17 in 17: Efficient 17-bit synthesis project

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » July 23rd, 2019, 12:49 pm

#63 in thirteen gliders:

Code: Select all

x = 229, y = 22, rule = B3/S23
49bo$47b2o$48b2o2$47bo$48bo40b2o$46b3o40b2o$137b2o38b2o38b2o$2bo135bo
2bo36bo2bo36bo2bo2bobo$obo91b2o40bo2b3o34bo2b3o34bo2b3o2b2o$b2o90bo2bo
38bob2o36bob2o36bob2o6bo$4bo3bo33bo51b2o40bo2bo36bo2bo36bo2bo$3b2o3bob
o31b2o8bo38b2o5bo39b2o38b2o37b2o3b2o$3bobo2b2o31bobo7bobo36bobo4bobo
123b2obo$52b2o2b3o33bo5b2o2b3o77b2o38bo3bobo$182bobo41b2o$139b2o41bo$
139b2o37b3o$180bo$141b3o35bo$141bo$142bo!
EDIT: #151 in twelve:

Code: Select all

x = 54, y = 30, rule = B3/S23
16bo$14b2o$15b2o6$13bobo$13b2o$14bo$46bo$o44bo5bobo$b2o42b3o3b2o$2o50b
o$43bo$44b2o4bo$43b2o4b2o$49bobo$45bo$8b2o34bo$4b2o2bobo22bobo8b3o3bo$
5b2obo25b2o13b2o$4bo29bo14bobo2$39b2o$38bo2bob2o$39bobobo$40b2o2bo$43b
2o!
EDIT 2: #182 in thirteen:

Code: Select all

x = 101, y = 47, rule = B3/S23
bo$2bo$3o4$97bo$97bobo$97b2o$17bo$18b2o$17b2o71b2o$81bo8bobo$18bo61bo
6b2obo2bo$17b2o61b3o3bo2bobobo4b2o$17bobo67bobo2bo5bobo$88b2o8bo$79b3o
$79bo$80bo$76bo$76b2o13b2o$75bobo7b2o3b2o$86b2o4bo$85bo2$90b2o$89b2o$
91bo$28bo$27b2o$27bobo13$51b2o$50b2o$52bo!
I Like My Heisenburps! (and others)

User avatar
Freywa
Posts: 631
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » July 25th, 2019, 12:33 pm

Extrementhusiast wrote:EDIT: #151 in twelve:
Actually #150.

108 remain:

Code: Select all

x = 603, y = 217, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo198bo
$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o
17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o17b3o19bo16b
5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo
15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15b
o3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3bo19bo15bo3bo15bo3bo$16bo
3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bo
bo16bo19bo22bo16bo3bo15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo
3bo15bo3bo$16bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobob
o16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo
2bo17b3o16b4o19bo17b3o17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17b
o3bo19bo15bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo
20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo
3bo15bo3bo17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo
17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo
15bo3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o17b3o
18bo18b3o17b3o9$36b2o38b2o78b2obo36bo58bo3b2o96b2o40bo36b2o2b2o35b2o
56b2o39bo$b3o32bobob2o34bo79bob2o35bobo2b2o53b3o2bo95bo2bo35b2obobo34b
o2bo2bo34bobo56bobo37bobo2b2o$o3bo33b2obo35bo82b2o34bo2bo2bo55b2o95bob
o2bo34bob2o2bo34bobobo34bobo60bo36bo2bo2bo$o3bo32bo38b2o2bo76b2o2bo35b
3obo55bo98bob3o38b2o34b2o2bo35bo2b3o55b2o38bob2o$obobo32bo40b3o75bob2o
40bo56bo99bo38b2o38bo39b2o2bo54bo39b2o$o3bo30b2o39b2o78bo42bo58b2o98bo
37bo38bo41bo57bob3o36bo$o3bo30bo39bo2bo76b2o41bo60bo95b3o39bo37b2o38bo
60bobo36bo$b3o32bo39bobo119b2o58bo96bo40b2o77b2o63bo34b2o$35b2o40bo
180b2o279b2o12$36b2ob2o37b2o81b2o33bo118b2obo38b2o18b2o21b2o55b2o76b2o
39bo24b2o$bo34bob2o39bo77b2o2bo33bobo4b2o111bob2o37bo2bo15bo2bo16b2o2b
obo54bo2bo75bobo37bobo20bobobo$2o39bo34b3o77bo2bobo34bo2bo2bo116b2o34b
obobo15b2obob2o13bobo2bo54bo2bobo77bo36bo2bob2o15bob2o$bo35b2ob2o34bo
2b3o75bob2o36b2obobo113b2obo2bo33bo2b2o16bobobo16b2o55b2obo2bo74b2o38b
ob2obo15bo3bo$bo35bo40bo2bo74b2o41bobo114bobo2b2o34b2o18bo18b2o59bob2o
74bo39b2o21bob2o$bo33bobo38bobo78bo41bo117bo40bo19bo18bo59bo77bo40bo
18b3o$bo33b2o38bobo77bo42b2o155b3o21bo16bo59b2o78b2o2b2o33bo19bo$3o73b
o78b2o198bo22b2o16b2o140bo2bo33b2o$538b2o12$38b2o117bo77b2o3b2o115b2o
59b2o99bo15b2o23b2o$b3o33bobo116bobo2b2o72bo2bo2bo114bo2bo57bo2bo97bob
o14bobo18b2o2bo$o3bo31bo119bo2bo2bo74b2obo114bobo2bo55bo2bobo95bobobo
16bo16bo2bobo$4bo32b2o118bob2o77bob2o114bo4bo53bo4bo96bobobo14b2o18bob
2o$3bo35bo116b2o79bo119b4o55b4o95b2o3bo14bo19b2o$2bo32b4o118bo78bo121b
o58bo97bo19bo20bo$bo33bo119bo80b2o118bo58bo100bo19b2o17bo$5o31bo118b2o
199b2o57b2o100bo20bob2o13b2o$37bo478b2o20b2obo$36b2o11$17bo139bo17b2ob
2o55b2o18b2o3bo297bo41bo$b3o12bobo2b2o133bobo17bobo56bo2bob2o13bo3bobo
293bobobo39bobo$o3bo12bobo2bo133bo2bob2o13bo2b3o55b2obo15bo2bo2bo292b
2obobo38bo2bo$4bo14b2o136bob2obo14b2o2bo56bo2bo15bob3o296bobo36b2obobo
$2b2o14bo137b2o20bo58bo2b2o16bo296b2o2bo37bo2b2o$4bo11b3o138bo18bo59bo
22bo295bo42bo$o3bo10bo139bo20b2o58b2o20b2o297bo37b3o$b3o11b2o138b2o
399b2o37bo13$60bo16b2o57b2o22b2o73b2o2b2o14b2o3b2o33b2obob2o36b2o78b2o
15b2o2b2o78bo$3bo54b3o17bo57bo19b2o3bo73bo2bo2bo13bo2bo2bo33bob3obo34b
3obo77bo16bo3bo78bobo$2b2o53bo18bo2b2o57bo17bo2bo77b2obo15bob3o74bo5bo
74b2o2bo15bo3bo76bobo$bobo52bo2b2o15b2obo2bo54b2o18bob2o77bob2o15bo41b
2o35bo5bo72bo2b3o14b2o2b2o76bobobo$o2bo53b2obo17bo2b2o53bo19b2o2bo76bo
20bo37bobobo36bo3b2o73b2o18bobo76b2o3b2o$5o53bo16bobo57bo2b3o14bo2bo
77bo18b3o38b2o40bobo77bo17bobo76bo$3bo52bobo16b2o59b2obo16b2o78b2o17bo
83b2o74bobo19bo78bo$3bo51bobo83bo273b2o100bo$56bo83b2o374b2o12$16b2o
40bo77b2o21bo36bo78b2o61bob2o193b2o21bo42bo$5o11bo3b2o35bobobo74bo21bo
bo34bobo2b2o73bo60b3obo194bo19bobobo39b3o$o17bo2bo35bob2obo75bo19bo2bo
34bobo2bo75bob2o54bo5bo195bo17b2obo39bo$o16b2obo35b2o4bo74b2o17b2o2b2o
36b2o76b3o2bo54bo5bo193b2o20bobo38bo$b3o14bob2o35bo4b2o72bo19bo40bo82b
o56bob3o193bo19b2o2b2o37b2o$4bo10b3o37bo79bo2b3o16bo40b2o78b2o58b2o
195bo4b2o13bo41bo$o3bo10bo39b2o79b2o2bo17bo40bo78bo257b2o2bo16bo39bo$b
3o134bo17bobo38bo81bo258bobo15b2o37b2o$138b2o15bobo39b2o79b2o258b2o55b
o$156bo439bo$597bo$596b2o9$78b2o16b2o98bo38bo2bo16b2o2bo15b2o3b2o35bo
20bo16b2ob2o38b2o57bo77b2o3b2o57b2o$b3o73bobo17bo97bobo2b2o33b6o14bo2b
obo14bo4bo35bobob2o14b3o2b2o13bobo2bo36bo57bobo76bo2bo2bo57bobo$o3bo
71bo19bo99bobo2bo39bo14bobo2bo15bo3bo33bo2b2obo13bo5bo13bo4b2o34b2o2bo
54bobobo77b2obo61bo$o75bob4o14b2o100b2o37b4o16bob2o15b5o35b2o18bo5bo
13b2o37bo2b3o54bobo2bo77bob2o58b2o$4o73bo3bo15bo99bo40bo19bo60b2o16bo
3b2o15bo37bo59bob3o74b3o61bo$o3bo73bo17bo3b2o96b2o36bo19bobo19bo41bo
17bobo14bobo39b2o58bo77bo63bo$o3bo70b3o18bobo2bo97bo36b2o18b2o19bobo
38bo20b2o14b2o41bo59bo138b2o$b3o71bo19b2ob2o98bo79bo39b2o77bo59b2o138b
o$198b2o197b2o199bo$595b3o$595bo10$16b2o2b2o34b2o20bo17b2o78b2o2b2o53b
o59b2o44bo97bo56b2o37b2o$5o11bobo2bo35bo19bobo17bo77bo2bo2bo53b3o2b2o
53bo40b2o2bobo95bobo55bo38bo2bob2o$4bo13b2o37bob2o15bo2bo16bo79bob3o
57bo2bo54bo38bo2bo2bo93bo2bobo56bo39b2obo$3bo13bo38b2o2bo15bob2obo14b
2o79bo59b2obo56bo38bo2b2o94b3obo56b2o40bo2bo$3bo13bo40bo18bo2b2o15bo
80bo59bob2o54b2o39b2o99bo56bo39b3o2b2o$2bo12b2o39b2o20bo17bo78b3o58bo
58bo2b2o38bo96b2o58bob3o35bo$2bo12bo39bo19b3o18bobob2o73bo60b2o57bobo
2bo36bo97bo60bobobo$2bo14bo38bobo16bo19b2ob2obo194bo2bo37b2o97bo63bo$
16b2o39b2o238b2o136b2o63b2o12$16b2o2b2o35b2obo17b2o96b2o2b2o53bo3b2o
14b2o60b2o22b2o56bo38b2o39bo16b2o37b2o2b2o$b3o12bobo2bo34bo2b2o16bo2bo
94bo2bo2bo53b3o2bo14bo2b2o56bobo17bo3bobo54b3o38bo39bobo15bo38bo2bo2bo
$o3bo13b2o37bo18bobo2bo94bob2o58b2o16bobo2bo53bo19bobo2bo55bo3b2o33bo
3b3o36bo2bo15bo39b2obo$o3bo12bo38b2ob2o15bo2b2o96bo59bo19bo2b2o54b2o
18bo2b2o54bob2o2bo33b4o2bo34b2o2b2o14b2o40bob2o$b3o13bo40bobo16b2o99b
2o57bo20b2o58bo18b2o57bo2b2o37bo36bo19bo39b3o$o3bo10b2o38bobo20bo100bo
55b2o22bo58bo19bo59bo38bo37bo19bo4b2o33bo$o3bo10bo39b2o18b3o100bo56bo
22bo58b2obo16bo59b2o37bo39b2o18b2o2bo$b3o12bo58bo102b2o57bo20b2o59bobo
15b2o97b2o39bo20bobo$15b2o219b2o81bobo153bo22b2o$320bo154b2o11$16b2o
38b2o39b2ob2o34b2obo15b2o19bo4b2o52bo3b2o98b2o75b2o18b2o77b2o40b2o$b3o
12bobob2o34bo2b2o37bobo35bob2o16bo18bobo4bo52b3o2bo95bo2bo75bo2bo18bo
77bo2bobo34bo2bo$o3bo13b2obo35bobo2bo34bo3bo54bob2o16bo3bo57b2o95bobob
o76bob3o14bo80bob2obo33b3o$o3bo12bo38b2o3b2o35b2obo35b5o15bobo17b5o55b
o98bo2b2o74b2o4bo13b2o80bo3bo36b3o$b4o12bo40bo37bobobo35bobo2bo18b2o
75bo99b2o77bo3b2o15bo77bobo3b2o32b2o3bo$4bo10b2o38bobo37bobo38bo25bo
16bo55b2o101bo76bo21bo77b2o38bo$o3bo10bo39b2o39bo38b2o25b3o13bobo54bo
99b3o77b2o21b2o116bo$b3o13bo147bo13bo56bo98bo104bo114b2o$16b2o146b2o
69b2o201b2o$438bo$439bo$438b2o!
Princess of Science, Parcly Taxel

