For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

I noticed that one of Tim Coe's new p8 c/4 orthogonal ships has an isolated p8 spark:

Code: Select all

x = 31, y = 15, rule = B3/S23
10b2o6bo10bo$5b3o2b3o15b2o$7bo2b2obobo11b2obo$5b2o5b3o8b2obobobo$b2o2b
o2b3obo3b5o5b2o2bo$2ob2o5bo4b2o5bo4b2obo$bo3bo9bo6bo2bo2b2o$2o3bo17bo 2bob3o$bo3bo9bo6bo2bo2b2o$2ob2o5bo4b2o5bo4b2obo$b2o2bo2b3obo3b5o5b2o2b
o$5b2o5b3o8b2obobobo$7bo2b2obobo11b2obo$5b3o2b3o15b2o$10b2o6bo10bo!
I had thought that this spark was period-4. Using a known trick, I isolated the spark further. This allowed a small interaction with the block deletion in the p20 and p28 ships, resulting in nontrivial p40 and p56 ships:

Code: Select all

x = 171, y = 201, rule = B3/S23
108bo10bo20bo10bo$108bo10bo20bo10bo$107bobo8bobo18bobo8bobo2$110bo6bo 24bo6bo$106b4obo4bob4o16b4obo4bob4o$108b2obo4bob2o20b2obo4bob2o$106bo
3bo6bo3bo16bo3bo6bo3bo$105bo16bo14bo16bo$104bo18bo12bo18bo$105bobo12bo bo14bobo12bobo$108b2o8b2o20b2o8b2o$107b4o6b4o18b4o6b4o$110bo6bo24bo6bo
$106bo14bo16bo14bo$106b2o3b2o2b2o3b2o16b2o3b2o2b2o3b2o$106b2o3b2o2b2o 3b2o16b2o3b2o2b2o3b2o2$111bo4bo26bo4bo$110b3o2b3o24b3o2b3o$108b2ob2o2b
2ob2o20b2ob2o2b2ob2o2$111bob2obo26bob2obo$107b14o18b14o$111bob2obo26bo b2obo2$106b4o8b4o16b4o8b4o$106bob2o8b2obo16bob2o8b2obo$106b4o8b4o16b4o
8b4o$107b2o10b2o18b2o10b2o$109b2o6b2o22b2o6b2o$105bo4b2o4b2o4bo14bo4b 2o4b2o4bo$105bo16bo14bo16bo$104bobobo10bobobo12bobobo10bobobo$104bob2o
bo8bob2obo12bob2obo8bob2obo$110bo6bo24bo6bo$109bo8bo22bo8bo$112bo2bo 28bo2bo$109bo2b4o2bo22bo2b4o2bo$110bo2b2o2bo24bo2b2o2bo$111b2o2b2o26b
2o2b2o$112b4o28b4o$111b2o2b2o26b2o2b2o$110bo6bo24bo6bo$110bo2b2o2bo24b
o2b2o2bo$109b2o6b2o22b2o6b2o$109b3ob2ob3o22b3ob2ob3o$111b2o2b2o26b2o2b 2o2$108b2ob2o2b2ob2o20b2ob2o2b2ob2o$109bobob2obobo22bobob2obobo$106b4o
8b4o16b4o8b4o$105bo5bo4bo5bo14bo5bo4bo5bo$108b2obo4bob2o20b2obo4bob2o$109b2o6b2o22b2o6b2o$105b3ob10ob3o14b3ob10ob3o$111b2o2b2o26b2o2b2o$106b
3o3bo2bo3b3o16b3o3bo2bo3b3o$106b6o4b6o16b6o4b6o$107b3o8b3o18b3o8b3o$111b2o2b2o26b2o2b2o$120b4o12b4o$119bo3bo12bo3bo2$119bo2bo14bo2bo$118b 3o18b3o2$117bo24bo$118bo22bo$27bo88b2obo20bob2o$27bo88b2o2bo18bo2b2o$
26bobo86bo2b2o20b2o2bo$110b3o6bo20bo6b3o$25bo68bo16bo36bo16bo$24bob4o 64bo25b2o16b2o25bo$24bobob2o63bobo16bo6bo20bo6bo16bobo$25bob2o2bo77b4o 5b2o2bo14bo2b2o5b4o$27bo3bo64bo11b3o8b2obo3bo2b2o2bo3bob2o8b3o11bo$27b 2o63b4obo9bo2bo10b2o2b2ob4ob2o2b2o10bo2bo9bob4o$26bobob3o59b2obobo8b2o
bo13bo12bo13bob2o8bobob2o$23b2ob2o3b2o57bo2b2obo8bo8bo11bobo2bobo11bo 8bo8bob2o2bo$24b3o63bo3bo9bo5bo2bobo9b4o2b4o9bobo2bo5bo9bo3bo$26bo66b 2o13bob3o3bo8b10o8bo3b3obo13b2o$24bo2bo6bo54b3obobo8b3o2bo2bob2o28b2ob
o2bo2b3o8bobob3o$23bobob2o4b3o53b2o3b2ob2o62b2ob2o3b2o$28bo4b2obobo56b
3o18b2o24b2o18b3o$23bo3bo8bob2o55bo22bo22bo22bo$40bobo51bo2bo18b2o2b2o
7b2o7b2o2b2o18bo2bo$26b2o8bo4b2o50b2obobo20bo2bo6b2o6bo2bo20bobob2o$
26bob2o6bo6bo49bo25bo2bo14bo2bo25bo$26b2obo7bo2b2o52bo3bo20b2ob2o12b2o b2o20bo3bo$26b2o80bo11bob2o12b2obo11bo$26b3o12b2o51b2o10b3o3bo5bo2b3o 12b3o2bo5bo3b3o10b2o$26b3o10bo52b2obo9bo3bo2b4o2b2o2bo14bo2b2o2b4o2bo
3bo9bob2o$28bo9bo2bo50bob2o9bo2bo3bo7bobo14bobo7bo3bo2bo9b2obo$26bob2o
9bobo52b2o12b2o3b2o2b5o7b2o7b5o2b2o3b2o12b2o$19bo8bo8b2o54b3o4bo4bobo 21b2o21bobo4bo4b3o$18b3o7b2o63b3o4b4ob2o3bo38bo3b2ob4o4b3o$18b3o17bo 54b3o4bob3o3bobo5b5o18b5o5bobo3b3obo4b3o$20bo9bo7bo54bo9bo4bobo6bobobo
16bobobo6bobo4bo9bo$17b4o8bo8b3o51b2obo4bo13b2obobobo16bobobob2o13bo4b ob2o$16bobob2o7bo9b2o52bo19bo2bo3bo18bo3bo2bo19bo$16bo5bo16bo52b2o35b 2o35b2o$21b2o6b2o6bo75bobo13b2o13bobo$20bo2bo5b2o8bo54bo20bo28bo20bo$
17b2obobo12b2o2bo53bo20b3o26b3o20bo$16b3obo3b2o3b2o3bobo56bo16b4o2bo 26bo2b4o16bo$15bo6bo6b2o7b2o70b2o3bo28bo3b2o2$18b3o21bo10bo75b2o11bo 10bo$15b2o24b3o8b3o74b2o10b3o8b3o$15b2o4bo7b2o10b3o8b3o86b3o8b3o$18bob
o8b2o10bo12bo86bo12bo$17b2o22b4o6b4o86b4o6b4o$18bobo19b2obobo4bobob2o
84b2obobo4bobob2o$17bo2bo24bo4bo94bo4bo$17bobobo7b2o13bo6bo77b2o13bo6b
o$16b3o10b2o7b3o14b3o71b2o7b3o14b3o$16b3o19b3o14b3o80b3o14b3o$17b2o21b 2o12b2o84b2o12b2o$17b2o22bobo8bobo86bobo8bobo$19b3o7b2o9b3ob2o4b2ob3o 84b3ob2o4b2ob3o$29b2o11b4o4b4o88b4o4b4o$40b3ob3o2b3ob3o73b2o9b3ob3o2b 3ob3o$20b2o17bo4bo6bo4bo72b2o8bo4bo6bo4bo$20b2o18bo3bo2b2o2bo3bo84bo3b o2b2o2bo3bo$21b2o6b2o16b2o98b2o$29b2o13bobo2bobo92bobo2bobo$43bo2bo2bo
2bo90bo2bo2bo2bo$43bob6obo90bob6obo$42bo2bob2obo2bo75b2o11bo2bob2obo2b
o$29b2o11bo2b2o2b2o2bo75b2o11bo2b2o2b2o2bo$29b2o10bo12bo86bo12bo$44bo 6bo92bo6bo$41bo2bo6bo2bo86bo2bo6bo2bo$40b4o8b4o84b4o8b4o$29b2o8b2o14b
2o82b2o14b2o$29b2o8b2o14b2o72b2o8b2o14b2o$41bo2b2o4b2o2bo74b2o10bo2b2o
4b2o2bo$42bo10bo88bo10bo$39bo2bo2bo4bo2bo2bo82bo2bo2bo4bo2bo2bo$29b2o 7bob2ob2o6b2ob2obo80bob2ob2o6b2ob2obo$29b2o7bo3b2o8b2o3bo80bo3b2o8b2o
3bo$39b2o3bo6bo3b2o82b2o3bo6bo3b2o$44bo6bo77b2o13bo6bo$43bo8bo76b2o12b o8bo$29b2o14b2o2b2o94b2o2b2o$29b2o14b2o2b2o94b2o2b2o$44bobo2bobo92bobo
2bobo2$45b2o2b2o94b2o2b2o$29b2o14b2o2b2o78b2o14b2o2b2o$29b2o13bo2b2o2b o77b2o13bo2b2o2bo$44bo6bo92bo6bo$44b8o92b8o$45bo4bo94bo4bo$29b2o13b3o 2b3o92b3o2b3o$29b2o12b2o6b2o90b2o6b2o$43bobo4bobo76b2o12bobo4bobo$7bo
37bo4bo56bo21b2o14bo4bo$6bobo12b2o17b3o3b4o3b3o50bobo12b2o17b3o3b4o3b 3o$5bo4bo10bo2b2o3b2o9bo3bo6bo3bo49bo4bo10bo2b2o14bo3bo6bo3bo$3b3o4bo 3b2o9bo3b2o9bobo10bobo47b3o4bo3b2o9bo14bobo10bobo$3b2o2b2obo2bo3bobo3b
2obo13bo3bob4obo3bo47b2o2b2obo2bo3bobo3b2obo13bo3bob4obo3bo$3b2o4bo3bo 3b3o19b2ob2o3b2o3b2ob2o46b2o4bo3bo3b3o19b2ob2o3b2o3b2ob2o$8bo5b2o5bo4b
o12b5o3b2o3b5o51bo5b2o5bo4bo2b2o8b5o3b2o3b5o$9bo4bob5o4bo3b2o5bo7b2o4b 2o57bo4bob5o4bo3b2o5bo7b2o4b2o$18b2o5bo3b2o5bo8b2o2b2o67b2o5bo10bo8b2o
2b2o$35bobo7bo4bo84bobo7bo4bo$21b2o16bobo79b2o16bobo$bo18bobo17bo60bo 18bobo17bo$3o9bo6b3o7b2o5b3ob2o58b3o9bo6b3o14b3ob2o$3o5b4o2bo5b2o7b2o 6b3o2bo57b3o5b4o2bo5b2o7b2o6b3o2bo$2bo4bo3bo3bo4b2o17bo2bo59bo4bo3bo3b
o4b2o7b2o8bo2bo$2bob2o4bobo2bo6b3o77bob2o4bobo2bo6b3o$bo3bo7bo25b3o59b
o3bo7bo25b3o$5bobob2o2b2ob2o11b2o8bo65bobob2o2b2ob2o21bo$13b5o5b2o4b2o
82b5o5b2o$16b2o5b2o11b2o78b2o5b2o11b2o$17b2o3b2o13bob3o75b2o3b2o5b2o6b
ob3o$36bobo90b2o5bobo$17b2o3b2o5b2o4b3o79b2o3b2o11b3o$29b2o4bobo97bobo$18b2ob2o11bo3b3o77b2ob2o11bo3b3o$16b2obobob2o14b2o75b2obobob2o14b2o$
