Page 1 of 1
LOM Conduits?
Posted: October 24th, 2010, 1:21 am
by Extrementhusiast
The idea came up somewhere (either by myself or someone else on this forum) that we could use LOMs in conduits. I have made a list of viable "starters":
Code: Select all
x = 1760, y = 38, rule = B3/S23
1089bo$1088bobo$1088bobo564bo$1086b3ob2o116b2o444bobo$861b2o222bo123bo
444bobo$279bo399b2o181bo140bo82b3ob2o117bobo441b2ob3o$278bobo399bo181b
obo58b2o78b3o82bob2o118b2o270b2o175bo$279bo400bobo105b2o73b2o58bo82bo
475b2o169b2ob3o$657bo23b2o105bo132bobo81b2o566b2o78b2obo$277b5o373b3o
128bobo132b2o493b2o155bo$277bo4bo264b2o105bo131b2o628bo154bobo$280bo2b
o225b2o36b2o105b2o758bobo154b2o$280b2obo2bo79b2o141bo904b2o$277bo5bobo
bo78b2o139bobo784b2o$276bobo4bo2bo220b2o785b2o$246bo29bo2bo2b2o586b3o
39b3o843b2o$246b3o28b2o499b3o89bo2bo38bo2bo300b3o539b2o$249bo435b3o90b
o2bo89b3o39b3o179b3o118bo2bo65b3o116b3o$248b2o398b3o34bo2bo90b3o228b3o
82bo2bo118b3o65bo2bo115bo2bo236b3o$648bo2bo34b3o321bo2bo82b3o187b3o
116b3o76b3o73b3o81bo2bo$17bo483b3o145b3o359b3o470bo2bo72bo2bo81b3o$17b
3o481bo2bo42b3o935b3o73b3o$3b2o15bo345b3o133b3o42bo2bo1195b3o$3b2o14b
2o252b3o90bo2bo178b3o1195bo2bo$250b3o20bo2bo90b3o1377b3o$3o18b3o15b3o
34b3o171bo2bo20b3o$o2bo17bo2bo14bo2bo33bo2bo39b3o129b3o$b3o18b3o15b3o
34b3o39bo2bo41b3o$44b2o74b3o41bo2bo27b3o$44bobo34b2o82b3o27bo2bo$46bo
34bobo112b3o$46b2o35bo$83b2o38b2o$123bo39b2o$124b3o37bo$126bo34b3o$
161bo34b2o$196b2o!
Re: LOM Conduits?
Posted: October 24th, 2010, 4:37 pm
by liltrout
hi I was wondering if you could help me (don't feel like you have to), but since you came up with starters, do you happen to know any patterns that die out? I'm doing a math project on it and I am stuck. Thank you.
Re: LOM Conduits?
Posted: October 24th, 2010, 8:00 pm
by p46beth
@above: not quite sure what you mean. Do you just mean a pattern that eventually dies out completely? Anything like this would work:
Code: Select all
x = 14, y = 15, rule = B3/S23
12bo$12bo$12bo10$3o$2bo$bo!
Re: LOM Conduits?
Posted: October 13th, 2011, 10:13 pm
by beebop
Extrementhusiast wrote:The idea came up somewhere (either by myself or someone else on this forum) that we could use LOMs in conduits.
Cool idea! It would be nice to have many conduit types in GoL, and probably also converters for maximum flexibility. I hope you can create actual conduits from these, not just things that convert a LoM to a mess.
Re: LOM Conduits?
Posted: October 14th, 2011, 11:12 am
by Tropylium
A 62-generation 4-by-12 shift conduit, from the half-delete reaction involving eater3:
Code: Select all
x = 17, y = 34, rule = life
6bo$5bobo$6bo2$4b5o$4bo4bo$7bo2bo$7b2obo2bo$4bo5bobobo$3bobo4bo2bo$3bo
2bo2b2o$4b2o6$3o$obo$o2bo$bobo$b3o9$13b2o$13bo$14b3o$16bo!
I don't know how to best delete the extra loaf; there isn't room to just use a block. Another eater above, separated by a 5-cell gap does work, but the new LoM will crash into that…
Would make a p124 if that can be addressed.
Seemingly less useful, but, related conduits producing HF/TL:
Code: Select all
x = 45, y = 35, rule = life
6bo29bo$5bobo27bobo$6bo29bo2$4b5o25b5o$4bo4bo24bo4bo$7bo2bo26bo2bo$7b
2obo2bo23b2obo2bo$4bo5bobobo19bo5bobobo$3bobo4bo2bo19bobo4bo2bo$3bo2bo
2b2o22bo2bo2b2o$4b2o28b2o6$3o27b3o$obo27bobo$o2bo26bo2bo$bobo27bobo$b
3o27b3o5$43b2o$43b2o6$5b2o$5b2o!
