17 in 17: Efficient 17-bit synthesis project

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » June 27th, 2019, 3:43 am

Sokwe wrote:That's not quite #239, but with a little modification it can be made to work. The cis-hook with tail can be added with the hook with tail already in place. Further, the final step can be done with just 2 gliders. The final cost is 11:
And that naturally suggests reductions to related SLs of different sizes:

Code: Select all

x = 64, y = 86, rule = B3/S23
13bo$3bobo6bo$4b2o6b3o$4bo$54bo$54bobo$13b2o39b2o$12b2o44b2o$3o11bo43b
o3b2o$2bo49bo6bo2bo$bo50b2o6bobo$51bobo7bo$7bo49bo$7b3o47b3o$10bo5b2o
42bo$9b2o4b2o42b2o$17bo7$13bo$3bobo6bo$4b2o6b3o$4bo$54bo$54bobo$13b2o
39b2o$12b2o44b2o$3o11bo43bo3b2o$2bo49bo6bo2bo$bo50b2o6bobo$51bobo7bo$
7bo49bo$7b3o47b3o$10bo5b2o42bo$9bo5b2o42bo$9b2o6bo41b2o7$13bo$3bobo6bo
$4b2o6b3o$4bo$54bo$54bobo$13b2o39b2o$12b2o44b2o$3o11bo43bo3b2o$2bo49bo
6bo2bo$bo50b2o6bobo$51bobo7bo$7bo49bo$7b3o47b3o$10bo5b2o42bo$7b3o5b2o
40b3o$7bo9bo39bo7$13bo$3bobo6bo$4b2o6b3o$4bo$54bo$54bobo$13b2o39b2o$
12b2o44b2o$3o11bo43bo3b2o$2bo49bo6bo2bo$bo50b2o6bobo$51bobo7bo$7bo49bo
$7b3o47b3o$10bo5b2o42bo$7b2obo4b2o40b2obo$7bobo7bo39bobo!
The 16-bitter thus goes down to 9 gliders. It does not reduce any further 17-bitters, though.
Princess of Science, Parcly Taxel

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » June 27th, 2019, 12:53 pm

Good catch, Sokwe.

#61 in 15G:

Code: Select all

x = 128, y = 48, rule = B3/S23
124bo$123bo$123b3o2$119b2o$119bobo$120bo4$bo$2b2o42bo$b2o44bo17bo55bo$
45b3o15bobo55bo4bo$bo62b2o55bo3bo$b2o39bo5b3o22bo51b3o$obo39bo7bo21bo$
42bo6bo6bobo13b3o36b2o$57b2o47bo3bo2bo6b3o$57bo48b3o2b3o$109b2o$60b3o
45bo2bo$62bo46b2o$39b3o19bo$41bo27b2o$40bo28bobo$44b3o22bo$44bo$45bo2$
112bo4b2o$111bobo2b2o$111bobo4bo$112bo12$42b2o$41bobo$43bo!
Tanner Jacobi

User avatar
BlinkerSpawn
Posts: 1907
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: 17 in 17: Efficient 17-bit synthesis project

Post by BlinkerSpawn » June 27th, 2019, 4:04 pm

Kazyan wrote:Good catch, Sokwe.

#61 in 15G:

Code: Select all

rle
Reducible to 14, two (EDIT: three) different ways:

Code: Select all

x = 253, y = 70, rule = B3/S23
251bo$250bo$250b3o2$150bo$148b2o$149b2o12$150bo$149bo$149b3o6$7bo$8bo
17bo$6b3o15bobo$25b2o$3bo5b3o22bo175bo$3bo7bo21bo177bo$3bo6bo6bobo13b
3o173b3o$18b2o90bo$18bo92bo94bo5b3o$109b3o94bo7bo$21b3o182bo6bo6bobo
10bo$23bo82bo5b3o106b2o9bo$3o19bo83bo7bo106bo10b3o$2bo27b2o74bo6bo6bob
o10bo$bo28bobo88b2o9bo91b3o$5b3o22bo90bo10b3o91bo$5bo197b3o19bo$6bo
117b3o78bo$126bo77bo$103b3o19bo82b3o24b3o$105bo102bo26bo$104bo104bo26b
o$108b3o24b3o$108bo26bo$109bo26bo3$250bo$249b2o$249bobo5$3b2o$2bobo46b
2o$4bo45b2o$52bo$206b2o$205bobo$207bo$106b2o$105bobo$107bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Sokwe » June 27th, 2019, 5:49 pm

BlinkerSpawn wrote:
Kazyan wrote:#61 in 15G
Reducible to 14
Down to 13 by synthesising the block and blinker on the left in 3:

Code: Select all

x = 122, y = 58, rule = B3/S23
3bo$bobo$2b2o5$31bo$32b2o$31b2o$16bo$17b2o34bobo$16b2o7bo27b2o$23bobo
28bo$24b2o5$115b2o$19b2o89bo3bo2bo$20b2o88b3o2b3o$19bo93b2o$112bo2bo$
113b2o5$28bo$28b2o$27bobo$116bo$50b2o63bobo$30b2o17b2o64bobo$30bobo18b
o64bo$30bo$119b2o$119bobo$3o116bo$2bo$bo13$9b2o$10b2o58b3o$9bo60bo$71b
o!
-Matthias Merzenich

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Sokwe » June 28th, 2019, 5:51 pm

#92, #93, and #94 in 14 each:

Code: Select all

x = 238, y = 164, rule = B3/S23
bo$2bo$3o7$110bo$109bo$109b3o2$107bo$106bobo$106bobo$107bo13$178bo$
104bo59bo12bo$103bobo57bobo11b3o$37b2o64bobo57bobo$36bobo22b2o41bob2o
56bob2o$38bo22bobo38bobobobo53bobobobo$61bo39bobo3b2o52bobo3b2o4bobo$
102bo59bo10b2o$174bo3$51bo123b3o$45bobo2bo124bo$46b2o2b3o109bo13bo$46b
o115b2o$33bo127bobo$33b2o$32bobo138bo$173b2o$172bobo10$23b2o$22bobo$
24bo10$4b2o$5b2o$4bo16$177bo$175b2o$164bo11b2o$163bobo$163bobo$164bob
2o$162bobobobo$161bobo3b2o$162bo3$181bo$168b2o9b2o$169b2o9b2o$168bo4b
2o$173bobo$163b2o8bo$162bobo$164bo43$235b2o$164bo59bo4bobo3bobo$163bob
o57bobo4b2o3bo$163bobo57bobo4bo$164bob2o56bob2o$162bobobobo53bobobobo$
161bobo3b2o52bobo3b2o$162bo59bo$173bo$173bobo56bo$173b2o52bo3bobo$227b
2o2bobo$176b2o48bobo3bo$176bobo$176bo!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1797
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » June 28th, 2019, 6:36 pm

Sokwe wrote:#92, #93, and #94 in 14 each:

Code: Select all

RLE
Ship-to-carrier transition in one less:

Code: Select all

x = 12, y = 11, rule = B3/S23
9bo$7b2o$b2o5b2o$bobo$2b2o$10bo$5b2o2b2o$6b2obobo$bo3bo$b2o$obo!
EDIT: #104 in fourteen gliders:

Code: Select all

x = 107, y = 28, rule = B3/S23
64bo$64bobo$64b2o9$7bo$8bo37bo$6b3o36bo$13bobo29b3o13bo36bo$13b2o45bob
o29b2o3bobo$14bo45bo2bo29bo3bo2bo$46b3o9b2obobo29bob2obobo$bo4bo39bo
10bobob2o25bo5bobob2o$b2ob2o41bo10bo30b2o4bo$obo2b2o81b2o12bo$16b2o84b
obo$16bobo73b2o3b3o2b2o$16bo74bobo3bo$93bo4bo5b3o$5bo98bo$5b2o98bo$4bo
bo!
EDIT 2: #269 in twelve (and #207 by the same method):

Code: Select all

x = 139, y = 54, rule = B3/S23
obo$b2o$bo3$12bo$11bo$11b3o$44bob2o26bob2o57bob2o$44b2obo26b2obo57b2ob
o$8b2o32b2o28b2o59b2o$8bobo30bobo27bobo58bobo$4b2o2bo32b2o28b2o59b2o$
5b2o$4bo$45b2o$45b2o2$47b3o$47bo$48bo$68bobo59b3o$69b2o$69bo2$69b2o$
70b2o46bo$69bo46bobo5b3o$117b2o5bo$125bo$119bo$119b2o$118bobo7$118b3o$
120bo$119bo10$90b2o$89bobo$91bo!
I Like My Heisenburps! (and others)

User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » June 29th, 2019, 12:57 am

Can the following sparks or subpatterns be synthed at the stated times so as to knock out two of the remaining xs17s?

