Page 13 of 47

Posted: January 24th, 2017, 9:42 pm
GUYTU6J wrote:Could we prove or disprove that all spaceship partials can be completed(even at an incredible width)?
For a suitable definition of "partial", proving this would essentially require a formula that outputs spaceships.
For more lenient definitions of partial, however, it should be trivial to construct infeasible partials that cannot possibly work, like a glider as a c/4 diagonal partial in the opposite direction or something silly like that.

Posted: January 24th, 2017, 10:17 pm
For the definition of "partial" in which cells which cannot be affected within the period from outside must be correct, it might be possible to construct a partial with a GoE in the back which is partially reconstructed. It can't be completed due to the impossibility of producing the (full) GoE.

Posted: January 24th, 2017, 10:56 pm
Extension of 60P5H2V0:

Code: Select all

``````x = 19, y = 24
5bo7bo\$5bo7bo\$\$5boo5boo\$5booboboboo\$6bobobobo\$6bobobobo\$6bo5bo\$5bo7bo\$4boobooboo
boo\$4bobbooboobbo\$4bobbooboobbo\$4boobbobobboo\$o6booboo6bo\$o7bobo7bo\$bboo3booboo
3boo\$bbobbobbobobbobbo\$o5bobobobo5bo\$3o5bobo5b3o\$bo4bobobobo4bo\$8bobo\$6boo3boo\$
3booboo3booboo\$5bo7bo!
``````

Posted: January 25th, 2017, 4:26 am
Here are two new 90-cell 2c/5 ships:

Code: Select all

``````x = 78, y = 15, rule = B3/S23
4b3o39b3o\$3bob2o38bob2o\$2bo41bo\$b2o40b2o\$2b2o4b2o17b4o13b2o4b2o\$3bo4b
3o3bo8bo2bo4bo13bo4b3o3bo8b2o\$4b2o3bo6bo5b4o5bo14b2o3bo6bo5bo\$5bo6b2o
4bobo4bo4b2o15bo6b2o4bobo4bo\$bo4b2o6b3ob4ob2obobo4b3o7bo4b2o6b3ob3o4bo
8bo\$2ob4o9bo7b3obo4b2o7b2ob4o9bo7b3obo4b2o\$b5o11b4o4bo8bo8b5o11b5ob2ob
obo4b3o\$17b2obo4bo33b2obo4bo4b2o\$22bo41b4o5bo\$23b2o40bo2bo4bo\$69b4o!``````
The first one was found by extending part of A for awesome's 59-cell ship using gfind. The second one was found by noticing that the trailing component on the first ship could be flipped.
A for awesome wrote:Extension of 60P5H2V0
This is known and can be found in jslife. The tagalong can connect to four different phases of the ship:

Code: Select all

``````x = 24, y = 110, rule = B3/S23
7bo\$6b5o\$5bo5bo\$6b2o\$7bo2bo2bo\$2b2o9bo\$b2ob2o6bo7b4o\$2bob2o6b4o4bo\$3bo
3bo2bobo2b2obobob2o\$4b7o5bo2\$4b7o5bo\$3bo3bo2bobo2b2obobob2o\$2bob2o6b4o
4bo\$b2ob2o6bo7b4o\$2b2o9bo\$7bo2bo2bo\$6b2o\$5bo5bo\$6b5o\$7bo10\$6b2obo\$6b5o
\$5bo3b2o\$6b2o\$6b2o5bo\$b4o8bo\$bo3bo6bo7b4o\$b2o2b2o5b4o4bo\$3bo3bo2bobo2b
2obobob2o\$4b7o5bo2\$4b7o5bo\$3bo3bo2bobo2b2obobob2o\$b2o2b2o5b4o4bo\$bo3bo
6bo7b4o\$b4o8bo\$6b2o5bo\$6b2o\$5bo3b2o\$6b5o\$6b2obo10\$6bo2b2o\$5bo\$5bo4bo\$
5bob2o\$2b2ob3o5bo\$b6o6bo\$o4b2o5bo7b4o\$b2ob3o5b4o4bo\$2b2o6bobo2b2obobob
2o\$4b7o5bo2\$4b7o5bo\$2b2o6bobo2b2obobob2o\$b2ob3o5b4o4bo\$o4b2o5bo7b4o\$b
6o6bo\$2b2ob3o5bo\$5bob2o\$5bo4bo\$5bo\$6bo2b2o11\$5b2o2b2o\$4b2o\$5bob2o\$bo6b
o4bo\$bo11bo\$o6bo4bo7b4o\$b2obobo5b4o4bo\$b2o5bobobo2b2obobob2o\$3b8o5bo2\$
3b8o5bo\$b2o5bobobo2b2obobob2o\$b2obobo5b4o4bo\$o6bo4bo7b4o\$bo11bo\$bo6bo
4bo\$5bob2o\$4b2o\$5b2o2b2o!``````
Edit: Here are three more 2c/5 ships that are slightly too big to be included in the small ships collection:

Code: Select all

``````x = 42, y = 74, rule = B3/S23
4b2ob2o\$3bobo\$2bo20bo3b2o\$bo11b2o4b2o2b7o\$2bo4bo3bobo3bobo7bob2o\$3b2o
3b5o3b3o2b2o3bob2o\$12b2ob2o2bo4b5o\$2bobobo4bo3bobobobo6bob2o\$bo4bo4bo
5b3obo2b2o\$bob4o2bo7bo5bobobo3b3o\$b2o15bo4b2obo4b2o\$18bo\$19bobo17\$5bo\$
4bobo\$3bo2bo\$b3o\$bo\$bobo4bobo\$2b2o6bo12bo17bo\$4b2o2b3o2bo9b2o4b4o6b3o\$
4b2o7b2obobob2o7bo3b2o3b2o\$3o4bo5b4obobo8b2o5b2o\$o6bo8bo4bobo2bo7bo\$2o
4bo9bo3b2obo2bo4bo2bo\$2b3o12bo2bo5bo6bo2b3o\$22b2ob2o2bo4b5o\$22b2obobo
2bo3b2obo\$28bo\$28bobo14\$5bo\$4bobo\$3bo2bo\$b3o\$bo26bobo\$bobo4bobo17bo\$2b
2o6bo11b2obobo2bo3b2obo\$4b2o2b3o2bo8b2ob2o2bo4b5o\$4b2o7b2obobobo5bo6bo
2b3o\$3o4bo5b4obob2obo2bo4bo2bo\$o6bo8bo4bobo2bo7bo\$2o4bo9bo3bo8b2o5b2o\$
2b3o12bo2b2o7bo3b2o3b2o\$23b2o4b4o6b3o\$23bo17bo!``````

Posted: January 25th, 2017, 10:28 am
2c/10 glide symmetry partial

Code: Select all

``````x = 6, y = 11, rule = B3/S23
2o\$2o3\$2b3o2\$2bo2bo\$3b3o2\$b2o\$b2o!
``````

Posted: January 25th, 2017, 12:04 pm
GUYTU6J wrote:2c/10 glide symmetry partial

Code: Select all

``````x = 6, y = 11, rule = B3/S23
2o\$2o3\$2b3o2\$2bo2bo\$3b3o2\$b2o\$b2o!
``````
That more closely resembles a tagalong component than a partial.
Making a c/5 ship with the ability to support that seems somewhat difficult if you ask me.

Posted: January 25th, 2017, 12:39 pm
Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end.

Posted: January 25th, 2017, 4:51 pm
GUYTU6J wrote:Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end.
Except it can't be a front end because the blocks are in front of the LOM.
And the reaction's too slow to be supportable by a block chain from a puffer but the reaction can be supported by gliders from a c/5 p10 backrake or a certain spark:

Code: Select all

``````x = 16, y = 8, rule = B3/S23
2b3o7b3o2\$2bo2bo6bo2bo\$3b3o7b3o2\$3o8b2o\$2bo\$bo11bo!
``````

Posted: January 25th, 2017, 8:49 pm
GUYTU6J wrote:Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end.
Except it can't be a front end because the blocks are in front of the LOM.
And the reaction's too slow to be supportable by a block chain from a puffer but the reaction can be supported by gliders from a c/5 p10 backrake or a certain spark:

Code: Select all

``````x = 16, y = 8, rule = B3/S23
2b3o7b3o2\$2bo2bo6bo2bo\$3b3o7b3o2\$3o8b2o\$2bo\$bo11bo!
``````

Code: Select all

``````x = 80, y = 94, rule = B3/S23
o\$b2o\$2o\$4bobo\$5b2o\$5bo3bo\$10b2o\$9b2o\$13bobo\$14b2o\$14bo3bo\$19b2o\$18b2o
\$22bobo\$23b2o\$23bo3bo\$28b2o\$27b2o\$31bobo\$32b2o\$32bo3bo\$37b2o\$36b2o\$40b
obo\$41b2o\$41bo3bo\$46b2o\$45b2o\$49bobo\$50b2o\$50bo3bo\$55b2o\$54b2o\$58bobo\$
59b2o\$59bo3bo\$64b2o\$63b2o\$67bobo\$68b2o\$68bo3bo\$73b2o\$72b2o4\$76b3o2\$76b
o2bo\$77b3o2\$74b3o\$76bo\$70b2o3bo\$69bobo\$71bo\$65b3o\$67bo\$61b2o3bo\$60bobo
\$62bo\$56b3o\$58bo\$52b2o3bo\$51bobo\$53bo\$47b3o\$49bo\$43b2o3bo\$42bobo\$44bo\$
38b3o\$40bo\$34b2o3bo\$33bobo\$35bo\$29b3o\$31bo\$25b2o3bo\$24bobo\$26bo\$20b3o\$
22bo\$16b2o3bo\$15bobo\$17bo\$11b3o\$13bo\$7b2o3bo\$6bobo\$8bo\$2b3o\$4bo\$3bo!
``````

Posted: January 25th, 2017, 11:02 pm
A possible small 2c/5 component:

Code: Select all