Pi + various junk in 120g (probably useless)
Code: Select all
x = 18, y = 44, rule = life
6bo$5bobo$6bo2$4b5o$4bo4bo$7bo2bo$7b2obo2bo$4bo5bobobo$3bobo4bo2bo$3bo
2bo2b2o$4b2o6$3o$obo14bo$o2bo11b3o$bobo10bo$b3o10b2o18$13b2o$13bo$14b
3o$9b2o5bo$9b2o!
---
By the way, the natural bottleneck point of the LoM is the 12-cell shape shown in the previous. Natural LoMs fairly commonly develop not from the stairstep hexomino, but along more asymmetric paths:
Code: Select all
x = 5, y = 14, rule = life
2o$2bo$3b2o$2bo7$b3o$o3bo$4bo$3bo!
---
Glider in 77g:
Code: Select all
x = 15, y = 16, rule = life
11b2obo$11bob2o3$3o$obo$o2bo$bobo$b3o$8b2obo$8b2ob3o$14bo$8b2ob3o$2b2o
5bobo$2b2o5bobo$10bo!
Re: LOM Conduits?
Posted: October 15th, 2011, 8:22 pm
by knightlife
Tropylium wrote:Glider in 77g:
Code: Select all
x = 15, y = 16, rule = life
11b2obo$11bob2o3$3o$obo$o2bo$bobo$b3o$8b2obo$8b2ob3o$14bo$8b2ob3o$2b2o
5bobo$2b2o5bobo$10bo!
Nice LOM to glider, now just need a stable glider to LOM. If the glider has the right flight-path (traveling SE in this case) then the combination glider -> LOM -> glider will produce a stable 90 degree reflector. Of course the two components cannot interfere with each other,
Gliders can stabilize this LOM oscillator:
Code: Select all
x = 193, y = 169, rule = B3/S23
190bobo$190b2o$191bo29$159bobo$159b2o$160bo18$106bo$105bobo$106bo2$
104b5o$104bo4bo$107bo2bo$107b2obo2bo$104bo5bobobo$103bobo4bo2bo$103bo
2bo2b2o$104b2o22bobo$128b2o$129bo4$100b3o$100bobo$100bo2bo$101bobo$
101b3o18$102b2o$97b2o2bo2bo$94bo2bo4bobo$93bobobo5bo$94bo2bob2o$97bo2b
o$98bo4bo$99b5o2$101bo$100bobo$101bo3$62b2o$63b2o$62bo29$31b2o$32b2o$
31bo29$2o$b2o$o!
But p124 guns are huge:
Code: Select all
x = 290, y = 379, rule = B3/S23
217b2o$217b2o2$225b2o$212bo12bo$213b2o8bobo$211b2o10b2o$213bo3$203b2o$
202bob3obo$202bo4b2o$200bobobobo$199bobo2b2ob3o27b2o$199bo2b2o3b3o24bo
4bo$200b2o2b2o3b2o7bo2bo10b2obobobo$202bobo3b3o8bob2o9b2o3bobobo$200b
2o2b2o3b2o8bo3bob3o5bob3o2bobo$199bo2b2o3b3o12b2obobo5bo4b2o2bo$199bob
o2b2ob3o13bo9b3obo2b2o$200bobobobo16bo2bo6b2o3b2o$202bo4b2o14bo9b3obo
2b2o$202bob3obo14b3o7bo4b2o2bo$203b2o28bob3o2bobo$232b2o3bobobo$232b2o
bobobo$234bo4bo$222b4o11b2o$225bo$221bobo2bo$221bobo6b2o$222b2o6bobo$
223bo8bo29b2o$232b2o28b2o$223b2o$179b2o42b2o45b2o$179b2o43bo32bo7bo4bo
$221b3o34b2o4bo3bobo$187b2o32b2o33b2o6bo3b2o$174bo12bo33bo36bo$175b2o
8bobo$173b2o10b2o$175bo72b2o$247bob3obo$247bo4b2o$165b2o78bobobobo10bo
$164bo4bo74bobo2b2ob3o5b2obo18b2o$164bobobob2o72bo2b2o3b3o5b2o17bo4bo$