User avatar
dvgrn
Moderator
Posts: 6495
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by dvgrn » July 25th, 2019, 5:14 pm

Freywa wrote:108 remain...
I'd better get a contribution in before the list goes below 100. Somewhere around that point, the remaining still lifes are all going to be far beyond my skill level.

There are a few "stringy" still lifes left, like #262 (xs17_j9a4z122c84c). Here's a solution in 15 gliders for #262, which also gives a 15G #261 via the same intermediate still life:

Code: Select all

x = 252, y = 50, rule = B3/S23
141bo$140bo$140b3o7$128bobo$129b2o$129bo5bo$120bobo10b2o$121b2o11b2o$
121bo7$bo11bobo$2b2o9b2o$b2o11bo$66b2o58b2o57b2o58b2o$66bo49bo9bo58bob
o57bobo$67bo48b2o9bo60bo59bo$3bo62b2o47bobo8b2o58b2o58b2o$bobo61bo59bo
59bo59bo$2b2o61bo59bo59bo59bo$66b2o58b2o58b2o15bo42b2o$57bo9bo59bo59bo
16b2o42bob2o$2o53bobo8bo59bo59bo16b2o43b2obo$b2o53b2o8b2o58b2o58b2o$o
59b2o$59bo2bo141b2o$60b2o143b2o$204bo4$183b2o$182bobo$184bo3$172bo$
172b2o27b2o$171bobo27bobo$201bo!
The center 5G snake-to-whatever-that-is converter is the new invention, suggested by one of the first few soups for xs15_gbdzpia4. The whatever-it-is doesn't seem to be quite a claw, more like a "half inflexion". (EDIT: Ah, right, I guess it's a feather.) I looked for an existing snake-to-feather converter in Extrementhusiast's collection, but didn't see one.

Anyway, it looks like this will improve a few more syntheses. It moves #12 from 18 gliders to 17, for example, though that doesn't get it off the expensive list. And #260 goes from 20G to 19G, and so on. It doesn't help #238, though amazingly there's just enough clearance for the converter to work.

Possibly there's a 4G way to do the same conversion?

Ian07
Posts: 524
Joined: September 22nd, 2018, 8:48 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Ian07 » July 25th, 2019, 6:40 pm

dvgrn wrote: Possibly there's a 4G way to do the same conversion?
Yep: (found using synthesise-patt.py)

Code: Select all

x = 17, y = 28, rule = B3/S23
14bo$14bobo$14b2o6$4bobo$5b2o$5bo$9bo$9bobo$9b2o$2o$b2o$o2$5b2o$5bo$6b
o$5b2o$4bo$4bo$5b2o$6bo$5bo$5b2o!
#260 is therefore reduced to 18G:

Code: Select all

x = 17, y = 27, rule = B3/S23
2bo$obo$b2o6$10bobo$10b2o$11bo$7bo$5bobo$6b2o$15b2o$14b2o$16bo2$10b2o$
11bo$10bo$10b2o$12bo$8b3obo$9bobo$7bo$7b2o!

User avatar
dvgrn
Moderator
Posts: 6495
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by dvgrn » July 25th, 2019, 7:46 pm

Ian07 wrote:
dvgrn wrote: Possibly there's a 4G way to do the same conversion?
Yep: (found using synthesise-patt.py)...
Nice! I used synthesise-patt.py also, but only for the six-bit 2o$2bo$2o$o! spark. I should have been more ambitious.

Along the same lines as the current p14-p1024 glider gun collection, it's really nice to have Shinjuku fairly close to up-to-date. It means that if a component can be found that makes an improvement to a synthesis listed in Catagolue, the component is very likely to be a new discovery.

How come snake-to-feather wasn't found long ago, though? I guess there's not a huge demand for feathers as decorations. I didn't notice any on a scan through the spider synthesis, for example.

The 4G snake-to-feather lets #12, xs17_04a9jz3lp1, sneak in under 17 gliders after all:

Code: Select all

x = 17, y = 28, rule = B3/S23
2bo$obo$b2o6$10bobo$10b2o$11bo$7bo$5bobo$6b2o$15b2o$14b2o$16bo2$10b2o$
11bo$10bo$10b2o$12bo$8b4o$8bo$9bo$10bo$9b2o!
Maybe more surprisingly, it also brings #29, xs17_0bdg628cz321, down to 16G, from 18G:

Code: Select all

x = 17, y = 25, rule = B3/S23
2bo$obo$b2o6$10bobo$10b2o$11bo$7bo$5bobo$6b2o$15b2o$14b2o$16bo2$10b2o$
11bo$10bo$5b2o3b2o$5bo2bobo$7b2o2bo$10b2o!
I wouldn't have bet on that one working, but with hindsight, of course it does... EDIT: Also #158, xs17_4a9jzw23cic, in 14 instead of 17.