Code: Select all

x = 62, y = 20, rule = LifeHistory
18.A5.A$19.2A.A.A36.A$18.2A3.2A26.2A8.A$4.3D43.A2.A7.A$3.D3.D43.2A3.
2A$3.D3.D6.D42.2A$.2D5.2D3.D.D31.2D8.A$D4.D4.D.D2.D30.4D$D3.D.D3.D2.D
.D8.A24.2D$D4.D4.D3.D9.2A24.2D$.2D5.2D9.A3.A.A24.2D$3.D3.D11.2A29.D$
3.D3.D10.A.A$4.3D2$10.3D.3D27.D.3D$12.D3.D27.D.D$10.3D.3D27.D.3D$10.D
5.D27.D3.D$10.3D.3D27.D.3D!
Edit: #55 in 13 from its only soup:

Code: Select all

x = 124, y = 70, rule = B3/S23
108bo$107bo$107b3o16$90bo$79bo9bo$80b2o7b3o$79b2o3bobo$85b2o$85bo
5$41bobo$42b2o40bo$42bo3b3o34bobo23bo$46bo37b2o22bo$47bo60b3o4$2bo
103bobo$obo103b2o$b2o44bo39bo19bo$47bo39bo$4b2o41bo39bo$4bobo$4bo
2$47bo39bo$8b3o36bo39bo$8bo38bo39bo$9bo10$106b2o$106bobo$106bo8$
121b3o$121bo$122bo!
This also knocks out #56, so 168 stills remain. There are already two "rivers" flowing top-to-bottom.