15bo3bobo3bo8b3o78bo3bobo3bo8b3o$14bo2b2o3b2o2bo2bobo2bo2bo76bo2b2o3b 2o2bo2bobo2bo2bo$17bo5bo5bobo2bo82bo5bo5bobo2bo$13bo3bo5bo3bo2bo3bo78b o3bo5bo3bo2bo3bo$17bo5bo10bo3bo78bo5bo10bo3bo$17bo5bo11bo2bo78bo5bo11b o2bo$35bo99bo$18b2ob2o14b2o79b2ob2o14b2o$16bo3bo3bo91bo3bo3bo$16bo7bo 12b2o77bo7bo12b2o$19bobo16bo80bobo16bo$16b2o2bo2b2o91b2o2bo2b2o$15bob
2o3b2obo12b2o75bob2o3b2obo12b2o$14b3ob5ob3o87b3ob5ob3o$13b2o4b3o4b2o
85b2o4b3o4b2o$15b4obob4o89b4obob4o! The reason for all of these c/4 orthogonal results is that I have been working on my update to jslife, and have added a c/4 orthogonal extended collection. Looking back through old technology gave me some new ideas. I am now done updating all of the collections of moving objects in jslife except c/3 orthogonal. Also, thanks to Dave Greene's Life Lexicon update, I noticed this c/4 orthogonal ship (by Nicolay Beluchenko) that should have been in the small ships collection: Code: Select all x = 25, y = 23, rule = B3/S23 22b3o2$22bobo2$20b2o$19bobo$17bob2o$16b2o3bo$11b3o$14b2o2bobo$12bo6bo$
11bo$9bobo$8bob2o$8b2o$9bo$bo5bobo$bo7bo$obo4bob2o$10bo$5bob3o$b5obo$2b2o2bo! This leads to another small ship based on known components: Code: Select all x = 28, y = 19, rule = B3/S23 19bo$17bo3bo$17bo3b2o$16b2o5b2o$11b3o4bo6bo$14b2o3bo3b3o$12bo6bo3bob2o$11bo10bo$9bobo15bo$8bob2o14bo$8b2o16bo$9bo$bo5bobo$bo7bo$obo4bob2o$
10bo$5bob3o$b5obo$2b2o2bo! I also forgot to previously include this tagalong to the 37-cell ship (it was included only as a tagalong to the 41-cell ship): Code: Select all x = 26, y = 22, rule = B3/S23 bo$bo8bo$obo5bo3bo$8bo3b2o$5bob2o5b2o$b6o2bo6bo$2b2o6bo3b3o$10bo3bob2o
4b3o$13bo9bo$18bo$17bo5bo$16bo2bo2bobo$22b3o$17b5obobo$24bo$17b3o4b2o$17bobo$17bob2o2$21bo$20bo$20bo! -Matthias Merzenich A for awesome Posts: 2166 Joined: September 13th, 2014, 5:36 pm Location: Pembina University, Home of the Gliders Contact: ### Re: Spaceship Discussion Thread Three new c/6 pushalongs based on known components: Code: Select all x = 98, y = 119, rule = B3/S23 2bobo9bobo26bobo9bobo22bobo9bobo$2o3b2o5b2o3b2o22b2o3b2o5b2o3b2o18b2o
3b2o5b2o3b2o$2o3b2o5b2o3b2o22b2o3b2o5b2o3b2o18b2o3b2o5b2o3b2o$5b2o5b2o
32b2o5b2o28b2o5b2o$4b2o7b2o30b2o7b2o26b2o7b2o$3b2o9b2o28b2o9b2o24b2o9b
2o$3bo11bo28bo11bo24bo11bo$4bo9bo30bo9bo26bo9bo$5b2o5b2o32b2o5b2o28b2o 5b2o2$7bo3bo36bo3bo32bo3bo$4bobo5bobo30bobo5bobo26bobo5bobo$2bobo9bobo
26bobo9bobo22bobo9bobo$2bobo9bobo26bobo9bobo22bobo9bobo$2b2o11b2o26b2o
11b2o22b2o11b2o2$3o4bo3bo4b3o22b3o4bo3bo4b3o18b3o4bo3bo4b3o$b2o4bo3bo
4b2o24b2o4bo3bo4b2o20b2o4bo3bo4b2o$b3obobo3bobob3o24b3obobo3bobob3o20b 3obobo3bobob3o$4b3o5b3o30b3o5b3o26b3o5b3o$3b2o2bo3bo2b2o28b2o2bo3bo2b 2o24b2o2bo3bo2b2o$5b2o5b2o32b2o5b2o28b2o5b2o$6bo5bo34bo5bo30bo5bo2$4b
2ob2ob2ob2o30b2ob2ob2ob2o26b2ob2ob2ob2o2$7bo3bo36bo3bo32bo3bo$5bobo3bo
bo32bobo3bobo28bobo3bobo$3bobo2bobo2bobo28bobo2bobo2bobo24bobo2bobo2bo bo$7bo3bo36bo3bo32bo3bo$2bo2b3o3b3o2bo26bo2b3o3b3o2bo22bo2b3o3b3o2bo$
2bobo2bo3bo2bobo26bobo2bo3bo2bobo22bobo2bo3bo2bobo$3bobob2ob2obobo28bo bob2ob2obobo24bobob2ob2obobo$4b2o2bobo2b2o30b2o2bobo2b2o26b2o2bobo2b2o
2$8bobo38bobo34bobo$3b2o3bobo3b2o28b2o3bobo3b2o24b2o3bobo3b2o$ob2o4bob o4b2obo22bob2o4bobo4b2obo18bob2o4bobo4b2obo$3o4bo3bo4b3o22b3o4bo3bo4b
3o18b3o4bo3bo4b3o$obo13bobo22bobo13bobo18bobo13bobo$b2o3bo5bo3b2o24b2o
3bo5bo3b2o20b2o3bo5bo3b2o$bo4bo5bo4bo24bo4bo5bo4bo20bo4bo5bo4bo$2b2obo
7bob2o26b2obo7bob2o22b2obo7bob2o$5bo7bo32bo7bo28bo7bo$4b2ob2ob2ob2o30b
2ob2ob2ob2o26b2ob2ob2ob2o$6bobobobo34bobobobo30bobobobo$3bo2bobobobo2b
o28bo2bobobobo2bo24bo2bobobobo2bo$4bo3bobo3bo30bo3bobo3bo26bo3bobo3bo$
5bobo3bobo32bobo3bobo28bobo3bobo$2b2o11b2o26b2o11b2o22b2o11b2o$bobob2o
5b2obobo24bobob2o5b2obobo20bobob2o5b2obobo$o4bob2ob2obo4bo22bo4bob2ob 2obo4bo18bo4bob2ob2obo4bo$b2o3b3ob3o3b2o24b2o3b3ob3o3b2o20b2o3b3ob3o3b
2o$2o5b2ob2o5b2o22b2o5b2ob2o5b2o18b2o5b2ob2o5b2o$bo15bo24bo15bo20bo15b
o$6b3ob3o34b3ob3o30b3ob3o$o2b3ob2ob2ob3o2bo22bo2b3ob2ob2ob3o2bo18bo2b
3ob2ob2ob3o2bo$2bob3obobob3obo26bob3obobob3obo22bob3obobob3obo$o5bo5bo
5bo22bo5bo5bo5bo18bo5bo5bo5bo$3o4bo3bo4b3o22b3o4bo3bo4b3o18b3o4bo3bo4b 3o$b2obob2o3b2obob2o24b2obob2o3b2obob2o20b2obob2o3b2obob2o$3bo2bo5bo2b o28bo2bo5bo2bo24bo2bo5bo2bo$3bo2bo5bo2bo28bo2bo5bo2bo24bo2bo5bo2bo$3b 2o9b2o28b2o9b2o24b2o9b2o$4b2o7b2o30b2o7b2o26b2o7b2o$2bob3o5b3obo26bob 3o5b3obo22bob3o5b3obo$3b2o2bo3bo2b2o28b2o2bo3bo2b2o24b2o2bo3bo2b2o$4b 2o2bobo2b2o30b2o2bobo2b2o26b2o2bobo2b2o$4bo3bobo3bo30bo3bobo3bo26bo3bo
bo3bo$5b3o3b3o32b3o3b3o28b3o3b3o$3bo11bo28bo11bo24bo11bo$3bobobo3bobob o28bobobo3bobobo24bobobo3bobobo$3bob2o5b2obo28bob2o5b2obo24bob2o5b2obo
3$4b2obo3bob2o30b2obo3bob2o26b2obo3bob2o$4b2obobobob2o30b2obobobob2o
26b2obobobob2o$3bo4bobo4bo28bo4bobo4bo24bo4bobo4bo$3bobo3bo3bobo28bobo
3bo3bobo24bobo3bo3bobo$8bobo38bobo34bobo$4b2o7b2o30b2o7b2o26b2o7b2o2$8b3o38b3o34b2o2bo$88bo$10b2o38b2o$8bo4bo34bo4bo32bo6bo$7bo6bo32bo6bo 30bobob2obobo$6bo8bo30bo8bo29b2o2b2o2b2o$6b2ob4ob2o30b2ob4ob2o33b2o2$
87b2o2b2o$8b2o2b2o34b2o2b2o33b2o2b2o$8b2o2b2o34b2o2b2o34b4o$88bo2bo$
10b2o38b2o35bo4bo$9b4o36b4o34bo4bo$8b2o2b2o34b2o2b2o33bob2obo$8bo4bo 34bo4bo34bo2bo$10b2o38b2o36bo2bo$8bo4bo34bo4bo$8bo4bo34bo4bo28bo14bo$3bo14bo24bo14bo23b2o4bo2bo4b2o$2bobo4bo2bo4bobo22bobo4bo2bo4bobo22bo5b
4o5bo$5bo3b4o3bo28bo3b4o3bo26b2o4b2o4b2o$2bo16bo22bo16bo24bo10bo$4b2o 10b2o26b2o10b2o24bobo10bobo$3b3o10b3o24b3o10b3o24b5o4b5o$8bo4bo34bo4bo 31bo2b4o2bo$6b2obo2bob2o30b2obo2bob2o28bo4b2o4bo$6b2o2b2o2b2o30b2o2b2o 2b2o32bo2bo$6b2o6b2o30b2o6b2o33b2o$7b2ob2ob2o32b2ob2ob2o31b2ob2ob2o$7b
2ob2ob2o32b2ob2ob2o$85bo8bo$84b3o6b3o$5b3o6b3o28b3o6b3o27bo2bo4bo2bo$
4bo3bo4bo3bo26bo3bo4bo3bo25b2o10b2o$7bo6bo32bo6bo$4b2o10b2o26b2o10b2o!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

I've finally completed my update of the jslife moving objects collection (Edit: this file is old. Please use the link above):
jslife-moving-objects-update-3sep2017.zip
This is a fairly comprehensive collection of elementary-based moving technology. Caterpillars, Caterloopillars, half-baked ships, and Geminoids are not included in this collection.