``````x = 13, y = 13
oo\$\$bbo7bobo\$bobo8bo\$bobbo4bo\$boboo3bobo\$4bobbo\$5boboo\$5bo3boo\$6boo\$6booboo\$
8bo!
``````
I don't know if it can be attached to anything known.

Posted: January 26th, 2017, 1:47 am
A for awesome wrote:A possible small 2c/5 component
Here is a 79-cell ship and a 90-cell ship using this component (found with gfind):

Code: Select all

``````x = 41, y = 42, rule = B3/S23
32b2o\$12bo19bo\$7b3o2bo15b3o\$10bo4bo\$7bobo3bo4bo8bo3bo\$6b3o3bo6b2o4b2o
4bo\$4b2o6bo3bo4b2obo4b2o\$2b2o9b2obobo2b4o4bobo\$2b2ob2o6b2obobo2b2o4bo\$
bo3bobo15b4o\$2bobo3bo7b2o6bo\$2bobo2bo2bo2\$9b2o18\$8b2o\$7b4o27bo\$6b2o2bo
22b2o2bo2bo\$5bo3bo9bo13bob2o\$12b2o5bo13bob2o\$3b2o3bo2b2ob3ob2obo12bo5b
o\$2bo9bobobo3bo4bob2ob3obo2b3o\$bo2b2obo5b2obo4bo2b2obo3bo\$2obo4bo5b2o
7b2o2bo2bo\$b2ob2ob2o14bo5b2o\$5b5o!``````
Here are two more 2c/5 ships that are slightly too large for the small ships collection:

Code: Select all

``````x = 38, y = 34, rule = B3/S23
3b2ob2o4b2o3b3o11bo\$2bobo5b2o3bob2o11bobo\$bo8b2o4bob3o8bo3b3o\$o9b5o5bo
bob3o3bob3o\$bo4bo6b3o4b2obo7b2o\$2b2o3b3o13bob2o\$11bo10b2o4bobo\$bobobo
4bo14b3o2bo\$o4bo3bo14b2o4bo\$ob4o21b3o\$2o25b2o11\$11bo\$6b3o2bo9b3o2bobo\$
9bo4bo4b2o3bobobo5b3o\$6bobo3bo5b4ob2obo6bo\$5b3o3bo5b2o18bo\$3b2o6bo3bob
o5b3obo3b2o3bo\$b2o9b2obo2b3o2b2obo2bo3bo\$b2ob2o6b2ob2o2b2o2b2ob4o3b2o\$
o3bobo8bo13bo3b2o\$bobo3bo\$bobo2bo2bo2\$8b2o!``````
Edit: the 79-cell ship can support the B-heptomino tagalong to give an 86-cell ship:

Code: Select all

``````x = 33, y = 16, rule = B3/S23
16bo\$15bo\$14b2o15b2o\$11bo3b2o14bo\$6b3o2bo4bo10b3o\$9bo4bo\$6bobo3bo4bo8b
o3bo\$5b3o3bo6b2o4b2o4bo\$3b2o6bo3bo4b2obo4b2o\$b2o9b2obobo2b4o4bobo\$b2ob
2o6b2obobo2b2o4bo\$o3bobo15b4o\$bobo3bo7b2o6bo\$bobo2bo2bo2\$8b2o!``````
Edit 2: while running a width-11 knightt search I found this small 2c/5 tagalong that can be attached to the back of the 34-cell ship to make a 54-cell ship:

Code: Select all

``````x = 18, y = 15, rule = B3/S23
5bo3bo\$5bo3bo\$4bobo\$3b3o2b2o2\$6b2o\$6b2o5bo\$6b2o3bobo\$11bo\$2b2obo5b3o\$b
obo2bo6b3o\$2o3bo6b2o2bo\$bobobo7bob2o\$2b2ob2o7b4o\$5bo!``````
Obviously there are other known ships that can pull this tagalong, but I haven't enumerated all the small cases yet.

Posted: January 26th, 2017, 7:12 am
This all looks like real progress after a decade of practically no activity on small periods space ships. Could we extend this to short wide ones? This would then give the flexibility to finalize puffer engines, grey ships and other extensible structures.

Also, further progress in the p6 and p7 area (more examples) would help.

Posted: January 26th, 2017, 8:51 am
HartmutHolzwart wrote:Could we extend this to short wide ones?
It would certainly be nice to have more short c/4 and 2c/5 components. One possible way to make a short c/6 orthogonal ship might be to start with this well known component:

Code: Select all

``````x = 10, y = 8, rule = B3/S23
2b2ob2o\$b4obo\$o6bo\$bo4bo\$6bo\$4bo3b2o\$8bo\$8bo!``````
I think I have run through a full height-9 c/6 search using WLS and found nothing, so it might be best to search at a height of 10.

The 2c/5 width-11 knightt search finished, and I have attached the results to this post.

Posted: January 26th, 2017, 10:06 pm
A rather sparky 75(?)-cell ship:

Code: Select all

``````x = 14, y = 27
4bo\$5bo\$obo\$obbo\$obboo\$o4bo\$b4o\$bo4bo\$oobo3bo\$oobo\$3bobo3boo\$3bobo\$obb3oboboo\$b
3o5bo\$\$9bobbo\$10boo\$4bo4bo\$3bo4b5o\$3b3obboo3bo\$5bo3boboo\$9bobo\$6boob3o\$7bo3bo\$7b
obo\$8bobbo\$9b3o!
``````
On an unrelated note, I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS, and I have almost certainly eliminated the possibility of a knightship with the same single-phase width (certain quirks with JLS's unset cells make it hard for me to know for certain, but the probability that a partial ever almost reached the edge of the grid that I used seems astronomically low).

Posted: January 26th, 2017, 11:06 pm
A for awesome wrote:A rather sparky 75(?)-cell ship
It's 77 cells. The back end showed up in the knightt search I ran yesterday. A small tagalong from that search makes an 83-cell ship and the B-heptomino tagalong makes an 84-cell ship:

Code: Select all

``````x = 31, y = 45, rule = B3/S23
23b2o\$18bo2b4o\$14b2o2bo2bobobo3b2o\$13b2obo4bo2bo3bo\$8b2o4bob3o2bob2o3b
3o\$20b2ob2o\$7b3o5b2o4b2o\$5b2o8bo\$3b3o\$2bo7bo3b3o\$bo2b4o3bo2b2o\$2obo7b
2ob2o\$b2ob2obobob2o\$5bobob2o\$8bo12\$29bo\$28b2o\$27b2obo2\$23b2o4bo\$18bo2b
4o\$14b2o2bo2bobobo\$13b2obo4bo2bo\$8b2o4bob3o2bob2o\$20b2ob2o\$7b3o5b2o4b
2o\$5b2o8bo\$3b3o\$2bo7bo3b3o\$bo2b4o3bo2b2o\$2obo7b2ob2o\$b2ob2obobob2o\$5bo
bob2o\$8bo!``````
I noticed that applying one of my new tagalongs to the new 56-cell ship gives a 73-cell ship:

Code: Select all

``````x = 28, y = 16, rule = B3/S23
17bo\$15b2o3bo\$15b2o2bo\$10b2o3b4obo\$7b2obo\$6bobob2o\$2bob2o2bo4bobo6bo\$
2o4bo2b2ob4o4b3o\$o4bo3b2o3bo5b2o\$5o7b2o9bo\$13bo7bo2bo\$22bo2bo\$3b3o16bo
b2o\$3bo19bo2b2o\$3bo\$4b2o!``````
This is the first known 73-cell 2c/5 ship. Now 2c/5 ships are known for all bit counts from 56 to 90. I'm sure that every bit count over 90 could be achieved using only components found in the current small ships collection.
A for awesome wrote:I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS
Could you describe your method for this search? I suspect I know what it is, but I'm curious.

Posted: January 27th, 2017, 12:01 am
Sokwe wrote:
A for awesome wrote:I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS
Could you describe your method for this search? I suspect I know what it is, but I'm curious.
It's relatively ugly and requires a lot of manual intervention. (Also, I'm not quite as confident about the single-phase prediction as I was before.) I first set up a large grid of off cells in one phase, and empty those that fall inside the requisite diagonal swath. The swath must entirely intersect the leading edge of the grid (not the corner). I then mark all cells at the trailing edge of the grid that could possibly be active in a longer partial as unset in all phases. Next, I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search. I continue that until the last cell in that row has been set to off. If a solution is ever output, that means that either there is a ship or a very long partial. I feel like there should be a better way, but the JLS manual doesn't have anything.

I've been setting up most of my recent searches in a similar way, in fact, except with a knightwise swath instead of a diagonal one. However, I would be surprised if no one has done a search for knightships on a knightwise swath before.

Posted: January 27th, 2017, 3:40 pm
c/8 partial. Front wibbles in WLS, tried to extend with zfind at width 10 and this is the best it could find.