Code: Select all

x = 603, y = 217, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo198bo
$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o
17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o17b3o19bo16b
5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo
15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15b
o3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15bo3bo$16bo
3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bo
bo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo
3bo15bo3bo$16bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobob
o16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo
2bo17b3o16b4o19bo17b3o17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17b
o3bo19bo15bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo
20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo
3bo15bo3bo17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo
17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo
15bo3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o17b3o
18bo18b3o17b3o9$36b2o38b2o58b2o18b2obo15b2o19bo58bo3b2o34b2o2b2o14b2ob
ob2o35b2o40bo18bo17b2o2b2o35b2o56b2o20bo18bo$b3o32bobob2o34bo60bo18bob
2o16bo18bobo2b2o53b3o2bo34bo3bobo13bob2obo2bo32bo2bo35b2obobo16bobo15b
o2bo2bo34bobo56bobo19b3o15bobo2b2o$o3bo33b2obo35bo59bob2o19b2o14bobo
17bo2bo2bo55b2o37bobobo17bo2b2o31bobo2bo34bob2o2bo14bobobo15bobobo34bo
bo60bo16b2o3bo14bo2bo2bo$o3bo32bo38b2o2bo57bobo16b2o2bo15bobo17b3obo
55bo38b2o2bo15b3o37bob3o38b2o14bo2bobo14b2o2bo35bo2b3o55b2o18bo2bobo
14bob2o$obobo32bo40b3o55bobo17bob2o19bo20bo56bo39bo18bo40bo38b2o18b2ob
o16bo39b2o2bo54bo19bo4bo14b2o$o3bo30b2o39b2o57bobobo16bo22b2o18bo58b2o
36bo61bo37bo20bo17bo41bo57bob3o15bobo18bo$o3bo30bo39bo2bo56bo2bo16b2o
20b2o2bo16bo60bo36b2o57b3o39bo17bobo17b2o38bo60bobo17bobo16bo$b3o32bo
39bobo57b2o39bo2bo17b2o58bo96bo40b2o17b2o58b2o63bo16bo17b2o$35b2o40bo
100b2o78b2o279b2o12$36b2ob2o19b2o16b2o38b2o41b2o12b2o19bo98b2o2b2o14b
2obo38b2o18b2o21b2o55b2o18bo57b2o21bo17bo24b2o$bo34bob2o16b2o3bo17bo
39bo2b2o33b2o2bo14bo2b2o14bobo4b2o91bo3bobo13bob2o37bo2bo15bo2bo16b2o
2bobo54bo2bo16bobo56bobo18b3o16bobo20bobobo$2o39bo14bo2bo16b3o40bobobo
32bo2bobo14bobo2bo14bo2bo2bo94bobobo17b2o34bobobo15b2obob2o13bobo2bo
54bo2bobo14bo2bo59bo16bo19bo2bob2o15bob2o$bo35b2ob2o15bob2o15bo2b3o35b
obo2bo34bob2o16bob2o16b2obobo93b2o2bo15b2obo2bo33bo2b2o16bobobo16b2o
55b2obo2bo13bobob2o55b2o18bo19bob2obo15bo3bo$bo35bo20bo19bo2bo34bob2o
36b2o21bo19bobo95bo18bobo2b2o34b2o18bo18b2o59bob2o15b2o2bo54bo19b2o18b
2o21bob2o$bo33bobo18bobo17bobo37bo40bo19bobo19bo95bo21bo40bo19bo18bo
59bo20bo56bo19bo4bo15bo18b3o$bo33b2o18bobo17bobo37b2o38bo20bobo19b2o
95b2o58b3o21bo16bo59b2o17bobo58b2o2b2o14bo2bobo13bo19bo$3o52b2o19bo78b
2o20bo177bo22b2o16b2o77b2o61bo2bo15bo2bo14b2o$538b2o18b2o12$38b2o40b2o
59b2o14bo77b2o3b2o13b2o2b2o14b2o18b2o2b2o14b2o40b2o18b2ob2o18b2o16b2o
78b2o19bo15b2o23b2o$b3o33bobo41bo54b2o2bobo13bobo2b2o72bo2bo2bo13bo2bo
2bo13bo2bobo14bo3bo15bo40bo2bo15bo2bobo14b2o2bobo15bo2bo76bo2bo17bobo
14bobo18b2o2bo$o3bo31bo39bo2bo57bo2bo15bo2bo2bo74b2obo15bobob2o14b2ob
2o16bobobo15bo4bo32bobo2bo14b2obo2bo13bo3bo16bo2bobo76bo2bo15bobobo16b
o16bo2bobo$4bo32b2o37b5o56bob2o16bob2o77bob2o15bobo17bo18b2o2b2o14b2o
3bobo32bo4bo15bob2o16bob2o14bo4bo75bob2obo15bobobo14b2o18bob2o$3bo35bo
96b2o18b2o79bo21bo17bo19bo18bo3bobo34b4o16bo18b2o18b4o75bobo2bo14b2o3b
o14bo19b2o$2bo32b4o39bo58bo19bo78bo21bo19b2o15bo21bo2bo37bo17b2o19bo
19bo77bo2bo16bo19bo20bo$bo33bo40b3o56bo19bo80b2o20b2o19bo15b2o21bobo
35bo38bo19bo80b2o18bo19b2o17bo$5o31bo38bo59b2o18b2o121bo40bo36b2o37b2o
18b2o100bo20bob2o13b2o$37bo37b2o201b2o236b2o20b2obo$36b2o11$17bo21b2o
95b2o19bo17b2ob2o55b2o18b2o3bo14b2o2bo120bo58b2o14b2o58b2o21bo41bo$b3o
12bobo2b2o14bo2bo95bo19bobo17bobo56bo2bob2o13bo3bobo13bo2bobo114b2o2bo
bo54b2o2bo15bo58bo3b2o14bobobo39bobo$o3bo12bobo2bo13bob2o97bo18bo2bob
2o13bo2b3o55b2obo15bo2bo2bo13b2obo115bo3bobo53bo2b2o15bo61bo2bo14b2obo
bo38bo2bo$4bo14b2o16bo2b3o95bo18bob2obo14b2o2bo56bo2bo15bob3o15bo119bo
b2o54bobo2b3o12b2o59b2obo18bobo36b2obobo$2b2o14bo19bo3bo93bobo17b2o20b
o58bo2b2o16bo18bo118b2o58bobo3bo14bo57bo3b2o14b2o2bo37bo2b2o$4bo11b3o
16b3o97bobob2o16bo18bo59bo22bo15b2o120bo59bo17b2o59b3o16bo42bo$o3bo10b
o19bo99bobo2bo14bo20b2o58b2o20b2o15bo119bo79bo3b2o57bo18bo37b3o$b3o11b
2o119bobo16b2o119bo118b2o79bo2bo76b2o37bo$137bo137b2o200bobo$478bo11$
60bo16b2o57b2o22b2o73b2o2b2o14b2o3b2o33b2obob2o13b2o21b2o18bobo57b2o
15b2o2b2o78bo38bo$3bo54b3o17bo57bo19b2o3bo73bo2bo2bo13bo2bo2bo33bob3ob
o13bobo18b3obo15b4obo56bo16bo3bo78bobo34bobobo$2b2o53bo18bo2b2o57bo17b
o2bo77b2obo15bob3o56b3o15bo5bo13bo5bo54b2o2bo15bo3bo76bobo35b2obobo$bo
bo52bo2b2o15b2obo2bo54b2o18bob2o77bob2o15bo41b2o15bo3bo15bo5bo13b2o3b
2o52bo2b3o14b2o2b2o76bobobo36bobo$o2bo53b2obo17bo2b2o53bo19b2o2bo76bo
20bo37bobobo15b3obo16bo3b2o14bo58b2o18bobo76b2o3b2o33b2o2bo$5o53bo16bo
bo57bo2b3o14bo2bo77bo18b3o38b2o21bo18bobo15bo61bo17bobo76bo39bo$3bo52b
obo16b2o59b2obo16b2o78b2o17bo62bo20b2o15b2o57bobo19bo78bo39bo$3bo51bob
o83bo176b2o95b2o100bo37b2o$56bo83b2o374b2o12$16b2o23b2o15bo77b2o21bo
36bo21b2o15b2o3b2o33b2o18bo3b2o16b2o3bo15bob2o55bo79b2obo54b2o21bo42bo
$5o11bo3b2o15b2o2bo15bobobo74bo21bobo34bobo2b2o13b2o2bo15bo2bo2bo33bo
19b3o2bo15bo2bobobo12b3obo55bobo78bob2o54bo19bobobo39b3o$o17bo2bo14bo
2bobo15bob2obo75bo19bo2bo34bobo2bo14bobo18b2obo36bob2o17b2o15bobo2b2o
2bo10bo5bo54bo2bo81b2o54bo17b2obo39bo$o16b2obo16b2obo15b2o4bo74b2o17b
2o2b2o36b2o16bob4o17bo36b3o2bo15bo2b3o13bo5bobo11bo5bo52b2ob2o78b2o2bo
53b2o20bobo38bo$b3o14bob2o16bo18bo4b2o72bo19bo40bo19bo3bo15b2o41bo15bo
bo3bo19b2o13bob3o55bo77bobob2o54bo19b2o2b2o37b2o$4bo10b3o18bobo16bo79b
o2b3o16bo40b2o18bo18bo40b2o17bo40b2o57bo77b2o58bo4b2o13bo41bo$o3bo10bo
19bobo17b2o79b2o2bo17bo40bo17b2o19bo39bo116b2o139b2o2bo16bo39bo$b3o32b
o101bo17bobo38bo39b2o40bo115bo142bobo15b2o37b2o$138b2o15bobo39b2o79b2o
116bo141b2o55bo$156bo238b2o199bo$597bo$596b2o9$16b2o22b2o36b2o16b2o98b
o38bo2bo16b2o2bo15b2o3b2o35bo20bo16b2ob2o38b2o39bo17bo38bo38b2o3b2o16b
o40b2o$b3o12bobo17b2o3bo35bobo17bo97bobo2b2o33b6o14bo2bobo14bo4bo35bob
ob2o14b3o2b2o13bobo2bo36bo39bobo15bobo37b3o36bo2bo2bo13bobobo39bobo$o
3bo14bo16bo2bo36bo19bo99bobo2bo39bo14bobo2bo15bo3bo33bo2b2obo13bo5bo
13bo4b2o34b2o2bo34b2o2bo15bobobo39bo37b2obo14b2obo43bo$o19bo17b3o35bob
4o14b2o100b2o37b4o16bob2o15b5o35b2o18bo5bo13b2o37bo2b3o34bob2o16bobo2b
o35b2o2bo37bob2o16bobo39b2o$4o13b4o56bo3bo15bo99bo40bo19bo60b2o16bo3b
2o15bo37bo40bo18bob3o34bo2b2o35b3o17b2o2b2o38bo$o3bo12bo18b3o39bo17bo
3b2o96b2o36bo19bobo19bo41bo17bobo14bobo39b2o38bo19bo38b2o37bo19bo43bo$
o3bo13bo16bo2bo36b3o18bobo2bo97bo36b2o18b2o19bobo38bo20b2o14b2o41bo36b
2o21bo38bo58bo40b2o$b3o12bobo17b2o37bo19b2ob2o98bo79bo39b2o77bo37bo21b
2o36bo59b2o40bo$15bobo180b2o197b2o37bo58b2o101bo$16bo418b2o158b3o$595b
o10$16b2o2b2o18b2o14b2o20bo17b2o22b2o37bo16b2o2b2o53bo59b2o44bo34bo62b
o20b2o17bo16b2o37b2o21b2o$5o11bobo2bo14b2o3bo15bo19bobo17bo19b2o2bo36b
obo14bo2bo2bo53b3o2b2o53bo40b2o2bobo32bobo60bobo15bo2bobo16bobo15bo38b
o2bob2o13bo2bobo$4bo13b2o16bo2bo17bob2o15bo2bo16bo21bobo36bo2bo15bob3o
57bo2bo54bo38bo2bo2bo33bo2bo2b2o52bo2bobo14bobo2bo17bo2bo15bo39b2obo
14b3o2bo$3bo13bo20b3o15b2o2bo15bob2obo14b2o20bob2o34bo3bob2o13bo59b2ob
o56bo38bo2b2o35b2obo2bo52b3obo15bo2b2o16b2o2b2o14b2o40bo2bo16b2o$3bo
13bo40bo18bo2b2o15bo18b2o38b2o3bobo14bo59bob2o54b2o39b2o38bob2o57bo17b
2o17bo19bo39b3o2b2o13b2o$2bo12b2o19b3o17b2o20bo17bo18bo41bo17b3o58bo
58bo2b2o38bo36bo59b2o20bo17bo19bob3o35bo19bo$2bo12bo19bo2bo16bo19b3o
18bobob2o14bobo36bo19bo60b2o57bobo2bo36bo37b2o58bo19bo20b2o18bobobo56b
o$2bo14bo17b2o19bobo16bo19b2ob2obo15b2o36b2o139bo2bo37b2o97bo18b2o20bo
22bo55b2o$16b2o39b2o238b2o136b2o39bo23b2o$476b2o11$16b2o2b2o35b2obo17b
2o96b2o2b2o53bo3b2o14b2o18b2o40b2o22b2o16b2o38bo38b2o39bo16b2o18b2o17b
2o2b2o$b3o12bobo2bo34bo2b2o16bo2bo94bo2bo2bo53b3o2bo14bo2b2o15bo3b2o
35bobo17bo3bobo12b2o3bo36b3o38bo39bobo15bo18bo2bobo14bo2bo2bo$o3bo13b
2o37bo18bobo2bo94bob2o58b2o16bobo2bo15bo2bo34bo19bobo2bo14bo2bo37bo3b
2o33bo3b3o36bo2bo15bo18bob2obo15b2obo$o3bo12bo38b2ob2o15bo2b2o96bo59bo
19bo2b2o14b2obo36b2o18bo2b2o16b3o35bob2o2bo33b4o2bo34b2o2b2o14b2o19bo
3bo16bob2o$b3o13bo40bobo16b2o99b2o57bo20b2o18bo39bo18b2o57bo2b2o37bo
36bo19bo19bobo3b2o12b3o$o3bo10b2o38bobo20bo100bo55b2o22bo16b2o40bo19bo
16b3o40bo38bo37bo19bo4b2o13b2o18bo$o3bo10bo39b2o18b3o100bo56bo22bo17bo
40b2obo16bo17bo2bo38b2o37bo39b2o18b2o2bo$b3o12bo58bo102b2o57bo20b2o17b
o41bobo15b2o18b2o77b2o39bo20bobo$15b2o219b2o38b2o41bobo153bo22b2o$320b
o154b2o11$16b2o38b2o39b2ob2o34b2obo15b2o19bo4b2o13bo18b2obo16bo3b2o14b
2o60bo21b2o18b2o55b2o18b2o58b2o17b2o40b2o20b2o$b3o12bobob2o34bo2b2o37b
obo35bob2o16bo18bobo4bo12bobo2b2o13bob4o14b3o2bo14bo2b2o56bobo17bo2bo
15b2o3bo54bo2bo18bo58bo18bo2bobo34bo2bo19bo2bo$o3bo13b2obo35bobo2bo34b
o3bo54bob2o16bo3bo15bobo2bo19bo16b2o16bobobo54bo2b3o14bobobo15bo2bo57b
ob3o14bo61bo18bob2obo33b3o20bobo$o3bo12bo38b2o3b2o35b2obo35b5o15bobo
17b5o16b3o18bo2bo14bo19bo3bo54b2o3bo14bo2b2o16b3o55b2o4bo13b2o59b2o19b
o3bo36b3o16b2o2b3o$b4o12bo40bo37bobobo35bobo2bo18b2o35bo20bob2o15bo20b
3o57bob2o15b2o77bo3b2o15bo57bo19bobo3b2o32b2o3bo17bo4bo$4bo10b2o38bobo
37bobo38bo25bo16bo18bo19bo16b2o19bobo56bobo20bo16b3o57bo21bo58bobo16b
2o38bo19b3o$o3bo10bo39b2o39bo38b2o25b3o13bobo14b3o19b2o16bo20b2o57b2o
18b3o17bo2bo56b2o21b2o55b2ob3o55bo18bo$b3o13bo147bo13bo15bo40bo98bo20b
2o82bo60bo53b2o$16b2o146b2o69b2o201b2o60b2o$438bo$439bo$438b2o!
Princess of Science, Parcly Taxel