Please let me know If you find any errors, omissions, or inconsistencies.

I will also include a link to this post at the beginning of the topic.
-Matthias Merzenich

Apple Bottom
Posts: 1034
Joined: July 27th, 2015, 2:06 pm
Contact:

Sokwe wrote:Please let me know If you find any errors, omissions, or inconsistencies.
Thanks a lot for compiling this collection, it's great to have.

I don't know if this counts as an omission in the strict sense, but one thing I'd love to see is information on who first found which ship, when, and so on, in the same manner as in Dean Hickerson's oscillator stamp collection.

I was just looking for Eppstein's glider glider 16485 (that's 70P2H1V0.1 on Pentadecathlon); found it right away, too, in velocity-c2/c2-extended/c2-0002.rle (again, thanks to everyone!), but as there's no meta-information about any of the ships I'm still in the dark about who first discovered it.
If you speak, your speech must be better than your silence would have been. — Arabian proverb

Catagolue: Apple Bottom • Life Wiki: Apple Bottom • Twitter: @_AppleBottom_

Proud member of the Pattern Raiders!

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

Apple Bottom wrote:I don't know if this counts as an omission in the strict sense, but one thing I'd love to see is information on who first found which ship, when, and so on, in the same manner as in Dean Hickerson's oscillator stamp collection.

I was just looking for Eppstein's glider glider 16485 (that's 70P2H1V0.1 on Pentadecathlon); found it right away, too, in velocity-c2/c2-extended/c2-0002.rle (again, thanks to everyone!), but as there's no meta-information about any of the ships I'm still in the dark about who first discovered it.
Many (perhaps most) patterns in the collection do have that information. That happens to be one of the exceptions. The main reason the information isn't included is that it's just too much work to track down. I spent nearly as much time finding credits for old patterns as I did adding new patterns.

To answer your specific curiosity, 70P2H1V0.1 was found by Hartmut Holzwart sometime in the two weeks preceding 3 July 1992. It was found with the restriction that all on cells have at most 6 on neighbors and all off cells have at most 5 on neighbors. This allows it to work in many different rules, which is probably why David Eppstein included it in his database.

I found the information for this spaceship by first looking at David Bell's article, "Spaceships in Conway's Life (Part 2)" (available from his website). It mentions that Hartmut started searching for p2 ships in June of 1992, and that this specific ship had been found "recently". I then looked at some old email archives to find the specific message in which the ship was posted. Unfortunately, the email archive is not available for public release.
-Matthias Merzenich

Apple Bottom
Posts: 1034
Joined: July 27th, 2015, 2:06 pm
Contact:

Sokwe wrote:I found the information for this spaceship by first looking at David Bell's article, "Spaceships in Conway's Life (Part 2)" (available from his website). It mentions that Hartmut started searching for p2 ships in June of 1992, and that this specific ship had been found "recently". I then looked at some old email archives to find the specific message in which the ship was posted. Unfortunately, the email archive is not available for public release.
Excellent, thanks for the detective work!

I'm curious, too -- how come the archives aren't available? Wasn't this a public mailing list?
If you speak, your speech must be better than your silence would have been. — Arabian proverb

Catagolue: Apple Bottom • Life Wiki: Apple Bottom • Twitter: @_AppleBottom_

Proud member of the Pattern Raiders!

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

Apple Bottom wrote:how come the archives aren't available? Wasn't this a public mailing list?
The mailing list was not public. As I understand it, the reason the archives aren't made public is that not everyone on the list has given explicit permission. Since the archives date back to April 1992, it might be hard to even get in contact with some of the members. Dave Greene has more details (sorry Dave).

These archives are basically only useful for finding historical information. Even then, most of the interesting historical information has ended up in publicly-available pattern collections and articles.
-Matthias Merzenich

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

A boring p12 c/3 ship:

Code: Select all

x = 44, y = 39, rule = B3/S23
27b2obo$24b2ob2ob2o$24bo2bobo2bo$18b2o4b2o5bo$18b2ob2o$17bo3b2o$21b2o$3bo11bo12bo11bo$b2obo9bob2o3b2o3b2obo9bob2o$4b2o7b2o6b2o6b2o7b2o$5bo7b
o16bo7bo$o2bo4b3o4bo12bo4b3o4bo2bo$4bo9bo14bo9bo$4bo9bo6b2o6bo9bo$6b2o
bob2o18b2obob2o$2bo2bo7bo2bo10bo2bo7bo2bo$2bo2bo7bo2bo10bo2bo7bo2bo$5b o7bo16bo7bo2$7b5o20b5o$5b2obobob2o16b2obobob2o$5b2obobob2o16b2obobob2o
$4bo3bobo3bo14bo3bobo3bo$7b2ob2o20b2ob2o$7b2ob2o20b2ob2o$4bo2bo3bo2bo
14bo2bo3bo2bo$3b2ob3ob3ob2o12b2ob3ob3ob2o$5bo7bo16bo7bo$5b3o3b3o16b3o 3b3o$5bo2bobo2bo16bo2bobo2bo$5bo7bo16bo7bo$3bobo7bobo12bobo7bobo$2bo2b o7bo2bo10bo2bo7bo2bo$2bo2bo7bo2bo10bo2bo7bo2bo$bo15bo8bo15bo$bo15bo8bo
obo3b2o$3b2obobob2o$6bobo$6bobo$2bo3bobo3bo$2b2o2bobo2b2o$3bo2bobo2bo$4bobobobo$6bobo$ob2o7b2obo$ob2ob2ob2ob2obo$b2o9b2o$5bo3bo2$3o3bobo3b3o$b2o2b2ob2o2b2o3$b4o5b4o$6o3b6o$o2bobo3bobo2bo! Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules. Things to work on: - Find a (7,1)c/8 ship in a Non-totalistic rule AforAmpere Posts: 1158 Joined: July 1st, 2016, 3:58 pm ### Re: Spaceship Discussion Thread 3c/10 was also negative for w8 at all symmetries with zfind-s (v, u, a, and g). This is the longest partial (at even bilateral symmetry: Code: Select all x = 16, y = 37, rule = B3/S23 4bo6bo$3b2o6b2o$2bo10bo$3b3o4b3o$3bob2o2b2obo$3bobo4bobo$2bobo6bobo$2b
o2bo4bo2bo$3b3o4b3o$5bo4bo$3b3o4b3o$2bo2bo4bo2bo$2b4o4b4o$2b2obo4bob2o
$3bo8bo$bobo8bobo$b2o10b2o$2bo10bo$3b2o6b2o$2bo2bob2obo2bo$5bo4bo$6b4o
$3b3o4b3o$2bo10bo$bo2bo6bo2bo$o14bo$3b2o6b2o2$3b3o4b3o$3ob2o4b2ob3o$ob
obo2b2o2bobobo$4b3o2b3o$2b3o6b3o$2bob8obo$o2bo8bo2bo$o2bo8bo2bo$3b3o4b
3o!
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

wildmyron wrote:
Sokwe wrote:Is there another HWSS synthesis that could allow the p116 rake to be built?
Here's a 4G recipe with one glider from each direction:

Code: Select all

x = 125, y = 127, rule = B3/S23
122bo$2bo119bobo$obo119b2o$b2o55$93bo$31bo61bobo$29bobo61b2o$30b2o55$
64bo$60bo3bobo$58bobo3b2o$59b2o2$63b3o26b3o26b3o$63bo28bo28bo$64bo28bo
28bo$b2o27b2o27b2o$obo26bobo26bobo$2bo28bo28bo! c/4 orthogonal glider fan-outs are possible at periods 92, 108, and 112: Code: Select all x = 488, y = 349, rule = B3/S23 430bo2$425b3o5bo$256b2o152b2o12b3o7bo$256b2o151b3o2bo7bo2bo2b5obo$410b 4o6b2o2b5o4b3obobo$360bo23b2o31b2ob2obo2bo10bobo$251b2o106bobo20b2o19b o2bo6bo3b4o4bo13bo$248b2ob2o103bobo6b3o9b3o4b2o16bo3bob2o3bob2o2bobob
2obo$251bo20bo80bo2bo4bobo2b2o6bo2bob2o4bo16bo3bob3o2b3o6bo$246b2o13b
2o5bobo2b2o76b2o3b2o4b2o7bo2bo2b4o3bo15bobobo3b3o$243bo2b3ob2o4b2o3bo 2b7o82bo2b2o4b2o7bo2bo2b3obo3bobobo6b2o2b3ob3o2b2o$241b2o3bob3obo2b2ob
obob5o88bo2bo4b2o5bo3bo6b2o3bo3bo3b4o7b2o2bo$243bo2b2o3b4o5b7obo87b2o 8b2ob3ob3o6bo8bobo3b2ob2ob2ob2obobo$245bo2bo4bo2bo109b2o2b2o2bo13b2ob
3o4bobo5b3o2bo$229b4o13b2o4b2obo117b3o13b2obo2bobo3bo4bo$226b2obo3b2ob
2o14bo3bobo114b3o13b2obo2bobo3bo4bo$223bo9b4obo127b2o2b2o2bo13b2ob3o4b obo5b3o2bo$219b2o2b2obob2o2bo3bo119b2o8b2ob3ob3o6bo8bobo3b2ob2ob2ob2ob
obo$218bo2bo5bo3bo5bo117bo2bo4b2o5bo3bo6b2o3bo3bo3b4o7b2o2bo$211b4obo
10b2ob2o5bo115bo2b2o4b2o7bo2bo2b3obo3bobobo6b2o2b3ob3o2b2o$211bo2b4obo 8bobo6b2o112b2o3b2o4b2o7bo2bo2b4o3bo15bobobo3b3o$222bob2o2bo8b2o114bo
2bo4bobo2b2o6bo2bob2o4bo16bo3bob3o$211b3o8bo4bo128bobo6b3o9b3o4b2o16bo 3bob2o$222bob2o2bo8b2o120bobo20b2o19bo2bo$211bo2b4obo8bobo6b2o121bo23b 2o$211b4obo10b2ob2o5bo$218bo2bo5bo3bo5bo$219b2o2b2obob2o2bo3bo$223bo9b 4obo$226b2obo3b2ob2o$229b4o6$40b2o21b2o21b2o21b2o21b2o21b2o21b2o21b2o
21b2o$40bobo20bobo20bobo20bobo20bobo20bobo20bobo20bobo20bobo$41b2o21b
2o21b2o21b2o21b2o21b2o21b2o21b2o21b2o2$227bo$202bobo20bo$200b2o3b2o17b o5bo42b5obo$200bobo10bo2b2o5bo7bo40bob4o$202bo10bo2b3obo2bob5obo4bo33b o5b6o$199bo8b2o3bo4bobobo2bo4b3obobo16b2o13bo3b2o5bobo2b2o$199b2o3bo3b ob3o9b3o9bobo13b3o15bo4bo9bo$205bo3b4o33bobob4o14bobo2bo2bo$202b2ob2o 3bo11b3o9bobo9bo3bob2o19b2o3b2o$203bob2o11bobobo2bo4b3obobo9bobobob2o
22bo$202b2obo9b4obo2bob5obo4bo12bob3o19b2obo$205bo9b3o5bo7bo20b3o18bob
2o$201bo2bo7b2o2bo7bo5bo19bo2bo18bo5b2o$201bo2b2o5bo3b2o8bo24b3o19b3ob
ob2o$202b2o10b3o10bo44bobobob2obo4bo$210bo2bo36b3o17bo2b2obob3o6bo$211b2o37bo2bo14b2o4b3obo3b4obo4bo$200b3o8bobobo36b3o15bo5b2o3b2o3b3obo
bo$203bobo5bo3bo33bob3o27bo8bobo$199bo2bobo6bo34bobobob2o$198bo3bo9bo 2bo30bo3bob2o$199bo46bobob4o$200b2o11b3o34b3o$201b3o9bo39b2o$201b3o$
210b4o$209b3o2bo$210b2o72$451bo2$446b3o5bo$256b2o173b2o12b3o7bo$256b2o
172b3o2bo7bo2bo2b5obo$431b4o6b2o2b5o4b3obobo$381bo23b2o31b2ob2obo2bo
10bobo$251b2o127bobo20b2o19bo2bo6bo3b4o4bo13bo$248b2ob2o124bobo6b3o9b
3o4b2o16bo3bob2o3bob2o2bobob2obo$251bo20bo87b2o12bo2bo4bobo2b2o6bo2bob 2o4bo16bo3bob3o2b3o6bo$246b2o13b2o5bobo2b2o84b5o8b2o3b2o4b2o7bo2bo2b4o
3bo15bobobo3b3o$243bo2b3ob2o4b2o3bo2b7o88b5o10bo2b2o4b2o7bo2bo2b3obo3b obobo6b2o2b3ob3o2b2o$241b2o3bob3obo2b2obobob5o90b2o5bo11bo2bo4b2o5bo3b
o6b2o3bo3bo3b4o7b2o2bo$243bo2b2o3b4o5b7obo87b2o6bo2b2o8b2o8b2ob3ob3o6b o8bobo3b2ob2ob2ob2obobo$245bo2bo4bo2bo96bo2bo7bo2b3o17b2o2b2o2bo13b2ob
3o4bobo5b3o2bo$229b4o13b2o4b2obo97b2o4bo9bo24b3o13b2obo2bobo3bo4bo$
226b2obo3b2ob2o14bo3bobo94bo3bo2bo33b3o13b2obo2bobo3bo4bo$223bo9b4obo 118b3obo25b2o2b2o2bo13b2ob3o4bobo5b3o2bo$219b2o2b2obob2o2bo3bo125b2o
13b2o8b2ob3ob3o6bo8bobo3b2ob2ob2ob2obobo$218bo2bo5bo3bo5bo119b3o3bo12b o2bo4b2o5bo3bo6b2o3bo3bo3b4o7b2o2bo$211b4obo10b2ob2o5bo119bo16bo2b2o4b
2o7bo2bo2b3obo3bobobo6b2o2b3ob3o2b2o$211bo2b4obo8bobo6b2o120bobobo8b2o 3b2o4b2o7bo2bo2b4o3bo15bobobo3b3o$222bob2o2bo8b2o121bobo11bo2bo4bobo2b
2o6bo2bob2o4bo16bo3bob3o$211b3o8bo4bo127b4obo5b4o7bobo6b3o9b3o4b2o16bo 3bob2o$222bob2o2bo8b2o115bob3obobob2o4b2o8bobo20b2o19bo2bo$211bo2b4obo 8bobo6b2o114b3o4b2o2b2o15bo23b2o$211b4obo10b2ob2o5bo116b2o6bo2bo6bobo$218bo2bo5bo3bo5bo128b2o2bobob2obo$219b2o2b2obob2o2bo3bo140bo$223bo9b4o bo$226b2obo3b2ob2o$229b4o6$8b2o25b2o25b2o25b2o25b2o25b2o25b2o25b2o25b
2o$8bobo24bobo24bobo24bobo24bobo24bobo24bobo24bobo24bobo$9b2o25b2o25b
2o25b2o25b2o25b2o25b2o25b2o25b2o2$227bo$202bobo20bo$200b2o3b2o17bo5bo 42b5obo$200bobo10bo2b2o5bo7bo40bob4o$202bo10bo2b3obo2bob5obo4bo33bo5b 6o$199bo8b2o3bo4bobobo2bo4b3obobo16b2o13bo3b2o5bobo2b2o$199b2o3bo3bob 3o9b3o9bobo13b3o15bo4bo9bo$205bo3b4o33bobob4o14bobo2bo2bo$202b2ob2o3bo 11b3o9bobo9bo3bob2o19b2o3b2o$203bob2o11bobobo2bo4b3obobo9bobobob2o22bo
$202b2obo9b4obo2bob5obo4bo12bob3o19b2obo$205bo9b3o5bo7bo20b3o18bob2o$201bo2bo7b2o2bo7bo5bo19bo2bo18bo5b2o$201bo2b2o5bo3b2o8bo24b3o19b3obob
2o$202b2o10b3o10bo44bobobob2obo4bo$210bo2bo36b3o17bo2b2obob3o6bo$211b 2o37bo2bo14b2o4b3obo3b4obo4bo$200b3o8bobobo36b3o15bo5b2o3b2o3b3obobo$203bobo5bo3bo33bob3o27bo8bobo$199bo2bobo6bo34bobobob2o$198bo3bo9bo2bo 30bo3bob2o$199bo46bobob4o$200b2o11b3o34b3o$201b3o9bo39b2o$201b3o$210b
4o$209b3o2bo$210b2o74$473bob5o$256b2o200bo12b2o2bo4b2o$256b2o198b2o3bo 6bob2o3bo$458bo2b2o5b2ob2o3bo5bobo$407b2o22b2o28b2o7bo2bo5b2obob2obo$
251b2o154b2o5bo11b2o2bo2bo20b2o3bo2b2ob2o2bo3b2o12bo$248b2ob2o151bo2b 3obobobo9b3o3bobo16b6o4b2o3bo3bo3b2o$251bo20bo127b5o4b3obo8bob2o2bo2bo
18bo4bo3bobo3bo3bo$246b2o13b2o5bobo2b2o80b2o42b3obo7b3o6b2o3bo3b2obo 17bobob2o6b2o$243bo2b3ob2o4b2o3bo2b7o83b5o41b2ob2o5bobo5b2o5bo5b2o2bo
11b2o5b2o$241b2o3bob3obo2b2obobob5o87b5o44bo2bo4b5obo5b2o3bo2bob2o3bo 3b3ob2o3bobo2bo$243bo2b2o3b4o5b7obo83b2o5bo44b2o5b3o5b3o6bobo5b2o2b2o
2b3ob2o6b3o$245bo2bo4bo2bo94b2o6bo2b2o49bo3b3obo14b3ob2o2bobo3bo2bo3bo$229b4o13b2o4b2obo92bo2bo7bo2b3o50b2o2b2o21bobo5bo2b3o$226b2obo3b2ob2o 14bo3bobo89b2o4bo9bo50b2o2b2o21bobo5bo2b3o$223bo9b4obo109bo3bo2bo57bo
3b3obo14b3ob2o2bobo3bo2bo3bo$219b2o2b2obob2o2bo3bo115b3obo47b2o5b3o5b 3o6bobo5b2o2b2o2b3ob2o6b3o$218bo2bo5bo3bo5bo119b2o44bo2bo4b5obo5b2o3bo
2bob2o3bo3b3ob2o3bobo2bo$211b4obo10b2ob2o5bo114b3o3bo41b2ob2o5bobo5b2o 5bo5b2o2bo11b2o5b2o$211bo2b4obo8bobo6b2o113bo46b3obo7b3o6b2o3bo3b2obo
17bobob2o$222bob2o2bo8b2o115bobobo41b5o4b3obo8bob2o2bo2bo18bo4bo$211b
3o8bo4bo127bobo46bo2b3obobobo9b3o3bobo16b6o$222bob2o2bo8b2o111b4obo5b 4o42b2o5bo11b2o2bo2bo20b2o$211bo2b4obo8bobo6b2o110bob3obobob2o4b2o40b
2o22b2o$211b4obo10b2ob2o5bo110b3o4b2o2b2o11bo$218bo2bo5bo3bo5bo111b2o
6bo2bo6bob2obo$219b2o2b2obob2o2bo3bo124b2o2bobobo$223bo9b4obo$226b2obo 3b2ob2o$229b4o6$2o26b2o26b2o26b2o26b2o26b2o26b2o26b2o26b2o$obo25bobo
25bobo25bobo25bobo25bobo25bobo25bobo25bobo$b2o26b2o26b2o26b2o26b2o26b 2o26b2o26b2o26b2o2$227bo$202bobo20bo$200b2o3b2o17bo5bo42b5obo$200bobo 10bo2b2o5bo7bo40bob4o$202bo10bo2b3obo2bob5obo4bo33bo5b6o$199bo8b2o3bo 4bobobo2bo4b3obobo16b2o13bo3b2o5bobo2b2o$199b2o3bo3bob3o9b3o9bobo13b3o
15bo4bo9bo$205bo3b4o33bobob4o14bobo2bo2bo$202b2ob2o3bo11b3o9bobo9bo3bo
b2o19b2o3b2o$203bob2o11bobobo2bo4b3obobo9bobobob2o22bo$202b2obo9b4obo
2bob5obo4bo12bob3o19b2obo$205bo9b3o5bo7bo20b3o18bob2o$201bo2bo7b2o2bo
7bo5bo19bo2bo18bo5b2o$201bo2b2o5bo3b2o8bo24b3o19b3obob2o$202b2o10b3o
10bo44bobobob2obo4bo$210bo2bo36b3o17bo2b2obob3o6bo$211b2o37bo2bo14b2o
4b3obo3b4obo4bo$200b3o8bobobo36b3o15bo5b2o3b2o3b3obobo$203bobo5bo3bo
33bob3o27bo8bobo$199bo2bobo6bo34bobobob2o$198bo3bo9bo2bo30bo3bob2o$199bo46bobob4o$200b2o11b3o34b3o$201b3o9bo39b2o$201b3o$210b4o$209b3o2bo
$210b2o! This should give rakes of periods 108 and 112 based on the quoted HWSS synthesis. Unfortunately, the synthesis doesn't work at period-92. Is there a 4-sided, 4-glider HWSS synthesis that does work? The minimum period for the HWSS-to-glider reaction is 80, but I don't know of any period-80 fan-out devices. -Matthias Merzenich Sokwe Moderator Posts: 1684 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Here are two closely-related 40-cell c/4 orthogonal spaceships: Code: Select all x = 40, y = 17, rule = B3/S23 3bo22bo$b2o21b2o$3bo22bo$5b4o19b4o$6bo2bo19bo2bo$7b2o21b2o$8b2o21b2o2$
6bo22bo9bo$4b2obobobobo13b2obobobob2obo$5bo5bob2obo11bo5bobo$5bo10bo 11bo$5bo3b2o17bo3b2o$4b5o18b5o$2bo22bo$2o21b2o$2bo22bo!
They were found by starting with a component in a 45-cell ship. Two related 42-cell ships can be constructed:

Code: Select all

x = 42, y = 17, rule = B3/S23
3bo23bo$b2o22b2o$3bo23bo$5b4o20b4o$6bo2bo20bo2bo$7b2o22b2o$8b2o22b2o2$6bo23bo10bo$4b2obob2obobo13b2obob2obob2obo$5bo6bob2obo11bo6bobo$5bo11b
o11bo$5bo4b2o17bo4b2o$4b6o18b6o$2bo23bo$2o22b2o$2bo23bo! There are many small ships that can be constructed by adding tagalongs to these new ships. I'm not inclined to work out all of the small examples right now. -Matthias Merzenich BobShemyakin Posts: 214 Joined: June 15th, 2014, 6:24 am ### Re: Spaceship Discussion Thread Sokwe wrote:Here are two closely-related 40-cell c/4 orthogonal spaceships: Code: Select all x = 40, y = 17, rule = B3/S23 3bo22bo$b2o21b2o$3bo22bo$5b4o19b4o$6bo2bo19bo2bo$7b2o21b2o$8b2o21b2o2$
6bo22bo9bo$4b2obobobobo13b2obobobob2obo$5bo5bob2obo11bo5bobo$5bo10bo 11bo$5bo3b2o17bo3b2o$4b5o18b5o$2bo22bo$2o21b2o$2bo22bo!
They were found by starting with a component in a 45-cell ship. Two related 42-cell ships can be constructed:

