Page 2 of 2
Re: Totally periodic pattern
Posted: January 7th, 2015, 8:14 pm
by dvgrn
chris_c wrote:Scorbie wrote:Wow, I never new methuselahs had any use for making a pattern. Say hi to 35201M!
It doesn't meet the stipulation that every cell should die and remain dead after some number of generations.
What's needed is a good expanding diehard as opposed to a methuselah, I suspect this is a perfect problem for LifeAPI or an adaptation of apgsearch. Just fill most of the center of the nonfiller with random patterns of mostly ON cells, run for a few dozen ticks to make sure the nonfiller survives, then maybe remove the nonfiller and run each pattern to stability.
Sort the resulting ash by final population -- every now and then one will happen to be a diehard. If so, re-run it in LifeHistory (or equivalent), chop the original nonfiller bounding box out, and see if it matches an all-state-2 rectangle.
Again a later generation of the nonfiller can be used to increase the search space. I tried this with a later generation of die658.rle, but not surprisingly it left too many holes to be reasonably patched up:
Code: Select all
x = 51, y = 45, rule = LifeHistory
26.3A$26.A2.A$19.3A4.A6.3A$18.A2.A4.A3.A.A2.A$18.A2.A4.A3.A.A2.A$17.
3A.A.A2.A10.A$16.A5.A4.A.A2.2A2.2A$16.3A2.2A16.A$14.A6.A10.2A.A.3A$
14.3A3.A.A9.A8.A$12.A9.A10.A5.3A$12.3A12.2A14.A$10.A15.A2.A11.3A$10.
3A14.2A16.A$8.A34.3A$8.3A36.A$6.A38.3A$6.3A39.A$3.A.A30.2A7.A.3A$2.5A
.A26.A.A11.A$.2A6.A25.2A8.5A$2A4.2A25.2A5.A.A$.A.A3.A2.A21.A.A5.A2.A
3.A.A$8.A.A21.2A9.2A4.2A$.5A35.A6.2A$.A40.A.5A$.3A.A7.A7.2A2.2A18.A.A
$2.A10.A8.A3.A15.3A$3.3A7.A30.A$3.A14.A21.3A$5.3A10.A23.A$5.A11.3A18.
3A$7.3A30.A$7.A28.3A$9.3A5.A10.A9.A$9.A8.A9.A.A3.3A$11.3A.A.2A10.A6.A
$11.A16.2A2.3A$13.2A2.2A2.A.A4.A5.A$13.A10.A2.A.A.3A$15.A2.A.A3.A4.A
2.A$15.A2.A.A3.A4.A2.A$15.3A6.A4.3A$21.A2.A$22.3A!
Re: Totally periodic pattern
Posted: January 7th, 2015, 8:44 pm
by calcyman
The die743 is slightly better, but I found that it's easiest to just do it with waves of *WSSes and gliders:
Code: Select all
x = 99, y = 132, rule = LifeHistory
37.A$38.A$36.3A3$38.A$39.A$37.3A3$39.A$40.A$38.3A$50.3A$50.A2.A$40.A
9.A$41.A8.A$39.3A8.A$50.A$51.A4.3A$41.A14.A2.A$42.A13.A$40.3A13.A$56.
A$56.A$42.A14.A4.3A$43.A18.A2.A$41.3A18.A$62.A$62.A$43.A18.A$44.A18.A
4.3A$42.3A23.A2.A$68.A$68.A$44.A23.A$45.A22.A$43.3A23.A4.3A$59.6A9.A
2.A$37.3A18.A5.A9.A6.3A$36.A2.A5.A18.A9.A3.A.A2.A$30.3A6.A6.A16.A10.A
3.A.A2.A$30.A2.A.A3.A4.3A27.A10.A$30.A2.A.A3.A35.A4.2A2.2A$28.A10.A
12.A12.6A16.A$28.2A2.2A4.A14.A10.A5.A9.2A.A.3A$26.A26.A16.A9.A8.A$26.
3A.A.2A19.A15.A7.A3.A5.3A$24.A8.A19.A24.A12.A$24.3A5.A17.A2.A24.A6.A
3.3A$22.A28.3A5.6A13.A5.A8.A$22.3A33.A5.A13.A5.A6.3A$20.A43.A10.A2.A
5.A10.A$20.3A40.A7.A4.3A5.A8.3A$18.A53.A11.A2.A8.A$18.3A51.A11.3A6.A.