User avatar
Goldtiger997
Posts: 547
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » June 29th, 2019, 6:04 am

#277 in 16G:

Code: Select all

x = 159, y = 63, rule = B3/S23
55bo$53b2o$54b2o12$139bo$140bo5bo3bobo$138b3o6bo3b2o3bo$145b3o3bo4bobo
$156b2o6$146b2o$86b2o49b2o7bo$86bo49bobo8bo$87bo50bo7b2o$86b2o55b2o$
83b2o57bo2b3o$o19bo61bo2b3o54bobo2bo$b2o15bobo61bobo2bo55b2o$2o17b2o
62b2o$8bo$6bobo$7b2o2$20bobo$21b2o$21bo3$71b3o$16b3o$18bo48b3o$17bo51b
o$20b2o46bo$21b2o$20bo4$45b3o$45bo$46bo3$2b3o$4bo$3bo$6b2o$5bobo$7bo!
#289 in 13G, with a satisfying cleanup:

Code: Select all

x = 145, y = 42, rule = B3/S23
o14bo$b2o13bo$2o12b3o8$36bo$37b2o$36b2o4$131bo$59bo72b2o$57b2o72b2o6b
2o$58b2o78bo2bo$39bo2bobo92bobobo$37bobo2b2o94bo2b2o$38b2o3bo97bo$142b
3o$132bo11bo$130bobo$131b2o2b2o$136b2o$135bo2$132b2o$133b2o$132bo2$10b
3o$12bo$11bo43bo$54b2o$54bobo$70b2o$70bobo$70bo!

User avatar
calcyman
Posts: 2096
Joined: June 1st, 2009, 4:32 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by calcyman » June 29th, 2019, 11:48 am

All of these new syntheses have helped construct some larger still-lifes as well. The following merge request contains new recipes from old:

https://gitlab.com/parclytaxel/Shinjuku ... equests/36
What do you do with ill crystallographers? Take them to the mono-clinic!

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Sokwe » June 29th, 2019, 7:13 pm

#152 in 13:

Code: Select all

x = 160, y = 18, rule = B3/S23
48bobo$6bo42b2o50bo49bo$5bo43bo50bobo39bo7bobo$bo3b3o93bo38bobo8bo$b2o
50b2o47b3o36b2o9b3o$obo50bobo49bo49bo$48b2o4bo49bo49bo$49b2o7bo39bo5b
2o37b3o3b2o3b2o$48bo7b2o41b2o44bo2bo2bo$57b2o39b2o44bo3bo2bo$149b2o$
153b2o$152bobo$57b3o37b3o54bo$59bo39bo$58bo39bo48b3o8b2o$149bo7b2o$
148bo10bo!
This was derived trivially from the synthesis displayed in Catagolue. I simply started with an integral with tub and hook instead of a hook with tail. I suppose that the last step is not included among the automatic construction components.

Edit: #81 in 16:

Code: Select all

x = 267, y = 22, rule = B3/S23
20bo$19bo$13bo5b3o$13bobo$13b2o49bo49bo49bo49bo49bo$63bobo47bobo47bobo
47bobo47bobo$62bobo4bo42bobo47bobo47bobo47bobo$11b2o49bo6bo42bo49bo49b
o49bo$4bo6bobo47b2obo4bo41b2obo46b2obo46b2obo46b2obo$5b2o4bo45b2obo2bo
bo7b2o32b2obo2bobo44bo2bobo44bo2bobo44bo2bobo$4b2o51b2ob2o2bo7b2o33b2o
b2o2bo45b2o2bo9bo35b2o3bo44b2o3bo$74bo99bobo37bo50b2o$103b2o61bo7b2o
38b2o$104b2o60b2o87b3o$103bo61bobo3b2o84bo$171bobo45b2o35bo3b2o$171bo
37b3o6b2o40bobo$6bo204bo8bo39bo$6b2o202bo4b2o$bo3bobo206bobo$b2o213bo$
obo!
Edit 2: #77 in 14 based on the same idea as #152 above:

Code: Select all

x = 113, y = 27, rule = B3/S23
8bo$6b2o$7b2o2$10bo$2bo7bobo$obo7b2o$b2o3$54b2o48b2o$10bo44bo39bo9bo$
9bo44bo38bobo8bo$4bo4b3o43b3o36b2o9b3o$2b2o54bo49bo$3b2o52bo49bo$51bo
5b2o37b3o3b2o3b2o$52b2o44bo2bo2bo$b2o48b2o44bo3bo2bo$2o100b2o$2bo103b
2o$12bo92bobo$11b2o37b3o54bo$11bobo38bo$51bo48b3o8b2o$102bo7b2o$101bo
10bo!
Edit 3: #15 in 11 by improving the previously-solved #22:

Code: Select all

x = 147, y = 67, rule = B3/S23
20bobo$20b2o$21bo8$22bobo$22b2o$23bo13$bo67bo69bo$o68b3o67b3o$3o17bo
44bo6bo69bo$9bo9bo44bobo4bo69bo$9bobo7b3o42bobo5b3o59bo7b3o$9b2o54bo4b
obo2bo56bobo5bobo2bo$3b2o65b2o2bobo56b2o5b2o2bobo$3bobo69bo69bo$3bo61b
2o$65bobo$65bo69b3o$137bo$15b3o118bo$15bo$16bo25$31b2o$30b2o$32bo!
-Matthias Merzenich

User avatar
Goldtiger997
Posts: 547
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » June 30th, 2019, 9:16 am

#235 in 13G:

Code: Select all

x = 96, y = 36, rule = B3/S23
4bo$5bo44bo$3b3o45bo$40bo8b3o$14bo26bo17bo$15bo23b3o17bobo$13b3o43b2o
2$85bo$14b3o66bobo$16bo67b2o$15bo35b2o34bo$50bobo33bobob2o$50bo36b2obo
$51bo2b2o35bo2b2o$52bo2bo36bo2bo$51b2obo36b2obo$51bo2b2o35bo2b2o$53bo
39bo$52b2o38b2o$b2o$obo$2bo6$3o3b3o$2bo5bo21b2o$bo5bo21b2o$31bo$3b2o$
4b2o20bo$3bo21b2o$25bobo!
This is a close-relative of 16.712, which was probably the most difficult xs16 during the 16 in 16 project.