It seems possible that a transfer.py run will find a few improved feathery 15- and 16-bitters that are used as intermediates for 17-bit SLs, and drop the expensive 17-bit list down into the double digits.

User avatar
Kazyan
Posts: 952
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » July 25th, 2019, 9:47 pm

#88 in at most 16G, and probably a lot fewer with a better loaf inserter:

Code: Select all

x = 32, y = 40, rule = B3/S23
obo$b2o$bo$13bobo$13b2o$14bo2$3bo$bobo$2b2o16bobo$20b2o$21bo$29bobo$
29b2o$30bo4$9b2o$9bobo$10bo$25b2o$25bobo$11b3o11bo$16b2ob2o$16b2ob2o5$
24b3o$24bo$25bo$3bo$3b2o16b2o$2bobo15b2o$22bo$6bo$6b2o$5bobo!
Tanner Jacobi

User avatar
A for awesome
Posts: 1996
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by A for awesome » July 25th, 2019, 10:02 pm

Kazyan wrote:#88 in at most 16G, and probably a lot fewer with a better loaf inserter:

Code: Select all

x = 32, y = 40, rule = B3/S23
obo$b2o$bo$13bobo$13b2o$14bo2$3bo$bobo$2b2o16bobo$20b2o$21bo$29bobo$
29b2o$30bo4$9b2o$9bobo$10bo$25b2o$25bobo$11b3o11bo$16b2ob2o$16b2ob2o5$
24b3o$24bo$25bo$3bo$3b2o16b2o$2bobo15b2o$22bo$6bo$6b2o$5bobo!
At most 14G:

Code: Select all

x = 33, y = 31, rule = B3/S23
21bobo$21b2o$22bo$30bobo$30b2o$31bo3$10bo$9bobo$9bo2bo$10b2o$26b2o$26b
obo$12b3o11bo$17b2ob2o$17b2ob2o2$2o$b2o$o$25b3o$25bo$26bo$4bo$4b2o16b
2o$3bobo15b2o$23bo$7bo$7b2o$6bobo!
dvgrn wrote:It seems possible that a transfer.py run will find a few improved feathery 15- and 16-bitters that are used as intermediates for 17-bit SLs, and drop the expensive 17-bit list down into the double digits.
Apologies; I haven't really been following this project too closely; but I'm curious what exactly transfer.py does — does it run on a single component and transfer it to syntheses of other objects, or does it run through all newly improved components and do the same? Is it run automatically or manually?
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
calcyman
Posts: 2144
Joined: June 1st, 2009, 4:32 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by calcyman » July 25th, 2019, 10:19 pm

A for awesome wrote:Apologies; I haven't really been following this project too closely; but I'm curious what exactly transfer.py does — does it run on a single component and transfer it to syntheses of other objects, or does it run through all newly improved components and do the same? Is it run automatically or manually?
Manually. There are actually two functions in that Python module:
  • A function to take the Shinjuku database of synthesis components and produce the unique 'partial components' therein, saving them to a file called triples.txt.
  • A function which takes triples.txt and a list of 'target' apgcodes, and attempts to synthesise every target using whichever partial components are applicable.
It could potentially be adapted to run automatically whenever new components are detected.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
dvgrn
Moderator
Posts: 6495
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by dvgrn » July 25th, 2019, 10:21 pm

A for awesome wrote:Apologies; I haven't really been following this project too closely; but I'm curious what exactly transfer.py does — does it run on a single component and transfer it to syntheses of other objects, or does it run through all newly improved components and do the same? Is it run automatically or manually?
All I really know is that it was mentioned first at the beginning of this thread, and that it's not magic (even though it looks like it).

The source code includes comments like this:

Code: Select all

    """Applies the fragment tree in the second argument to one orientation
    of every pattern in the first argument. This minimises the number of
    calls to lifelib by assembling all of the targets into a mosaic and
    performing matches on the mosaic."""

User avatar
Freywa
Posts: 631
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » July 26th, 2019, 2:13 am

The snake-to-feather converter also solves #176 and #75:

Code: Select all

x = 55, y = 25, rule = B3/S23
2bo35bo$obo33bobo$b2o34b2o6$10bobo33bobo$10b2o34b2o$11bo35bo$7bo35bo$
5bobo33bobo$6b2o34b2o$15b2o34b2o$14b2o34b2o$16bo35bo2$10b2o34b2o$11bo
35bo$10bo35bo$10b2o34b2o3b2o$6b2o4bo35bobo2bo$6bo2bobo36b2o2bobo$8b2ob
2o40bo!
With these solutions, then, one hundred expensive xs17s remain:

Code: Select all

#3 xs17_025ic826z6511
#5 xs17_039s0qmz311
#7 xs17_03p6413z39c
#8 xs17_03p6413zbd
#9 xs17_03p6426z39c
#10 xs17_03p6426zbd
#11 xs17_03pa39cz321
#24 xs17_08kiarz4a43
#25 xs17_08u1642sgz32
#27 xs17_09fg4cz259c
#28 xs17_0adharz321
#30 xs17_0bdggoz2596
#31 xs17_0c4lb8oz2521
#34 xs17_0c9jc4goz321
#36 xs17_0ci9b8oz6221
#37 xs17_0ci9egoz6221
#38 xs17_0cil9a4z6221
#46 xs17_0drz4706413
#47 xs17_0drz4706426
#49 xs17_0g5r8jdz121
#64 xs17_0j9cz122139c
#65 xs17_0j9cz122d93
#69 xs17_0j9qb8oz23
#70 xs17_0j9qj4cz23
#71 xs17_0kq2c871z641
#72 xs17_0mp2c826z641
#73 xs17_0mp2c84cz641
#74 xs17_0mq0cp3z1221
#79 xs17_1784cggzy332ac
#83 xs17_178r54cz032
#87 xs17_259m453z311
#89 xs17_25a88c93zx252
#90 xs17_25a8cia4zx65
#91 xs17_25a8k8ge2zx23
#95 xs17_25ic826zwc93
#96 xs17_25ic826zxdb
#112 xs17_31ke0dbz032
#113 xs17_31ke0mqz032
#114 xs17_31ke1daz032
#116 xs17_32araa4z032
#117 xs17_32as0qmz032
#118 xs17_32q453z39c
#119 xs17_32q453zbd
#120 xs17_32q453zxdb
#123 xs17_358ge9a4zx23
#124 xs17_358m453z311
#126 xs17_358m9a4z0321
#128 xs17_358mi8czx65
#135 xs17_39c84k8zxbd
#136 xs17_39c88b5zw252
#144 xs17_3h2jap3z011
#147 xs17_3loz34a952
#151 xs17_3pajc4gozw1
#156 xs17_4a96ki6zx641
#164 xs17_4ai312kozx123
#165 xs17_4ai3gjl8zx11
#166 xs17_4ai3wmqzx123
#167 xs17_4aik8a52zw65
#168 xs17_4akg8e13zw65
#169 xs17_4akgf9z6221
#170 xs17_4al9acz6221
#171 xs17_4alhe8z6221
#172 xs17_4alhik8z0641
#181 xs17_64p784czx56
#190 xs17_6ik69a4z056
#191 xs17_6ik8a53z065
#196 xs17_8k4b9czwdb
#198 xs17_8kaajkczw23
#202 xs17_8kihla4z641
#204 xs17_8kkb9cz6421
#209 xs17_at164koz32
#210 xs17_at16853z32
#214 xs17_bt0gbdz0121
#217 xs17_c88m96zbd
#218 xs17_c88r54cz065
#219 xs17_c9jzw1qa4zx23
#221 xs17_cahdik8z023
#226 xs17_cidikozw56
#230 xs17_cilb8oz641
#238 xs17_g8861aczpi6
#247 xs17_gbdz12131e8
#248 xs17_gbdz122c871
#252 xs17_ggc2dicz1ac
#254 xs17_ggc2dioz1ac
#259 xs17_j5o642sgz11
#260 xs17_j9a4z12139c
#265 xs17_j9cz122c871
#266 xs17_jhke0dbz1
#267 xs17_jhke0mqz1
#268 xs17_jhke1daz1
#272 xs17_kq2c871z65
#273 xs17_mk2dicz146
#275 xs17_mk2dioz146
#279 xs17_mk5b8oz56
#280 xs17_mp2c826z65
#281 xs17_mp2c84cz65
#291 xs17_wci4mp3z311
#293 xs17_wo86picz6221
#295 xs17_xkq23zck3z023
#296 xs17_y0j9a4zggma1z1
Princess of Science, Parcly Taxel

