19b2o\$2o2bobo8b3o8bo\$5bobo6bo3bo7bobo\$7b2o4bo5bo7b2o\$6b3o4bo5bo\$5bobo
5bo5bo\$5b2o7bo3bo\$15b3o3\$18b2o\$18bo\$19b3o\$21bo!``````
Best wishes to you! - Scorbie

Bullet51
Posts: 571
Joined: July 21st, 2014, 4:35 am

Boring results:

Code: Select all

``````x = 34, y = 17, rule = B3/S23
3bo2bo17b2ob2o\$3b4o18bobo\$19b2ob3o3bo\$5b4o9bobobo2b2obo\$b2obobo2bo8bob
o4bobo\$2bobo3b2o7b2obo6bobo\$2bobobo9bo3b5o2bob3o\$b2o4b3o6b2obo4b2obo4b
o\$o3b2o3bo7bob4o4b4obo\$3o4b2o8bo4bob2o4bob2o\$3bobobo10b3obo2b5o3bo\$2o
3bobo12bobo6bob2o\$o2bobob2o13bobo4bobo\$b4o16bob2o2bobobo\$21bo3b3ob2o\$
3b4o15bobo\$3bo2bo14b2ob2o!
``````
Still drifting.

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

@Sokwe, did the HF+eater -> G+LoM but sadly didn't get any guns. I got these two new oscillators, though, which probably means there's something more out there (with more catalysts)

Code: Select all

``````x = 61, y = 68, rule = B3/S23
2obo6b2obo26b2o\$ob2o6bob2o7bo9bo7bobo\$4b2o2b2o11b3o5b3o8bo\$4bo3bo15bo
3bo\$5bo3bo13b2o3b2o\$4b2o2b2o25bo\$2obo6b2obo21bobo\$ob2o6bob2o22b3o3b2o\$
4b2o8b2o4b2o20b2o\$4bo9bo5b2o3b3o\$5bo9bo10bobo\$4b2o8b2o12bo\$2obo6b2obo
20b2o3b2o\$ob2o6bob2o21bo3bo\$23bo8b3o5b3o\$22bobo7bo9bo\$22b2o14\$2o3b2o4b
2obo38bob2o\$2o3b2o4bob2o38b2obo\$9b2o\$2o3b2o2bo41b5o\$obobobo3bo40bo4bo
2b2o\$2bobo4b2o43bo2bo2bo\$b2obo6b2obo20b2o17b2obobo\$5b2o4bob2o21bo14bo
5bob2o\$6bo8b2o19bobo11bobo4bo\$5bo9bo21b2o11bo2bo2b2o\$5b2o9bo34b2o\$6bo
8b2o\$5bo5b2obo16bo\$5b2o4bob2o16b3o\$34bo\$27b2o4b2o8b2o\$28bo13bo2bo\$28bo
bo12bobo\$29b2o12b3o\$35b3o12b2o\$35bobo12bobo\$35bo2bo13bo\$36b2o8b2o4b2o\$
46bo\$47b3o\$49bo2\$28b2o\$23b2o2bo2bo11b2o\$23bo4bobo11bobo\$20b2obo5bo14bo
\$21bobob2o17b2o\$20bo2bo2bo\$20b2o2bo4bo\$25b5o2\$24bob2o\$24b2obo!``````
Edit: Although it looks like I searched most of the search space, it may not be.
I only cherry-picked the most common catalysts (from the Catalysts Test thread) which means the catalysts are not honeyfarm-specific, for example. I didn't use MikeP's catalyst (partly because it needs another eater to work on honeyfarms) or the eater+hook with tail(it also has a dedicatated honeyfarm catalysis.)

So a good way to utilize the ptbsearch symmetry hack would be:
1. Searching for new catalysts with Bellman.
2. Parsing them to a catalyst list
3. Running ptbsearch-symm with those catalysts.

Just in case anyone wants to try these (probably not...) Questions are welcome, here.
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Scorbie wrote:I got these two new oscillators...
One of the eaters in the p35 is unnecessary. That makes this the smallest known p35 by minimum population:

Code: Select all

``````x = 24, y = 17, rule = B3/S23
20b2o\$11bo7bobo\$9b3o8bo\$8bo\$8b2o\$15bo\$15bobo\$16b3o3b2o\$2o20b2o\$2o3b3o\$
6bobo\$8bo\$14b2o\$15bo\$3bo8b3o\$2bobo7bo\$2b2o!``````
The eater 3 in the new p45 can be replaced by smaller catalysts:

Code: Select all

``````x = 33, y = 32, rule = B3/S23
25b2o\$25bobo\$27bo2b2o\$11b2o13b2obobo\$12bo16bo\$12bobo11b4o\$13b2o11bo3b
2o\$27b3o2bo\$29bob2o\$7bo21bo\$7b3o18b2o\$10bo\$3b2o4b2o8b2o\$4bo13bo2bo\$4bo
bo12bobo\$5b2o12b3o\$11b3o12b2o\$11bobo12bobo\$11bo2bo13bo\$12b2o8b2o4b2o\$
22bo\$3b2o18b3o\$3bo21bo\$2obo\$o2b3o\$b2o3bo11b2o\$3b4o11bobo\$3bo16bo\$bobob
2o13b2o\$b2o2bo\$5bobo\$6b2o!``````
With 6 new high-period oscillators, this has been one of the most successful oscillator searches in recent memory. Congratulations!

Here are all of the honey farm hasslers that I am aware of (excluding the big p40 gun, AK47, snark-based glider loops, and some questionable cases):

Code: Select all