162bobobo3b2o6b2o65b2o2b2o3b2o5b2o14b2obobobo$161bobo2b3obo8bo67bobo3b
3o21b2o3bobobo$161bo2b2o4bo5bo2bo65b2o2b2o3b2o2bo19bob3o2bobo$162b2o2b
ob3o3b2o68bo2b2o3b3o3bobo4b3o10bo4b2o2bo$164b2o3b2o3b2o3b3o62bobo2b2ob
3o4b2o3bo3b2o8b3obo2b2o$162b2o2bob3o5b2o3bo63bobobobo13bo2b2o8b2o3b2o$
161bo2b2o4bo6b5o65bo4b2o12b2o10b3obo2b2o$161bobo2b3obo8bo67bob3obo24bo
4b2o2bo$162bobobo3b2o76b2o28bob3o2bobo$164bobobob2o23b2o80b2o3bobobo$
164bo4bo24bobo80b2obobobo$165b2o29bo82bo4bo$282b2o6$251bobo$252b2o$
252bo2$209bo$208b2o$208bobo$167b2o$166bo4bo112b2o$166bobobob2o92bo14bo
4bo$164bobobo3b2o91b4o10b2obobobo$163bobo2b3obo28b2o61bo2b2o10b2o3bobo
bo$163bo2b2o4bo24bob3obo60bo4bo3b2o5bob3o2bobo$164b2o2bob3o24b2o4bo61b
4o4bobo4bo4b2o2bo$166b2o3b2o26bobobobo61b2o5bo5b3obo2b2o$164b2o2bob3o
23b3ob2o2bobo65b2o6b2o3b2o$163bo2b2o4bo13bobo7b3o3b2o2bo65bo7b3obo2b2o
$163bobo2b3obo12bo2b2obo3b2o3b2o2b2o67bo6bo4b2o2bo$164bobobo3b2o12bobo
bobo2b3o3bobo40bo27bo7bob3o2bobo$166bobobob2o18bo2b2o3b2o2b2o38bobo25b
o6b2o3bobobo$166bo4bo18b2o4b3o3b2o2bo37b2o33b2obobobo$167b2o19b2o6b3ob
2o2bobo74bo4bo$188b2o9bobobobo78b2o$197b2o4bo$197bob3obo$201b2o72bo$
264b2o10b2o$263bobo8b2o$192bo62b2o6bo12bo$181b2o10b2o60b2o5b2o$180bobo
8b2o$180bo12bo53b2o21b2o$179b2o67bo12bo8b2o$248bobo8b2o$187b2o60b2o10b
2o$187b2o48bo22bo$236bobo$187b2o3b2o38b2o2bo2bo$186bo2bobo2bo37b2o2bo
2bo29b2o$187bobobobo42bobo27bo4bo$184b3obobobob3o40bo26b2obobobo$183bo
4bobobo4bo66b2o3bobobo$184bob2ob3ob2obo68bob3o2bobo$184b2obo5bob2o57b
2o9bo4b2o2bo$186bo2bobo2bo59b3o8b3obo2b2o$184bo11bo54b2o2b2o8b2o3b2o$
184bo2b2o3b2o2bo49b2o2b3o3bo8b3obo2b2o$185bo2b5o2bo49bo2bo2b2o2bo9bo4b
2o2bo$246bobo16bob3o2bobo$202bo10bo34b2o14b2o3bobobo$190b2o8b2o11bobo
33bo14b2obobobo$189bo2bo9b2o9b2o34bo16bo4bo$188b2obo9bo45b2o20b2o$172b
o15b2o$172b3o19bo$175bo11b2o2bob2o$174b2o14bo2bo$188bobo$189bo$245bo$
243b2o10b2o$169b2o30b2o42b2o8bobo$169b2o30bo42bo12bo$202b3o52b2o$204bo
$175bo73b2o$173b2o74b2o$175b2o$174bo11bo$208bobo$182b2o5b2o17b2o$180b
2o4bo4b2o16bo15bo$184b2ob2o35b2o$180bobo7bobo30b3o$180bo2bobobobo2bo
29bo$179b5obobob5o27b2o12b2o$179bo4bo3bo4bo34bo6bo$180b3obobobob3o30b
4o2bo3bobo$183bobobobo33b4obo4b2o$182bo2bobo2bo32b2o2b2o$183b2o3b2o$
240b2o$237bo4bo$235b2obobobo$235b2o3bobobo$206b2o18b3o7bob3o2bobo$205b
ob3obo14b3o7bo4b2o2bo$205bo4b2o18bo5b3obo2b2o$203bobobobo18bobo5b2o3b
2o$155bo46bobo2b2ob3o17b2o4b3obo2b2o$154bobo45bo2b2o3b3o8bobo5b2o5bo4b
2o2bo$155bo47b2o2b2o3b2o7bob2o4bo6bob3o2bobo$205bobo3b3o7bo2bo10b2o3bo