User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » July 26th, 2019, 5:13 pm

#291 in sixteen gliders:

Code: Select all

x = 167, y = 79, rule = B3/S23
19bobo$20b2o$20bo8$39bo$40b2o$39b2o16$114bo41b3o$115b2ob2o38bo2bo$114b
2o2bobo36bo2bobo$118bo42b2o5$113bo44bo$63bo3bo42bobobo40bobobo$61bobob
2o42bob2o2bo38bob2o2bo$62b2o2b2o41bo3bobo30bo7bo3bobo$108b2o3b2o32b2o
4b2o3b2o$146b2o5$141bo6b2o15bo$141b2o4bobo14b2o$140bobo6bo14bobo6$68bo
$67b2o$35b2o30bobo$34bobo$36bo2$22b2o41b3o$21bobo41bo$23bo42bo14$2o$b
2o$o!
EDIT:
Freywa wrote:
Extrementhusiast wrote:EDIT: #151 in twelve:
Actually #150.
In that case, here's #150 in sixteen:

Code: Select all

x = 224, y = 54, rule = B3/S23
168bobo$168b2o$169bo$167bo$167bo$167bo2$169b3o$81bo$79b2o$80b2o2$38bo$
39bo$37b3o3$215bobo$215b2o$168b2o46bo5b2o$145bo19b2o2bo44bo4b2o2bo$
143bobo20bobo46bo4bobo$144b2o19bo2b2o43b3o3bo2b2o$65bo81bo18b2o52b2o$
5b2o57bobo80bo19bo53bo$2bo2bobo56bobo80bo17bo53bo$obo2bo59bo99b2o52b2o
$b2o2$61b3o$4b3o74bo$4bo75bo$5bo36bo37b3o$42b2o33b2o$41bobo2b3o28bobo$
48bo28bo$47bo34b2o$81b2o$83bo8$109bo$108b2o$108bobo3$89b2o$88b2o$90bo!
EDIT 2: #90 in nine:

Code: Select all

x = 80, y = 55, rule = B3/S23
20b2o$16b2o2bobo$11bo5b2obo$12b2o2bo$11b2o12$69bo5b2o$70bo4bo$10bo57b
3o5bo$8bobo66bo$9b2o55b2o6b3obo$65bobo5bo2bo2bo$67bo4bobo2b2o$72b2o15$
b2o$obo$2bo$5b2o$6b2o$5bo9$37bo$36b2o$36bobo!
EDIT 3: #169 in fourteen:

Code: Select all

x = 85, y = 18, rule = B3/S23
9bobo$10b2o70bo$bobo6bo67bo3bobo$2b2o72bobo3b2o$2bo74b2o2$16bobo23bo
31bo$3o14b2o22bobo2b2o25bobo2b2o$2bo14bo24bo2bobo26bo2bobo$bo13bo27b2o
26bo3b2o$15b2o23bo28bobo$4b3o7bobo24bo24b2o2b2o3b2o$6bo32b3o25b2o6bobo
$5bo38b3o19bo9bo$44bo$41b2o2bo30b2o$40bobo33bobo$42bo33bo!
I Like My Heisenburps! (and others)

User avatar
Goldtiger997
Posts: 589
Joined: June 21st, 2016, 8:00 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » July 27th, 2019, 2:57 am

#170 in 16:

Code: Select all

x = 152, y = 72, rule = B3/S23
92bobo$92b2o$93bo11$64bo$65bo$63b3o$85bo$84bo$84b3o3$86bo$85bo$47bobo
10bo24b3o$48b2o11b2o$48bo11b2o10$144bo$144bobo$140bo3b2o$141bo$139b3o
4$4bo144bo$5bo142bobo$3b3o138b2obobobo$66bo10bo66bob2o3bo$66b2o8bobo
69b3o$65bobo8bobo69bo$77bo$134b3o$3o133bo$2bo132bo$bo70b3o71b2o$74bo
70b2o$73bo73bo8$56b2o$55bobo$57bo4$52b2o$53b2o$52bo!
I've been trying to solve #171 but no luck so far. If either of the following converters can be reduced then that may solve #171. The first converter was on the object's synthesis page but I made the second one:

Code: Select all

x = 109, y = 44, rule = B3/S23
54bobo$55b2o4bo46bo$55bo3bobo44b2o$39bo20b2o45b2o$39bobo$39b2o4$20b2o$
19bo2bo$18bo2bobo$17bob2obo60b2o$18bo2bo60bo2bo$19b2o60bo2bobo$81b3obo
$84bo$81b3o$13bo4b2o60bo$13b2o3bobo59b2o$5b2o5bobo3bo75bobo$4bobo66bo
20b2o$6bo18b2o47bo20bo$25bobo44b3o$25bo6$bo35b2o$b2o34bobo47b2o$obo34b
o49bobo$87bo2$4b2o$3bobo$5bo58b2o$63bobo$65bo23b2o$88b2o$70bo19bo$70b
2o$69bobo!

User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » July 27th, 2019, 8:00 pm

#126 in fourteen gliders:

Code: Select all

x = 92, y = 29, rule = B3/S23
53bo$53bobo$53b2o4$82bo$83b2o$17bo64b2o$15b2o$16b2o67bo$85bobo$35bo49b
2o$34bo$34b3o13bo28bo9bo$49bobo28b2ob2o3bobo$12bo36bo2bo26b2o3bo3bo2bo
$10b2o23b3o9b2ob2o23bo8bob2ob2o$8bo2b2o22bo10bo2bo26b2o2bo4bo2bo$6bobo
27bo10bobo25b2o3b2o4bobo$7b2o39bo30bobo5bo2$84b2o$bo81b2o$b2o82bo$obo$
81b3o$83bo$82bo!
I Like My Heisenburps! (and others)

AforAmpere
Posts: 1091
Joined: July 1st, 2016, 3:58 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by AforAmpere » July 28th, 2019, 12:34 pm

xs15_wggka52z696 from 8 to 7:

Code: Select all

x = 65, y = 25, rule = B3/S23
$41bobo$42b2o$42bo2$11bo$11bobo$11b2o$52bo$50b3o$9b2o38bo$8b2o38bobo$
2bo7bo37b2o$2b2o$bobo2$6b2o$5bobo$7bo2$45bo$45b2o$44bobo15b3o$62bo$63b
o!
I'm not sure, but it may improve something in the 17's.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » July 28th, 2019, 2:46 pm

AforAmpere wrote:xs15_wggka52z696 from 8 to 7:

Code: Select all

RLE
I'm not sure, but it may improve something in the 17's.
To five:

Code: Select all

x = 16, y = 15, rule = B3/S23
5bo$o4bobo$b2o2b2o$2o$5bo$6bo$4b3o5$6b2o$7b2o4b2o$6bo6bobo$13bo!
EDIT: #226 in twelve gliders:

Code: Select all

x = 102, y = 22, rule = B3/S23
46bo$47bo$45b3o$49bobo$49b2o37bo$bo48bo4bo31bobo10bo$2bo51bobo29bobobo
8bo$3ob2o48bo2bo28bobo2bo7b3o$4bobo48b2o30bob3o$4bo43b2o10bo27bo8b2o$
49b2o9bobo26bo7b2o$38bo9bo11b2o26b2o$38b2o12bo$37bobo12b2o4b2o$51bobo
3b2o$59bo2$48b3o$50bo$49bo4b3o$56bo$55bo!
Plus, two bonus larger SLs!

Code: Select all

x = 37, y = 68, rule = B3/S23
8bo$9b2o$8b2o7bo$16bo$16b3o3$20bo$19bobo$19bo2bo4bobo$20b2o5b2o$28bo2$
11b2o$10bobo$12bo$3o$2bo11b3o8b2o$bo14bo8bobo$15bo9bo4$21b2o$22b2o8b3o
$21bo10bo$33bo16$8bo$9b2o$8b2o7bo$16bo$16b3o3$20bo$19bobo$19bo2bo4bobo
4bobo$20b2o5b2o5b2o$28bo6bo2$11b2o$10bobo$12bo$3o$2bo11b3o8b2o$bo14bo
8bobo$15bo9bo4$14b2o13b2o$13bobo12b2o$15bo14bo!
EDIT 2: #27 in thirteen:

Code: Select all

x = 64, y = 35, rule = B3/S23
38bo$39bo$37b3o2$7bo53bo$6bo54bobo$6b3o41b2o9b2o$10b3o37bo$10bo36b2obo
$11bo35b2ob2o$2o31b2o$b2o31b2o$o4bo27bo$5b2o$4bobo2$37b3o$39bo17b2o$
38bo18bobo$57bo4$50b2o6bo$50bobo4b2o$50bo6bobo2$48b2o$47bobo$49bo3$53b
2o$52b2o$54bo!
EDIT 3: #136 in fourteen:

Code: Select all

x = 38, y = 26, rule = B3/S23
bo$2b2o$b2o$8bo$6b2o$7b2o25bo$o34b2o$b2o31b2o$2o27bobo$30b2o4bo$8bo16b
2o3bo4b2o$6b2o17bo9bobo$7b2o18bo$26b4o$30bo$28bobo3b2o$4b2o21bobo3b2o$
5b2ob2o18bo6bo$4bo3bobo$8bo22b2o$32b2o2b2o$b3o27bo3b2o$3bo33bo$2bo7bo$
9b2o$9bobo!
EDIT 4: Immediate reduction of #136 to thirteen:

Code: Select all

x = 38, y = 26, rule = B3/S23
bo$2b2o$b2o$8bo$6b2o$7b2o25bo$o34b2o$b2o31b2o$2o27bobo$30b2o4bo$8bo16b
2o3bo4b2o$6b2o17bo9bobo$7b2o18bo$26b4o$30bo$28bobo3b2o$4b2o21bobo3b2o$
5b2ob2o18bo6bo$4bo3bobo$8bo23b2o$31bobo$b3o29bo$3bo$2bo7bo$9b2o$9bobo!
This also allows #89 in sixteen:

Code: Select all

x = 70, y = 28, rule = B3/S23
bo$2b2o$b2o25bobo4bobo29bobo$8bo20b2o5b2o29b2o$6b2o21bo6bo31bo$7b2o57b
o$o32b3o31bo$b2o30bo31b3o$2o32bo2$8bo16b2o33b2o3b2o$6b2o17bo34bo4bobo$
7b2o18bo34bo3bo$26b4o31b5o$30bo13b2o$28bobo13bobo16bo$4b2o21bobo14bo
17bobo$5b2ob2o18bo34bo$4bo3bobo$8bo$40bo$b3o35b2o$3bo35bobo$2bo7bo$9b
2o$9bobo14b3o$28bo$27bo!
I Like My Heisenburps! (and others)

User avatar
Kazyan
Posts: 952
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » August 1st, 2019, 12:45 am

Reduction of...whichever this one is, from 17G to 14G, by improving an intermediate:

Code: Select all

x = 87, y = 28, rule = B3/S23
11bo$10bo$10b3o$2bo$3bo$b3o2$45b2o29b2o$14bo30bo30bo$9bobo2bobo29bo30b
o6bo$9b2o3b2o29b2o29b2o5bo$10bo33bo30bo7b3o$45b2o29b2o$47bob2o27bob2o$
47b2obo27b2obo$13bobo$13b2o70bo$14bo31bo37b2o$46bo37bobo$bo13b3o28bo
29b2o$b2o7b2o3bo59bobo$obo6b2o5bo27b2o31bo$11bo31bobo35b2o$45bo35bobo$
81bo$77b2o$76bobo$78bo!
This accustomed me to Goldtiger's synthesize-patt script, which is easier to use than I was anticipating. It retrieved the unique three-glider collision for the active object on the left (see generation 23), and let me pick through about two dozen versions of the one of the right until something fit.
Tanner Jacobi

User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » August 1st, 2019, 4:46 pm

#31 in sixteen gliders:

Code: Select all

x = 105, y = 28, rule = B3/S23
49bo5bo$47bobo4bo34bo$48b2o4b3o30b2o$59bobo26b2o$59b2o$60bo$52b2o37b2o
$51bo2bo6b2o26bo2bo$52b3o5b2o20b2o5b3o$55b2o5bo20b2o7b3o$54bo2bo24bo8b
o2bo4bo$55b2o35b2o5bobo$11bo3bobo81b2o$12b2ob2o69b2o14b2o$11b2o3bo3bo
66b2o7b2o4bobo$19b2o65bo4b2o3bobo3bo$19bobo69bobo2bo$91bo2$87b3o$87bo$
88bo4$b2o$obo$2bo!
Two gliders could likely be saved via a variation on the final step that hits a bookend instead of a bun.

EDIT: #279 in fifteen:

Code: Select all

x = 136, y = 20, rule = B3/S23
93bo$93bobo$93b2o$131bo$130bo$32b2o22b2o27b2o35b2o6b3o$32bo23bo28bo12b
o23bo$5b2o23bobo20b2obo25b2obo11bo21b2obo$4b2o24b2o21bobo26bobo12b3o
19bobo4b2o$b2o3bo19bo27bo4bobo22bobo6b3o25bobobobo5bo$obo21bobo32b2o
22b2ob3o4bo26b2ob2o8bobo$2bo22b2ob2o30bo28bo4bo38b2o$28bobo57b2o40b2o$
28bo22b2o8b3o65b2o$52b2o7bo34b2o33bo$51bo10bo33bobo$96bo$55b3o$55bo$
56bo!
EDIT 2: #30 in fifteen:

Code: Select all

x = 80, y = 67, rule = B3/S23
o$b2o$2o10$13bobo$13b2o$14bo2$13b3o$13bo$14bo2$19b2o$19bobo47bo$19bo
48bobo$68bo2bo$7bo61b2o$6bo59b3o$6b3o57bo2b2o$69bo$o70bo$b2o2bo64b2o$
2o2bo$4b3o2$16bo$15b2o48bo$11b2o2bobo47b2o11bo$12b2o50bobo10b2o$11bo
56b3o6bobo$68bo$69bo3$71bo$70b2o$70bobo15$19bo$18b2o$18bobo3$31b2o$30b
2o$32bo!
EDIT 3: #95 and #96 in sixteen:

Code: Select all

x = 156, y = 73, rule = B3/S23
130bobo$131b2o$131bo23bo$153b2o$154b2o4$101bo7bo$99bobo5b2o$100b2o6b2o
2$102bo49bo$102bobo45b2o$102b2o44bo2b2o$146bobo$bo5bo35b2o48b2o43b2o2b
o4b2o$2bo4bobo33bo2bo46bo2bo41bo2bobo$3o4b2o36b2o48b2o43b2obo$142bo$bo
8b2o33b2o48b2o43b2o$b2o7bobo32b2o48bo44bo$obo7bo86bo44bo$96b2o43b2o8bo
$151b2o$150bobo2$55bo$55bobo$48bobo4b2o$48b2o$49bo2$47b2o$47bobo$47bo
5$60b2o$60bobo$60bo13$43b2o$43bo2bo$45b2o2$37bo7b2o$38bo6b2o$36b3o$48b
o$48bobo$48b2o2$45bobo$46b2o$46bo2$42b2o$41bobo$43bo!
EDIT 4: #28 in eleven, with further improvements likely possible:

Code: Select all

x = 106, y = 27, rule = B3/S23
63bo$62bo$62b3o2$101b2ob2o$3bo21bo35bo40bobo$2bo21bobo33bobo38bo3bo$2b
3o18bo2bo32bo2bo37bob2obo$24b2o34b2o37bo2bobo$b2o45bo50b2o$obo43bobo$
2bo44b2o$22bo71bo$20bobo34b2o36bo$21b2ob3o29bo2bo33b3o$24bo32bobo$25bo
32bo37b2o$96b2o3$74bo$54b3o8b2o6b2o$56bo8bobo5bobo$55bo9bo$61b3o$63bo$
62bo!
I Like My Heisenburps! (and others)

User avatar
Goldtiger997
Posts: 589
Joined: June 21st, 2016, 8:00 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » August 3rd, 2019, 12:49 am

#296 in 16 gliders:

Code: Select all

x = 155, y = 24, rule = B3/S23
55bo$10bo43bo$10bobo41b3o$10b2o$4bo38bo4bo84bo$2bobo39b2o3b2o80bobo$3b
2o38b2o3b2o8b2o72b2o$58b2o43b2o48b2o$103bo49bo$3o42bo7b2o45b2obo46b2ob
o$2bo40bobo6bo2bo44bobo47bobo$bo42b2o7b2o43b2o37b3o8b2o$98bo49bo$99bo
40b2o7bo$98b2o40bobo5b2o$79bo54b2o4bo$79b2o52bo2bo$45b2o31bobo53bobo$
40b3o3b2o87bo17b2o$42bo2bo96b3o7b2o$41bo46b2o54bo9bo$87b2o47b3o4bo$89b
o48bo$137bo!
I've been attempting #36, but the closest I've got is synthesizing this close variant in 13G (it has an eater head instead of just a tail):

Code: Select all

x = 33, y = 48, rule = B3/S23
o$b2o$2o5bobo$7b2o$8bo3bobo$12b2o$13bo9$bo$2bo5b3o3bo$3o11bo$14bo8$20b
o$20bo$20bo2$11b2o3b3o3b3o$11bobo$11bo8bo$20bo$20bo$12b2o$12bobo$12bo
4$5bo$5b2o$4bobo2$31b2o$30b2o$32bo!
Unfortunately, it cannot be cheaply converted to #36. The approach that I think will be required is to modify the bottom junk so that it attaches a tail without an eater head. Something like this:

Code: Select all

x = 24, y = 26, rule = B3/S23
4bo$3bobo$3bobo$4bo$5bo$2b3obo$b3o2bo$bo$4b3o$6bo$2bob2o$2o2b2o$o7b3o$
b3obo2b3o$3b2ob3o2bo$9b2o$4bo4b2o$9b3o$6b2o2bobo4bo$9bo3bob2o4bo$10bob
o3b2o3bobo$11bo9b2o$15bo$9b3o2b2o$11bo2bobo$10bo!