3A$16.A36.6A13.A24.A$16.3A33.A5.A13.A20.5A$14.A43.A10.A2.A15.A.A$14.
3A40.A7.A4.3A15.A2.A3.A.A$12.A25.3A25.A24.2A4.2A$12.3A23.A2.A24.A22.A
6.2A$10.A27.A8.6A13.A18.A4.A.5A$10.3A25.A3.A3.A5.A13.A19.A6.A.A$8.A
29.A3.A9.A10.A2.A17.3A3.3A$8.3A27.A12.A5.A.A4.3A25.A$6.A25.3A4.A.A5.A
12.A27.3A$6.3A3.3A17.A2.A10.A9.A3.A29.A$3.A.A6.A19.A13.A5.A3.A3.A25.
3A$2.5A.A4.A18.A13.6A8.A27.A$.2A6.A22.A24.A2.A23.3A$2A4.2A24.A25.3A
25.A$.A.A3.A2.A15.3A4.A7.A40.3A$8.A.A15.A2.A10.A43.A$.5A20.A13.A5.A
33.3A$.A24.A13.6A36.A$.3A.A6.3A11.A51.3A$2.A8.A2.A11.A53.A$3.3A8.A5.
3A4.A7.A40.3A$3.A10.A5.A2.A10.A43.A$5.3A6.A5.A13.A5.A33.3A$5.A8.A5.A
13.6A5.3A28.A$7.3A3.A6.A24.A2.A17.A5.3A$7.A12.A24.A19.A8.A$9.3A5.A3.A
7.A15.A19.2A.A.3A$9.A8.A9.A16.A26.A$11.3A.A.2A9.A5.A10.A14.A4.2A2.2A$
11.A16.6A12.A12.A10.A$13.2A2.2A4.A35.A3.A.A2.A$13.A10.A27.3A4.A3.A.A
2.A$15.A2.A.A3.A10.A16.A6.A6.3A$15.A2.A.A3.A9.A18.A5.A2.A$15.3A6.A9.A
5.A18.3A$21.A2.A9.6A$22.3A4.A23.3A$30.A22.A$30.A23.A$30.A$30.A$27.A2.
A23.3A$28.3A4.A18.A$36.A18.A$36.A$36.A$36.A18.3A$33.A2.A18.A$34.3A4.A
14.A$42.A$42.A$42.A13.3A$42.A13.A$39.A2.A14.A$40.3A4.A$48.A$48.A8.3A$
48.A8.A$48.A9.A$45.A2.A$46.3A$58.3A$58.A$59.A3$59.3A$59.A$60.A3$60.3A
$60.A$61.A!
What are we trying to optimise? Population count or bounding box?
Re: Totally periodic pattern
Posted: January 8th, 2015, 9:46 am
by lukebradford
Surely that doesn't work if you delete the blue cells at generation 0.
D'oh, sorry for the foolishness...
These patterns are going in very interesting directions. I was thinking about minimizing population, but bounding box is interesting too.
Re: Totally periodic pattern
Posted: January 8th, 2015, 4:12 pm
by simsim314
I guess those patterns are relevant to this topic, because if we can make synth, and use a breader to have them as trace this will yield a total periodic... if I'm right the next step is to find synthesis for those stretchers. Year ago it would sound science fiction, but with latest discoveries it sounds pretty attainable.
Re: Totally periodic pattern
Posted: January 8th, 2015, 8:36 pm
by Scorbie
simsim314 wrote:I guess those patterns are relevant to this topic, because if we can make synth, and use a breader to have them as trace this will yield a total periodic...
Isn't this pattern enough to become total periodic (with period 1) ? Also, I may have understood wrong, but I think two or more nonfillers would collide in one Life plane.
Re: Totally periodic pattern
Posted: January 9th, 2015, 2:11 pm
by simsim314
Hmm period 1? Isn't empty universe is period 1? Otherwise you don't need a stretcher, simply couple of breeders will suffice.
I guess Total period should mean every cell becomes periodic with P>1.
It's also an interesting question to investigate is there a way to make each cell periodic, but for each period, there would be a rectangle in which the period will not hold (globally a-periodic, but locally totally periodic).