``````x = 118, y = 745, rule = B3/S23
32bo\$12b2obo16b3o\$12bob2o19bo\$10b2o4b2o16b2o9b2o\$10bo5bo28bo\$11bo5bo
18b3o4bobo\$10b2o4b2o17bo3bo3b2o\$12b2obo18bo5bo\$12bob2o18bo5bo\$10b2o4b
2o16bo5bo\$10bo5bo13b2o3bo3bo\$11bo5bo11bobo4b3o\$10b2o4b2o11bo\$12b2obo
12b2o9b2o\$12bob2o23bo\$40b3o\$42bo11\$38b2o\$37bobo\$37bo\$35b2ob4o\$34bobobo
2bo\$34bobobo\$5b2o4b2o19b2o2bo\$6bo5bo18bo4b2o\$5bo5bo19b5o10b2o\$5b2o4b2o
16b2o4bo10bo\$28bo2b3o4b3o3bobo\$5b2o4b2o15b2obo5bo3bo2b2o\$6bo5bo18bo4bo
5bo7bo\$5bo5bo16b3o5bo5bo5b3o\$5b2o4b2o15bo7bo5bo4bo\$33b2o2bo3bo5bob2o\$
5b2o4b2o19bobo3b3o4b3o2bo\$6bo5bo19bo10bo4b2o\$5bo5bo19b2o10b5o\$5b2o4b2o
28b2o4bo\$42bo2b2o\$40bobobo\$37bo2bobobo\$37b4ob2o\$41bo\$39bobo\$39b2o13\$
35b2o10b2o\$34bo2bo8bo2bo\$34b3o2b6o2b3o\$37b2o6b2o\$36bo10bo\$6b2o4b2obo
12b2o6b2obo4bob2o\$7bo4bob2o12bobo10b2o\$6bo9b2o12b3o25b2o\$6b2o8bo12bo3b
o9bo13bobo\$17bo11b5o3bo4bobo10b3o\$6b2o8b2o14b2o3b3obo3bo8bo3bo\$7bo4b2o
bo13b5o3bo3bo3bo4b5o2b2o\$6bo5bob2o13bo3bo7bo3bo3b3ob2o\$6b2o2b2o18b3o9b
obo5b5o2b2o\$10bo17bobo12bo10bo3bo\$6b2o3bo16b2o5b2o18b3o\$7bo2b2o23bo10b
o10bobo\$6bo5b2obo16b2obobo3b2ob3o11b2o\$6b2o4bob2o16bob2obo3bo2b2o\$37bo
5b2ob2o\$37bob4o3bo\$38bo3bobobo\$39bo3bobo\$38b2o4bo18\$40bo6bo\$34bo5b3o4b
obo\$33bobo7bo2bobo\$33bobo6b2o4bo5b2o\$6b2o3b2o3b2o13b3ob2o17bo\$7bo3b2o
3b2o12bo13b3o5bobo\$6bo24b3ob2o6bo3bo4b2o\$6b2o3b2o3b2o15bob2o5bo5bo\$11b
obobobo24bo5bo\$6b2o5bobo26bo5bo\$7bo4b2obo27bo3bo\$6bo9b2o19b3o4b3o\$6b2o
9bo18bo3bo\$16bo18bo5bo\$6b2o8b2o17bo5bo\$7bo9bo17bo5bo5b2obo\$6bo9bo13b2o
4bo3bo6b2ob3o\$6b2o8b2o11bobo5b3o13bo\$29bo17b2ob3o\$28b2o5bo4b2o6bobo\$
35bobo2bo7bobo\$34bobo4b3o5bo\$36bo6bo16\$50bo9bo\$50b3o5b3o\$37b2o14bo3bo
14b2o\$31b2o5bo13b2o3b2o13bo5b2o\$32bo3bo37bo3bo\$32bob4o6b2o8b3o8b2o6b4o
bo\$5b2o5bob2o14b2obo6bo3b3o6bo3bo6b3o3bo6bob2o\$6bo5b2obo15bobob2obo2b
2o4bo4bo5bo4bo4b2o2bob2obobo\$5bo4b2o19bobob2o2b2ob7o3bo5bo3b7ob2o2b2ob
obo\$5b2o4bo16b2obo16bo3bo5bo3bo16bob2o\$10bo17bo2bobob2o2b2ob7o4bo3bo4b
7ob2o2b2obobo2bo\$5b2o3b2o17bobobob2obo2b2o4bo6b3o6bo4b2o2bob2obobobo\$
6bo5bob2o14b2obo6bo3b3o17b3o3bo6bob2o\$5bo6b2obo16bob4o6b2o19b2o6b4obo\$
5b2o9b2o14bo3bo16b3o18bo3bo\$17bo13b2o5bo13b6o14bo5b2o\$5b2o9bo20b2o12bo
b2o17b2o\$6bo9b2o31b3o4bobo\$5bo6bob2o32bo3bo2b2ob3o\$5b2o5b2obo32b2ob2o
4bo3bo\$49bobo7bobo\$49bo2bo2b6o\$50b2o2bobo\$51bob2ob5o\$51bo2bobo2bobo\$
52bo3b2o3bo\$53b3o2b3o\$55bo2bo12\$72b2o\$71bo2bo\$32bo7bo29bobobo\$31bobo4b
3o28b3obo\$32bo4bo31b3o16b2o\$37b2o48bobo\$85b3o\$5b2o5b2obo18b3o37bo6b2ob
o3bo\$6bo5bob2o12b2o3bo3bo35bobo3bo5bob2o\$5bo4b2o16b2o2bo5bo33b2ob2o2bo
5bo\$5b2o3bo22bo3bo35bobo3bo5bob2o\$11bo22b3o37bo6b2obo3bo\$5b2o3b2o73b3o
\$6bo5b2obo42b2o27bobo\$5bo6bob2o23b3o16bobo27b2o\$5b2o3b2o4b2o20bo3bo17b
3o\$10bo5bo20bo5bo2b2o11bo3bob2o6bo\$5b2o4bo5bo20bo3bo3b2o11b2obo5bo3bob
o\$6bo3b2o4b2o21b3o20bo5bo2b2ob2o\$5bo6b2obo43b2obo5bo3bobo\$5b2o5bob2o
21b2o20bo3bob2o6bo\$38bo4bo16b3o\$35b3o4bobo13bobo\$35bo7bo14b2o16b3o\$74b
ob3o\$73bobobo\$73bo2bo\$74b2o16\$7b2o3bob2o12bo11bo\$8bo3b2obo12b3o7b3o\$7b
o8b2o13bo5bo\$7b2o8bo12b2o5b2o\$16bo\$7b2o7b2o16b3o\$8bo5b2o17bo3bo\$7bo7bo
16bo5bo\$7b2o5bo18bo3bo\$14b2o18b3o\$7b2o3b2o\$8bo4bo18b2o5b2o\$7bo4bo20bo
5bo\$7b2o3b2o16b3o7b3o\$30bo11bo19\$54bo\$31bo20b3o\$31b3o17bo\$5b2o5b2obo
18bo16b2o\$6bo5bob2o17b2o21b2o\$5bo4b2o4b2o38bo\$5b2o3bo5bo18b3o16bobo\$
11bo5bo16bo3bo9b3o3b2o\$5b2o3b2o4b2o15bo5bo7bo3bo\$6bo5b2obo18bo3bo7bo5b
o\$5bo6bob2o14b2o3b3o9bo3bo\$5b2o3b2o4b2o11bobo16b3o\$10bo5bo12bo\$5b2o4bo
5bo10b2o21b2o\$6bo3b2o4b2o15b2o16bo\$5bo6b2obo18bo17b3o\$5b2o5bob2o15b3o
20bo\$31bo21\$36b2o6bo\$2b2obo5b2o23bo6bobo\$2bob2o6bo15b2o3b2obo7bo\$6b2o
3bo16bo4bobo13b3o\$6bo4b2o16b3obo14bo3bo\$7bo23bob2o12bo5bo\$6b2o3b2o23b
3o8bo5bo\$2b2obo6bo22bo3bo7bo5bo\$2bob2o5bo22bo5bo7bo3bo\$2o9b2o21bo5bo8b
3o\$o33bo5bo12b2obo\$bo9b2o22bo3bo14bob3o\$2o10bo23b3o13bobo4bo\$2b2obo5bo
31bo7bob2o3b2o\$2bob2o5b2o29bobo6bo\$43bo6b2o25\$28bo\$2b2obo6b2obo12b3o\$
2bob2o6bob2o15bo17bo\$6b2o8b2o12b2o15b3o\$6bo9bo29bo\$7bo9bo18bo9b2o\$6b2o
8b2o17bobo\$2b2obo6b2obo18b2ob2o\$2bob2o6bob2o19bobo3bo\$2o8b2o24bo3bobo\$
o9bo28b2ob2o\$bo9bo28bobo\$2o8b2o18b2o9bo\$2b2obo6b2obo15bo\$2bob2o6bob2o
12b3o15b2o\$28bo17bo\$47b3o\$49bo17\$40b2o16b2o35bo2bo\$39bobo16bobo33bo\$
39bo20bo31b2o\$37b2ob4o12b4ob2o26bo6b2obo\$36bobobo2bo12bo2bobobo28bo3bo
2bo\$36bobob2o2b2o8b2o2b2obobo28b3obo3bo\$33b2obob2o2b2o2bo6bo2b2o2b2obo
b2o22bo11bo\$34bobobob2o2b2obo4bob2o2b2obobobo24bo3bob3o\$34bo2bo4b2o3bo
4bo3b2o4bo2bo25bo2bo3bo\$33b2o3b3obob3o6b3obob3o3b2o24bob2o6bo\$40bo3bo
10bo3bo37b2o\$3b2obo4b2o3b2o13b6o26b6o27bo13b4o\$3bob2o4b2o3b2o12bo2bo3b
o4bo14bo4bo3bo2bo13b2o7bo2bo9b2o7bo\$7b2o21b2o3b2o5bo14bo5b2o3b2o9b2obo
2bob2o16b2o2b2o3bo\$7bo3b2o3b2o17bo28bo14b2o2bo4bo20b2o2bo\$8bo2bobobobo
15bobo28bobo17bo10bo\$7b2o4bobo12bo4bobo28bobo4bo13bobo6bobo4bo\$3b2obo
5b2obo12b3o5bo5bo14bo5bo5b3o21bo3bo2bobo\$3bob2o9b2o13bo4bo4bobo12bobo
4bo4bo24bo3bobo3bo\$b2o14bo12bo5bo3b2ob2o10b2ob2o3bo5bo23bo3bobo3bo\$bo
14bo13b2o4bo4bobo12bobo4bo4b2o24bobo2bo3bo\$2bo13b2o18bo5bo14bo5bo31bo