Code: Select all

``````x = 22, y = 43, rule = B3/S23
b2o16b2o\$4o14b4o\$o2b2o12b2o2bo\$bo18bo\$6b2o6b2o\$7b2o4b2o\$5b3obo2bob3o\$
8b6o\$8b6o2\$9b4o\$7b3o2b3o\$7bo6bo\$6bo3b2o3bo\$6bo8bo\$7bobo2bobo\$6bo2bo2bo
2bo\$7b2o4b2o\$7bob4obo\$9b4o\$7bobo2bobo\$7bobo2bobo\$5b2ob2o2b2ob2o\$4bobo
2b4o2bobo\$9b4o\$8bob2obo\$4b3ob2o2b2ob3o\$2b5o2bo2bo2b5o\$2b2obob2o4b2obob
2o\$3bo3bobo2bobo3bo\$5b2o2bo2bo2b2o\$6bo2bo2bo2bo\$2b3obob2o2b2obob3o\$6bo
8bo\$2b2ob2ob6ob2ob2o\$3bo4b2o2b2o4bo\$2b2o14b2o\$3bob5o2b5obo\$3bo3bobo2bo
bo3bo\$3b2o2b2ob2ob2o2b2o\$b3ob2o2b4o2b2ob3o\$4b2ob2o4b2ob2o\$bo2b2obo6bob
2o2bo!
``````

Posted: January 27th, 2017, 9:09 pm
It's a pity that I couldn't complete it.
By the way,I noticed two partials with the same front end but different period

Code: Select all

``````x = 42, y = 15, rule = B3/S23
2b2o3b2o3b2o14b2o3b2o3b2o\$2b3obo2bob3o14b3obo2bob3o\$b2o10b2o12b2o10b2o
\$4bob4obo18bob4obo\$b5o4b5o11b2o2bob4obo2b2o\$b3o3b2o3b3o14b2o6b2o\$b2obo
b4obob2o14b4o2b4o\$3bob2o2b2obo17b2o4b2o\$b2o10b2o\$bobo3b2o3bobo13bo3bo
2bo3bo\$bo12bo12b2obobo2bobob2o\$o2bo2bo2bo2bo2bo10b2o3bo4bo3b2o\$obo4b2o
4bobo10b3ob2o4b2ob3o\$o2bob2o2b2obo2bo14bo2b2o2bo\$3ob2ob2ob2ob3o11b2o3b
o2bo3b2o!
``````

Posted: January 28th, 2017, 6:56 am
I ran the width-12 c/4 orthogonal knightt search. The results are attached to this post, although they are probably not very useful to anyone. I looked through the ships a little and managed to construct the following small ships based on new components:

Code: Select all

``````x = 56, y = 80, rule = B3/S23
b2o47bo\$3o47b2o2b2o\$bo15b2o31bo2bo\$2b2ob2o10b3obo10b2o19bo\$7bo5bob3o
13b3o\$2b2o7bobo6bobo9bo20b3o\$3bo6bobo10bo9b2ob2o16bo\$4bo2bo14b3o13bo5b
o6bobo\$5bobobob2o20b2o7bobob3o\$4b2o3bo12bo11bo6bobo4b3obo\$6bo12bo2bo
12bo2bo9b2o\$19b2o2b2o11bobobob2o\$19bo15b2o3bo\$37bo11\$29bo\$28b2o\$16bo2b
o\$16bo2bo4b2obo\$14b2obo4b4obobo\$19bo3bo2b2obo\$13bo2bobo9bo\$9bo3bobo3bo
bo\$7bo2b2o\$5b3o\$4bobo\$4bob2o\$3bo4bo\$2b2o2\$bo4b2o\$5bo\$2b3o\$4bo\$5bo\$4b2o
\$5bo\$5b2o\$2bo2b2o\$2o3bo\$2bo11\$16b2obo\$12bobo3b2o\$10b2o4bo\$12bob3o\$17b
2o3bobo\$16bo4bo2bo\$20bo3bo\$14bobobobo\$5b3o4bobobo\$o2b2o4b2obobo5b2o\$2o
7bo\$o3bo6b3o\$5b2o4bo2bo\$10b2o2bo\$7b3o4bo\$14bo\$13b2o\$11bo2b2o\$9b2o\$11bo
!``````
I also found this 70-cell ship that has probably been seen before, but has been overlooked for some reason:

Code: Select all

``````x = 34, y = 11, rule = B3/S23
6bo\$4b2o3bo4b3o\$5bobobob2o3b2o\$4bo2bo6bo3b2o\$3bo6bobo8b2o\$2b2o7bo7bo9b
2o\$7bo4bo3b2o2bo3bo2bo2bo2bo\$2b2ob2o6bo3b2o2bo2b3o6bo\$bo9bo9bo8bo2bo\$
3o6b2o11b2o3bob2o\$b2o8bo14bo!``````
I am also running the width-12 2c/5 knightt search. So far it has found these two small tagalongs:

Code: Select all

``````x = 36, y = 44, rule = B3/S23
6bo7bob2obo\$5bobo6bobo3bo\$4bo3b3o2bobobo7bobo\$5bob3o3bobo5bob2o3bo\$6b
2o6bobobo3bo2bob3o\$14bobobo4bo6bo2bo\$2b2obo11b2o3bo\$bobo2bo12b2o12bo\$
2o3bo24bo3bo\$bobobo23b2ob2o\$2b2ob2o23bo\$5bo25b2ob2o11\$26bo2bo\$26bo3bo\$
25bo2bo2bo\$24b3o2\$12bo3bob2obobo4bo\$11bo4bo4bobo2b2obobo\$11bo2b2obobob
o4b2obobo\$11b2o9bo2bo4bo\$15bob3o2bo3b4o\$6bo8bo11b2o\$5bobo7bo\$4bo3b3o\$
5bob3o\$6b2o2\$2b2obo\$bobo2bo\$2o3bo\$bobobo\$2b2ob2o\$5bo!``````
A for awesome wrote:I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search.
This is what I suspected. Do you do this for every cell in the entire diagonal row (as opposed to the first half-diagonal)? Do you also do this in every phase?

Posted: January 28th, 2017, 2:58 pm
Sokwe wrote:
A for awesome wrote:I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search.
This is what I suspected. Do you do this for every cell in the entire diagonal row (as opposed to the first half-diagonal)? Do you also do this in every phase?
Every cell, but not every phase. [s]That's why I'm sure about the every-phase width result, but not the single-phase width result.[/s]EDIT 3: Never mind, I would have to do this for every phase to truly rule out all ships. I'll do that for the width-16 search.

EDIT: I'm currently doing the same thing at 15hd width, and the second-to-last phase of the search underwent 7788888882 iterations exactly. I suspect that mathematics itself just played a joke on me.

EDIT 2: I finished the last search phase, so there are (probably) no width-15hd (2,1)c/6 knightships. For width-16 I'll give up on the single-phase width search concept, because it didn't work anyway.

EDIT 3: See above.

EDIT 4: An example partial (probably not one of the longest ones):

Code: Select all

``````x = 16, y = 13
3boobbo\$bbob5o\$bboo\$obo5b3o\$9bobo\$oboboboo\$bb4obobbobbo\$3b4o3bo3bo\$10boo\$6bo3bo
4bo\$5bobb4obbo\$5bobo3bobo\$6bo4b3o!
``````
EDIT 5: An interesting 2c/5 frontend:

Code: Select all

``````x = 13, y = 13
ooboo\$obbo\$4bo\$obbo\$3bobo3bo\$4b4obbo\$4bo6bo\$4bob6o\$3bo3bo4bo\$6boobb3o\$6bo4bo\$3bo
bb3o\$4b4o!
``````

Posted: January 29th, 2017, 9:29 am
Here are two new 2c/5 tagalongs from the still ongoing width-12 search:

Code: Select all

``````x = 28, y = 45, rule = B3/S23
12bo3bob2o\$11bo4bo3bo\$11bo2b2obobo\$11b2o\$15bob3o\$6bo8bo\$5bobo7bo\$4bo3b
3o\$5bob3o8b4obo\$6b2o10b2o2bo\$18b2o3bo\$2b2obo14bo\$bobo2bo\$2o3bo\$bobobo\$
2b2ob2o\$5bo9\$6bo\$5bobo\$4bo3b3o\$5bob3o\$6b2o2\$2b2obo\$bobo2bo\$2o3bo17bo\$b
obobo16b2o\$2b2ob2o15bo\$5bo9b2o6bo\$12b2ob3o4bobo\$8bobo3b2o2bo3bo2bo\$8bo
4bobo2bo3bo\$5b2obo3bob2o7bo2bo\$5b2o3b2o4b2ob3obo3bo\$4bo13b4o4bo\$5bo3bo
8b2obob2o\$5bo!``````
Here are all of the new 2c/5 ships found since I last updated the small ships collection:

Code: Select all

``````x = 166, y = 498, rule = B3/S23
5bo3bo\$5bo3bo\$4bobo\$3b3o2b2o2\$6b2o\$6b2o5bo\$6b2o3bobo\$11bo\$2b2obo5b3o\$b
obo2bo6b3o\$2o3bo6b2o2bo\$bobobo7bob2o\$2b2ob2o7b4o\$5bo11\$12bo3bob2o\$11bo
4bo3bo\$11bo2b2obobo\$11b2o\$15bob3o\$6bo8bo\$5bobo7bo\$4bo3b3o\$5bob3o8b4obo
\$6b2o10b2o2bo\$18b2o3bo\$2b2obo14bo\$bobo2bo\$2o3bo\$bobobo\$2b2ob2o\$5bo11\$
17bo\$15b2o3bo\$15b2o2bo\$10b2o3b4obo\$7b2obo\$6bobob2o\$2bob2o2bo4bobo6bo\$
2o4bo2b2ob4o4b3o\$o4bo3b2o3bo5b2o\$5o7b2o9bo\$13bo7bo2bo\$22bo2bo\$3b3o16bo
b2o\$3bo19bo2b2o\$3bo\$4b2o12\$37b2o2b2o\$36b2o\$37bob2o\$23b2o8bo6bo\$18bo2b
4o8bo\$14b2o2bo2bobobo6bo\$13b2obo4bo2bo8b2obob2o\$8b2o4bob3o2bob2o8b2o5b
2o\$20b2ob2o10b4o\$7b3o5b2o4b2o15bobo\$5b2o8bo24bo\$3b3o32bobo\$2bo7bo3b3o
18b4o7bo\$bo2b4o3bo2b2o17b2o5b2o2bobo\$2obo7b2ob2o17b2obob2o4bo\$b2ob2obo
bob2o19bo11b3o\$5bobob2o22bo12b3o\$8bo24bo6bo4b2o2bo\$37bob2o5bob2o\$36b2o
9b4o\$37b2o2b2o12\$139bo2b2o\$96bo41bob2o\$95b5o25bo3bob2o5bo2bo\$31b2o61bo
5bo23bo4bo3bo3bo2bo\$11bo19bo13bo7bob2obo36b2o27bo2b2obobo6bo\$6b3o2bo
15b3o14bobo6bobo3bo39bo24b2o10b2o\$9bo4bo28bo3b3o2bobobo7bobo29b2o30bob
3o3b3o\$6bobo3bo4bo8bo3bo13bob3o3bobo5bob2o3bo16b2ob2o4b2o24bo8bo9bo\$5b
3o3bo6b2o4b2o4bo14b2o6bobobo3bo2bob3o14bobo5b2o4bo20bobo7bo\$3b2o6bo3bo
4b2obo4b2o23bobobo4bo6bo2bo9bo8b2o4bo4bo14bo3b3o\$b2o9b2obobo2b4o4bobo
10b2obo11b2o3bo19bo9b6o3bobo15bob3o8b4obo\$b2ob2o6b2obobo2b2o4bo13bobo
2bo12b2o12bo9bo4bo6b2o4bo18b2o10b2o2bo\$o3bobo15b4o13b2o3bo24bo3bo9b2o
3b3o9b3o28b2o3bo\$bobo3bo7b2o6bo16bobobo23b2ob2o19bo9b3o10b2obo14bo\$bob
o2bo2bo31b2ob2o23bo12bobobo4bo9b2o2bo8bobo2bo\$44bo25b2ob2o6bo4bo3bo11b
ob2o7b2o3bo\$8b2o71bob4o16b4o7bobobo\$81b2o32b2ob2o\$118bo9\$53b2o\$14b2o2b
o32b4o\$14b3o33b2o\$10b3obo34b3o\$9bobobob3obo29bo\$9bo3b6o30bo2bo\$9bo28bo
3bob2o2b2o\$10bobo24bo4bo3bo2b2o\$5bo31bo2b2obobo\$5bo3bo27b2o\$4bobo34bob
3o\$3b3o2b2o22bo8bo\$31bobo7bo\$6b2o22bo3b3o\$6b2o5bo17bob3o8b4obo\$6b2o3bo
bo18b2o10b2o2bo\$11bo32b2o3bo\$2b2obo5b3o14b2obo14bo\$bobo2bo6b3o11bobo2b
o\$2o3bo6b2o2bo9b2o3bo\$bobobo7bob2o10bobobo\$2b2ob2o7b4o10b2ob2o\$5bo25bo
11\$8bo\$6b2o3bo\$6b2o2bo\$6b4obo3\$8bo\$8b2o\$7bo\$11bob3o\$5b2o6bo\$5bo8b2o\$5b
2o3bo2b2obo\$7bo2bo3bobo\$8b2o4bo3bo\$15b2o2bo\$5b2o12bo\$4b6o\$3bo3bo\$3bo4b
2o\$3bo2bo2\$5b2o\$5bo2\$b2obo\$ob2obo\$o3bo\$ob2o\$b2obo\$4bobo\$4bobo6\$128bobo
22b2o\$128bobo21b6o\$89b2ob2o31b2obo8bo2b2o9bo3bo\$88bo35bob2o8bob2o11bo
4b2o\$26bo2bo57b2ob2o9bo2bo19bo3bo7bo2bo11bo2bo\$26bo3bo57bo3bo8bo3bo18b
ob2obo5bo2bo\$25bo2bo2bo59bo8bo3b2o19b2obo8bo15b2o5bo\$24b3o60bo13b2o31b
2o17bo4b3o\$61b2o22bo15b2ob2o23bo4b3o21b2o\$12bo3bob2obobo4bo27bo2b4o21b
2ob3o14b2obo21b2o5bo12b2obo8bo\$11bo4bo4bobo2b2obobo20b2o2bo2bobobo3b2o
14b2o22b2o2bo36bob2obo5bo2bo\$11bo2b2obobobo4b2obobo19b2obo4bo2bo3bo17b
2obo20bobo4bo11bo2bo17bo3bo7bo2bo\$11b2o9bo2bo4bo15b2o4bob3o2bob2o3b3o
16bo19b5ob5o11bo4b2o14bob2o8bob2o\$15bob3o2bo3b4o28b2ob2o17bo6b3o15bo2b
o18bo3bo17b2obo8bo2b2o\$6bo8bo11b2o16b3o5b2o4b2o19bo3bo3b2o15b5ob5o12b
6o18bobo\$5bobo7bo27b2o8bo25bobo26bobo4bo13b2o21bobo\$4bo3b3o30b3o34b3o
2b2o22b2o2bo\$5bob3o30bo7bo3b3o49b2obo\$6b2o31bo2b4o3bo2b2o27b2o18b2ob2o
20b2o22b2o\$38b2obo7b2ob2o27b2o5bo12b2o9bo13bo2b4o17bo2b4o\$2b2obo33b2ob
2obobob2o30b2o3bobo11bo3b2o4b3o13bo2b4o17bo2b4o\$bobo2bo36bobob2o37bo
14bo3bo4b2o15bo23bo\$2o3bo40bo30b2obo5b3o12bo2bo8bo16bo23bo\$bobobo70bob
o2bo6b3o20bo2bo16b2o22b2o\$2b2ob2o68b2o3bo6b2o2bo20bo2bo15b2o22b2o\$5bo
70bobobo7bob2o20bob2o\$77b2ob2o7b4o20bo2b2o10b3o2b2o17b3o2b2o\$80bo48bob
o21bobo\$130bo3bo19bo3bo\$130bo3bo19bo3bo9\$33b2ob2o20b2ob2o13bo\$4bo3bo
23bo24bo17bobo\$4bo3bo22b2ob2o20b2ob2o13bo3b3o\$3bobo26bo3bo20bo3bo13bob
3o\$2b3o2b2o26bo24bo15b2o\$31bo24bo68bo\$5b2o22bo24bo22b2o45b2o\$5b2o21b2o
b3o19b2ob3o17b3o44b2obo\$4bo22b2o23b2o23bo\$bo26b2obo21b2obo18bo43b2o4bo
\$o2b4o22bo24bo19b2o38bo2b4o\$o2b4o4b3ob2o14b3o22b3o14bo36b2o2bo2bobobo\$
2o8bo2bo18b2o23b2o15b2o2b2o29b2obo4bo2bo\$10b3o63bo27b2o4bob3o2bob2o\$
10b2o17b2o22b2o19bobo39b2ob2o\$13b2o13b6o18b6o15bo5bo23b3o5b2o4b2o\$2b2o
8bo2bo11bo3bo19bo3bo17bo5bo21b2o8bo\$2bo2b4o2bobobobo9bo4b2o17bo4b2o16b
2o23b3o\$2bo2b4o2bo4bo10bo2bo20bo2bo24bo18bo7bo3b3o\$3bo8bo2bo59b2o3bo6b
2o8bo2b4o3bo2b2o\$6bo5bo2bo13b2o5bo16b2o5bo14bo3bo6bo2bo6b2obo7b2ob2o\$
7b2o20bo4b3o16bo4b3o14bo3bo4b2o11b2ob2obobob2o\$7b2o25b2o22b2o14b3obo5b
o3bo12bobob2o\$25b2obo8bo11b2obo8bo11bo4bo4bo3bo16bo\$4b3o2b2o13bob2obo
5bo2bo9bob2obo5bo2bo9bobobob2o3bobo\$5bobo16bo3bo7bo2bo8bo3bo7bo2bo8bo
3bobo3b2obo\$6bo3bo13bob2o8bob2o8bob2o8bob2o8b2ob3o\$6bo3bo14b2obo8bo2b
2o7b2obo8bo2b2o13bo4bo\$28bobo21bobo24b2o\$28bobo21bobo24b2o8\$31bo22bo\$
30bobo20bobo\$5bo23bo3b3o16bo3b3o\$2b2ob2o23bob3o4bo2b2o9bob3o\$bobobo25b
2o5bob2o12b2o29bo3bo\$2o3bo32bo2bo43b2o2b2o\$bobo2bo25b2o3bo2bo14b2o26b
2ob2o2bo\$2b2obo25b3o5bo14b3o25b2obob2obo\$32bo3b2o17bo5bo19bo3bo5bo\$6b
2o22bo5b3o14bo5b3o20b3o\$5bob3o19b2o7bo13b2o5b2o22bo\$4bo3b3o3b3ob2o8bo
22bo10bo15b2o11bo\$5bobo5bo2bo12b2o2b2o17b2o2b2o2bo2bo14bo2bo7bobo\$6bo
6b3o15bo22bo6bo2bo12bo3b2o6bo\$13b2o14bobo20bobo6bob2o11b3o2b2o6b3o\$16b
2o10bo5bo16bo5bo4bo2b2o10b2o\$5b2o8bo2bo9bo5bo16bo5bo20bo\$5bo2b4o2bobob
obo8b2o21b2o24b2obo\$5bo2b4o2bo4bo14bo22bo24bob3o\$6bo8bo2bo11b2o3bo17b
2o3bo18bo6bo\$9bo5bo2bo11bo3bo18bo3bo17bo9b2o\$10b2o18bo3bo18bo3bo16b2ob
3o4b2obo\$10b2o17b3obo18b3obo16b2o10bobo\$28bo4bo17bo4bo17b2obo7bo3bo\$7b
3o2b2o13bobobob2o15bobobob2o17bo10b2o2bo\$8bobo16bo3bobo16bo3bobo20b3o
10bo\$9bo3bo13b2ob3o17b2ob3o22b2o\$9bo3bo20bo22bo\$34b2o21b2o\$34b2o21b2o
10\$28bobo21bobo\$6bo21bobo21bobo\$4b2o3bo15b2obo8bo2b2o7b2obo8bo2b2o\$4b
2o2bo15bob2o8bob2o8bob2o8bob2o\$4b4obo14bo3bo7bo2bo8bo3bo7bo2bo\$24bob2o
bo5bo2bo9bob2obo5bo2bo\$25b2obo8bo11b2obo8bo\$b2obo29b2o22b2o28bo\$ob2obo
23bo4b3o16bo4b3o26bo\$o3bo24b2o5bo16b2o5bo25b2o15b2o12bo7bob2obo15bo\$ob
2o79bo3b2o14bo12bobo6bobo3bo13bo\$b2obo6b3ob2o10bo2bo20bo2bo23b3o2bo4bo
10b3o13bo3b3o2bobobo7bobo5b2o\$4bobo3bo2bo13bo4b2o17bo4b2o23bo4bo29bob
3o3bobo5bob2o3bo5b2o\$4bobo3b3o14bo3bo19bo3bo22bobo3bo4bo8bo3bo14b2o6bo
bobo3bo2bob3o5bo\$10b2o16b6o18b6o19b3o3bo6b2o4b2o4bo22bobobo4bo6bo2bo\$
13b2o14b2o22b2o20b2o6bo3bo4b2obo4b2o11b2obo11b2o3bo\$2b2o8bo2bo57b2o9b
2obobo2b4o4bobo9bobo2bo12b2o12bo\$2bo2b4o2bobobobo55b2ob2o6b2obobo2b2o
4bo12b2o3bo24bo3bo\$2bo2b4o2bo4bo8b7o21b7o12bo3bobo15b4o14bobobo23b2ob
2o\$3bo8bo2bo9bo6bo20bo6bo12bobo3bo7b2o6bo17b2ob2o23bo\$6bo5bo2bo9b2o3bo
22b2o3bo14bobo2bo2bo34bo25b2ob2o\$7b2o18bob2o24bob2o\$7b2o21b2o26b2o20b
2o\$30bobo25bobo\$4b3o2b2o18bo27bo\$5bobo20bo4bo22bo4bo\$6bo3bo17bo5bo21bo
5bo\$6bo3bo17bo2b2o23bo2b2o\$29b4o24b4o\$30bo27bo11\$38b2o\$38bo2bo\$37bo3b
2o\$36b3o2b2o\$5b2o2b2o26b2o\$4b2o32bo\$5bob2o5bo23b2obo\$bo6bo4b4o25bob3o\$
bo10bo2b2o20bo6bo\$o10bo2bo20bo9b2o\$b2obob2o4bo2bo18b2ob3o4b2obo\$b2o5b
2o3b4o16b2o10bobo\$3b4o7bo2b2o15b2obo7bo3bo\$6bobo4bo2b2o17bo10b2o2bo\$8b
o4bo2b3o11bo6b3o10bo\$6bobo4b2o2b2o11bo3bo3b2o\$3b4o22bobo\$b2o5b2o18b3o
2b2o\$b2obob2o\$o30b2o\$bo29b2o\$bo6bo22b2o\$5bob2o\$4b2o21b2obo\$5b2o2b2o15b
obo2bo\$25b2o3bo\$26bobobo\$27b2ob2o\$30bo10\$30b2ob2o21b2ob2o\$29bo25bo25b
2o\$10bo17b2ob2o21b2ob2o21b6o23b2o27b2o\$7b2ob2o17bo3bo21bo3bo19bo3bo24b
6o23b6o\$6bobobo21bo25bo20bo4b2o21bo3bo24bo3bo\$5b2o3bo17bo25bo24bo2bo
24bo4b2o22bo4b2o\$6bobo2bo14bo25bo54bo2bo25bo2bo\$7b2obo14b2ob3o20b2ob3o
24b2o5bo\$24b2o24b2o29bo4b3o20b2o5bo21b2o5bo\$11b2o12b2obo22b2obo31b2o
21bo4b3o21bo4b3o\$9bo2bo13bo25bo24b2obo8bo24b2o27b2o\$8b5ob2o12b3o23b3o
19bob2obo5bo2bo14b2obo8bo16b2obo8bo\$7bo21b2o24b2o19bo3bo7bo2bo12bob2ob
o5bo2bo14bob2obo5bo2bo\$8b2o66bob2o8bob2o12bo3bo7bo2bo13bo3bo7bo2bo\$9b
3o20bo25bo18b2obo8bo2b2o10bob2o8bob2o13bob2o8bob2o\$11bo19b2o24b2o21bob
o22b2obo8bo2b2o12b2obo8bo2b2o\$5bo26bo25bo21bobo25bobo26bobo\$5bo3bo98bo
bo26bobo\$4bobo22b2o22b2o22bo3bo\$3b3o2b2o18b3o10bo10b6o19bo3bo23bo3bo
23bo3bo\$26bo10b2o2bo9bo3bo20bobo26bo3bo23bo3bo\$6b2o17b2obo7bo3bo10bo4b
2o17b3o2b2o22bobo25bobo\$6b2o5bo10b2o10bobo12bo2bo48b3o2b2o21b3o2b2o\$6b
2o3bobo11b2ob3o4b2obo39b2o\$11bo14bo9b2o15b2o5bo17b2o26b2o26b2o\$2b2obo
5b3o14bo6bo17bo4b3o17b2o26b2o26b2o\$bobo2bo6b3o17bob3o20b2o46b2o26b2o\$
2o3bo6b2o2bo12b2obo16b2obo8bo12b2obo\$bobobo7bob2o12bo18bob2obo5bo2bo
10bobo2bo23b2obo24b2obo\$2b2ob2o7b4o10b2o18bo3bo7bo2bo8b2o3bo23bobo2bo
22bobo2bo\$5bo21b3o2b2o14bob2o8bob2o9bobobo22b2o3bo22b2o3bo\$28bo3b2o15b
2obo8bo2b2o8b2ob2o22bobobo23bobobo\$29bo2bo19bobo22bo24b2ob2o23b2ob2o\$
29b2o21bobo50bo27bo11\$35bo2bo\$6bo28bo3bo\$5bobo26bo3b2o\$4bo3b3o24b2o\$5b
ob3o25b2ob2o11bo\$6b2o30b2obo8b2o\$41b2o2bo4bobo\$2b2obo36bobo3bo\$bobo2bo
32b5ob3o\$2o3bo17bo15bo2bo\$bobobo16b2o15b5ob3o\$2b2ob2o15bo19bobo3bo\$5bo
9b2o6bo17b2o2bo4bobo\$12b2ob3o4bobo13b2obo8b2o\$8bobo3b2o2bo3bo2bo9b2ob
2o11bo\$8bo4bobo2bo3bo12b2o9bo\$5b2obo3bob2o7bo2bo7bo3b2o4b3o\$5b2o3b2o4b
2ob3obo3bo7bo3bo4b2o\$4bo13b4o4bo8bo2bo8bo\$5bo3bo8b2obob2o20bo2bo\$5bo
40bo2bo\$46bob2o\$47bo2b2o3\$145b2o\$145bo2bo\$144bo3b2o\$143b3o2b2o\$144b2o\$
145bo\$145b2obo\$52b3o39b3o52bo\$51bob2o38bob2o47bo\$8b2o40bo41bo49bo\$7b4o
27bo10b2o40b2o48b2ob3o\$6b2o2bo22b2o2bo2bo9b2o4b2o17b4o13b2o4b2o40b2o\$
5bo3bo9bo13bob2o14bo4b3o3bo8bo2bo4bo13bo4b3o3bo8b2o26b2obo\$12b2o5bo13b
ob2o15b2o3bo6bo5b4o5bo14b2o3bo6bo5bo29bo\$3b2o3bo2b2ob3ob2obo12bo5bo12b
o6b2o4bobo4bo4b2o15bo6b2o4bobo4bo21bo6b3o\$2bo9bobobo3bo4bob2ob3obo2b3o
9bo4b2o6b3ob4ob2obobo4b3o7bo4b2o6b3ob3o4bo8bo12bo3bo3b2o\$bo2b2obo5b2ob
o4bo2b2obo3bo16b2ob4o9bo7b3obo4b2o7b2ob4o9bo7b3obo4b2o11bobo\$2obo4bo5b
2o7b2o2bo2bo18b5o11b4o4bo8bo8b5o11b5ob2obobo4b3o9b3o2b2o\$b2ob2ob2o14bo
5b2o34b2obo4bo33b2obo4bo4b2o\$5b5o60bo41b4o5bo16b2o\$71b2o40bo2bo4bo16b
2o5bo\$117b4o17b2o3bobo\$143bo\$134b2obo5b3o\$133bobo2bo6b3o\$132b2o3bo6b2o
2bo\$133bobobo7bob2o\$134b2ob2o7b4o\$137bo!``````
Here is the updated unique 2c/5 ships collection:

Code: Select all