User avatar
Kazyan
Posts: 952
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » August 3rd, 2019, 2:24 am

#190 in 16G via improving an intermediate:

Code: Select all

x = 73, y = 42, rule = B3/S23
49bobo$50b2o$50bo3$18bo$18bobo$18b2o$11bo$9bobo$10b2o2$62bo$61bobob2o$
61bob2obo$14bo47bo$12bobo49b2o$5bo7b2o50bo$3bobo13bo28b2o14bo$4b2o6bo
7bo28b2o13b2o$12b2o4b3o27bo$11bobo$60bo$61b2o$b2o11b3o2b3o38b2o$obo13b
o4bo$2bo12bo4bo$58b2o$59b2o$58bo3$7b2o$6bobo$8bo46b2o$54bobo$56bo3$71b
o$70b2o$70bobo!
Tanner Jacobi

chris_c
Posts: 940
Joined: June 28th, 2014, 7:15 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by chris_c » August 3rd, 2019, 6:06 am

Goldtiger997 wrote: Unfortunately, it cannot be cheaply converted to #36. The approach that I think will be required is to modify the bottom junk so that it attaches a tail without an eater head.
I uploaded this 15G solution to Catagolue:

Code: Select all

x = 95, y = 53, rule = B3/S23
52bo$53b2o$52b2o5bobo$59b2o$60bo3bobo$64b2o$65bo3$92bobo$92b2o$93bo4$
53bo$54bo5b3o3bo$52b3o11bo$66bo2$77bo$bo6bo67bo$2bo5bobo65b3o$3o5b2o3$
2b2o$3b2o$2bo2$63b2o$63bobo$63bo3$64b2o$64bobo$64bo8bo$72b2o$72bobo$
86b3o$86bo$87bo2$52b3o$54bo$53bo4$44b3o$46bo$45bo!

User avatar
Freywa
Posts: 631
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Freywa » August 3rd, 2019, 2:03 pm

This should leave 80 expensive xs17s:

Code: Select all

#3 xs17_025ic826z6511
#5 xs17_039s0qmz311
#7 xs17_03p6413z39c
#8 xs17_03p6413zbd
#9 xs17_03p6426z39c
#10 xs17_03p6426zbd
#11 xs17_03pa39cz321
#24 xs17_08kiarz4a43
#25 xs17_08u1642sgz32
#34 xs17_0c9jc4goz321
#37 xs17_0ci9egoz6221
#38 xs17_0cil9a4z6221
#46 xs17_0drz4706413
#47 xs17_0drz4706426
#49 xs17_0g5r8jdz121
#64 xs17_0j9cz122139c
#65 xs17_0j9cz122d93
#69 xs17_0j9qb8oz23
#70 xs17_0j9qj4cz23
#71 xs17_0kq2c871z641
#72 xs17_0mp2c826z641
#73 xs17_0mp2c84cz641
#74 xs17_0mq0cp3z1221
#79 xs17_1784cggzy332ac
#83 xs17_178r54cz032
#87 xs17_259m453z311
#91 xs17_25a8k8ge2zx23
#112 xs17_31ke0dbz032
#113 xs17_31ke0mqz032
#114 xs17_31ke1daz032
#116 xs17_32araa4z032
#117 xs17_32as0qmz032
#118 xs17_32q453z39c
#119 xs17_32q453zbd
#120 xs17_32q453zxdb
#123 xs17_358ge9a4zx23
#124 xs17_358m453z311
#128 xs17_358mi8czx65
#135 xs17_39c84k8zxbd
#144 xs17_3h2jap3z011
#147 xs17_3loz34a952
#156 xs17_4a96ki6zx641
#164 xs17_4ai312kozx123
#165 xs17_4ai3gjl8zx11
#166 xs17_4ai3wmqzx123
#167 xs17_4aik8a52zw65
#168 xs17_4akg8e13zw65
#170 xs17_4al9acz6221
#172 xs17_4alhik8z0641
#181 xs17_64p784czx56
#191 xs17_6ik8a53z065
#196 xs17_8k4b9czwdb
#198 xs17_8kaajkczw23
#202 xs17_8kihla4z641
#204 xs17_8kkb9cz6421
#209 xs17_at164koz32
#210 xs17_at16853z32
#214 xs17_bt0gbdz0121
#217 xs17_c88m96zbd
#218 xs17_c88r54cz065
#221 xs17_cahdik8z023
#230 xs17_cilb8oz641
#238 xs17_g8861aczpi6
#247 xs17_gbdz12131e8
#248 xs17_gbdz122c871
#252 xs17_ggc2dicz1ac
#254 xs17_ggc2dioz1ac
#259 xs17_j5o642sgz11
#260 xs17_j9a4z12139c
#265 xs17_j9cz122c871
#266 xs17_jhke0dbz1
#267 xs17_jhke0mqz1
#268 xs17_jhke1daz1
#272 xs17_kq2c871z65
#273 xs17_mk2dicz146
#275 xs17_mk2dioz146
#280 xs17_mp2c826z65
#281 xs17_mp2c84cz65
#293 xs17_wo86picz6221
#295 xs17_xkq23zck3z023