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » June 30th, 2019, 9:42 pm

#270 in 13G:

Code: Select all

x = 213, y = 35, rule = B3/S23
obo$b2o$bo2$130bo$125bo3bo35b2o$126b2ob3o32bo2bo$81bo43b2o33bo3bo2bo$
81bobo77b2o2b2o$81b2o77b2o$77bo$78b2o129bo$77b2o125bo4bobo$203bobo3b2o
$204bo$87b2o32bo5b2o32bo5b2o32bo5b2o$74b2o5b2o2bo2bo31bobo2bo2bo31bobo
2bo2bo31bobo2bo2bo$73bobo5bo3b2o34bo3b2o34bo3b2o34bo3b2o3b2o$24bo50bo
6b3o37b3o37b3o37b3o5bobo$24bobo57bo39bo39bo39bo5bo$24b2o3$24b2o$23b2o$
25bo6$3b2o$2bobo35b2o$4bo35bobo$40bo!
I suspect that the base 12-bit still life can be done in 7G.
Tanner Jacobi

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Sokwe » July 1st, 2019, 1:59 am

#174 in 15:

Code: Select all

x = 193, y = 31, rule = B3/S23
52bo$53b2o$52b2o35bo$89bobo$89b2o4$9bo$7b2o$8b2o58bobo69bo8bo$69b2o67b
2o8bo$69bo69b2o7b3o$2bo58b2o$obo49b2o7b2o$b2o3bo44bobo16b2o57bo59bo$5b
o47bo15b2o56b3o57b3o$5b3o63bo54bo13bo45bo$127bo10b2o47bo$126b2o11b2o
45b2o$127bob2o56bob2obo$55b2ob2o65bobob2o54bobobob2o$55b2ob2o65b2o8bo
49b2o$135b2o5bo$134bobo4b2o$141bobo43b2o$186b2o$188bo$182b3o$184bo$
183bo!
This uses an alternate block-to-snake that is less obtrusive than the standard method. The following three block-to-snake converters should probably be added to Catagolue/Shinjuku's automatic synthesis components:

Code: Select all

x = 151, y = 22, rule = B3/S23
134bobo$135b2o$135bo5$7bo70bo69bo$7bobo68bobo67bobo$bo5b2o63bo5b2o55bo
6bo5b2o$2bo70bo62bo6bo$3o68b3o60b3o4b3o3$6b2o69b2o68b2o$6bobo68bobo67b
obo$6bo70bo69bo3$13b2o50b2o$4b2o7bobo48bobo7b2o68b2o$4b2o7bo52bo7b2o
68b2o!
Extrementhusiast wrote:Ship-to-carrier transition in one less
This gives #21 in 16:

Code: Select all

x = 174, y = 25, rule = B3/S23
68bo$66b2o$55bobo9b2o102bo$55b2o114bobo$56bo114b2o$42bo$43bo20bo$41b3o
20bobo103b2o$64b2o103b2o$171bo$obo114bo49bo$b2o50bo58b2o2bobo43b2o2bob
o$bo3b3o44bobo50bobo4bobo2bo44bobo2bo$5bo47b2o51b2o7b2o48b2o$6bo99bo6b
2o48b2o$112bobo46bo2bo$112b2o47b2o$64bo$63b2o39b2o4bo$63bobo3b2o34b2o
2b2o$48b3o18bobo32bo4bobo$50bo18bo44b2o$49bo3b2o58b2o$53bobo59bo$53bo!
Sokwe wrote:#15 in 11 by improving the previously-solved #22
This gives #99 in 16:

Code: Select all

x = 200, y = 46, rule = B3/S23
65bo$63b2o$64b2o7$10bobo$11b2o$obo8bo17bo$b2o27bo$bo26b3o2$37bo$36bo$
36b3o4$194bo3bo$30bo164bobo$28bobo162b3ob3o$29b2o2$102bo44bo48bo$101bo
bo42bobo46bobo$31bo68bobo42bobo46bobo$31bobo66bo44bo11bobo34bo$27bo3b
2o65bob2o41bob2o10b2o33bob2o$28bo68bobo2bo39bobo2bo10bo32bobo2bo$26b3o
68bo3b2o39bo3b2o43bo3bobo$96b2o43b2o47b2o4bo3$99b2o3bo$98bo2bo2bobo41b
o4b2o$99b2o3b2o42b2o3bobo$147bobo3bo3$138b2o$137bobo7b2o$139bo8b2o$
147bo!
-Matthias Merzenich

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » July 1st, 2019, 1:14 pm

#233 in 16G:

Code: Select all

x = 140, y = 29, rule = B3/S23
119bobo$106bo12b2o$107bo12bo3bo$105b3o15bo$123b3o$72bo$70bobo$71b2o$
74bo59bo$74bobo55b2o$74b2o57b2o2$13bo59bo$3bobo6bo59b2o$4b2o6b3o57bobo
62bo$4bo34bobo27bo49b2obo14bobo$39b2o27bobo47bo2b2o14b2o$40bo27b2o48b
2o$13b2o119b3o$12b2o24b2o28b2o48b2o14bo$3o11bo23bo3b2o24bo3b2o44bo3b2o
11bo$2bo36bo2bo26bo2bo46bo2bo$bo38bobo27bobo47bobo$41bo29bo49bo3$16b2o
120b2o$15b2o120b2o$17bo121bo!
An idea for #263:

Code: Select all

x = 13, y = 14, rule = LifeHistory
5.A$5A$.4A2$8.A2.2A$4.2A.A.A2.A$4.2A.A.2A$8.A$9.A.A$10.2A$4.4A$8.A$3.
A6.A$10.A!
EDIT: This can almost definitely become a 12G solution for #223:

Code: Select all

x = 47, y = 19, rule = B3/S23
41bo$41bobo$bo39b2o$o$4o$b2o31bo$33bobo$2b2o26b2o2bobo$bo2bo24bo2b2o2b
o4bobo$2b2o25bobo2b2o5b2o$30bobo9bo$3b2o26bo$2b4o38bo$5bo38bobo$4bo39b
2o2$43bo$42b2o$42bobo!
Last edited by Kazyan on July 1st, 2019, 2:51 pm, edited 1 time in total.
Tanner Jacobi

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by A for awesome » July 1st, 2019, 2:14 pm

Kazyan wrote:An idea for #263:

Code: Select all

x = 13, y = 14, rule = LifeHistory
5.A$5A$.4A2$8.A2.2A$4.2A.A.A2.A$4.2A.A.2A$8.A$9.A.A$10.2A$4.4A$8.A$3.
A6.A$10.A!
Modifying the synthesis for xs17_o4s3qp3z01 by sparking a different 3G century might yield a cheap xs19_3lmgdbz1221, which can be turned into #263 in 7G:

Code: Select all

x = 28, y = 24, rule = B3/S23
19bo$18bo$18b3o$bo$2bo20bo$3o19bo$22b3o10$5b2o$5bobo$5bo3$3b3o4b2o14b
2o$5bo4bobo12b2o$4bo5bo16bo!

Code: Select all

x = 12, y = 15, rule = B3/S23
7b2o$6bo2bo$7b3o$o9b2o$b2o4b2obo$2o4bobo2bo$6b2o2b2o2$2bobo$3b2o$3bo5b
o$8b2o$3b2o3bobo$4b2o$3bo!

