Yes, that 39x1 pattern at
http://www.conwaylife.com/wiki/index.ph ... ck_pattern is what caused me to search further. So far all other infinite growth patterns are variations of these 2 (mainly different timing, sometimes few extra gliders and different initial debris). Main goal was to find pattern that generates unlimited amount gliders.
Running times for different bit sizes (record marked with '!'):
1 bits: 1 generations!
2 bits: 1 generations
3 bits: 1 generations
4 bits: 2 generations!
5 bits: 6 generations!
6 bits: 12 generations!
7 bits: 14 generations!
8 bits: 48 generations!
9 bits: 25 generations
10 bits: 82 generations!
11 bits: 185 generations!
12 bits: 285 generations!
13 bits: 158 generations
14 bits: 119 generations
15 bits: 3183 generations!
16 bits: 375 generations
17 bits: 395 generations
18 bits: 1138 generations
19 bits: 3183 generations
20 bits: 3137 generations
21 bits: 2668 generations
22 bits: 3767 generations!
23 bits: 3069 generations
24 bits: 5029 generations!
25 bits: 5685 generations!
26 bits: 5802 generations!
27 bits: 6292 generations!
28 bits: 8403 generations!
29 bits: 5798 generations
30 bits: 5909 generations
31 bits: 7902 generations
32 bits: 6647 generations
33 bits: 9657 generations!
34 bits: 9352 generations
35 bits: 12048 generations!
36 bits: 10667 generations
37 bits: 11790 generations
38 bits: 14811 generations!
39 bits: 14605 generations
40 bits: 13783 generations
41 bits: 21178 generations!
42 bits: 14911 generations
Spaced by 10000, N bits at coordinate N*10000.
Code: Select all
x = 410042, y = 1, rule = B3/S23
o9999b2o9998bobo9997b4o9996b5o9995b6o9994b7o9993b8o9992b3ob5o9991b4ob
5o9990b3ob7o9989b4ob7o9988b5ob7o9987b5ob8o9986b4o2b3ob5o9985b4ob5ob5o
9984b3ob13o9983b4ob7ob5o9982b3ob4o2b3ob5o9981b4o3b7ob5o9980b4o2b3ob5ob
5o9979b3o2b7o2b4ob3o9978b5ob3o3b3o2b6o9977b3o5b3o2b4o2b5o9976b3o2b3o2b
4o3b8o9975b3o2b3ob10o2b5o9974b4ob3o8b3ob7o9973b7ob4o2b14o9972b5ob3o2b
12ob5o9971b3ob5ob3o2b8ob6o9970b3o4b5o3b5ob10o9969b4ob3ob12o2b3ob5o
9968b3ob4ob4o4b4ob5ob5o9967b3ob4ob4ob8ob3ob7o9966b3o3b5o5b8ob3ob6o
9965b6ob4ob3o2b11ob7o9964b4ob5o4b3ob4ob4o3b7o9963b4o2b4o3b5o2b5o2b3o2b
6o9962b3o3b9o2b4ob6o2b4o2b3o9961b3o5b3o3b5o3b4o2b6o2b4o9960b10o3b3ob4o
3b3ob13o9959b3ob6o2b3o2b5o2b5o3b4o2b4o!
For which values of N and M has NxM been searched exhaustively?
For M=1 it has been now searched for N<=42.