4bobo6bobo\$b2o14bo15bobo28bobo34bo10bo\$3b2obo9bo16bobo28bobo16bo2b2o
20bo4bo2b2o\$3bob2o9b2o17bo28bo17bo3b2o2b2o16b2obo2bob2o\$30b2o3b2o5bo
14bo5b2o3b2o12bo7b2o9bo2bo7b2o\$30bo2bo3bo4bo14bo4bo3bo2bo13b4o13bo\$31b
6o26b6o29b2o\$40bo3bo10bo3bo35bo6b2obo\$33b2o3b3obob3o6b3obob3o3b2o31bo
3bo2bo\$34bo2bo4b2o3bo4bo3b2o4bo2bo32b3obo3bo\$34bobobob2o2b2obo4bob2o2b
2obobobo29bo11bo\$33b2obob2o2b2o2bo6bo2b2o2b2obob2o29bo3bob3o\$36bobob2o
2b2o8b2o2b2obobo33bo2bo3bo\$36bobobo2bo12bo2bobobo33bob2o6bo\$37b2ob4o
12b4ob2o40b2o\$39bo20bo41bo\$39bobo16bobo37bo2bo\$40b2o16b2o16\$89b2o\$89bo
\$37b2o4b2o7b2o27b2o3b2obo\$37bobo2bobo7b2o27bo4bobo\$39bo2bo39b3obo\$38bo
4bo40bob2o\$38b2o2b2o\$2b2obo6bob2o24b2o35b2o17bo2b2o\$2bob2o6b2obo61bo2b
2o5b3o6b2o2bo\$6b2o2b2o40b3o9b2o12b2obo4bo3bo4b5o\$6bo4bo16b2o21bo3bo5b
2o2bo16bo2bo5bo\$7bo2bo17bo2b2o6b3o8bo5bo4bob2o17bo3bo3bo\$6b2o2b2o17b2o
bo5bo3bo7bo5bo3bo17b2obo5b3o5b5o\$2b2obo6bob2o17bo3bo5bo6bo5bo3bo16bo2b
2o14b2o2bo\$2bob2o6b2obo17bo3bo5bo7bo3bo5bob2o12b2o17bo2b2o\$2o14b2o11b
2obo4bo5bo8b3o6b2o2bo\$o16bo10bo2b2o5bo3bo21b2o\$bo14bo11b2o9b3o\$2o14b2o
65b2o3b2o\$2b2obo6bob2o36b2o29bobobobo\$2bob2o6b2obo34b2o2b2o24b2obobobo
\$50bo4bo24bobobo3bo2b2o\$51bo2bo29bob2o3bobo\$40b2o7bobo2bobo26bobo7bo\$
40b2o7b2o4b2o26bobo7b2o\$84bo18\$47b2o\$47bobo\$50bo2b2o\$48b2obo2bo\$47bobo
b2o\$48bo3\$49b3o\$48bo3bo\$47bo5bo\$47bo5bo\$47bo5bo\$44b2o2bo3bo\$2b2obo6b2o
bo27bobo3b3o12bo\$2bob2o6bob2o27bo20b3o\$6b2o2b2o30b2o23bo\$6bo3bo55b2o\$
7bo3bo47b3o\$6b2o2b2o34bo12bo8b3o5bo2b2o\$2b2obo6b2obo30bobo11bo6bo3bo3b
obo2bo\$2bob2o6bob2o30b2o18bo5bo3b2obo\$2o8b2o4b2o48bo5bo5bo\$o9bo5bo49bo
5bo3b2o\$bo9bo5bo49bo3bo4bo\$2o8b2o4b2o50b3o7bo\$2b2obo6b2obo14b2o45b2o\$
2bob2o6bob2o14bo7b3o\$32bo4bo3bo\$31b2o3bo5bo\$30bo5bo5bo\$29bob2o3bo5bo
18b2o\$28bo2bobo3bo3bo6bo11bobo\$28b2o2bo5b3o8bo12bo\$47b3o\$41b2o\$41bo23b
2o\$42b3o20bo\$44bo12b3o3bobo\$56bo3bo2b2o\$55bo5bo\$55bo5bo\$55bo5bo\$56bo3b
o\$57b3o3\$60bo\$56b2obobo\$54bo2bob2o\$54b2o2bo\$59bobo\$60b2o17\$32b2o31b2o\$
33bo31bo\$33bob2o25b2obo\$2b2obo6b2obo18bobo8bo7bo8bobo\$2bob2o6bob2o20bo
b2o4bobo5bobo4b2obo\$6b2o2b2o4b2o17bobobo5bo7bo5bobobo\$6bo3bo5bo14b2o2b
o27bo2b2o\$7bo3bo5bo13bobob2o2b3o15b3o2b2obobo\$6b2o2b2o4b2o10b2obobo4bo
3bo13bo3bo4bobob2o\$2b2obo6b2obo12bobob2o3bo5bo11bo5bo3b2obobo\$2bob2o6b
ob2o14bo6bo5bo11bo5bo6bo\$2o14b2o10bobob2o3bo5bo11bo5bo3b2obobo\$o15bo
11b2obobo4bo3bo13bo3bo4bobob2o\$bo15bo13bobob2o2b3o15b3o2b2obobo\$2o14b
2o13b2o2bo27bo2b2o\$2b2obo6b2obo19bobobo5bo7bo5bobobo\$2bob2o6bob2o20bob
2o4bobo5bobo4b2obo\$34bobo8bo7bo8bobo\$33bob2o25b2obo\$33bo31bo\$32b2o31b
2o12\$89b2o\$88bo2bo\$91bo\$91bo\$85bo3bobo\$84bo3bobo\$84bo4bo\$70b2o2bo10b4o
\$44b2o24bo2bobo19b2o\$44bobo24bobobo19bo\$46bo23b2obob2o8b3o5bobo\$2b2obo
6b2obo26b4ob2o20bo3b2o3bo5bo3bo4b2o\$2bob2o6bob2o26bo2bobobo18bob2o2b2o
7bo5bo\$6b2o2b2o4b2o29bobo18bobo2bobo3bo3bo5bo\$6bo3bo5bo12b2o16bo2b2o
17b3o2b2o7bo5bo\$7bo3bo5bo10b4o14b2o4bo20b2o3bo5bo3bo\$6b2o2b2o4b2o9bobo
2bo15b5o14b5obob2o8b3o\$2b2obo4bo5bo10b2o2bobo8b3o3bo4b2o12bo2bo2bobo
18b2o\$2bob2o5bo5bo14bobo6bo3bo5b2o2bo16bo2bo17bo2bo\$6b2o2b2o4b2o16b2o
4bo5bo5bob2o17b2o18bobo2bo2bo\$6bo3bo5bo16b3o4bo5bo5bo28b3o8b2obob5o\$7b
o3bo5bo14bobo5bo5bo4b2o27bo3bo5bo3b2o\$6b2o2b2o4b2o14b2o7bo3bo33bo5bo7b
2o2b3o\$2b2obo6b2obo26b3o34bo5bo3bo3bobo2bobo\$2bob2o6bob2o63bo5bo7b2o2b
2obo\$74b2o4bo3bo5bo3b2o3bo\$45b2o26bobo5b3o8b2obob2o\$45bo27bo19bobobo\$
46b3o23b2o19bobo2bo\$48bo31b4o10bo2b2o\$79bo4bo\$78bobo3bo\$77bobo3bo\$77bo
\$77bo\$77bo2bo\$78b2o15\$62b2o\$62b2o\$54b3o\$53bo3bo\$28b2o8bo13bo5bo\$28b2o
6b3o13bo5bo\$35bo16bo5bo\$35b2o5b2o9bo3bo2b2o\$43b2o9b3o3bobo\$42bo19bo\$
32b3o27b2o\$31bo3bo\$30bo5bo\$31bo3bo\$2b2obo5b2o19b3o24bo\$2bob2o6bo47b2o\$
6b2o3bo47b2o\$6bo4b2o\$7bo\$6b2o3b2o\$2b2obo6bo\$2bob2o5bo\$6b2o3b2o\$6bo\$7bo
3b2o23b2o\$6b2o4bo22b2o\$2b2obo5bo25bo24b3o\$2bob2o5b2o48bo3bo\$60bo5bo\$
61bo3bo\$33b2o27b3o\$34bo19bo\$34bobo3b3o9b2o\$35b2o2bo3bo9b2o5b2o\$38bo5bo
16bo\$38bo5bo13b3o6b2o\$38bo5bo13bo8b2o\$39bo3bo\$40b3o\$33b2o\$33b2o20\$2b2o
bo6b2obo32b2o\$2bob2o6bob2o23bo7bobo\$6b2o2b2o25b3o8bo\$6bo3bo25bo\$7bo3bo
24b2o\$6b2o2b2o32b3o\$2b2obo6b2obo27bo3bo\$2bob2o6bob2o17b3o6bo5bob2o\$6b
2o8b2o10b2o2bo3bo6bo3bo2b2o\$6bo9bo11b2obo5bo6b3o\$7bo9bo14bo3bo\$6b2o8b
2o15b3o\$2b2obo6b2obo26b2o\$2bob2o6bob2o27bo\$31bo8b3o\$30bobo7bo\$30b2o16\$
53b2o\$53bobo\$55bo2b2o\$39b2o13b2obobo\$40bo16bo\$40bobo11b4o\$41b2o11bo3b
2o\$55b3o2bo\$b2o3b2o4b2obo41bob2o\$b2o3b2o4bob2o19bo21bo\$10b2o23b3o18b2o
\$b2o3b2o2bo27bo8b3o\$bobobobo3bo19b2o4b2o7bo3bo\$3bobo4b2o20bo12bo5bo\$2b
2obo6b2obo16bobo4b3o3bo5bo\$6b2o4bob2o17b2o3bo3bo2bo5bo\$7bo8b2o19bo5bo
2bo3bo3b2o\$6bo9bo20bo5bo3b3o4bobo\$6b2o9bo19bo5bo12bo\$7bo8b2o20bo3bo7b
2o4b2o\$6bo5b2obo23b3o8bo\$6b2o4bob2o15b2o18b3o\$31bo21bo\$28b2obo\$28bo2b
3o\$29b2o3bo11b2o\$31b4o11bobo\$31bo16bo\$29bobob2o13b2o\$29b2o2bo\$33bobo\$
34b2o!``````
Edit: I just realized that one of the fumaroles in the older p25 honey farm hassler can be replaced with two eaters:

Code: Select all

``````x = 32, y = 23, rule = B3/S23
6b2o4b2o7b2o\$6bobo2bobo7b2o\$8bo2bo\$7bo4bo\$7b2o2b2o\$9b2o19b2o\$30bo\$2o
26bobo\$bo21bo4b2o\$bobo17b2obo\$2b2o17bo2bo\$8b3o10b3o\$7bo2bo17b2o\$7bob2o
17bobo\$2b2o4bo21bo\$bobo26b2o\$bo\$2o19b2o\$19b2o2b2o\$19bo4bo\$20bo2bo\$9b2o
7bobo2bobo\$9b2o7b2o4b2o!``````
That makes this the smallest known p25 in terms of minimum population.
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Sokwe wrote:One of the eaters in the p35 is unnecessary. That makes this the smallest known p35 by minimum population:
Wow. That's both great and bad news to me. The great news is that I never thought anything would beat 50P35, and the bad news is that that one should have popped up on my previous search (the one that found the p16) as this form:

Code: Select all

``````x = 24, y = 17, rule = B3/S23
2b2o\$2bobo7bo\$3bo8b3o\$15bo\$14b2o\$6bo\$5bobo\$2o2b2ob2o8bo\$2o3bobo8bobo3b
2o\$6bo8b2ob2o2b2o\$16bobo\$17bo\$8b2o\$8bo\$9b3o8bo\$11bo7bobo\$20b2o!``````
Which means the search is still pretty buggy. Here are other oscillators that it should have found but couldn't:

Code: Select all

``````x = 58, y = 86, rule = B3/S23
7b2o3bob2o12bo11bo\$8bo3b2obo12b3o7b3o\$7bo8b2o13bo5bo\$7b2o8bo12b2o5b2o\$
16bo\$7b2o7b2o16b3o\$8bo5b2o17bo3bo\$7bo7bo16bo5bo\$7b2o5bo18bo3bo\$14b2o
18b3o\$7b2o3b2o\$8bo4bo18b2o5b2o\$7bo4bo20bo5bo\$7b2o3b2o16b3o7b3o\$30bo11b
o19\$54bo\$31bo20b3o\$31b3o17bo\$5b2o5b2obo18bo16b2o\$6bo5bob2o17b2o21b2o\$
5bo4b2o4b2o38bo\$5b2o3bo5bo18b3o16bobo\$11bo5bo16bo3bo9b3o3b2o\$5b2o3b2o
4b2o15bo5bo7bo3bo\$6bo5b2obo18bo3bo7bo5bo\$5bo6bob2o14b2o3b3o9bo3bo\$5b2o
3b2o4b2o11bobo16b3o\$10bo5bo12bo\$5b2o4bo5bo10b2o21b2o\$6bo3b2o4b2o15b2o
16bo\$5bo6b2obo18bo17b3o\$5b2o5bob2o15b3o20bo\$31bo18\$28bo\$2b2obo6b2obo
12b3o\$2bob2o6bob2o15bo17bo\$6b2o8b2o12b2o15b3o\$6bo9bo29bo\$7bo9bo18bo9b
2o\$6b2o8b2o17bobo\$2b2obo6b2obo18b2ob2o\$2bob2o6bob2o19bobo3bo\$2o8b2o24b
o3bobo\$o9bo28b2ob2o\$bo9bo28bobo\$2o8b2o18b2o9bo\$2b2obo6b2obo15bo\$2bob2o
6bob2o12b3o15b2o\$28bo17bo\$47b3o\$49bo!``````
Sokwe wrote:With 6 new high-period oscillators, this has been one of the most successful oscillator searches in recent memory. Congratulations!
Hehe, thanks for the congrats These 6 new discoveries are the result of your idea + Chris's code + my minor tweaks and searching. And there's probably more, after I find out where the bug is...
Sokwe wrote: The eater 3 in the new p45 can be replaced by smaller catalysts:
I see. I was pretty sure that was doable but thought that drifter was bigger in population than the eater 3...
Sokwe wrote: Edit: I just realized that one of the fumaroles in the older p25 honey farm hassler can be replaced with two eaters:

Code: Select all

``````x = 32, y = 23, rule = B3/S23
6b2o4b2o7b2o\$6bobo2bobo7b2o\$8bo2bo\$7bo4bo\$7b2o2b2o\$9b2o19b2o\$30bo\$2o
26bobo\$bo21bo4b2o\$bobo17b2obo\$2b2o17bo2bo\$8b3o10b3o\$7bo2bo17b2o\$7bob2o
17bobo\$2b2o4bo21bo\$bobo26b2o\$bo\$2o19b2o\$19b2o2b2o\$19bo4bo\$20bo2bo\$9b2o
7bobo2bobo\$9b2o7b2o4b2o!``````
That makes this the smallest known p25 in terms of minimum population.
Huh! Congrats!! Quite interesting that nobody spotted it, like your p12. (Not that it's trivial)

EDIT: Here's a smaller p8 double signal injector, borrowed from one of the p4 billiard tables in jslife. I think this is as small as it can get.

Code: Select all

``````x = 18, y = 18, rule = B3/S23
2ob2o\$bobobo2bo\$o2bob4o\$b2o\$4bob5o\$b2obo6bo\$2bobo2b5o\$2bobobo7bo\$3b2ob
o2b6o\$6bobo\$6bobo2b6o\$7b2obo6bo\$10bo2b5o\$10bobo\$9b2obo2b3o\$12bobo2bo\$
12bobobo\$11b2ob2o!``````
EDIT2: Speaking of 2c/3 signals, the minimum number of cells needed for the wire is 32 cells per monomer, where one monomer makes 6 full diagonals. The form may vary by the parity of the inductor lengths:

Code: Select all

``````x = 61, y = 70, rule = LifeHistory
5.2A.A26.2A.A\$5.A.2A26.A.2A2\$6.5A25.5A\$5.A5.A23.A5.A\$2A2.A.5A23.A.5A\$
4.A2.C.B6C17.A.A.C.B6C\$7.C.C.B4.C17.A2.C.C.B4.C\$6.2C.C.B5C20.C.C.B5C\$
9.C.C.B5.E18.2C.C.B5.E\$9.C.C.B6E21.C.B6E\$10.2C.E.B25.C.E.B\$13.E.B6E
18.2C.E.B6E\$13.E.E.B4.E20.E.E.B4.E\$12.2E.E.B5E20.E.E.B5E\$15.E.E.B5.C
18.2E.E.B5.C\$15.E.E.B6C21.E.B6C\$16.2E.C.B25.E.C.B\$19.C.B6C18.2E.C.B6C
\$19.C.C.B4.C20.C.C.B4.C\$18.2C.C.B5C20.C.C.B5C\$21.C.C.B24.2C.C.B\$21.C.
C.B3E24.C.B3E\$22.2C.E2.E24.C.E2.E\$25.E.E24.2C.E.E\$25.2E29.E12\$8.2A28.
2A\$8.2A28.2A2\$6.6A24.6A\$5.A6.A22.A6.A\$2A2.A.6A22.A.6A\$A2.A.A24.2A.A.A
A.C.B5C\$7.C.C.B5.C16.A2.C.C.B5.C\$6.2C.C.B6C19.C.C.B6C\$9.C.C.B24.2C.C.
B\$9.C.C.B6E21.C.B6E\$10.2C.E.B4.E20.C.E.B4.E\$13.E.B5E19.2C.E.B5E\$13.E.
E.B5.E19.E.E.B5.E\$12.2E.E.B6E19.E.E.B6E\$15.E.E.B24.2E.E.B\$15.E.E.B6C
21.E.B6C\$16.2E.C.B4.C20.E.C.B4.C\$19.C.B5C19.2E.C.B5C\$19.C.C.B25.C.C.B
\$18.2C.C.B5C20.C.C.B5C\$21.C.C.B2.E21.2C.C.B2.E\$21.C.C.E.E25.C.BEB\$22.
2C.2E26.C.E.4E\$52.2C.E4.E\$56.3E\$58.2E!``````
Snakes are odd, blocks are even length inductors, and I tried to make the prettiest signal termination. Highlighted the monomer and signal terminator.
Here's a 2-color version:

Code: Select all

``````x = 61, y = 70, rule = B3/S23
5b2obo26b2obo\$5bob2o26bob2o2\$6b5o25b5o\$5bo5bo23bo5bo\$2o2bob5o23bob5o\$o
2bobo7bo16b2obobo7bo\$bobobobob5o16b2obobobob5o\$2obobobo25bobobo\$4bo2bo
2b6o17bobobo2b6o\$7bobo6bo17bo2bobo6bo\$6b2obo2b5o20bobo2b5o\$9bobo7bo18b
2obo7bo\$9bobo2b6o21bo2b6o\$10b2obo27bobo\$13bo2b6o18b2obo2b6o\$13bobo6bo
20bobo6bo\$12b2obo2b5o20bobo2b5o\$15bobo7bo18b2obo7bo\$15bobo2b6o21bo2b6o
\$16b2obo27bobo\$19bo2b6o18b2obo2b6o\$19bobo6bo20bobo6bo\$18b2obo2b5o20bob
o2b5o\$21bobo26b2obo\$21bobo2b3o24bo2b3o\$22b2obo2bo24bobo2bo\$25bobo24b2o
bobo\$25b2o29bo12\$8b2o28b2o\$8b2o28b2o2\$6b6o24b6o\$5bo6bo22bo6bo\$2o2bob6o
22bob6o\$o2bobo24b2obobo\$bobobobob5o16b2obobobob5o\$2obobobo6bo18bobobo
6bo\$4bo2bo2b5o18bobobo2b5o\$7bobo7bo16bo2bobo7bo\$6b2obo2b6o19bobo2b6o\$
9bobo26b2obo\$9bobo2b6o21bo2b6o\$10b2obo6bo20bobo6bo\$13bo2b5o19b2obo2b5o
\$13bobo7bo19bobo7bo\$12b2obo2b6o19bobo2b6o\$15bobo26b2obo\$15bobo2b6o21bo
2b6o\$16b2obo6bo20bobo6bo\$19bo2b5o19b2obo2b5o\$19bobo27bobo\$18b2obo2b5o
20bobo2b5o\$21bobo4bo21b2obo4bo\$21bobobobo25bo2bo\$22b2ob2o26bobob4o\$52b
2obo4bo\$56b3o\$58b2o!``````
Best wishes to you! - Scorbie

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

Here's a p11 oscillator that I haven't seen before; it showed up in a drifter search:

Code: Select all

``````x = 13, y = 15, rule = B3/S23
8b2o\$8bo\$9bo\$8b2o4\$5bo\$5b2o\$2obobob3o\$ob2obobobo\$6bo2b3o\$7b2o3bo\$9b3o\$
9bo!
``````
It has a barely accessible 1-bit spark, which can be combined with various 2-bit sparks to give oscillators of periods 44, 55, 66, 88, 99, and 165. (Any others?)

The p11, p55, and p88 are smaller than the ones which the LifeWiki says are the smallest known:

38P11.1 has min population 38; the new one has population 33 in gens 0 and 1.

p55: Fumarole on Achim's p11 has min population 90; the new one has population 51 in gens 13, 23, 35, 45.

p88: 49P88 has min population 49; the new one has population 45 in gen 2.

Code: Select all