Code: Select all

x = 14, y = 15, rule = B3/S23
8bo$7bo$7b3o$5bo$3bobo$4b2o2$9b2o$8bo2bo$9b3o$12b2o$bo7b2obo$b2o7bo2b
o$obo5bo3b2o$8b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Sokwe » July 1st, 2019, 4:28 pm

A for awesome wrote:xs19_3lmgdbz1221, which can be turned into #263 in 7G
5G, actually. The last step can be done with just one glider:

Code: Select all

x = 12, y = 8, rule = B3/S23
7b2o$6bo2bo$3o4b3o$2bo7b2o$bo5b2obo$8bo2bo$6bo3b2o$6b2o!
-Matthias Merzenich

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » July 1st, 2019, 8:32 pm

With those observations and some help from popseq, #263 in 15G:

Code: Select all

x = 125, y = 45, rule = B3/S23
obo$b2o$bo11$21bo$20bobo$20bobo$6bo14bo$7b2o$6b2o5$23b2o$22b2o$7bo16bo
$5bobo72b2o38b2o$6b2o6b2o63bo2bo36bo2bo$15b2o63b3o30b3o4b3o$14bo58bo9b
2o30bo7b2o$74b2o4b2obo30bo5b2obo$9b2o62b2o4bobo2bo36bo2bo$10b2o67b2o2b
2o34bo3b2o$9bo109b2o$75bobo$76b2o$76bo5bo$81b2o$76b2o3bobo$4b3o70b2o$
6bo69bo$5bo$45bo$44b2o$44bobo!
Tanner Jacobi

User avatar
Extrementhusiast
Posts: 1797
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » July 1st, 2019, 9:56 pm

#223 in twelve gliders, but only because of an improvement in the final step:

Code: Select all

x = 146, y = 37, rule = B3/S23
48bo$49bo$47b3o95bo$143bobo$144b2o$135bo$136bo6bo$85bo48b3o5b2o$86bo
55bobo$84b3o51b2o$4bo132bo2bo$5bo69bo9bo50bobobo$3b3o68bobo8b2o50bobo$
74bobo7bobo52bobo$3o72bo62bobobo$2bo135bo2bo$bo137b2o12$81b3o$81bo$82b
o2$77b2o$77bobo$42b2o33bo23b2o$41bobo56b2o$43bo58bo!
I'm not sure that an eight-glider synthesis for the related 18-bitter exists using the current method and predecessor.
I Like My Heisenburps! (and others)

User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » July 2nd, 2019, 7:35 am

#80 is reduced to 12 by improving its predecessor:

Code: Select all

x = 126, y = 36, rule = B3/S23
obo$b2o$bo14$61bo51bo10bo$60bobo49bobo7b2o$11bo47bo2b3o46bo2b3o6b2o$
12b2o45bobo3bo45bobo3bo$11b2o9bo37b2o2bobo45b2o2bobo$21bo43bo51bo$21b
3o2$123bo$123bobo$119b2o2b2o$118b2o$12bo107bo$13b2o$12b2o46b2o60b2o$
60b2o59b2o$11bo9bo101bo$10b2o8bobo34b3o$10bobo7bobo36bo$21bo36bo!
Edit: Another such improvement clears #155:

Code: Select all

x = 119, y = 34, rule = B3/S23
88bo11bo$89bo8bobo$87b3o9b2o9$bo$obo$b2o7bo$9bo$9b3o88bo$99bobo$8b2o
90b2o6bo$7bobo97bobo$9bo82b2o12bo2bo$91bobo13b2o$93bo10$116b3o$116bo$
117bo!
Edit 2: Improves #231 to 14:

Code: Select all

x = 64, y = 29, rule = B3/S23
14bo$8bobob2o47bo$9b2o2b2o45bobo$9bo50bo2bo$58b2obobo$21bobo34bo2b2o$
15bo5b2o37bo$16b2o4bo36b2o$15b2o38b3o$20b2o29b3o$21b2o30bo$20bo31bo5$b
2o$obo$2bo8$12b3o$14bo$13bo!
Princess of Science, Parcly Taxel

User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » July 2nd, 2019, 9:54 am

With the latest syntheses, 150 expensive xs17s remain:

Code: Select all

#CLL state-numbering golly
x = 603, y = 217, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo
198bo$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b
3o17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o
17b3o19bo16b5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o
16bo19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo
19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3b
o19bo15bo3bo15bo3bo$16bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo
15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo
16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo$16bobobo16bo21bo18b2o
16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o
16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o
17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16b
o20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo20bo21bo15b5o
19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3b
o17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17b
o3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo15bo
3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o
17b3o18bo18b3o17b3o9$36b2o38b2o58b2o18b2obo36bo58bo3b2o34b2o2b2o
14b2obob2o35b2o40bo18bo17b2o2b2o35b2o56b2o39bo$b3o32bobob2o34bo60b
o18bob2o35bobo2b2o53b3o2bo34bo3bobo13bob2obo2bo32bo2bo35b2obobo16b
obo15bo2bo2bo34bobo56bobo37bobo2b2o$o3bo33b2obo35bo59bob2o19b2o34b
o2bo2bo55b2o37bobobo17bo2b2o31bobo2bo34bob2o2bo14bobobo15bobobo34b
obo60bo36bo2bo2bo$o3bo32bo38b2o2bo57bobo16b2o2bo35b3obo55bo38b2o2b
o15b3o37bob3o38b2o14bo2bobo14b2o2bo35bo2b3o55b2o38bob2o$obobo32bo
40b3o55bobo17bob2o40bo56bo39bo18bo40bo38b2o18b2obo16bo39b2o2bo54bo
39b2o$o3bo30b2o39b2o57bobobo16bo42bo58b2o36bo61bo37bo20bo17bo41bo
57bob3o36bo$o3bo30bo39bo2bo56bo2bo16b2o41bo60bo36b2o57b3o39bo17bob
o17b2o38bo60bobo36bo$b3o32bo39bobo57b2o60b2o58bo96bo40b2o17b2o58b
2o63bo34b2o$35b2o40bo180b2o279b2o12$36b2ob2o37b2o38b2o41b2o33bo98b
2o2b2o14b2obo38b2o18b2o21b2o55b2o76b2o21bo17bo24b2o$bo34bob2o39bo
39bo2b2o33b2o2bo33bobo4b2o91bo3bobo13bob2o37bo2bo15bo2bo16b2o2bobo
54bo2bo75bobo18b3o16bobo20bobobo$2o39bo34b3o40bobobo32bo2bobo34bo
2bo2bo94bobobo17b2o34bobobo15b2obob2o13bobo2bo54bo2bobo77bo16bo19b
o2bob2o15bob2o$bo35b2ob2o34bo2b3o35bobo2bo34bob2o36b2obobo93b2o2bo
15b2obo2bo33bo2b2o16bobobo16b2o55b2obo2bo74b2o18bo19bob2obo15bo3bo
$bo35bo40bo2bo34bob2o36b2o41bobo95bo18bobo2b2o34b2o18bo18b2o59bob
2o74bo19b2o18b2o21bob2o$bo33bobo38bobo37bo40bo41bo95bo21bo40bo19bo
18bo59bo77bo19bo4bo15bo18b3o$bo33b2o38bobo37b2o38bo42b2o95b2o58b3o
21bo16bo59b2o78b2o2b2o14bo2bobo13bo19bo$3o73bo78b2o198bo22b2o16b2o
140bo2bo15bo2bo14b2o$538b2o18b2o12$38b2o40b2o59b2o14bo77b2o3b2o13b
2o2b2o14b2o18b2o2b2o56b2o18b2ob2o18b2o16b2o78b2o19bo15b2o23b2o$b3o
33bobo41bo54b2o2bobo13bobo2b2o72bo2bo2bo13bo2bo2bo13bo2bobo14bo3bo
56bo2bo15bo2bobo14b2o2bobo15bo2bo76bo2bo17bobo14bobo18b2o2bo$o3bo
31bo39bo2bo57bo2bo15bo2bo2bo74b2obo15bobob2o14b2ob2o16bobobo53bobo
2bo14b2obo2bo13bo3bo16bo2bobo76bo2bo15bobobo16bo16bo2bobo$4bo32b2o
37b5o56bob2o16bob2o77bob2o15bobo17bo18b2o2b2o54bo4bo15bob2o16bob2o
14bo4bo75bob2obo15bobobo14b2o18bob2o$3bo35bo96b2o18b2o79bo21bo17bo
19bo59b4o16bo18b2o18b4o75bobo2bo14b2o3bo14bo19b2o$2bo32b4o39bo58bo
19bo78bo21bo19b2o15bo62bo17b2o19bo19bo77bo2bo16bo19bo20bo$bo33bo
40b3o56bo19bo80b2o20b2o19bo15b2o59bo38bo19bo80b2o18bo19b2o17bo$5o
31bo38bo59b2o18b2o121bo77b2o37b2o18b2o100bo20bob2o13b2o$37bo37b2o
201b2o236b2o20b2obo$36b2o11$17bo21b2o95b2o19bo17b2ob2o55b2o18b2o3b
o14b2o2bo120bo157bo41bo$b3o12bobo2b2o14bo2bo95bo19bobo17bobo56bo2b
ob2o13bo3bobo13bo2bobo114b2o2bobo153bobobo39bobo$o3bo12bobo2bo13bo
b2o97bo18bo2bob2o13bo2b3o55b2obo15bo2bo2bo13b2obo115bo3bobo153b2ob
obo38bo2bo$4bo14b2o16bo2b3o95bo18bob2obo14b2o2bo56bo2bo15bob3o15bo
119bob2o157bobo36b2obobo$2b2o14bo19bo3bo93bobo17b2o20bo58bo2b2o16b
o18bo118b2o157b2o2bo37bo2b2o$4bo11b3o16b3o97bobob2o16bo18bo59bo22b
o15b2o120bo157bo42bo$o3bo10bo19bo99bobo2bo14bo20b2o58b2o20b2o15bo
119bo161bo37b3o$b3o11b2o119bobo16b2o119bo118b2o159b2o37bo$137bo
137b2o12$60bo16b2o57b2o22b2o73b2o2b2o14b2o3b2o33b2obob2o13b2o21b2o
78b2o15b2o2b2o78bo38bo$3bo54b3o17bo57bo19b2o3bo73bo2bo2bo13bo2bo2b
o33bob3obo13bobo18b3obo77bo16bo3bo78bobo34bobobo$2b2o53bo18bo2b2o
57bo17bo2bo77b2obo15bob3o56b3o15bo5bo74b2o2bo15bo3bo76bobo35b2obob
o$bobo52bo2b2o15b2obo2bo54b2o18bob2o77bob2o15bo41b2o15bo3bo15bo5bo
72bo2b3o14b2o2b2o76bobobo36bobo$o2bo53b2obo17bo2b2o53bo19b2o2bo76b
o20bo37bobobo15b3obo16bo3b2o73b2o18bobo76b2o3b2o33b2o2bo$5o53bo16b
obo57bo2b3o14bo2bo77bo18b3o38b2o21bo18bobo77bo17bobo76bo39bo$3bo
52bobo16b2o59b2obo16b2o78b2o17bo62bo20b2o74bobo19bo78bo39bo$3bo51b
obo83bo176b2o95b2o100bo37b2o$56bo83b2o374b2o12$16b2o40bo77b2o21bo
36bo38b2o3b2o33b2o18bo3b2o37bob2o55bo137b2o21bo42bo$5o11bo3b2o35bo
bobo74bo21bobo34bobo2b2o33bo2bo2bo33bo19b3o2bo35b3obo55bobo136bo
19bobobo39b3o$o17bo2bo35bob2obo75bo19bo2bo34bobo2bo35b2obo36bob2o
17b2o35bo5bo54bo2bo137bo17b2obo39bo$o16b2obo35b2o4bo74b2o17b2o2b2o
36b2o39bo36b3o2bo15bo2b3o33bo5bo52b2ob2o136b2o20bobo38bo$b3o14bob
2o35bo4b2o72bo19bo40bo39b2o41bo15bobo3bo34bob3o55bo137bo19b2o2b2o
37b2o$4bo10b3o37bo79bo2b3o16bo40b2o37bo40b2o17bo40b2o57bo137bo4b2o
13bo41bo$o3bo10bo39b2o79b2o2bo17bo40bo38bo39bo116b2o139b2o2bo16bo
39bo$b3o134bo17bobo38bo39b2o40bo115bo142bobo15b2o37b2o$138b2o15bob
o39b2o79b2o116bo141b2o55bo$156bo238b2o199bo$597bo$596b2o9$16b2o22b
2o36b2o16b2o98bo38bo2bo16b2o2bo15b2o3b2o35bo20bo16b2ob2o38b2o39bo
17bo38bo38b2o3b2o16bo40b2o$b3o12bobo17b2o3bo35bobo17bo97bobo2b2o
33b6o14bo2bobo14bo4bo35bobob2o14b3o2b2o13bobo2bo36bo39bobo15bobo
37b3o36bo2bo2bo13bobobo39bobo$o3bo14bo16bo2bo36bo19bo99bobo2bo39bo
14bobo2bo15bo3bo33bo2b2obo13bo5bo13bo4b2o34b2o2bo34b2o2bo15bobobo
39bo37b2obo14b2obo43bo$o19bo17b3o35bob4o14b2o100b2o37b4o16bob2o15b
5o35b2o18bo5bo13b2o37bo2b3o34bob2o16bobo2bo35b2o2bo37bob2o16bobo
39b2o$4o13b4o56bo3bo15bo99bo40bo19bo60b2o16bo3b2o15bo37bo40bo18bob
3o34bo2b2o35b3o17b2o2b2o38bo$o3bo12bo18b3o39bo17bo3b2o96b2o36bo19b
obo19bo41bo17bobo14bobo39b2o38bo19bo38b2o37bo19bo43bo$o3bo13bo16bo
2bo36b3o18bobo2bo97bo36b2o18b2o19bobo38bo20b2o14b2o41bo36b2o21bo
38bo58bo40b2o$b3o12bobo17b2o37bo19b2ob2o98bo79bo39b2o77bo37bo21b2o
36bo59b2o40bo$15bobo180b2o197b2o37bo58b2o101bo$16bo418b2o158b3o$
595bo10$16b2o2b2o18b2o14b2o20bo17b2o22b2o54b2o2b2o53bo59b2o44bo34b
o62bo20b2o17bo16b2o37b2o$5o11bobo2bo14b2o3bo15bo19bobo17bo19b2o2bo
53bo2bo2bo53b3o2b2o53bo40b2o2bobo32bobo60bobo15bo2bobo16bobo15bo
38bo2bob2o$4bo13b2o16bo2bo17bob2o15bo2bo16bo21bobo55bob3o57bo2bo
54bo38bo2bo2bo33bo2bo2b2o52bo2bobo14bobo2bo17bo2bo15bo39b2obo$3bo
13bo20b3o15b2o2bo15bob2obo14b2o20bob2o55bo59b2obo56bo38bo2b2o35b2o
bo2bo52b3obo15bo2b2o16b2o2b2o14b2o40bo2bo$3bo13bo40bo18bo2b2o15bo
18b2o60bo59bob2o54b2o39b2o38bob2o57bo17b2o17bo19bo39b3o2b2o$2bo12b
2o19b3o17b2o20bo17bo18bo59b3o58bo58bo2b2o38bo36bo59b2o20bo17bo19bo
b3o35bo$2bo12bo19bo2bo16bo19b3o18bobob2o14bobo56bo60b2o57bobo2bo
36bo37b2o58bo19bo20b2o18bobobo$2bo14bo17b2o19bobo16bo19b2ob2obo15b
2o177bo2bo37b2o97bo18b2o20bo22bo$16b2o39b2o238b2o136b2o39bo23b2o$
476b2o11$16b2o2b2o35b2obo17b2o96b2o2b2o53bo3b2o14b2o18b2o40b2o22b
2o16b2o38bo38b2o39bo16b2o18b2o17b2o2b2o$b3o12bobo2bo34bo2b2o16bo2b
o94bo2bo2bo53b3o2bo14bo2b2o15bo3b2o35bobo17bo3bobo12b2o3bo36b3o38b
o39bobo15bo18bo2bobo14bo2bo2bo$o3bo13b2o37bo18bobo2bo94bob2o58b2o
16bobo2bo15bo2bo34bo19bobo2bo14bo2bo37bo3b2o33bo3b3o36bo2bo15bo18b
ob2obo15b2obo$o3bo12bo38b2ob2o15bo2b2o96bo59bo19bo2b2o14b2obo36b2o
18bo2b2o16b3o35bob2o2bo33b4o2bo34b2o2b2o14b2o19bo3bo16bob2o$b3o13b
o40bobo16b2o99b2o57bo20b2o18bo39bo18b2o57bo2b2o37bo36bo19bo19bobo
3b2o12b3o$o3bo10b2o38bobo20bo100bo55b2o22bo16b2o40bo19bo16b3o40bo
38bo37bo19bo4b2o13b2o18bo$o3bo10bo39b2o18b3o100bo56bo22bo17bo40b2o
bo16bo17bo2bo38b2o37bo39b2o18b2o2bo$b3o12bo58bo102b2o57bo20b2o17bo
41bobo15b2o18b2o77b2o39bo20bobo$15b2o219b2o38b2o41bobo153bo22b2o$
320bo154b2o11$16b2o38b2o39b2ob2o34b2obo15b2o19bo4b2o32b2obo16bo3b
2o14b2o60bo21b2o18b2o55b2o18b2o58b2o17b2o40b2o$b3o12bobob2o34bo2b
2o37bobo35bob2o16bo18bobo4bo32bob4o14b3o2bo14bo2b2o56bobo17bo2bo
15b2o3bo54bo2bo18bo58bo18bo2bobo34bo2bo$o3bo13b2obo35bobo2bo34bo3b
o54bob2o16bo3bo40bo16b2o16bobobo54bo2b3o14bobobo15bo2bo57bob3o14bo
61bo18bob2obo33b3o$o3bo12bo38b2o3b2o35b2obo35b5o15bobo17b5o37bo2bo
14bo19bo3bo54b2o3bo14bo2b2o16b3o55b2o4bo13b2o59b2o19bo3bo36b3o$b4o
12bo40bo37bobobo35bobo2bo18b2o56bob2o15bo20b3o57bob2o15b2o77bo3b2o
15bo57bo19bobo3b2o32b2o3bo$4bo10b2o38bobo37bobo38bo25bo16bo38bo16b
2o19bobo56bobo20bo16b3o57bo21bo58bobo16b2o38bo$o3bo10bo39b2o39bo
38b2o25b3o13bobo36b2o16bo20b2o57b2o18b3o17bo2bo56b2o21b2o55b2ob3o
55bo$b3o13bo147bo13bo56bo98bo20b2o82bo60bo53b2o$16b2o146b2o69b2o
201b2o60b2o$438bo$439bo$438b2o!
There are still two "walls" of expensive SLs blocking a Moore-connected path between left and right.
Princess of Science, Parcly Taxel