``````#C This collection contains all known "unique" 2c/5 ships up to 90 bits.
#C That is, each ship in this collection has some component that is not
#C found in any smaller 2c/5 ship.
#C
#C For a complete collection of known 2c/5 ships up to 90 bits, see
#C ships-2c5-small.rle
#C
#C Discovery credits:
#C AP = Aidan F. Pierce
#C DB = David Bell
#C DH = Dean Hickerson
#C HH = Hartmut Holzwart
#C JB = Josh Ball
#C MM = Matthias Merzenich
#C PT = Paul Tooke
#C RW = Robert Wainwright
#C SS = Stephen Silver
#C TC = Tim Coe
#C
#C 30 PT  7 Dec 2000
#C 34 MM  8 Aug 2015
#C 44 DH 23 Jul 1991
#C 51 PT 28 Nov 2000
#C 54 MM 25 Jan 2017 (tag)
#C 56 MM 27 Sep 2015 (tag)
#C    AP 21 Jan 2017 (B-heptomino component by PT between Feb 2000 and
#C                    Mar 2000.  Larger component by PT 3 Jul 2000.)
#C 57 PT  1 Nov 2000
#C 58 MM 22 Jan 2017
#C 59 AP 21 Jan 2017
#C 60 TC  3 May 1996
#C 62 MM 28 Jan 2017 (tag)
#C    MM  9 Aug 2015
#C 64 SS  2 Mar 1999
#C    PT  7 Dec 2000 (tag by RW between Jul 1991 and Jul 1992)
#C    MM  8 Aug 2015 (tag by DB 11 May 2000)
#C 66 JB    Feb 2013
#C    PT Between Feb 2000 and Mar 2000
#C 67 MM 27 Sep 2015 (tag)
#C 68 HH 23 Jan 2008
#C 69 HH 26 Nov 1993
#C 70 HH  5 Dec 1992
#C 72 PT Between Feb 2000 and Mar 2000
#C    PT 12 Apr 2002
#C    PT Between Feb 2000 and Mar 2000
#C    PT  7 Dec 2000 (tag by RW 25 Jul 1992)
#C 74 PT  7 Dec 2000 (tag by DB between Jul 1991 and Jul 1992)
#C 75 PT Between Feb 2000 and Mar 2000
#C 77 AP 26 Jan 2017
#C 78 PT Between Feb 2000 and Mar 2000
#C 79 MM 25 Jan 2017
#C    MM 28 Jan 2017 (tag)
#C 81 MM 10 Aug 2015
#C    MM 27 Sep 2015 (tag)
#C 83 MM 28 Sep 2017 (tag)
#C    MM 26 Jan 2017 (tag)
#C 85 PT  7 Dec 2000 (tag by DB 11 May 2000)
#C    PT Between Feb 2000 and Mar 2000
#C 89 MM 28 Jan 2017 (tag)
#C 90 MM 25 Jan 2017
#C    MM 25 Jan 2017
x = 535, y = 281, rule = B3/S23
282bo\$156bo125bo3b2obob2o\$155b5o121bo4bobo2bo\$154bo5bo121b2ob3o3bo190b
2o\$27bo127b2o125b2obo5bo170bo19bo13bo7bob2obo\$obobo3bobobo13bobo91bobo
bo3bobobo26bo100bobobo3bobobo14bobobo138bobobo3bobobo14b3o2bo15b3o14bo
bo6bobo3bo\$25bo3b3o124b2o126b2o6bobo165bo4bo28bo3b3o2bobobo7bobo\$4bo3b
o3bo13bob3o89bo7bo3bo11b2ob2o4b2o105bo7bo3bo14bobo144bo3bo3bo14bobo3bo
4bo8bo3bo13bob3o3bobo5bob2o3bo\$27b2o114bobo5b2o4bo130b4o164b3o3bo6b2o
4b2o4bo14b2o6bobobo3bo2bob3o\$obobo3bo3bo107bobobo3bobobo9bo8b2o4bo102b
obobo3bobobo15bo145bo3bobobo11b2o6bo3bo4b2obo4b2o23bobobo4bo6bo2bo\$23b
2obo114bo9b6o131b4o160b2o9b2obobo2b4o4bobo10b2obo11b2o3bo\$4bo3bo3bo9bo
bo2bo96bo7bo9bo4bo6b2o104bo3bo7bo14bobo144bo7bo9b2ob2o6b2obobo2b2o4bo
13bobo2bo12b2o12bo\$21b2o3bo116b2o3b3o133b2o6bobo156bo3bobo15b4o13b2o3b
o24bo3bo\$obobo3bobobo9bobobo93bobobo3bobobo19bo107bobobo3bobobo14bobob
o142bo3bobobo9bobo3bo7b2o6bo16bobobo23b2ob2o\$23b2ob2o114bobobo4bo130b
2obo5bo160bobo2bo2bo31b2ob2o23bo\$26bo114bo4bo3bo131b2ob3o3bo203bo25b2o
b2o\$141bob4o134bo4bobo2bo167b2o\$141b2o139bo3b2obob2o\$282bo20\$146b2o2b
2o\$145b2o136b2o168b2o2bo6bo\$26bo3bo115bob2o132b3o167b3o2b2o2bobobo\$26b
o3bo111bo6bo131bo3b3o163bo7b4o2bo3bo\$25bobo114bo139b2o2bobo5bo157b2ob
5o3b2o3b2o\$obobo3bo3bo11b3o2b2o89bobobo3bobobo8bo6bo111bobobo3bobobo
10bo2bob2o4b3o133bobobo3bobobo10b2o10b3o\$142b2obobo138b2ob2o2bo2bo158b
2o11bo\$4bo3bo3bo14b2o91bo7bo3bo9b2o5bobo112bo3bo3bo14bo3bo2bo139bo3bo
3bo17bo4b2o\$27b2o115b8o136b3o3bo162bo7bo3bo\$obobo3bobobo14b2o91bobobo
3bo3bo131bo3bo3bo16bo144bo3bobobo15b3o4bo3bo\$144b8o137bo176bobo\$4bo7bo
10b2obo93bo3bo3bo3bo9b2o5bobo112bo3bo3bo15b3o3bo139bo3bo3bo\$22bobo2bo
114b2obobo139bo3bo2bo171bobo\$obobo7bo8b2o3bo93bobobo3bobobo8bo6bo115bo
3bobobo13b2ob2o2bo2bo137bo3bobobo22bo\$22bobobo115bo140bo2bob2o4b3o168b
o3b6o\$23b2ob2o114bo6bo132b2o2bobo5bo170bobobob3obo\$26bo119bob2o131bo3b
3o178b3obo\$145b2o135b3o185b3o\$146b2o2b2o131b2o185b2o2bo14\$364b2ob2o\$
363bo\$362b2ob2o\$363bo3bo\$366bo\$178b2o2bo130b3o46bo142b2obo\$178b3o101bo
2bo26bo47bo97b2o2b2o37b2o3bo2b2o\$153bo3bob2o13b3obo103bo3bo28bo43b2ob
3o92b2o41b2ob3o\$27bobo122bo4bo3bo11bobobob3obo97bo3b2o23b2o46b2o98bob
2o25b2o10bo\$24bo4bo122bo2b2obobo12bo3b6o99b2o24b2o49b2obo91bo6bo25bobo
14b4o\$23b3o4bo121b2o19bo108b2ob2o11bo8b2ob5o21bo23bo93bo32bobobobo3bob
o2bobob2o\$o3bo3bo3bo9bobo95bobobo3bobobo23bob3o13bobo83bobobo3bobobo
12b2obo8b2o7bo7bo4bo15b2o25b3o65bobobo4bo13bo6bo27b2obobo3bo4bo\$21b2o
2b2o4bo115bo8bo131b2o2bo4bobo7b3o2b2obo3b2o14bobo4b2o19b2o89b2obobo6bo
2bo13bo5b2o2bo2bobobo\$o3bo3bo3bo9b2o2b5o89bo11bo13bobo7bo20bo86bo7bo
16bobo3bo12b2o2bo4bo3bo11bo7bob3obobobo78bo3bo4bo14b2o5bo3bo3bo13bo3bo
5b2o\$145bo3b3o23b3o108b5ob3o22b2o2bo9b2o8b3o3bobobo14bo3b3o83b6o3bo3b
2o11bobo8b2o\$obobo3bobobo107bobobo3bobobo13bob3o8b4obo9b2o88bo3bobobo
13bo2bo31bo7b2o4bo4bo3bo20b2o4b3o56bobobo4bo27b3o11b3o2b2o\$147b2o10b2o
2bo9bo112b5ob3o26bo7b2ob5obo7b6o14bo5b2o80b12o5bo\$4bo7bo9b2o2b5o89bo3b
o3bo30b2o3bo9b5ob2o82bo3bo20bobo3bo21b2o2bo6bo3bo5bo3b3o6bo78bo3bo4bo
12b2o5bo11bo12b2o\$21b2o2b2o4bo111b2obo14bo13bo2bo109b2o2bo4bobo8b2o2bo
4bo3bo7bobo2bobobob3o4b3obo11b2o87b2obobo3b2o2bo18b2o\$4bo7bo9bobo95bob
obo3bobobo9bobo2bo29b2o85bo3bobobo12b2obo8b2o8b3o2b2obo3b2o8bobo2b3obo
4bo4bobo11b3o65bobobo4bo11bo6bo2b2o3b2obo14b2o\$23b3o4bo110b2o3bo135b2o
b2o11bo7bo7bo4bo24bobo13bo91bo15bo\$24bo4bo112bobobo26b2obo105b2o23b2ob
5o44b2obo89bo6bo20b2obo\$27bobo113b2ob2o24bobo2bo103bo3b2o21b2o48b2o96b
ob2o19bobo2bo\$146bo24b2o3bo105bo3bo23b2o47b2ob3o90b2o21b2o3bo\$172bobob
o105bo2bo29bo44bo95b2o2b2o17bobobo\$173b2ob2o134bo49bo117b2ob2o\$176bo
136b3o50bo116bo\$363bo3bo\$362b2ob2o\$363bo\$364b2ob2o8\$183b2ob2o14bo84b2o