``````#C oscillators with periods 44, 55, 66, 88, 99, and 165
x = 116, y = 73, rule = B3/S23
40b2ob2o66b2o\$41bob2o27b2obo6b2obo\$2o4b2o2b2o4b2o22bo6b2o23bob2o6bob2o
15b2o7bo3bo\$bo5bo3bo5bo21bob7o2b2o18b2o4b2o2b2o4b2o13bo7bo4bo\$o5bo3bo
5bo14b2o6bobo7b2obo17bo5bo3bo5bo15bo5bobobo\$2o4b2o2b2o4b2o13bo6b2o2b2o
b4o4bo17bo5bo3bo5bo13b2o4bobobo\$2bob2o6bob2o16bo3bo2bobo6bob2obo16b2o
4b2o2b2o4b2o17bo4bo\$2b2obo6b2obo15b2o5bobo4bob3o2bo19b2obo6b2obo12bo6b
o3bo\$6b2o8b2o17bo3bo5bobobo22bob2o6bob2o17bo\$7bo9bo10bo6bo3bo5bobobo
20b2o4b2o2b2o4b2o9bo9b2o\$6bo9bo16bo4bobo4bob3o2bo17bo5bo3bo5bo11b2o2bo
\$6b2o8b2o9bo8bo2bobo6bob2obo17bo5bo3bo5bo5b2obobo2bo\$28b2o2bo5b2o2b2ob
4o4bo16b2o4b2o2b2o4b2o5bob2obobobo\$23b2obobo2bo7bobo7b2obo19b2obo6b2ob
o13bo2b3o\$6b2o8b2o5bob2obobobo6bob7o2b2o20bob2o6bob2o14b2o3bo\$6b2o8b2o
11bo2b3o5bo6b2o53b3o\$30b2o3bo5bob2o57bo\$32b3o5b2ob2o\$32bo4\$104bo9bo\$
104b3o5b3o\$2bob2o6bob2o15b2o74bo3bo\$2b2obo6b2obo15bo8b2o64b2o3b2o\$2o8b
2o20bo3b3o2bo\$bo9bo19b2o6b2o60b2o5b3o\$o9bo24bo65bo5bo3bo\$2o8b2o16bo6bo
66bo3bo5bo\$2bob2o6bob2o17bo5b2o60b2o\$2b2obo6b2obo11bo8b3o2bo30b2obo6b
2obo19bo7bo\$6b2o8b2o10b2o2bo7b2o30bob2o6bob2o12bo6bo7bo\$7bo9bo5b2obobo
2bo38b2o4b2o2b2o4b2o15bo\$6bo9bo6bob2obobobo37bo5bo3bo5bo10bo8bo5bo\$6b
2o8b2o11bo2b3o36bo5bo3bo5bo10b2o2bo4bo3bo\$2bob2o6bob2o14b2o3bo34b2o4b
2o2b2o4b2o5b2obobo2bo6b3o\$2b2obo6b2obo16b3o37b2obo6b2obo7bob2obobobo\$
32bo39bob2o6bob2o13bo2b3o4b3o\$76b2o8b2o12b2o3bo2bo3bo\$76bo9bo15b3o2bo
5bo\$77bo9bo14bo\$76b2o8b2o18bo7bo\$72b2obo6b2obo20bo7bo\$43b2o4b2o21bob2o
6bob2o\$43bo4bobo56bo5bo\$2b2obo6b2obo24b2obo3bo60bo3bo\$2bob2o6bob2o23bo
bob2obob2o59b3o\$2o8b2o19b2o6bobo2bobo3bo\$o9bo20bo6b2o3bo2bo2bo57b2o3b
2o\$bo9bo20bo3bo3b2o3b2o2bo58bo3bo\$2o8b2o19b2o6bobo3b3o6b2o49b3o5b3o\$2b
2obo6b2obo19bo3bo5b3o2bobo2bo49bo9bo\$2bob2o6bob2o12bo6bo6bo4bo3b4o\$2o
4b2o2b2o4b2o15bo5b3o9bo\$o5bo3bo5bo10bo8bo4bobo9b2o\$bo5bo3bo5bo10b2o2bo
5b2obob3o8bo\$2o4b2o2b2o4b2o5b2obobo2bo7bobo4bo6bo\$2b2obo6b2obo7bob2obo
bobo6bobo3b2o6b2o11b2o4b2obo6bob2o15b2o5b3o\$2bob2o6bob2o13bo2b3o5bo26b
o4bob2o6b2obo15bo5bo3bo\$30b2o3bo30bo3b2o8b2o20bo3bo5bo\$32b3o31b2o2bo
10bo19b2o\$32bo38bo8bo24bo7bo\$66b2o2b2o8b2o16bo6bo7bo\$67bo4b2obo6bob2o
17bo\$66bo5bob2o6b2obo11bo8bo5bo\$66b2o2b2o4b2o8b2o10b2o2bo4bo3bo\$70bo5b
o10bo5b2obobo2bo6b3o\$66b2o3bo5bo8bo6bob2obobobo\$67bo2b2o4b2o8b2o11bo2b
3o\$66bo5b2obo6bob2o14b2o3bo\$66b2o4bob2o6b2obo16b3o\$102bo!
``````

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Dean Hickerson wrote:Here's a p11 oscillator that I haven't seen before
Very nice! I was wondering if anyone would ever find a smaller p11 than Buckingham's original.
Dean Hickerson wrote:It has a barely accessible 1-bit spark, which can be combined with various 2-bit sparks to give oscillators of periods 44, 55, 66, 88, 99, and 165. (Any others?)
The other side of the oscillator can be combined with a 1-bit spark:

Code: Select all

``````x = 125, y = 24, rule = B3/S23
88b2o\$82b2o5b3o\$51b2o28bo2bo2bo4bo\$50bobo28bobo2bob4obo\$59b2o19b2ob4o
4bobo\$4b3o41bob2o5bo2bo20bobo4b2o3bobo\$5b2o74bob4o4b3ob3o\$4b2o40bobo
30bob2o5b2o4bo3bo2b2o\$5bo51b2obo17bobo3bob2o2b3obob2obo2bo9b2o\$b2o7b2o
11bo4b2o14bobo3b2o7bobo2b2o2b2o8bo2bob2obo2bo2bo3bo2b3o6b2obo2bob2o2b
2o\$2bob2o3bobo9b2obo3bo20bobo8bo4bo2bo10b2o7b2o8bo9b2o2bo4bo2bo\$4bo4bo
10bo8bo12bobo4bo11bo7bo24bo4bo13bo7bo\$4bo3b2o9bobo2bo3b2o11bo2bo3b2o
11bo2bo3b2o24bo3b2o14bobo3b2o\$7bo11bo2bo4bo13b2o4bo19bo29bo21bo\$5b5o
10b2o3b5o15b5o15b5o25b5o17b5o\$5b3o17b3o17b3o17b3o27b3o19b3o\$4b2o3b2o
13b2o3b2o13b2o3b2o13b2o3b2o23b2o3b2o15b2o3b2o\$5bo19bo19bo19bo29bo21bo\$
2obobo2bo11b2obobo2bo11b2obobo2bo11b2obobo2bo21b2obobo2bo13b2obobo2bo\$
ob2obobobo10bob2obobobo10bob2obobobo10bob2obobobo20bob2obobobo12bob2ob
obobo\$6bo2b3o14bo2b3o14bo2b3o14bo2b3o24bo2b3o16bo2b3o\$7b2o3bo14b2o3bo
14b2o3bo14b2o3bo24b2o3bo16b2o3bo\$9b3o17b3o17b3o17b3o27b3o19b3o\$9bo19bo
19bo19bo29bo21bo!``````
The p33, p44, and p55 are now the smallest known nontrivial oscillators of their respective periods.

Edit: smaller p77:

Code: Select all

``````x = 16, y = 21, rule = B3/S23
8b2o\$6bo2bo\$4b4o\$3bo4b4o\$3b2ob2o4bo\$b2o2bobob3o2bo\$o2b2o2bobo2b3o\$bo9b
o\$2b3o3bo3bo\$7bo3b2o\$2b2o6bo\$2bo5b5o\$4bo3b3o\$3b2o2b2o3b2o\$8bo\$6bobo2bo
\$4b3obobobo\$3bo5bo2b3o\$3b2o5b2o3bo\$12b3o\$12bo!``````
You may already be aware of this, but about a year ago I compiled a list of oscillators that needed to be added to the osc section of jslife. The collection can be found here.
-Matthias Merzenich

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

Sokwe wrote:The other side of the oscillator can be combined with a 1-bit spark:
Nice! I'd wondered if that side was useful, but hadn't gotten around to checking it.
You may already be aware of this, but about a year ago I compiled a list of oscillators that needed to be added to the osc section of jslife. The collection can be found here.
Thanks. I didn't know about that.

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Congrats for the new p11! 38P11 was one of the oscillators that I thought the record of which is pretty hard to be broken. Here's a trivial p55 and two non-trivial ones. The p99 uses Sokwe's new p9 domino sparker (in the supplementary collection Sokwe provided.)

Code: Select all