Code: Select all

x = 603, y = 214, rule = B3/S23
218bo198b3o$217b2o197bo3bo$218bo201bo$218bo200bo$218bo199bo$218bo
198bo$217b3o196b5o4$17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b
3o17b3o17bo19b3o17b3o19bo16b5o16b3o16b5o16b3o17b3o17b3o17bo19b3o
17b3o19bo16b5o16b3o16b5o16b3o17b3o$16bo3bo15b2o18bo3bo15bo3bo17b2o
16bo19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo
19bo3bo19bo15bo3bo15bo3bo15bo3bo15b2o18bo3bo15bo3bo17b2o16bo19bo3b
o19bo15bo3bo15bo3bo$16bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo
15bo3bo15bo3bo16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo15bo3bo
16bo22bo19bo16bobo16bo19bo22bo16bo3bo15bo3bo$16bobobo16bo21bo18b2o
16bo2bo17b3o16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o
16b4o19bo17b3o17b4o15bobobo16bo21bo18b2o16bo2bo17b3o16b4o19bo17b3o
17b4o$16bo3bo16bo20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16b
o20bo21bo15b5o19bo15bo3bo17bo17bo3bo19bo15bo3bo16bo20bo21bo15b5o
19bo15bo3bo17bo17bo3bo19bo$16bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3b
o17bo17bo3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17b
o3bo15bo3bo15bo3bo16bo19bo18bo3bo18bo16bo3bo15bo3bo17bo17bo3bo15bo
3bo$17b3o16b3o17b5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b
5o16b3o19bo17b3o17b3o18bo18b3o17b3o17b3o16b3o17b5o16b3o19bo17b3o
17b3o18bo18b3o17b3o9$36b2o118b2obo95bo3b2o96b2o77b2o2b2o35b2o56b2o
39bo$b3o32bobob2o114bob2o95b3o2bo95bo2bo75bo2bo2bo34bobo56bobo37bo
bo2b2o$o3bo33b2obo118b2o96b2o95bobo2bo75bobobo34bobo60bo36bo2bo2bo
$o3bo32bo119b2o2bo95bo98bob3o74b2o2bo35bo2b3o55b2o38bob2o$obobo32b
o118bob2o97bo99bo78bo39b2o2bo54bo39b2o$o3bo30b2o119bo101b2o98bo76b
o41bo57bob3o36bo$o3bo30bo119b2o102bo95b3o77b2o38bo60bobo36bo$b3o
32bo221bo96bo119b2o63bo34b2o$35b2o221b2o279b2o12$36b2ob2o120b2o33b
o180b2o21b2o55b2o117bo$bo34bob2o117b2o2bo33bobo4b2o171bo2bo16b2o2b
obo54bo2bo115bobo$2o39bo114bo2bobo34bo2bo2bo172b2obob2o13bobo2bo
54bo2bobo114bo2bob2o$bo35b2ob2o115bob2o36b2obobo174bobobo16b2o55b
2obo2bo114bob2obo$bo35bo118b2o41bobo175bo18b2o59bob2o114b2o$bo33bo
bo119bo41bo178bo18bo59bo118bo$bo33b2o118bo42b2o179bo16bo59b2o117bo
$3o152b2o221b2o16b2o177b2o13$157bo77b2o3b2o115b2o59b2o99bo40b2o$b
3o152bobo2b2o72bo2bo2bo114bo2bo57bo2bo97bobo35b2o2bo$o3bo151bo2bo
2bo74b2obo114bobo2bo55bo2bobo95bobobo33bo2bobo$4bo152bob2o77bob2o
114bo4bo53bo4bo96bobobo34bob2o$3bo152b2o79bo119b4o55b4o95b2o3bo34b
2o$2bo154bo78bo121bo58bo97bo40bo$bo153bo80b2o118bo58bo100bo38bo$5o
150b2o199b2o57b2o100bo37b2o$516b2o12$17bo139bo17b2ob2o55b2o18b2o3b
o297bo41bo$b3o12bobo2b2o133bobo17bobo56bo2bob2o13bo3bobo293bobobo
39bobo$o3bo12bobo2bo133bo2bob2o13bo2b3o55b2obo15bo2bo2bo292b2obobo
38bo2bo$4bo14b2o136bob2obo14b2o2bo56bo2bo15bob3o296bobo36b2obobo$
2b2o14bo137b2o20bo58bo2b2o16bo296b2o2bo37bo2b2o$4bo11b3o138bo18bo
59bo22bo295bo42bo$o3bo10bo139bo20b2o58b2o20b2o297bo37b3o$b3o11b2o
138b2o399b2o37bo13$60bo16b2o57b2o22b2o73b2o2b2o14b2o3b2o33b2obob2o
36b2o78b2o15b2o2b2o78bo$3bo54b3o17bo57bo19b2o3bo73bo2bo2bo13bo2bo
2bo33bob3obo34b3obo77bo16bo3bo78bobo$2b2o53bo18bo2b2o57bo17bo2bo
77b2obo15bob3o74bo5bo74b2o2bo15bo3bo76bobo$bobo52bo2b2o15b2obo2bo
54b2o18bob2o77bob2o15bo41b2o35bo5bo72bo2b3o14b2o2b2o76bobobo$o2bo
53b2obo17bo2b2o53bo19b2o2bo76bo20bo37bobobo36bo3b2o73b2o18bobo76b
2o3b2o$5o53bo16bobo57bo2b3o14bo2bo77bo18b3o38b2o40bobo77bo17bobo
76bo$3bo52bobo16b2o59b2obo16b2o78b2o17bo83b2o74bobo19bo78bo$3bo51b
obo83bo273b2o100bo$56bo83b2o374b2o12$16b2o40bo77b2o137b2o61bob2o
193b2o21bo42bo$5o11bo3b2o35bobobo74bo138bo60b3obo194bo19bobobo39b
3o$o17bo2bo35bob2obo75bo138bob2o54bo5bo195bo17b2obo39bo$o16b2obo
35b2o4bo74b2o137b3o2bo54bo5bo193b2o20bobo38bo$b3o14bob2o35bo4b2o
72bo143bo56bob3o193bo19b2o2b2o37b2o$4bo10b3o37bo79bo2b3o137b2o58b
2o195bo4b2o13bo41bo$o3bo10bo39b2o79b2o2bo137bo257b2o2bo16bo39bo$b
3o134bo140bo258bobo15b2o37b2o$138b2o138b2o258b2o55bo$596bo$597bo$
596b2o9$96b2o137bo2bo78bo20bo59b2o135b2o3b2o$b3o93bo137b6o75bobob
2o14b3o2b2o55bo136bo2bo2bo$o3bo91bo144bo73bo2b2obo13bo5bo54b2o2bo
136b2obo$o95b2o139b4o75b2o18bo5bo52bo2b3o137bob2o$4o93bo140bo80b2o
16bo3b2o53bo138b3o$o3bo91bo3b2o134bo83bo17bobo56b2o136bo$o3bo91bob
o2bo134b2o80bo20b2o57bo$b3o91b2ob2o218b2o77bo$397b2o12$16b2o2b2o
56bo17b2o78b2o2b2o53bo59b2o44bo97bo56b2o37b2o$5o11bobo2bo55bobo17b
o77bo2bo2bo53b3o2b2o53bo40b2o2bobo95bobo55bo38bo2bob2o$4bo13b2o56b
o2bo16bo79bob3o57bo2bo54bo38bo2bo2bo93bo2bobo56bo39b2obo$3bo13bo
58bob2obo14b2o79bo59b2obo56bo38bo2b2o94b3obo56b2o40bo2bo$3bo13bo
59bo2b2o15bo80bo59bob2o54b2o39b2o99bo56bo39b3o2b2o$2bo12b2o61bo17b
o78b3o58bo58bo2b2o38bo96b2o58bob3o35bo$2bo12bo59b3o18bobob2o73bo
60b2o57bobo2bo36bo97bo60bobobo$2bo14bo57bo19b2ob2obo194bo2bo37b2o
97bo63bo$16b2o279b2o136b2o63b2o12$16b2o2b2o56b2o155bo3b2o14b2o84b
2o56bo38b2o39bo16b2o37b2o2b2o$b3o12bobo2bo55bo2bo154b3o2bo14bo2b2o
76bo3bobo54b3o38bo39bobo15bo38bo2bo2bo$o3bo13b2o56bobo2bo156b2o16b
obo2bo73bobo2bo55bo3b2o33bo3b3o36bo2bo15bo39b2obo$o3bo12bo58bo2b2o
156bo19bo2b2o74bo2b2o54bob2o2bo33b4o2bo34b2o2b2o14b2o40bob2o$b3o
13bo59b2o158bo20b2o77b2o57bo2b2o37bo36bo19bo39b3o$o3bo10b2o61bo
156b2o22bo78bo59bo38bo37bo19bo4b2o33bo$o3bo10bo59b3o157bo22bo78bo
59b2o37bo39b2o18b2o2bo$b3o12bo58bo161bo20b2o77b2o97b2o39bo20bobo$
15b2o219b2o237bo22b2o$475b2o11$16b2o79b2ob2o34b2obo15b2o78bo3b2o
175b2o97b2o$b3o12bobob2o76bobo35bob2o16bo78b3o2bo174bo2bo96bo2bobo
$o3bo13b2obo75bo3bo54bob2o78b2o176bob3o95bob2obo$o3bo12bo80b2obo
35b5o15bobo77bo177b2o4bo95bo3bo$b4o12bo78bobobo35bobo2bo18b2o75bo
178bo3b2o93bobo3b2o$4bo10b2o78bobo38bo25bo72b2o178bo99b2o$o3bo10bo
80bo38b2o25b3o70bo179b2o$b3o13bo147bo70bo$16b2o146b2o69b2o!
Princess of Science, Parcly Taxel

User avatar
Kazyan
Posts: 952
Joined: February 6th, 2014, 11:02 pm

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Kazyan » August 3rd, 2019, 3:06 pm

#167 in 16G:

Code: Select all

x = 123, y = 28, rule = B3/S23
32bo$30b2o$17bo13b2o$15b2o$16b2o9bo$27bobo$27b2o2$15bo$14bo$3bobo8b3o$
4b2o72bo$4bo72bobo32bo$14b3o59bobo32bobo$14bo51bo9bo33bobo$15bo3b2o44b
obo4bob2obo32bo11bo$19bobo8bo34bobo4b2obo2bo27bob2obo8bobo$19bo9b2o35b
o9b2o28b2obo2bo8b2o$29bobo36b2o40b2o$68bobo$68bo51bobo$b2o113b2o2b2o$o
bo113bobo2bo$2bo99bo13bo$102b2o$15b2o84bobo7b2o$14b2o94b2o$16bo95bo!
EDIT: #221 in 14G; there's probably a one-glider cleanup for the intermediate that could reduce the cost further by 1:

Code: Select all

x = 81, y = 45, rule = B3/S23
bo22bo$2bo19bobo43bo$3o20b2o44b2o$68b2o$24b3o$24bo10bo$25bo8bo$19b2o
13b3o$18bobo56b2o$20bo55bo2bo$67bo7bobo2bo$67b2o6bobob2o$25bo40bobo7bo
bo$25b2o51bo$24bobo51b2o2$70b3o$72bo$35b3o33bo$35bo$27bo8bo35b2o3bo$
27b2o42b2o3bo$26bobo44bo2b3o20$17b3o$19bo$18bo!
EDIT 2: #265 in 11G; cheaper should be possible by using less than three cleanup gliders (two are disguised as a boat) and applying constellations. This also yields #248 in 16G via converter.

Code: Select all

x = 193, y = 23, rule = B3/S23
120bobo$121b2o$121bo33bo$124bo29bo$107b2o2b2o11bo29b3o$106bo2bo2bo11bo
$106bo2b2o36b2o2b2o5bobo26b2o$3bo61bo38b2o14b3o3b3o17bo2bo2bo5b2o26bo
2bob2o$4bo59bo39bo41bo2b2o8bo26bo2b2obo$2b3o59b3o38b3o16bo19b2o9b2o4b
2o21b2o$47bo59bo16bo19bo9b2o5bobo20bo$45bobo21bo54bo20b3o8bo4bo23b3o$b
o44b2o20bobo76bo3b2o34bo$2bo65bobo79bobo$3o50bo15bo82bo$5b3o46bo$7bo7b
obo34b3o12bo$6bo9b2o48bobo8bo$16bo42bo6bobo7bobo$57b2o8bo9b2o$3b3o10b
3o39b2o$5bo10bo$4bo12bo!
EDIT 3: There was an eater-to-python converter out there somewhere, right? I haven't found it again, but if it's out there and is +5G or less, it would solve #252 via converting this. EDIT 3a: Found that converter, so it's 15G.