b2o\$182bo17b2o3bo80bo\$181b2ob2o14b2o2bo80b2ob2o\$182bo3bo13b4obo80bo3bo
\$185bo103bo\$27bobo151bo103bo191bo2bo\$24bo4bo149bo22bo80bo193bo3bo\$23b
3o4bo147b2ob3o18b2o78b2ob3o188bo2bo2bo\$22bobo152b2o22bo79b2o192b3o34b
2o\$21b2o2b2o4bo146b2obo23bo76b2obo221bo2b4o\$22b2o2b5o148bo19b2o82bo
179bo3bob2obobo4bo23b2o2bo2bobobo3b2o\$obobo4bo110bobobo3bo3bo10b2obo
34b3o15bo60bobobo3bo3bo12b3o142bobobo3bobobo19bo4bo4bobo2b2obobo19b2ob
o4bo2bo3bo\$142b3obo35b2o15b2o3bo81b2o174bo2b2obobobo4b2obobo14b2o4bob
3o2bob2o3b3o\$o8bo110bo7bo3bo8bo6bo10b2o7b2o31bo2bo59bo3bo3bo21bobo133b
o3bo7bo19b2o9bo2bo4bo27b2ob2o\$21b2o119b2obo2b2o5bo2b3o7b3o14bo16b2o85b
o3b2obo169bob3o2bo3b4o15b3o5b2o4b2o\$obobo4bo11bo2b4o92bobobo3bobobo10b
3obo2b2o2bo29b2o78bo3bobobo15b2o140bobobo3bobobo14bo8bo11b2o14b2o8bo\$
21bo2b4o117bobobo5bo2bobo2bo3bo17bo13b2o88bo3b2obo159bobo7bo25b3o\$4bo
4bo12bo97bo3bo7bo13b2obob2o3b2o2bo3b3obo29b6o60bo7bo21bobo133bo3bo7bo
12bo3b3o29bo7bo3b3o\$25bo120b2obo3bo8b2ob2obo13b2o13bo3bo84b2o168bob3o
29bo2b4o3bo2b2o\$obobo4bo16b2o92bobobo7bo19bo28b3o13bo4b2o60bo7bo12b3o
142bobobo3bobobo14b2o30b2obo7b2ob2o\$26b2o120bo4bo25bo17bo2bo82bo206b2o
b2obobob2o\$178b2obo100b2obo167b2obo37bobob2o\$23b3o2b2o147b2o20b2o80b2o
169bobo2bo39bo\$24bobo151b2ob3o15bo82b2ob3o163b2o3bo\$25bo3bo149bo103bo
168bobobo\$25bo3bo151bo13b2obo86bo167b2ob2o\$185bo8bob2obo89bo166bo\$182b
o3bo7bo3bo87bo3bo\$181b2ob2o8bob2o87b2ob2o\$182bo12b2obo87bo\$183b2ob2o
10bobo86b2ob2o\$198bobo3\$462bo\$461b4o\$460bo2b2o\$460bo5bo\$460bo4bo\$461bo
\$462bo2bo\$461bo3bo\$464bo\$287b2o2b3ob3o161b2o\$168bo2bo114b2o171bo2b2o\$
168bo3bo114bob2o2b3o2bo160b2o\$26bo3bo116bobo17bo3b2o110bo6bo3b3o2bo
162bo\$26bo3bo113bo4bo8bo9b2o113bo14bobo159b2o\$25bobo115b3o4bo5bo3bo7b
2ob2o109bo15b3o158bo2bo18bo\$obobo3bo3bo11b3o2b2o89bobobo3bobobo9bobo
15bo10b2obo85bobobo3bobobo10b2obob2o8bo131bobobo3bobobo17b5o15b2o18bo\$
141b2o2b2o4bo2bo19b2o2bo104b2o5b2o169bo2bo15bobo4b2o11b2o\$o7bo3bo14b2o
91bo7bo13b2o2b5o3bob3o16bobo4bo81bo3bo16b4o141bo3bo3bo23b3o13bo7bob3ob
obob2o2b2o\$27b2o5bo118bo2bo15b5ob5o105bobo171b2o12b2o8b3o3bobob2o2bo\$o
bobo3bobobo14b2o3bobo85bobobo3bobobo20bobo16bo2bo88bo3bobobo17bo139bob
obo3bobobo31b2o4bo4bo3bo12bo\$32bo120bo18b5ob5o105bobo171bo11b2ob5obo7b
5o3b3o\$4bo7bo10b2obo5b3o85bo3bo3bo3bo9b2o2b5o3bo2b2obo14bobo4bo81bo7bo
12b4o141bo3bo7bo18bo11bo3bo5bo3b3o6b2o4bo\$22bobo2bo6b3o104b2o2b2o4bo2b
o3b2o14b2o2bo104b2o5b2o168bo3bo9bobo2bobobob3o4b3obo\$obobo7bo8b2o3bo6b
2o2bo82bobobo3bobobo9bobo10bo15b2obo89bo3bobobo10b2obob2o140bobobo3bob
obo16b2o3bo9bobo2b3obo4bo4bobo\$22bobobo7bob2o105b3o4bo17b2ob2o109bo
177b2o27bobo\$23b2ob2o7b4o105bo4bo18b2o113bo177bo2bo\$26bo120bobo17bo3b
2o110bo6bo173bo\$168bo3bo114bob2o171bo\$168bo2bo114b2o169bo\$287b2o2b2o
163bobo\$455bo3b3o\$456bob3o\$457b2o2\$453b2obo\$452bobo2bo\$451b2o3bo\$452bo
bobo\$453b2ob2o\$456bo9\$457bo\$33bo3bob2obobo411bobo\$32bo4bo4bobo23bo235b
2o149bo3b3o\$32bo2b2obobobo23b2o3bo227bo2b4o150bob3o\$32b2o9bo22b2o2bo
76bo7bob2obo134b2o2bo2bobobo150b2o\$obobo3bobobo23bob3o2bo17b2o3b4obo
48bobobo3bobobo13bobo6bobo3bo98bobobo3bobobo21b2obo4bo2bo124bobobo3bob
obo\$27bo8bo21b2obo83bo3b3o2bobobo7bo122b2o4bob3o2bob2o147b2obo\$o7bo17b
obo7bo20bobob2o57bo11bo13bob3o3bobo5bob2o4bo93bo7bo28b2ob2o124bo3bo3bo
3bo9bobo2bo\$25bo3b3o21bob2o2bo4bobo80b2o6bobobo3bo2bo121b3o5b2o4b2o
147b2o3bo17bo\$obobo3bobobo13bob3o20b2o4bo2b2ob4o53bobobo7bo22bobobo4bo
3b2obo92bo7bo13b2o8bo133bobobo3bobobo9bobobo16b2o\$27b2o22bo4bo3b2o3bo
77b2obo11b2o3bo5b2o113b3o166b2ob2o15bo\$4bo3bo3bo38b5o7b2o55bo3bo7bo9bo
bo2bo12b2o8bo93bo7bo10bo7bo3b3o132bo3bo7bo13bo9b2o6bo\$23b2obo37bo76b2o
3bo135bo2b4o3bo2b2o166b2ob3o4bobo\$obobo3bobobo9bobo2bo92bobobo7bo9bobo
bo117bo7bo8b2obo7b2ob2o133bobobo3bobobo16bobo3b2o2bo3bo2bo\$21b2o3bo27b
3o86b2ob2o134b2ob2obobob2o165bo4bobo2bo3bo\$22bobobo27bo91bo139bobob2o
164b2obo3bob2o7bo2bo\$23b2ob2o26bo234bo166b2o3b2o4b2ob3obo3bo\$26bo28b2o
398bo13b4o4bo\$456bo3bo8b2obob2o\$456bo14\$145bo\$144bobo\$143bo3b3o\$144bob
3o\$26b2o2b2o113b2o\$25b2o\$26bob2o116b2o135b2o2bo6bo\$22bo6bo115b3o134b3o
2b2o2bobobo207b3o\$22bo123bo134bo7b4o2bo3bo202bob2o\$21bo122bo137b2ob5o
3b2o3b2o159b2o40bo\$obobo3bobobo9b2obob2o91bobobo3bobobo10b2o115bobobo
3bobobo10b2o10b3o132bobobo3bobobo15b4o27bo10b2o\$22b2o5b2o111bo142b2o
11bo158b2o2bo22b2o2bo2bo9b2o4b2o17b4o\$o11bo11b4o92bo7bo3bo10b2o2b2o
115bo3bo3bo17bo4b2o133bo3bo3bo3bo13bo3bo9bo13bob2o14bo4b3o3bo8bo2bo4bo
\$27bobo115bo141bo7bo3bo163b2o5bo13bob2o15b2o3bo6bo5b4o5bo\$obobo7bo16bo
90bobobo3bobobo10bobo118bo3bobobo15b3o4bo3bo130bobobo3bo3bo11b2o3bo2b
2ob3ob2obo12bo5bo12bo6b2o4bobo4bo4b2o\$27bobo112bo5bo147bobo154bo9bobob
o3bo4bob2ob3obo2b3o9bo4b2o6b3ob4ob2obobo4b3o\$4bo7bo11b4o92bo3bo3bo3bo
9bo5bo115bo3bo3bo161bo3bo3bo9bo2b2obo5b2obo4bo2b2obo3bo16b2ob4o9bo7b3o
bo4b2o\$22b2o5b2o112b2o151bobo152b2obo4bo5b2o7b2o2bo2bo18b5o11b4o4bo8bo
\$obobo7bo9b2obob2o91bobobo3bobobo15bo115bo3bobobo22bo134bobobo3bobobo
9b2ob2ob2o14bo5b2o34b2obo4bo\$21bo122b2o3bo145bo3b6o151b5o60bo\$22bo121b
o3bo146bobobob3obo216b2o\$22bo6bo114bo3bo147b3obo\$26bob2o113b3obo152b3o
\$25b2o115bo4bo152b2o2bo\$26b2o2b2o109bobobob2o\$141bo3bobo\$141b2ob3o\$
148bo\$148b2o\$148b2o18\$24b2ob2o4b2o3b3o\$obobo3bobobo10bobo5b2o3bob2obo\$
22bo8b2o4bob3obo\$o7bo3bo8bo9b5o5b2o\$22bo4bo6b3o\$obobo3bobobo10b2o3b3o\$
32bo\$4bo3bo3bo9bobobo4bo\$21bo4bo3bo\$obobo3bobobo8bob4o\$21b2o!``````
Finally, here is the small 2c/5 ships collection (as an attachment, since it no longer fits in a single post):
ships-2c5-small.rle
Edit: I accidentally forgot to add some ships to the small ships collection (see this post).