``````x = 105, y = 66, rule = B3/S23
101bo\$100bobo\$100bobo\$99b2o2b2o\$91b2o4bo3bobo\$91bo5bob3o2bo\$2bob2o6bob
2o23b2o51bo9bobo\$2b2obo6b2obo23bo51b2o5bob2obo\$2o8b2o28bo21b2obo6b2obo
19bo2bo2bo\$bo9bo27b2o21bob2o6bob2o12bo6bo2bo2bo\$o9bo49b2o4b2o2b2o4b2o
15bo4bob2obo\$2o8b2o48bo5bo3bo5bo10bo14bobo\$2bob2o6bob2o45bo5bo3bo5bo
10b2o2bo4bob3o2bo\$2b2obo6b2obo20bo23b2o4b2o2b2o4b2o5b2obobo2bo5bo3bobo
\$6b2o8b2o8b2o8b2o24b2obo6b2obo7bob2obobobo6b2o2b2o\$7bo9bo8bo4b2obobob
3o21bob2o6bob2o13bo2b3o5bobo\$6bo9bo10bo3bob2obobobo25b2o8b2o12b2o3bo4b
obo\$6b2o8b2o9b2o8bo2b3o23bo9bo15b3o6bo\$2bob2o6bob2o9bo2bo9b2o3bo23bo9b
o14bo\$2b2obo6b2obo8bo15b3o23b2o8b2o\$24b2o14bo21b2obo6b2obo\$62bob2o6bob
2o22\$35b2o\$33bo3bo\$33bobob2o\$32b2o4bo\$38bo\$38bo\$2o4b2o5b2obo\$bo5bo5bob
2o13bo\$o5bo4b2o4b2o11bo8b2o\$2o4b2o3bo5bo12bo4b2o2bo\$12bo5bo11b2obobo4b
o\$2o4b2o3b2o4b2o12bo3bo3b2o\$bo5bo3bo5bo14b2o4bo\$o5bo5bo5bo17b5o\$2o4b2o
3b2o4b2o17b3o\$11bo5bo17b2o3b2o\$2o4b2o4bo5bo17bo\$bo5bo3b2o4b2o12b2obobo
2bo\$o5bo6b2obo14bob2obobobo\$2o4b2o5bob2o20bo2b3o\$38b2o3bo\$40b3o\$40bo!
``````
Best wishes to you! - Scorbie

Kazyan
Posts: 1094
Joined: February 6th, 2014, 11:02 pm

This new p11 is one of the most elegant oscillators I've ever seen. Congrats!
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook. Now on Amazon.

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

The new p11 can support a p22 B-heptomino shuttle:

Code: Select all

``````x = 25, y = 30, rule = B3/S23
18b2o\$18bo\$19bo\$18b2o2\$16b4o\$4bo10bo4bo\$3bobo9bo2b2obo\$3bobo3b2obo2b3o
3bo\$b3ob2o2bob2o6b2ob2o\$o19bobo\$b3obobo12bobo\$3bobo2bo12bo\$13bo\$6bo2bo
3b2o\$6bo7b2o\$10bo2b2o\$3bo3bo2bo7b2obo\$2bobo4bo8b2ob3o\$2bobo19bo\$b2ob2o
6b2obo2b2ob3o\$3bo3b3o2bob2o3bobo\$3bob2o2bo9bobo\$4bo4bo10bo\$5b4o2\$5b2o\$
5bo\$6bo\$5b2o!``````
Previously, this could only be supported by period-22 oscillators.

Edit: Shifting and rephasing the fumaroles in the p25 reduces the minimum population by 2:

Code: Select all

``````x = 32, y = 23, rule = B3/S23
4b2o4b2o9b2o\$4bobo2bobo9b2o\$6bo2bo\$5bo4bo\$5b2o2b2o\$7b2o21b2o\$30bo\$2o
26bobo\$bo26b2o\$bobo18b3o\$2b2o16b2ob2o\$9bo12bo\$7b2ob2o16b2o\$7b3o18bobo\$
2b2o26bo\$bobo26b2o\$bo\$2o21b2o\$21b2o2b2o\$21bo4bo\$22bo2bo\$9b2o9bobo2bobo
\$9b2o9b2o4b2o!``````
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Sokwe wrote:The new p11 can support a p22 B-heptomino shuttle:
That looks quite compact! Nice
EdIt: Where did the reaction come from??
Sokwe wrote:Edit: Shifting and rephasing the fumaroles in the p25 reduces the minimum population by 2:
So now it's min. pop 88? That's the minimum it can get with the same components, right? Nice job!!
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Scorbie wrote:Where did the reaction come from?
It came from an oscillator in jslife (supported by two copies of 36P22). The reaction was found by Noam Elkies in April, 1996.
Scorbie wrote:So now it's min. pop 88? That's the minimum it can get with the same components, right?
Probably. There is a phase where the pre-honey farm has a smaller population, but I couldn't find any fumarole placement that gave an 86-cell form. It might be possible to replace the toaster in this variant with something smaller:

Code: Select all

``````x = 30, y = 23, rule = B3/S23
4b2o4b2o\$4bobo2bobo\$6bo2bo17bo\$5bo4bo9bo5bobo\$5b2o2b2o8bobob2o2bobo\$7b
2o10bobobob2o2bo\$18b2obo4bobo\$2o15bo2b2obobo2b2o\$bo14b3o3b2obobo\$bobo
12b3o3b2obobo\$2b2o13bo2b2obobo2b2o\$9bo8b2obo4bobo\$7b2ob2o7bobobob2o2bo
\$7b3o9bobob2o2bobo\$2b2o16bo5bobo\$bobo23bo\$bo\$2o4\$9b2o\$9b2o!``````
-Matthias Merzenich

Freywa
Posts: 718
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

DRH's new p11 seems to be crying out for a name, even though it doesn't immediately resemble anything. I'm going to call it rattlesnake (11 letters and has a snake for a rock)...
Princess of Science, Parcly Taxel

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Let us hear what Dean thinks about that name :)
Best wishes to you! - Scorbie

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

A meta-discovery... I discovered that Noam Elkies discovered this p10 supported by a p5 part in February 18th, 1998.
Checked jslife and it's wasn't there. Either I am stupid enough to miss a pattern in jslife or jslife is not a complete compilation of patterns(although it nearly is)

Code: Select all

``````x = 38, y = 14, rule = B3/S23
5b2ob2o7b2o\$4bobobo7bo2bo\$2o2bobobo7bobo\$obobobobob2o3b2ob4o\$2bobo6bo
2bo2bo4bo\$obob2ob2ob2ob3o2b2o4b2o3bo3bo\$2o2bobobo4bo4bo6bobobo3bo\$4bob
obo4b3o7bob4o5bo\$5b2ob2o4bobobob4o4bob3o\$15bo3bo4b5o3bobo\$13bobobob5o
4bo3bob3o\$12bobobobo5b4o5bo3bo\$12bo3bo3bobo2bo5bobo2b2o\$11b2o2b2o2b2ob
2o7b2o!``````
EDIT: 1) Reran the HF search with the fixed script to find nothing new. 2) Ran the search with a TL which gave all the known TL hasslers I know (The p36 and the p27) but didn't give any new ones. I guess there's nothing like the honeyfarm...
Best wishes to you! - Scorbie