User avatar
Goldtiger997
Posts: 547
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » July 3rd, 2019, 7:27 am

#237 in 12G, using a component from Extrementhusiast's collection:

Code: Select all

x = 78, y = 22, rule = B3/S23
58bo$59bo$11bo45b3o4bo$9b2o54bo11bo$10b2o51b3o9b2o$76b2o$57bo$obo53bob
o$b2o52bo2bo4bo$bo54b2o5bobo$20b2o41b2o5b2o$21bo49bo$20bo49bo$20b2o37b
3o8b2o$22bo49bo$22bo49bo$20b2o48b2o$20bo49bo$21bo49bo$20b2o31b2o15b2o$
52bobo$54bo!
Unfortunately a similar technique cannot be employed for the carrier version, because "carrier cis domino snake" costs 9G, so the total would be 17G. The following method will work if someone finds a sufficiently cheap version of this converter that does work when rewound:

Code: Select all

x = 13, y = 15, rule = B3/S23
9bobo$bobo5b2o$2b2o6bo$2bo$6b2o$6bo$7b3o$9bo$10b2o$5b2o5bo$bo2b2o6bo$b
2o3bo3b2o$obo7bo$12bo$11b2o!

User avatar
dvgrn
Moderator
Posts: 5889
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by dvgrn » July 3rd, 2019, 8:33 am

Goldtiger997 wrote:#237 in 12G, using a component from Extrementhusiast's collection...
That's pretty tricky (and lucky), getting the suppressing loaf at no extra cost.

Components like this have gotten me thinking that it might be time to extend the lookup table for synthesise-patt.py. Maybe four-glider collisions would be too ambitious, but what about single gliders, and/or maybe pairs of gliders, colliding in the vicinity of one or two small still lifes? That might produce a fair number of active patterns that 3G collisions can't reach, that would be good to have in synthesise-patt search results.

Along with that, it might be worth reworking the fingerprints of searchable patterns, to use hash value sequences instead of plain population sequences for recognition purposes. When I'm searching for specific sparks that die quickly, sometimes the current match method gives an awful lot of false positives... On the other hand, population mod 64 allows relatively reasonable-sized data files. File size is going to be a bigger problem anyway if constellation+glider collisions get added.

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » July 3rd, 2019, 11:03 am

#276 in 12G, based on a step from the synthesis for xs17_mk2dioz56:

Code: Select all

x = 44, y = 51, rule = B3/S23
41bo$41bobo$30bobo8b2o$30b2o$31bo2$7bo28bobo$5bobo28b2o$6b2o29bo2$41bo
bo$2bo30bo7b2o$obo29bo9bo$b2o29b3o3$41bo$39b2o$o14bobo22b2o$b2o13b2o$
2o14bo23$33bo$32b2o$32bobo3$4b2o$3bobo$5bo!
Thus, #274 in 14G:

Code: Select all

x = 13, y = 10, rule = B3/S23
3bo$obobo$2obo$3bobo4bo$2o2b2o4bobo$o9b2o$bo$2o5b3o$7bo$8bo!
Tanner Jacobi

User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » July 3rd, 2019, 1:09 pm

I think it might be – well, it is – high time to add syntheses for the remaining strict 18-bit still lifes that still have no synthesis on Shinjuku. There are less than 300 of them, and many of them have plenty of soups – so much that I can't add them all.

You won't have to announce syntheses of these objects here.
Princess of Science, Parcly Taxel

User avatar
dvgrn
Moderator
Posts: 5889
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by dvgrn » July 3rd, 2019, 1:29 pm

Kazyan wrote:#276 in 12G, based on a step from the synthesis for xs17_mk2dioz56...
Thus, #274 in 14G...
#274 is one of the possible Moore-connected doorways through one of the north-south walls that Freywa mentioned a while back.

#115 is now a gap in the other wall. Here's xs17_31km853zw56 in 13 gliders (submitted to Catagolue just now):

Code: Select all

x = 250, y = 75, rule = B3/S23
91bo$89bobo$90b2o7$49bo$48bo$48b3o$40bo$38bobo$39b2o3$149b2o$113bo35b
2o$4bo102bobo2bo122bo$5bo89b3o10b2o2b3o45bo72bobo$3b3o102bo28b3o12bo7b
obo71b2o$151bobo6b2o76b2o$152bo85b2o$242b2o$242bobo$46bo49bo148bo$46bo
49bo41bo104b2obob2o$46bo49bo41bo105bob2obo$b2o135bo103bo$obo239b2o$2bo
12$158b2o$158bobo$158bo5$164b3o$164bo$165bo14$191b3o$191bo$192bo4$202b
o$201b2o$201bobo!
Next up: east-west paths using von Neumann steps rather than Moore steps, maybe? Or just a completely blank row or column -- #109 (xs17_312jaik8zw23) would knock out a column, but it only has one soup.

Post Reply