Posted: January 29th, 2017, 4:51 pm
I finished the latest knightship search; none with a diagonal width of <= 16hd. I don't currently feel like trying 17hd just yet, and I still think we're nowhere near an actual ship.

EDIT: I actually think (2,1)c/7 is somewhat more promising. Here's an example 11hd partial:

Code: Select all

``````x = 14, y = 13
bbo\$oboo\$bboboboo\$boobo\$6boo\$oo5bo\$bo4boo\$bbo3bo4bo\$4booboo\$5bo5boo\$6b4o\$9boobbo
\$10b3o!
``````
EDIT 2: Slightly longer (12hd):

Code: Select all

``````x = 17, y = 17
4bo\$6boo\$3boo\$boboobbo\$bboo3bo\$oo3bo\$boo4boo\$3bob5obo\$5bo7bo\$6b4obo\$10b3o\$12boob
o\$11bo4bo\$11boobbo\$10bo3bobo\$14b3o\$14b3o!
``````
EDIT 3/4: Even more so (same width):

Code: Select all

``````x = 19, y = 18
3bobbo\$3boobo\$boboobo\$4o4bo\$8boo\$bboo4bo\$bboobboboo\$3bo3b4o\$4b4o3boboo\$5bobbobb
oo3bo\$8boob4o\$\$15bobbo\$13bob3o\$12boboboo\$\$12boo3boo\$16boo!
``````
The front end advances for 4 full periods.