Code: Select all

x = 69, y = 35, rule = B3/S23
60bo$53bo6bobo$54bo5b2o$52b3o$59bo7bo$57bobo6bo$58b2o6b3o$12bo$10b2o$
11b2o$4bo51b2o$2bobo51bobo$3b2o53bo$58b2o3b2o$9bobo48bobobo$9b2o5bo43b
obo$10bo5bobo42bobo$4bo11b2o44bo$5bo5b2o$3b3o4bobo$12bo$3o$2bo$bo15bob
o$17b2o$18bo3$25b2o$24b2o$26bo2$12bo7b2o$11b2o7bobo$11bobo6bo!
EDIT 4: #123 in 16G by improving an intermediate:

Code: Select all

x = 145, y = 36, rule = B3/S23
100bo$101b2o$100b2o5$27bobo$28b2o$28bo35bo3b2o54bo3b2o$32bo30bobo3bo
53bobo3bo$31bo30bo2bo2bo53bo2bo2bo7bo$8b2o21b3o29b3obo55b3obo6b2o$9b2o
17b2o36bo59bo8b2o2b2o$8bo20b2o32b3o57b3o13bobo$28bo34bo59bo15bo$38bo$
37bo28b3o$18bobo16b3o30b3o$19b2o49bo66b2o$19bo51bo64bobo$138bo2$29bo3b
3o$3o25b2o3bo$2bo25bobo3bo$bo5$103bo$103b2o$102bobo38bo$142b2o$142bobo
!
Tanner Jacobi

User avatar
Goldtiger997
Posts: 589
Joined: June 21st, 2016, 8:00 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Goldtiger997 » August 4th, 2019, 3:07 am

#238 in 16G:

Code: Select all

x = 217, y = 39, rule = B3/S23
54bo$52b2o144bo$53b2o141bobo$197b2o5bo$49bo152bobo9bobo$50b2o151b2o9b
2o$49b2o94bobo48bo18bo$57bo87b2o48bobo$56bo89bo47bo2bo4bo$56b3o136b2o
4bo$109b2o32bo15b2o40b3o5b2o$9bobo98bo33b2o14bo49bo$9b2o98bo33b2o14bo
49bo$10bo98b2o48b2o37b3o8b2o$2bo108bo49bo49bo$obo108bo49bo49bo$b2o106b
2o48b2o48b2o$52bo56bo49bo49bo$9b2o40bo2bo56bo49bo49bo$8b2o41bo2bo3bobo
49b2o48b2o30b3o15b2o$10bo42bo4b2o134bo$59bo133bo3$62b2o$62bobo$62bo5$
114b2o$108b2o4b2o$108b2o3$109b3o$109bo$110bo!
Edit: #147 in 10G:

Code: Select all

x = 95, y = 20, rule = B3/S23
87bo$85b2o$6bo79b2o$4b2o$5b2o53bobo16bobo$60b2o18b2o$50b2o9bo18bo3bobo
$5bo44b2o32b2o$3bobo79bo$4b2o$46bo44b2o$bo43bobo39b2obo2bo$b2o42bobo
39bob2obobo$obo43bo44bo2bo$30b2o59bobo$31b2o59bo$30bo50b3o$45b2o36bo$
44bobo35bo$46bo!

User avatar
Extrementhusiast
Posts: 1827
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 17 in 17: Efficient 17-bit synthesis project

Post by Extrementhusiast » August 4th, 2019, 4:21 pm

#83 in fourteen gliders:

Code: Select all

x = 163, y = 34, rule = B3/S23
17bo$15b2o$16b2o12$149bobo$150b2o$150bo$153bobo$153b2o$100bo49bo3bo$
49b3o2b2o44bo3b2o43bobo$o3bo49bo2bo42bo3bo2bo41bobo5bo$b2obobo49b2o8bo
39b2o39bobob2o4bobo$2o2b2o61bo79b2obo6b2o$65b3o82bo9b2o$106bo8b2o30b3o
4b2o4bobo$67bo38b2o7bobo29bo6bobo3bo$66b2o37bobo2b2o4bo37bo$66bobo31b
3o6b2o$102bo8bo$101bo$105b3o$105bo$106bo!
EDIT: #144 in fourteen:

Code: Select all

x = 144, y = 23, rule = B3/S23
72bo$21bo48b2o60bobo$21bobo43b2o2b2o60b2o$10bo10b2o38b2o4b2o42b2o20bo
8b2o$11b2o45b2o2bo45b2o2bo26b2o2bo$10b2o45bobobo11b2o27b3o2bobobo26bob
obo$bo56bo2b2o10bobo28bo3bo2b2o24bobo2b2o$2bo58bo12bo28bo7bo26bo3bo$3o
59bo42bo6bo30bo$61b2o41b2o5b2o29b2o$5bo98bobo$3bobo132b2o$4b2o131b2o$
134b2o3bo$6bo128b2o$6bobo3bo121bo$6b2o3bo$11b3o125b2o$138b2o$140bo$13b
3o$13bo$14bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1106
Joined: June 1st, 2013, 12:00 am

Re: 17 in 17: Efficient 17-bit synthesis project

Post by mniemiec » August 5th, 2019, 7:28 am

Sorry to be coming to the party late. I only just found out this effort was going on. Great work, everybody!

From June 19:
calcyman wrote:Now all synthesisable still-lifes can be synthesized in less than 2 gliders per bit!...
Macbi wrote:All synthesisable strict still-lifes. We don't know that we can place every 8-bitter next to every 9-bitter in any orientation with only 34 gliders.
Synthesis of pseudo-still-lifes is usually much simpler than synthesizing still-lifes, because, in most cases, for an n-bit pseudo-still-life, all you need to do is create a stil-life of size at most n-4, and add another of size at most n/2 adjacent to it. All still-lifes up to 8 bits can be added fairly cheaply.

There are basically two situations that are more difficult: a large still-life that has a difficult-to-access bonding site (such as the cis-shillelagh), or pairs of still-lifes that are bonded along some other surface than domino-on-domino.

For all pseudo-still-lifes up to 16 bits, there are only 5 that cost >1 glider per bit: 23, 18, 25, 20, and 27 respectively (top row below); two in the first category, and three in the latter.

I never computed the exact costs for all the 17-bit ones, but all of those should cost no more than 1 glider/bit except ones in the above categories. I've manually examined all with non-standard bonding geometries, and even most of those come in at no more than one glider/bit, except five costing 23, 18, 18, 22, and 25 respectively (second row below). There are also three new geometries that first occur at 17 bits, but all of those are relatively easy to synthesize.

Of course, an exhaustive computer search should be performed to be sure, but I wouldn't expect any surprises.

Quasi-still-lifes are even easier to construct (if anyone cares). In most cases, one can simply construct each still-life separately, so if the pieces don't exceed 1 glider/bit, neither will the result. There are a few exceptions that can't be synthesized this way, typically when one piece doesn't have a suitable way of edge-shooting it (e.g. hook w/tail prongs first) or when adjacent pieces are separated by an empty diagonal but no clear orthogonal line. There are only one 15-bit one (28 gliders, 3rd line), four 16-bit ones (32, 17, 20, and 20 gliders, 4th line), and four 17-bit ones (36, 33, 31, and 46 gliders, 5th line) that exceed one glider/bit.

Code: Select all

x = 66, y = 69, rule = B3/S23
30bo$3boo13boo10b3o12boobo11boobo$bbobo12bobo13boboo9bob3o9boboo$bo14b
o15bo3bo8bo5bo12boo$o14bo5boo9boobo10b3obo10boobo$oboboboo7bobobobbo
13b3o9boboo9boobbo$booboobo8booboo17bo25boo10$3boo10boobooboo7booboo
10boobo11boobo$bbobo11bobo3bo8bobobboo8bob3o9boboo$bo14bobbobo9bobbobo
8bo5bo12boo$o6boo8boboboo9bobobbo8b3obobo8boobo$obobobobo9bo14bobboo
10boboo8bobobbo$booboo55bobboo10$oobboobo$o3boboo$bo$bbo$3bobo$4boo10$
oobboo12boo12bo13bo$o3bobobo8bobo11bobobbo8bobobbo$bo5boo7bo15bobbobo
8bobbobo$bbo12bo5boo13bo13bo$3bobo9boo5bo8bo15bo$4boo15bo8bobobbo10bob
obbo$18bobo10bobbobo10bobbobo$18boo15bo15bo8$oobboo9boo16boo10boo$o3bo
bo8bobboobboo8bobo11bo$bo5bobo6boobo3bo7bo5boo7boboobboo$bbo5boo12bo7b
o7bo8bobo3bo$3bobo15bo8boo5bo14bo$4boo12bobo15bo14bo$18boo13bobo12bobo
$33boo13boo!

Post Reply