Code: Select all

x = 42, y = 17, rule = B3/S23
3bo23bo$b2o22b2o$3bo23bo$5b4o20b4o$6bo2bo20bo2bo$7b2o22b2o$8b2o22b2o2$6bo23bo10bo$4b2obob2obobo13b2obob2obob2obo$5bo6bob2obo11bo6bobo$5bo11b
o11bo$5bo4b2o17bo4b2o$4b6o18b6o$2bo23bo$2o22b2o$2bo23bo! There are many small ships that can be constructed by adding tagalongs to these new ships. I'm not inclined to work out all of the small examples right now. And such? Code: Select all x = 59, y = 78, rule = B3/S23 3$10bo23bo$8b2o22b2o$10bo23bo$12b6o18b6o$13bo4b2o17bo4b2o$13bo11bo11bo$13bo6bob2obo11bo6bobo$12b2obob2obobo13b2obob2obob2obo$14bo23bo10bo2$16b2o22b2o$15b2o22b2o$14bo2bo20bo2bo$13b4o20b4o$11bo23bo$9b2o22b2o$11b o23bo$13b4o20b4o$14bo2bo20bo2bo$15b2o22b2o$16b2o22b2o2$14bo23bo10bo$12b2obob2obobo13b2obob2obob2obo$13bo6bob2obo11bo6bobo$13bo11bo11bo$13b
o4b2o17bo4b2o$12b6o18b6o$10bo23bo$8b2o22b2o$10bo23bo10$10bo22bo$8b2o
21b2o$10bo22bo$12b5o18b5o$13bo3b2o17bo3b2o$13bo10bo11bo$13bo5bob2obo 11bo5bobo$12b2obobobobo13b2obobobob2obo$14bo22bo9bo2$16b2o21b2o$15b2o 21b2o$14bo2bo19bo2bo$13b4o19b4o$11bo22bo$9b2o21b2o$11bo22bo$13b4o19b4o$14bo2bo19bo2bo$15b2o21b2o$16b2o21b2o2$14bo22bo9bo$12b2obobobobo13b2ob
obobob2obo$13bo5bob2obo11bo5bobo$13bo10bo11bo$13bo3b2o17bo3b2o$12b5o
18b5o$10bo22bo$8b2o21b2o$10bo22bo! Bob Shemyakin Sokwe Moderator Posts: 1684 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Here are all of the new small c/4 orthogonal ships that I could find based on the 40-cell ship and old components: Code: Select all x = 412, y = 314, rule = B3/S23 36bo22bo$34b2o21b2o$36bo22bo$38b5o18b5o$39bo3b2o17bo3b2o$bo3bo3bobobo
25bo10bo11bo$39bo5bob2obo11bo5bobo$bo3bo3bo3bo24b2obobobobo13b2obobobo
b2obo$40bo22bo9bo$bobobo3bo3bo$42b2o21b2o$5bo3bo3bo27b2o21b2o$40bo2bo 19bo2bo$5bo3bobobo25b4o19b4o$37bo22bo$35b2o21b2o$37bo22bo24$36bo23bo$34b2o22b2o$36bo23bo$bo3bo3bobobo24b6o18b6o$39bo4b2o17bo4b2o$bo3bo7bo 25bo11bo11bo$39bo6bob2obo11bo6bobo$bobobo3bobobo24b2obob2obobo13b2obob 2obob2obo$40bo23bo10bo$5bo3bo$42b2o22b2o$5bo3bobobo27b2o22b2o$40bo2bo
20bo2bo$39b4o20b4o$37bo23bo$35b2o22b2o$37bo23bo16$39bobo21bobo$39bo23b
o$39bo2bo20bo2bo$41bo3bo19bo3bo$43bobo21bobo$41b2o22b2o$41b3o21b3o$bob
obo3bobobo29bo23bo$36bo23bo$bo11bo20b2o22b2o$36bo23bo$bobobo7bo24b6o
18b6o$39bo4b2o17bo4b2o$5bo7bo25bo11bo11bo$39bo6bob2obo11bo6bobo$bobobo
7bo24b2obob2obobo13b2obob2obob2obo$40bo23bo10bo2$42b2o22b2o$41b2o22b2o$40bo2bo20bo2bo$39b4o20b4o$37bo23bo$35b2o22b2o$37bo23bo18$36bo28bo17bo$34b2o27b2o18b2o$36bo17bo10bo17bo$4bobobo4bo24b5o11b2o11b5o13bo$39bo3b 2o10bo12bo3b2o11bo$4bo8bo25bo10bob2obo12bo14b3o$39bo5bob2obob2obo12bo 5bobo5bo2bo$4bobobo4bo24b2obobobobo5bo2bo10b2obobobob2obob2obo$40bo13b 3o12bo9bob2obo$4bo3bo4bo42bo27bo$42b2o12bo14b2o10b2o$4bobobo4bo27b2o
11bo15b2o11bo$40bo2bo10b2o13bo2bo$39b4o11bo13b4o$37bo28bo$35b2o27b2o$37bo28bo17$365b2o$36bo37bo37bo37bo37bo37bo37bo22bo14bo22bo39b2o8bo$34b
2o36b2o36b2o36b2o36b2o36b2o36b2o21b2o6bo6b2o21b2o40bo7b2o$36bo37bo37bo 22bo14bo22bo14bo37bo37bo18bo4bob2obo8bo18bo4bobo11bo19bobo2bo9bo$38b5o
33b5o33b5o14b2o6bo10b5o14b2o17b5o33b5o33b5o11b3o3bobo13b5o11b3o3bob2ob
o6b2o19bo4bo12b5o$bobobo3bobobo25bo3b2o32bo3b2o32bo3b2o10bo4bob2obo11b o3b2o10bo4bobo14bo3b2o32bo3b2o32bo3b2o8bo4bo18bo3b2o8bo4bo6bo8bo18bo2b 3obo11bo3b2o$39bo37bo37bo14b3o3bobo14bo14b3o3bob2obo11bo10bob3o22bo10b
ob3o22bo10bob2obo21bo10bob2obo20b5o11bobo3b2o12bo$bo11bo25bo5bobo29bo 5bobo29bo5bobo5bo4bo18bo5bobo5bo4bo6bo11bo5bob2obob2obo21bo5bob2obob2o bo21bo5bob2obob3o22bo5bob2obob3o22bo3b2o9bo19bo5bobo$38b2obobobob2obob
3o21b2obobobob2obob3o21b2obobobob2obob2obo20b2obobobob2obob2obo20b2obo
bobobo5bo4bo17b2obobobobo5bo4bo6bo10b2obobobobo28b2obobobobo29bo10bobo
bo18b2obobobob2obo$bobobo3bobobo26bo9bob2obo22bo9bob2obo22bo9bob3o23bo 9bob3o23bo13b3o3bobo15bo13b3o3bob2obo12bo37bo36bo5bob2obo24bo9bobobo$
53bo4bo32bo4bo6bo103bo4bob2obo27bo4bobo89b2obobobobo41bo$bo3bo3bo32b2o 10b3o3bobo17b2o10b3o3bob2obo14b2o36b2o36b2o13b2o6bo14b2o13b2o21b2o36b 2o34bo36b2o10bobo3b2o$41b2o12bo4bob2obo13b2o12bo4bobo16b2o36b2o36b2o
16bo19b2o16bo19b2o36b2o71b2o12bo2b3obo$bobobo3bobobo26bo2bo13b2o6bo12b o2bo13b2o19bo2bo34bo2bo34bo2bo34bo2bo34bo2bo34bo2bo36b2o31bo2bo11bo4bo$39b4o16bo17b4o16bo17b4o34b4o34b4o34b4o34b4o34b4o36b2o31b4o13bobo2bo$37bo37bo37bo37bo37bo37bo37bo37bo40bo2bo28bo23bo$35b2o36b2o36b2o36b2o
36b2o36b2o36b2o36b2o40b4o27b2o24b2o$37bo37bo37bo37bo37bo37bo37bo37bo 37bo34bo23b2o$339b2o$341bo16$36bo29bo18bo$34b2o28b2o19b2o$bobobo3bobob
o22bo18bo10bo18bo$38b6o11b2o11b6o13bo$bo11bo25bo4b2o10bo12bo4b2o11bo$39bo11bob2obo12bo15b3o$bobobo3bobobo25bo6bob2obob2obo12bo6bobo5bo2bo$38b2obob2obobo5bo2bo10b2obob2obob2obob2obo$bo3bo7bo26bo14b3o12bo10bob
2obo$57bo28bo$bobobo3bobobo28b2o13bo14b2o11b2o$41b2o12bo15b2o12bo$40bo
2bo11b2o13bo2bo$39b4o12bo13b4o$37bo29bo$35b2o28b2o$37bo29bo21$374b2o$
36bo38bo38bo38bo38bo38bo38bo23bo14bo23bo40b2o8bo$34b2o37b2o37b2o37b2o 37b2o37b2o37b2o22b2o6bo6b2o22b2o41bo7b2o$36bo38bo38bo23bo14bo23bo14bo
38bo38bo19bo4bob2obo8bo19bo4bobo11bo20bobo2bo9bo$38b6o33b6o33b6o14b2o 6bo10b6o14b2o17b6o33b6o33b6o11b3o3bobo13b6o11b3o3bob2obo6b2o20bo4bo12b 6o$obobo3bo3bo26bo4b2o32bo4b2o32bo4b2o10bo4bob2obo11bo4b2o10bo4bobo14b
o4b2o32bo4b2o32bo4b2o8bo4bo18bo4b2o8bo4bo6bo8bo19bo2b3obo11bo4b2o$39bo 38bo38bo15b3o3bobo14bo15b3o3bob2obo11bo11bob3o22bo11bob3o22bo11bob2obo 21bo11bob2obo20b6o11bobo3b2o12bo$o7bo3bo26bo6bobo29bo6bobo29bo6bobo5bo
4bo18bo6bobo5bo4bo6bo11bo6bob2obob2obo21bo6bob2obob2obo21bo6bob2obob3o
22bo6bob2obob3o22bo4b2o9bo19bo6bobo$38b2obob2obob2obob3o21b2obob2obob 2obob3o21b2obob2obob2obob2obo20b2obob2obob2obob2obo20b2obob2obobo5bo4b o17b2obob2obobo5bo4bo6bo10b2obob2obobo28b2obob2obobo29bo11bobobo18b2ob ob2obob2obo$obobo3bobobo27bo10bob2obo22bo10bob2obo22bo10bob3o23bo10bob
3o23bo14b3o3bobo15bo14b3o3bob2obo12bo38bo37bo6bob2obo24bo10bobobo$54bo 4bo33bo4bo6bo106bo4bob2obo28bo4bobo91b2obob2obobo42bo$o3bo7bo29b2o11b
3o3bobo17b2o11b3o3bob2obo14b2o37b2o37b2o14b2o6bo14b2o14b2o21b2o37b2o
35bo37b2o11bobo3b2o$41b2o13bo4bob2obo13b2o13bo4bobo16b2o37b2o37b2o17bo 19b2o17bo19b2o37b2o73b2o13bo2b3obo$obobo7bo27bo2bo14b2o6bo12bo2bo14b2o
19bo2bo35bo2bo35bo2bo35bo2bo35bo2bo35bo2bo37b2o32bo2bo12bo4bo$39b4o17b o17b4o17bo17b4o35b4o35b4o35b4o35b4o35b4o37b2o32b4o14bobo2bo$37bo38bo
38bo38bo38bo38bo38bo38bo41bo2bo29bo24bo$35b2o37b2o37b2o37b2o37b2o37b2o 37b2o37b2o41b4o28b2o25b2o$37bo38bo38bo38bo38bo38bo38bo38bo38bo35bo24b
2o$347b2o$349bo22$41bo6b2o16bo6b2o$41b2ob2o2b3obo13b2ob2o2b3obo$bobobo 3bobobo27bo4bo3bobo13bo4bo3bobo$44b2o2b3obo16b2o2b3obo$bo7bo26bo11b2o 11bo11b2o$34b2o23b2o$bobobo3bobobo22bo24bo$38b6o19b6o$bo3bo7bo25bo4b2o 18bo4b2o$39bo11bo12bo$bobobo3bobobo25bo6bob2obo12bo6bobo$38b2obob2obob
o14b2obob2obob2obo$40bo24bo10bo2$42b2o23b2o$41b2o23b2o$40bo2bo21bo2bo$39b4o21b4o$37bo24bo$35b2o23b2o$37bo24bo15$52b2obo$47b2o2bo3bo13bo$36bo 9b3obo3bo12b2o$34b2o11b2o2bo17bo$36bo16bo6bo10b5o$38b5o10bo3b2obo11bo
3b2o$bobobo3bobobo25bo3b2o8bobobo14bo$39bo10bo2bo18bo5bobo8bo$bo7bo3bo 25bo5bob2obobo2b2o14b2obobobob2obobo2b2o$38b2obobobobo8bo16bo9bo2bo$bo bobo3bobobo26bo45bobobo$75b2o9bo3b2obo$bo3bo7bo28b2o30b2o10bo6bo$41b2o
30bo2bo3b2o2bo$bobobo3bobobo26bo2bo28b4o3b3obo3bo$39b4o27bo9b2o2bo3bo$37bo30b2o15b2obo$35b2o33bo$37bo! Did I miss anything? Edit: Here are three new pairs of small c/4 orthogonal ships: Code: Select all x = 91, y = 81, rule = B3/S23 35b2ob2o33b2ob2o$34bobo35bobo$34b2o3b2ob3o27b2o3b2ob3o$36b2o3bo3b2o27b
2o3bo3b2o$3bobobo4bo39bo$32b3o7bo4bob2obo17b3o7bo4bobo$3bo8bo19b3o9b2o bobo20b3o9b2obob2obo$21bo2b2o33bo2b2o26bo$3bobobo4bo8b2o2bo33b2o2bo$
21bo3b3o2b3o26bo3b3o2b3o$3bo3bo4bo12b2obo2b2o30b2obo2b2o$26bo37bo$3bob obo4bo14b2o36b2o$28bo3bo33bo3bo$29bo2bo34bo2bo$30bobo35bobo14$90bo$35b
2ob2o10bobo20b2ob2o10bobo$34bobo9b3obobo19bobo9b3obobo$34b2o3b2ob4obo
4bo19b2o3b2ob4obo$36b2o3bo5bo26b2o3bo5bo$obobo3bobobo33bo37bo$32b3o7bo 27b3o7bo$o11bo19b3o35b3o$21bo2b2o33bo2b2o$obobo3bobobo8b2o2bo33b2o2bo$21bo3b3o2b3o26bo3b3o2b3o$o3bo3bo16b2obo2b2o30b2obo2b2o$26bo37bo$obobo
3bobobo14b2o36b2o$28bo3bo33bo3bo$29bo2bo34bo2bo$30bobo35bobo12$36bobo
21bobo$28b2o5b3obo12b2o5b3obo$27b3o4b2o15b3o4b2o$28b2obo3bo16b2obo3bo$
31bo2bo20bo2bo$31bo3bo19bo3bo$32b3o21b3o$obobo3bobobo13bo7b2o14bo7b2o$
24b2o22b2o$o7bo3bo13bo23bo$28b6o18b6o$obobo3bobobo16bo4b2o17bo4b2o$29b
o11bo11bo$o3bo3bo3bo16bo6bob2obo11bo6bobo$28b2obob2obobo13b2obob2obob
2obo$obobo3bobobo17bo23bo10bo2$32b2o22b2o$31b2o22b2o$30bo2bo20bo2bo$29b4o20b4o$27bo23bo$25b2o22b2o$27bo23bo!
I have updated the attached small ships collection to include these new ships.

Here is the updated small ships collection:
ships-c4o-small.rle
Edit 2: Here are some previously-known tagalong attachments that I forgot to include in the small ships collection:

Code: Select all

x = 66, y = 53, rule = B3/S23
23bobo29bo$23bo31b2o2b2o$b2o20bo2bo28bo2bo$3o22bo3bo7b2o19bo$bo15b2o8b
obo6b3o$2b2ob2o10b3obo3b2o10bo20b3o$7bo5bob3o7b3o10b2ob2o16bo$2b2o7bob o6bobo4bo15bo5bo6bobo4bo$3bo6bobo10bo14b2o7bobob3o7b3o$4bo2bo14b3o14bo 6bobo4b3obo3b2o$5bobobob2o27bo2bo9b2o8bobo$4b2o3bo12bo18bobobob2o12bo 3bo$6bo12bo2bo17b2o3bo13bo2bo$19b2o2b2o17bo16bo$19bo39bobo18$2bo22bo$
2o21b2o$2bo22bo$4b5o18b5o$5bo3b2o17bo3b2o$5bo10bo11bo$5bo5bob2obo11bo 5bobo$4b2obobobobo13b2obobobob2obo$6bo22bo9bo3$3b3o20b3o$6bobo20bobo$
2bo2bobo5b2obo8bo2bobo5b2obo$bo3bo6bob3o7bo3bo6bob3o$2bo9b2o11bo9b2o$3b2o6bobo12b2o6bobo$4b3ob3ob3o12b3ob3ob3o$4b3obo4bo13b3obo4bo$9b3obo
18b3obo$11b2o21b2o! And here are two new tagalongs based on a well-known block-pulling reaction: Code: Select all x = 45, y = 27, rule = B3/S23 2bo22bo$2o21b2o$2bo22bo$4b5o18b5o$5bo3b2o17bo3b2o$5bo10bo11bo10bo$5bo 5bob2obo11bo5bob2obo$4b2obobobobo13b2obobobobo$6bo22bo2$8b2o21b2o$7b2o 21b2o$6bo2bo19bo2bo$5b4o19b4o$3bo22bo$b2o7b2o12b2o7b2o$3bo5bo16bo5bo$10b2o21b2o$40b2o$12bo22bo5bo2bo$13b2o18bo2b3o5bo$10b2ob2o18bo7bo2bo$
11b2ob2o17bobo4b2o$11bobo$9bo$9b2o$9bo!
-Matthias Merzenich

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

Here is a pair of new 66-cell c/4 orthogonal ships:

Code: Select all

x = 72, y = 15, rule = B3/S23
8bobo36bobo$8bo38bo$8bobo36bobo21bo$12b2obo4bo30b2obo4bo9bobo$12bobo2b
3o2bo28bobo2b3o2bo6bo2bo$13b2o8b2o27b2o8b2o3bo$17bo2bo5bo29bo2bo5bo3b
2o$9bo3bo6bobo3bo3b2o16bo3bo6bobo3bo$9b2obo2bo3b2o2b2o3bo19b2obo2bo3b
2o2b2o$5bobo2bo2bobo2b3o8bo2bo11bobo2bo2bobo2b3o$2bo2bo13b2o9bobo8bo2b
o13b2o$2o3b2o25bo6b2o3b2o$2bo2b2o34bo2b2o$4bo2bo35bo2bo$5b2o37b2o!
And here are 5 more known tagalong connections that aren't included in the latest small ships collection:

Code: Select all

x = 72, y = 83, rule = B3/S23
28bobo$27bo2bo$26bo3bo9bo$25b2o11b2o$2bo19bobob2o12bo$2o19bo20b6o$2bo
18bo2b2obo15bo4b2o$4b5o11bobo4b2obo12bo$5bo3b2o9bo9bo12bo6bobo$5bo10bo bobo21b2obob2obob2obo$5bo5bob2obo27bo10bobobo$4b2obobobobo45bo9bo$6bo
39b2o11bobo4b2obo$45b2o13bo2b2obo$8b2o34bo2bo12bo$7b2o34b4o14bobob2o$
6bo2bo31bo22b2o$5b4o30b2o24bo3bo$3bo37bo24bo2bo$b2o64bobo$3bo11$b2o$3o
2bo$b4o5bo$9bobo$4bo3bo$4b3o$3bo2bob3o$3b3o2b3o3$2bo$2bo2bo$2bo3bo$5ob
o4b2obo$2o8bo2b2o$o9bo$bo9bo$2b2o3b2ob2o$3b2ob2o3bo$8b2o$10b2o11$29bob
o$28bo2bo$27bo3bo10bo$26b2o12b2o$2bo20bobob2o13bo$2o20bo21b6o$2bo19bo
2b2obo16bo4b2o$4b6o11bobo4b2obo13bo$5bo4b2o9bo9bo13bo6bobo$5bo11bobobo 22b2obob2obob2obo$5bo6bob2obo28bo10bobobo$4b2obob2obobo46bo9bo$6bo41b
2o11bobo4b2obo$47b2o13bo2b2obo$8b2o36bo2bo12bo$7b2o36b4o14bobob2o$6bo
2bo33bo22b2o$5b4o32b2o24bo3bo$3bo39bo24bo2bo$b2o66bobo$3bo!
-Matthias Merzenich

Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

I searched for 3c/10 spaceships for up to w8 in all symmetries with zfind-s, with no success. Here is a selection of partials which contains a few promising ones:

Code: Select all

x = 371, y = 37, rule = B3/S23
3bo3bo3bo14bo25bo19bo5bo15bo5bo37bo5bo14bo9bo11bo9bo9bo9bo10bo9bo32bo
3b2o3bo11bo10bo13bo6bo15bo6bo20b2o$2b2o3bo3b2o12bobo24bo19bo5bo15bo5bo 37bo5bo13bo2bo5bo2bo9bo2bo5bo2bo7bobo7bobo9bo9bo31b2o3b2o3b2o9bo2bo6bo 2bo11b2o6b2o13b2o6b2o17bo4bo$2bo4bo4bo12bobo23bobo16b2obo3bob2o11b2obo
3bob2o33b2obo3bob2o11bo2bo5bo2bo9bo2bo5bo2bo6b2obo7bob2o7bobo7bobo29bo
2b2ob2ob2o2bo8bo2bo6bo2bo10bo10bo11bo10bo15b2o4b2o$6b3o16bobo24bo105bo 3bo3bo3bo9bo3bo3bo3bo9bobo3bobo52b2o10b2o8bo3bo4bo3bo11b3o4b3o13b3o4b 3o16b2o4b2o$5b5o14bo3bo23bo17bo9bo11bo9bo33bo9bo14b3ob3o15b3ob3o11b2o
7b2o8bo2bo7bo2bo28b2o10b2o11b3o2b3o14bob2o2b2obo13bob2o2b2obo14bo10bo$b2ob2obob2ob2o11bobo21b2o3b2o16bo5bo15bo5bo37bo5bo12bo2bo2bobo2bo2bo7b o5bobo5bo8bo7bo10b3o7b3o31bo8bo9bo5bo2bo5bo10bobo4bobo13bobo4bobo14b3o 6b3o$2b2o7b2o9b2obobob2o17b2o5b2o11b3o2bo3bo2b3o7b3o2bo3bo2b3o29b3o2bo
3bo2b3o8b7ob7o7bo3bobobobo3bo7b2o7b2o12b2o3b2o34b2o6b2o10b2o3bo2bo3b2o
10bobo6bobo11bobo6bobo13bo10bo$2bo3bobo3bo10bo2bo2bo19bobobobo12b5obob ob5o7b5obobob5o29b5obobob5o9b3o7b3o8bo3bo5bo3bo10b2ob2o12b3o7b3o31b2o 6b2o14bo4bo14bo2bo4bo2bo11bo2bo4bo2bo14b10o$2bo3bobo3bo13bo22bo5bo13b
2o3bobo3b2o9b2o3bobo3b2o31b2o3bobo3b2o11b2ob2ob2ob2o10bob2obobob2obo
28bo3bo3bo3bo30bo2bob2obo2bo9b4o6b4o11b3o4b3o13b3o4b3o15b3o4b3o$2bo3b 3o3bo10bo5bo41b2obobob2o13b2obobob2o35b2obobob2o12b2ob3ob3ob2o8bo4bo3b o4bo9bo5bo13bo7bo32bob3o2b3obo9b2o10b2o13bo4bo17bo4bo20bo2bo$20b2o2b2o
b2o2b2o13b3o2bobo2b3o15bobo19bobo41bobo14bo13bo7bo3b2o3b2o3bo7b2ob2ob
2ob2o13bo3bo34bo2bo4bo2bo13b6o15b3o4b3o13b3o4b3o$b2obo5bob2o6b2o9b2o 12b2o4bobo4b2o14bobo19bobo41bobo18bo5bo10bobo11bobo5bo4bobo4bo7bo3bobo bobo3bo31bo6bo17b2o16bo2bo4bo2bo11bo2bo4bo2bo15bo2b2o2bo$b3obo3bob3o7b
o9bo13b2o3bo3bo3b2o10bo3bobo3bo11bo3bobo3bo33bo3bobo3bo10bo4b2ob2o4bo
7b2o11b2o6b2obo5bob2o7b2o2b2o3b2o2b2o51b2ob6ob2o11bob2o4b2obo11b4o4b4o
18b2o$2ob4ob4ob2o7bo7bo17bo7bo13b2o2bobo2b2o11b2o2bobo2b2o33b2o2bobo2b 2o9b2o2bob2ob2obo2b2o5b3o3bo3bo3b3o4b3ob2o3b2ob3o6b2obo7bob2o30b3o4b3o 10b3ob2o2b2ob3o12bo6bo13b2obo4bob2o13b2o2bo2bo2b2o$2bobobobobobo8b2o7b
2o16b2o5b2o16b2ob2o14b3o5b3o33b3o5b3o33bo2b3ob3o2bo9b2o5b2o9b2obo7bob
2o32b2o2b2o12bobob2o2b2obobo10b2o8b2o12bo8bo13bo4bo2bo4bo$6bobo60bo2bo bobobo2bo12bo5bo34b2obo5bob2o36b2ob2o32b2o2b2ob2o2b2o28b2o2bo6bo2b2o6b 2o2b3o2b3o2b2o31bobo8bobo10bobo10bobo$49b2o3b2o12bo2bo2bobo2bo2bo14bo
37b2o9b2o55bo5bo11bo4bobo4bo28b2ob2o6b2ob2o9bobo4bobo34b2o10b2o10bobob
2o4b2obobo$49bobobobo12bo5bobo5bo11b3ob3o38bo3bo55b3o2bo3bo2b3o6bo5bob o5bo30b4o2b4o36b3o2b3o13bo10bo16b2o2b2o$48bo2bobo2bo14bo2bobo2bo12b2o
3bo3b2o33b3o5b3o72bo2b2obo3bob2o2bo73bobo6bobo12b2o6b2o$47bobob3obobo 11bob2obobob2obo10b2ob2ob2ob2o32b3o7b3o160bobobo4bobobo10bo2bob2obo2bo 15b3o2b3o$52bo15bo5bobo5bo12bo3bo35bobo7bobo160bo5b2o5bo13bo4bo14b16o$69bo4bobo4bo52b2ob3o3b3ob2o163b6o18b4o$68b2o4bobo4b2o10bo7bo35b2o5b2o
166b6o15b3o4b3o$71bobo3bobo11b2ob2o3b2ob2o34b2o3b2o165bo8bo12bo10bo$
69bobob2ob2obobo9b2o2bo3bo2b2o31b2o3bobo3b2o183bo2bo6bo2bo$69b2obobobo bob2o9bo3bo3bo3bo31b4o5b4o182bo14bo$69bobo7bobo10b3o5b3o31bo5bobo5bo
184b2o6b2o$71b2obobob2o13bo7bo32bo2bo2bobo2bo2bo$69b2o4bo4b2o55bobo3bo
bo187b3o4b3o$90bo2bob5obo2bo28bo15bo180b3ob2o4b2ob3o$90bobo2bobobo2bob
o28bob2ob3ob3ob2obo180bobobo2b2o2bobobo$96bobo235b3o2b3o$91b5o3b5o228b
3o6b3o$332bob8obo$330bo2bo8bo2bo$330bo2bo8bo2bo$333b3o4b3o!
I also searched for 3c/13 ships up to w7 in all symmetries with qfind without success (I didn't outputs partials). I think zfind-s would have been faster(?), so in future I'll use zfind.

AforAmpere
Posts: 1158
Joined: July 1st, 2016, 3:58 pm

Goldtiger997 wrote:I searched for 3c/10 spaceships for up to w8 in all symmetries with zfind-s, with no success.
Hey, I posted the w8 3c/10 search above already.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

AforAmpere wrote:Hey, I posted the w8 3c/10 search above already.
Oh sorry! I only checked through the spaceship search status page, and didn't check this thread .

On the bright side, at least the result was verified.

Edit: a very minor result, no 5c/11 ships up to w9.
Last edited by Goldtiger997 on November 9th, 2017, 8:05 am, edited 1 time in total.

AforAmpere
Posts: 1158
Joined: July 1st, 2016, 3:58 pm

C/9 is negative at w8 for a, v, and u symmetries. I have not done w8 g yet, but w8 v took over one and a half months, so it will be a while. I am running 3c/10 w9 a and v right now, which will take a while.