Re: Totally periodic pattern
Posted: January 9th, 2015, 3:06 pm
by lukebradford
Re: calcyman, you can delete a couple of gliders:
Code: Select all
x = 99, y = 132, rule = LifeHistory
37.A$38.A$36.3A3$38.A$39.A$37.3A3$39.A$40.A$38.3A$50.3A$50.A2.A$40.A
9.A$41.A8.A$39.3A8.A$50.A$51.A4.3A$41.A14.A2.A$42.A13.A$40.3A13.A$56.
A$56.A$42.A14.A4.3A$43.A18.A2.A$41.3A18.A$62.A$62.A$43.A18.A$44.A18.A
4.3A$42.3A23.A2.A$68.A$68.A$44.A23.A$45.A22.A$43.3A23.A4.3A$59.6A9.A
2.A$37.3A18.A5.A9.A6.3A$36.A2.A5.A18.A9.A3.A.A2.A$30.3A6.A6.A16.A10.A
3.A.A2.A$30.A2.A.A3.A4.3A27.A10.A$30.A2.A.A3.A35.A4.2A2.2A$28.A10.A
12.A12.6A16.A$28.2A2.2A4.A14.A10.A5.A9.2A.A.3A$26.A26.A16.A9.A8.A$26.
3A.A.2A19.A15.A7.A3.A5.3A$24.A8.A19.A24.A12.A$24.3A5.A17.A2.A24.A6.A
3.3A$22.A28.3A5.6A13.A5.A8.A$22.3A33.A5.A13.A5.A6.3A$20.A43.A10.A2.A
5.A10.A$20.3A40.A7.A4.3A5.A8.3A$18.A53.A11.A2.A8.A$18.3A51.A11.3A6.A.
3A$16.A36.6A13.A24.A$16.3A33.A5.A13.A20.5A$14.A43.A10.A2.A15.A.A$14.
3A40.A7.A4.3A15.A2.A3.A.A$12.A25.3A25.A24.2A4.2A$12.3A23.A2.A24.A22.A
6.2A$10.A27.A8.6A13.A23.A.5A$10.3A25.A3.A3.A5.A13.A26.A.A$8.A29.A3.A
9.A10.A2.A23.3A$8.3A27.A12.A5.A.A4.3A25.A$6.A25.3A4.A.A5.A12.A27.3A$
6.3A23.A2.A10.A9.A3.A29.A$3.A.A26.A13.A5.A3.A3.A25.3A$2.5A.A23.A13.6A
8.A27.A$.2A6.A22.A24.A2.A23.3A$2A4.2A24.A25.3A25.A$.A.A3.A2.A15.3A4.A
7.A40.3A$8.A.A15.A2.A10.A43.A$.5A20.A13.A5.A33.3A$.A24.A13.6A36.A$.3A
.A6.3A11.A51.3A$2.A8.A2.A11.A53.A$3.3A8.A5.3A4.A7.A40.3A$3.A10.A5.A2.
A10.A43.A$5.3A6.A5.A13.A5.A33.3A$5.A8.A5.A13.6A5.3A28.A$7.3A3.A6.A24.
A2.A17.A5.3A$7.A12.A24.A19.A8.A$9.3A5.A3.A7.A15.A19.2A.A.3A$9.A8.A9.A
16.A26.A$11.3A.A.2A9.A5.A10.A14.A4.2A2.2A$11.A16.6A12.A12.A10.A$13.2A
2.2A4.A35.A3.A.A2.A$13.A10.A27.3A4.A3.A.A2.A$15.A2.A.A3.A10.A16.A6.A
6.3A$15.A2.A.A3.A9.A18.A5.A2.A$15.3A6.A9.A5.A18.3A$21.A2.A9.6A$22.3A
4.A23.3A$30.A22.A$30.A23.A$30.A$30.A$27.A2.A23.3A$28.3A4.A18.A$36.A
18.A$36.A$36.A$36.A18.3A$33.A2.A18.A$34.3A4.A14.A$42.A$42.A$42.A13.3A
$42.A13.A$39.A2.A14.A$40.3A4.A$48.A$48.A8.3A$48.A8.A$48.A9.A$45.A2.A$
46.3A$58.3A$58.A$59.A3$59.3A$59.A$60.A3$60.3A$60.A$61.A!