Also,

Code: Select all

``````x = 22, y = 22
4bo\$4boobo\$4bo\$8bo\$oobb4o\$bbooboo4bo\$bboo4b4o\$4bo3b3o\$5bo3bob3o\$5bobbobbo3bo\$6bo
bbo\$6bobobboo\$7b3obboo3bo\$11booboob3o\$12bobobb3o\$19boo\$19bobo\$19boo\$15b3o\$15boo
3bo\$16bo3bo\$19boo!
``````
is longer, but not quite as robust.

Posted: January 29th, 2017, 10:09 pm
I accidentally forgot to include the following ships in my small 2c/5 ships collection:

Code: Select all

``````x = 272, y = 143, rule = B3/S23
87bo\$32b2ob2o49bobo\$31bo53bo3b3o\$30b2ob2o14bo36bob3o\$31bo3bo12bobo36b
2o\$20b2o12bo12bo3b3o\$18b2o3bo24bob3o17b2ob2o8b2obo\$7bo7bobobo4bo6bo2bo
14b2o18bo12bobo2bo\$6bobo6bobobo3bo2bob3o37b2ob2o8b2o3bo\$5bo3b3o2bobo5b
ob2o3bo15b2obo20bo3bo8bobobo4bob2obo\$6bob3o3bobobo7bobo15bobo2bo8b2o
12bo10b2ob2o3bobo3bo\$7b2o6bobo3bo21b2o3bo7b2o3bo24bo3bobobo7bobo\$15bob
2obo23bobobo4bobobo4bo6bo2bo17bobo5bob2o3bo\$3b2obo38b2ob2o3bobobo3bo2b
ob3o22bobobo3bo2bob3o\$2bobo2bo40bo3bobo5bob2o3bo23bobobo4bo6bo2bo\$b2o
3bo45bobobo7bobo27b2o3bo\$2bobobo46bobo3bo36b2o12bo\$3b2ob2o45bob2obo48b
o3bo\$6bo99b2ob2o\$107bo\$108b2ob2o19\$5bo3bo\$5bo3bo\$4bobo\$3b3o2b2o33bo3bo
\$43bo3bo\$6b2o34bobo\$6b2o33b3o2b2o\$6b2o\$44b2o\$2b2obo38b2o19b2ob2o\$bobo
2bo37b2o18bo\$2o3bo57b2ob2o\$bobobo4bob2obo24b2obo20bo3bo\$2b2ob2o3bobo3b
o22bobo2bo8b2o12bo\$5bo3bobobo7bobo14b2o3bo7b2o3bo\$9bobo5bob2o3bo14bobo
bo4bobobo4bo6bo2bo\$10bobobo3bo2bob3o14b2ob2o3bobobo3bo2bob3o\$10bobobo
4bo6bo2bo13bo3bobo5bob2o3bo\$13b2o3bo28bobobo7bobo\$15b2o12bo18bobo3bo\$
26bo3bo17bob2obo\$25b2ob2o\$26bo\$27b2ob2o19\$86bo\$31b2ob2o49bobo100bo\$30b
o53bo3b3o33bo61b2o3bo12bo63bo\$29b2ob2o14bo36bob3o33b4o37bo21b2o2bo12b
4o37bo21b2o3bo\$30bo3bo12bobo36b2o34bo2b2o36b4o19b4obo10bo2b2o36b4o19b
2o2bo\$19b2o12bo12bo3b3o69bo5bo33bo2b2o8b2o25bo5bo33bo2b2o19b4obo\$17b2o
3bo24bob3o17b2ob2o8b2obo36bo4bo5b2o27bo5bo5b2o26bo4bo34bo5bo6b2o\$6bo7b
obobo4bo6bo2bo14b2o18bo12bobo2bo36bo6b2o3bo26bo4bo5bob2o2b2o4b2o16bo9b
2o27bo4bo6b2o\$5bobo6bobobo3bo2bob3o5bo31b2ob2o8b2o3bo38bo2bo2bobo8bo
21bo6b2obo5bo4b3o17bo2bo2b2o3bo27bo9bob2o2b2o4b2o\$4bo3b3o2bobo5bob2o3b
o5b2o8b2obo20bo3bo8bobobo4bob2obo15bo12b3o3bobobo4b4o3bo17bo2bo2bobobo
4b4o3bo17b3o3bobo8bo22bo2bo2b2obo5bo4b3o\$5bob3o3bobobo7bobo5b2o8bobo2b
o8b2o12bo10b2ob2o3bobo3bo13bo11bob3o3b2obo5bo4b3o17b3o3bobo8bo20bob3o
3bobobo4b4o3bo17b3o3bobobo4b4o3bo\$6b2o6bobo3bo13bo7b2o3bo7b2o3bo24bo3b
obobo7bobo5b2o9b4obo7bob2o2b2o4b2o15bob3o3b2o3bo24b4obo4b2obo5bo4b3o
15bob3o3bobo8bo\$14bob2obo15bo7bobobo4bobobo4bo6bo2bo17bobo5bob2o3bo5b
2o7bo2bo2bo8b2o24b4obo7b2o24bo2bo2bo7bob2o2b2o4b2o13b4obo4b2o3bo\$2b2ob
o38b2ob2o3bobobo3bo2bob3o5bo16bobobo3bo2bob3o5bo6bo16b2o22bo2bo2bo32bo
15b2o23bo2bo2bo7b2o\$bobo2bo40bo3bobo5bob2o3bo5b2o16bobobo4bo6bo2bo9bo
2bo23b4obo6bo40bo2bo12b2o21bo\$2o3bo45bobobo7bobo5b2o20b2o3bo21b3o23b2o
2bo8bo2bo37b3o23b4obo7bo2bo\$bobobo46bobo3bo13bo22b2o12bo12b2obo20b2o3b
o8b3o39b2obo20b2o2bo9b3o\$2b2ob2o45bob2obo15bo32bo3bo13bo23bo13b2obo38b
o21b2o3bo10b2obo\$5bo99b2ob2o54bo63bo15bo\$106bo\$107b2ob2o18\$5bo3bo\$5bo
3bo\$4bobo\$3b3o2b2o33bo3bo\$43bo3bo\$6b2o34bobo\$6b2o33b3o2b2o\$6b2o\$44b2o\$
2b2obo38b2o19b2ob2o\$bobo2bo37b2o18bo\$2o3bo57b2ob2o\$bobobo4bob2obo15bo
8b2obo20bo3bo\$2b2ob2o3bobo3bo13bo8bobo2bo8b2o12bo\$5bo3bobobo7bobo5b2o
7b2o3bo7b2o3bo\$9bobo5bob2o3bo5b2o7bobobo4bobobo4bo6bo2bo\$10bobobo3bo2b
ob3o5bo8b2ob2o3bobobo3bo2bob3o5bo\$10bobobo4bo6bo2bo13bo3bobo5bob2o3bo
5b2o\$13b2o3bo28bobobo7bobo5b2o\$15b2o12bo18bobo3bo13bo\$26bo3bo17bob2obo
15bo\$25b2ob2o\$26bo\$27b2ob2o!``````
Here is the corrected small 2c/5 ships collection:
ships-2c5-small.rle
A for awesome wrote:I actually think (2,1)c/7 is somewhat more promising.
(2,1)c/7 has also not been searched very heavily, so there might be something "easy" to find that has just gone unnoticed (like copperhead).

Edit: A small tagalong gives two new small 2c/5 ships:

Code: Select all

``````x = 34, y = 65, rule = B3/S23
29bo\$28b5o\$27b2o4bo\$28bo4bo\$29b2o\$29bo\$28bo\$26bobo\$12bo3bob2obobob2o\$
11bo4bo4bobo\$11bo2b2obobobo\$11b2o9bo\$15bob3o2bo\$6bo8bo\$5bobo7bo\$4bo3b
3o\$5bob3o\$6b2o2\$2b2obo\$bobo2bo\$2o3bo\$bobobo\$2b2ob2o\$5bo11\$4bo\$3bobo\$2b
o3b3o\$3bob3o\$4b2o2\$5b2o\$4b3o6bo\$5bo6b5o\$3bo7b2o4bo\$2b2o8bo4bo\$bo11b2o\$
2b2o2b2o5bo\$4bo7bo\$2bobo5bobo\$bo5bob2o\$bo5bo\$2b2o\$7bo\$3b2o3bo\$3bo3bo\$
3bo3bo\$2b3obo\$bo4bo\$obobob2o\$o3bobo\$2ob3o\$7bo\$7b2o\$7b2o!``````
Edit 2: another tagalong:

Code: Select all

``````x = 38, y = 17, rule = B3/S23
16bo2bo\$13bo2bo3bo\$12bobobo4bo\$12b2o2b2o\$6b2ob2o2bobobo4bo6bo\$5bo8b2ob
o4bo6bo\$4b2ob2o4bo3b2o3bo6bob3o2bo\$5bo3bo4bo2b2o2bo3b2o9bo\$8bo5bo3b2ob
o3bo2b2obobobo\$4bo20bo4bo4bobo\$2bo23bo3bob2obobo\$b2ob3o\$2o\$b2obo\$2bo\$
4b3o\$5b2o!``````