Good partial from C/9:

Code: Select all

x = 15, y = 46, rule = B3/S23
3bo7bo$2bobo5bobo$2bobo5bobo$3bo7bo2$3bo7bo$2bobo5bobo$bo2bo5bo2bo$2bo bo5bobo$3b2o5b2o$3b3o3b3o$2b5ob5o$3b2obobob2o$4b2o3b2o$3b2o5b2o$2bo9bo
$2bo9bo$b2o9b2o2$obo2bo3bo2bobo$bo11bo$b2o2b2ob2o2b2o2$4bobobobo$4b2o 3b2o$3bo7bo$2bobo5bobo$b2obo5bob2o$o4b5o4bo$o6bo6bo$4b3ob3o$b2o2bo3bo
2b2o$2bo2b2ob2o2bo$2bo4bo4bo$3bo7bo2$bobo2bobo2bobo$bob3o3b3obo$3bobob
obobo2$3bo2bobo2bo$2b2o3bo3b2o$b2o2b2ob2o2b2o$5b2ob2o$bo5bo5bo$bo11bo!
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

AforAmpere
Posts: 1158
Joined: July 1st, 2016, 3:58 pm

3c/10 w9 a and v are negative. I am searching w9 u now, probably be finished in a few days.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

Sokwe
Moderator
Posts: 1684
Joined: July 9th, 2009, 2:44 pm

@AforAmpere

Thanks for the new results. I had been neglecting the status table for a while, but I have now updated it.

Also, notice that any asymmetric ships will show up in a gutter-symmetric search of the same width, so it usually isn't necessary to run the asymmetric search. Of course, if the gutter-symmetric search finds a ship that is not composed of two asymmetric ships, then you will need to run the asymmetric search.
-Matthias Merzenich

A for awesome
Posts: 2166
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

New second-smallest 1c/2, 65 cells:

Code: Select all

x = 18, y = 24, rule = B3/S23
obo$o2bo$3b2o$bo3bo$2bob3o$8b2o$2b5o3bo$7bo3bo$4b2o5bo$2b4o3b3o$2bo$8b 6o$13bo$10bo3bo$10bob4o$16bo$14bo2bo$14bo2bo$12bo4bo$13b4o$15bo$13b2o$
10bo2bo$10bobo! Found with lifelocallookahead. EDIT: (EDIT 2: Never mind, it's known, from here.) A c/6: Code: Select all x = 19, y = 78, rule = B3/S23 2$10bo3bo$9bobobobo$8bo2bo2b2o2$9bo2bo$10bobo$12bo$10b2o$10bo$9bo2$10b obo$11bo$11bob2o$12b2o$12bo$13bobo$7b2o$8bobobobo$8bo$8bo3bo$8b4o$9b2o
$8b3o4$4b11o$3bo11bo$4bo9bo$5b2o5b2o2$6b2o3b2o$5bo2b3o2bo$4bo2bo3bo2bo
$4bobo5bobo$4b3o5b3o$4b3o5b3o$3b5o3b5o$3b2o2bo3bo2b2o$3b3obo3bob3o$5b 2o5b2o$2b4o7b4o$4bo9bo$4bo9bo$4bo9bo$3b3o7b3o$2bo13bo$2bob2o7b2obo2$bo 2bo9bo2bo$bo2bo9bo2bo$2bo2bo7bo2bo$2bobo9bobo$3b3o7b3o2$7b2ob2o$6bobob obo$5b2obobob2o$5b2obobob2o$4bobobobobobo$5bobo3bobo2$6bo5bo$7bo3bo$3b
o3bo3bo3bo$3b2o9b2o$bo2bo9bo2bo$2b3o9b3o$bobo11bobo$2b2o11b2o! More may be forthcoming. praosylen#5847 (Discord) x₁=ηx V*_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ Sokwe Moderator Posts: 1684 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread A for awesome wrote:New second-smallest 1c/2, 65 cells... Found with lifelocallookahead. I've not yet looked into Andrew's program. The c/4 ship that he found was interesting, so there's definitely potential. The program might just need experts to coax out some new results. A for awesome wrote:EDIT: A c/6 As you noted, this was already known, but I wonder how you happened to find it. Did you use essentially the same steps as in the original discovery, or did you do something else? -Matthias Merzenich A for awesome Posts: 2166 Joined: September 13th, 2014, 5:36 pm Location: Pembina University, Home of the Gliders Contact: ### Re: Spaceship Discussion Thread Sokwe wrote:As you noted, this was already known, but I wonder how you happened to find it. Did you use essentially the same steps as in the original discovery, or did you do something else? I'm just trying a width-10 odd-symmetric extension of the asymmetric front end using qfind. The search is still running, and I know it has at least one more ship to find, hopefully more than that. praosylen#5847 (Discord) x₁=ηx V*_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ wildmyron Posts: 1489 Joined: August 9th, 2013, 12:45 am Location: Western Australia ### Re: Spaceship Discussion Thread Goldtiger997 wrote:Edit: a very minor result, no 5c/11 ships up to w9. This result was also reported earlier by A for Awesome. I have completed the width 10 searches for this speed with zfind-s. There were no results. The gutter search took about 15 hours and the odd and even symmetric searches took just under a day each. Here are some partials: odd symmetric: Code: Select all x = 99, y = 23, rule = B3/S23 6bo5bo33bo5bo33bo5bo$5bobo3bobo31bobo3bobo31bobo3bobo$4bo3bobo3bo29bo 3bobo3bo29bo3bobo3bo$4bo9bo29bo9bo29bo9bo$4bobobobobobo29bobobobobobo 29bobobobobobo$8bobo37bobo37bobo$5bo7bo31bo7bo31bo7bo$5bob2ob2obo32b2o
3b2o33b2o3b2o$4b2o7b2o28bo3bo3bo3bo27bo3bo3bo3bo$2b2o3b2ob2o3b2o24b3o
11b3o23b3o11b3o$2b2obobobobobob2o25bobo9bobo25bobo9bobo$5b2o5b2o29b4o
5b4o27b4o5b4o$bob2o9b2obo25bo2bo5bo2bo27bo2bo5bo2bo$4bobo2bo2bobo31bo
5bo31bo2bo3bo2bo$o8bo8bo24b2o3b3o3b2o26b2ob2o5b2ob2o$o5bo5bo5bo22b3o4b
3o4b3o$b2o13b2o23b2o2bo2bobo2bo2b2o$bo2b2obo3bob2o2bo25bo2bo2bo2bo2bo
24b2o3b2o5b2o3b2o$3o2b2o2bo2b2o2b3o24b3o2bobo2b3o25b2o2b2o5b2o2b2o$4bo
3bobo3bo26b2obo2b2ob2o2bob2o22b3o3bo5bo3b3o$4bobob3obobo26bobo11bobo 23b2o2b2o5b2o2b2o$41bobo3b5o3bobo22b2o2b2o2b3o2b2o2b2o$80bobobo3b3o3bo bobo! odd symmetric with gutter: Code: Select all x = 60, y = 26, rule = B3/S23 4bo9bo31bo5bo$3bobo7bobo29bobo3bobo$2b2ob2o5b2ob2o27bo3bobo3bo$3bo2bo
5bo2bo28bo9bo$4b3o5b3o29bobobobobobo$4b2o7b2o33bobo$45bo7bo$2b2o11b2o
29b2o3b2o$6bobobobo30bo3bo3bo3bo$2b2o3bo3bo3b2o24b3o11b3o$2b2ob3o3b3ob 2o25bobo9bobo$bo2bobo5bobo2bo25b4o5b4o$b2obob2o3b2obob2o25bo2bo5bo2bo$
b2o4b2ob2o4b2o26bo2bo3bo2bo$3b3o7b3o26b2ob2o5b2ob2o$2bobob3ob3obobo$2b o4bo3bo4bo$2obo11bob2o$5o9b5o21b2o15b2o$o3bo2bo3bo2bo3bo21bob4o7b4obo$bobobob2ob2obobobo22bobob2o7b2obobo$b2o3bobobobo3b2o22bobo3bo5bo3bobo$39b2o4b2o5b2o4b2o$40b4o11b4o$41bo3b3o3b3o3bo$41b3o3bo3bo3b3o!
even symmetric:

Code: Select all

x = 139, y = 25, rule = B3/S23
4bo8bo30bo8bo29bo10bo27bo12bo$3bobo6bobo28bobo6bobo27bobo8bobo25bobo 10bobo$2b2ob2o4b2ob2o26bo3bo4bo3bo25b2ob2o6b2ob2o23b2ob2o8b2ob2o$3bobo 6bobo27bo3bo4bo3bo29bo6bo31bo8bo$3b2o8b2o26b4obo4bob4o29b2o2b2o33b2o4b
2o$2obo10bob2o22b2ob2o8b2ob2o24bo2bobo2bobo2bo29b2o4b2o$2obo10bob2o22b
o16bo23bobo2b6o2bobo24bo3b2o4b2o3bo$2ob2o8b2ob2o22bo2bo4b2o4bo2bo23bo 2b2obo2bob2o2bo24bo14bo$3bo10bo31bo4bo30b2o10b2o25bo2bo8bo2bo$5b8o27b 3o3bo4bo3b3o26bo8bo29b3o6b3o$5bo6bo27bo2bo2bo4bo2bo2bo24b2ob2o4b2ob2o
29bo6bo$4bobo4bobo27b3o4b2o4b3o24bo3b2o4b2o3bo29bo4bo$4b2obo2bob2o28bo
12bo26bo12bo28b2o6b2o$2obo3b4o3bob2o25bo10bo31bo4bo29b2o3bo4bo3b2o$2ob
2o2b4o2b2ob2o22b5o8b5o23b3ob2o4b2ob3o23bob2o3b4o3b2obo$4b2o6b2o25bobo 2bo8bo2bobo22bo3b2o4b2o3bo23bo3bo2b4o2bo3bo$2b2o2bo4bo2b2o29bo6bo28bob
ob2o4b2obobo24b4o8b4o$2obob2o4b2obob2o22b2ob2o8b2ob2o22b2ob2o8b2ob2o 22b2ob2o8b2ob2o$2obob3o2b3obob2o23bo14bo25bo3bob2obo3bo24bobo12bobo$b 2obo3b2o3bob2o22bobob3o6b3obobo24bo4b2o4bo24bo2bobo8bobo2bo$39bobobo2b
6o2bobobo21b4o2b2o2b2o2b4o27b2o4b2o$41b3o3b4o3b3o22b2o2bo2b2o2b2o2bo2b 2o22b2o3bo4bo3b2o$40bob2o3b4o3b2obo66bobo4bobo$85bo6bo27b3o2bo6bo2b3o$
80bobo2bobo2bobo2bobo21bobo3b2o4b2o3bobo!
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.