bobo$153b5o45b2o2b2o3b2o8b2o11b2obobobo$153bo4bo43bo2b2o3b3o24bo4bo$
156bo2bo42bobo2b2ob3o27b2o$156b2obo2bo40bobobobo$153bo5bobobo41bo4b2o$
152bobo4bo2bo42bob3obo$152bo2bo2b2o46b2o$153b2o22bobo$177b2o$178bo37bo
$214b2o10b2o$216b2o8bobo$215bo12bo$149b3o76b2o$149bobo$149bo2bo67b2o$
150bobo67b2o$150b3o18$151b2o$146b2o2bo2bo$143bo2bo4bobo$142bobobo5bo$
143bo2bob2o$146bo2bo$147bo4bo$68b2o78b5o$68b2o$150bo$60b2o87bobo$61bo
12bo75bo$61bobo8b2o$62b2o10b2o$73bo37b2o$112b2o$111bo$82b2o$79bo4bo$
77b2obobobo$77b2o3bobobo$48b2o28bob3o2bobo$47bob3obo24bo4b2o2bo$47bo4b
2o12b2o10b3obo2b2o$45bobobobo13bo2b2o8b2o3b2o$44bobo2b2ob3o4b2o3bo3b2o
8b3obo2b2o$44bo2b2o3b3o3bobo4b3o10bo4b2o2bo$45b2o2b2o3b2o2bo19bob3o2bo
bo$47bobo3b3o21b2o3bobobo$45b2o2b2o3b2o5b2o14b2obobobo$44bo2b2o3b3o5b
2o17bo4bo$44bobo2b2ob3o5b2obo18b2o$45bobobobo10bo$47bo4b2o$47bob3obo$
48b2o$62bo37b2o3b2o$60b3o36bo2bobo2bo$55b2o6bo2b2o32bobobobo$54bobo3b
3obo32b3obobobob3o$54bo9b2o2bo27bo4bobobo4bo$53b2o9bo32bob2ob3ob2obo$
65bo2bo28b2obo5bob2o$64bobo32bo2bobo2bo$63bo2bo30bo11bo$64b2o14b2o15bo
2b2o3b2o2bo$81b2o15bo2b5o2bo$80bo$115bo$113b2o$39b2o74b2o$39b2o73bo$
85bo$31b2o52b3o$32bo12bo42bo30b2o$32bobo8b2o42b2o30b2o$33b2o10b2o$44bo
2$96b2obobo$95bo3b2o13b2o$94bo4b2obo11bo$95bobob2o14b3o$99b3o15bo$19b
2o67bo10bo$18bob3obo14b3o33b3o8b2o10b3o$18bo4b2o14bo37bo10b2o8b3o$16bo
bobobo16bo2bo33bo10bo12bo$15bobo2b2ob3o13bo$15bo2b2o3b3o12b2obobo51b2o
5b2o$16b2o2b2o3b2o8bo3bob3o49b2o4bo4b2o$18bobo3b3o8bob2o58b2ob2o$16b2o
2b2o3b2o7bo2bo55bobo7bobo$15bo2b2o3b3o67bo2bobobobo2bo$15bobo2b2ob3o
66b5obobob5o$16bobobobo69bo4bo3bo4bo$18bo4b2o27bo40b3obobobob3o$18bob
3obo25b2ob2o41bobobobo$19b2o35b2o37bo2bobo2bo$56b2o38b2o3b2o$50b2ob2o$
29bo22bo48b2o$27b2o10b2o60b2o$29b2o8bobo$18b2o8bo12bo67b2o$18b2o21b2o
53bo12bo$97b2o8bobo$26b2o5b2o60b2o10b2o$13bo12bo6b2o62bo$14b2o8bobo$
12b2o10b2o$14bo72b2o$86bo4bo$86bobobob2o$4b2o78bobobo3b2o6b2o$3bob3obo
73bobo2b3obo8bo19b2o$3bo4b2o34b3o36bo2b2o4bo5bo2bo15bob3obo$bobobobo
38bo37b2o2bob3o3b2o19b2o4bo$obo2b2ob3o5b2o27bo40b2o3b2o3b2o3b3o15bobob
obo$o2b2o3b3o7bo65b2o2bob3o5b2o3bo12b3ob2o2bobo$b2o2b2o3b2o6bo64bo2b2o
4bo6b5o12b3o3b2o2bo$3bobo3b3o5b2o64bobo2b3obo8bo13b2o3b2o2b2o$b2o2b2o
3b2o3bobo66bobobo3b2o21b3o3bobo$o2b2o3b3o3bo2bo2b2o2bo61bobobob2o21b2o
3b2o2b2o$obo2b2ob3o4b2o2b3o3bo60bo4bo24b3o3b2o2bo$bobobobo12b2o2b2o61b
2o27b3ob2o2bobo$3bo4b2o13b3o93bobobobo$3bob3obo13b2o92b2o4bo$4b2o111bo
b3obo$121b2o$80bo$81b2o$80b2o2$36b2o$35b2o$37bo6$6b2o$5bob3obo81bo29b
2o$5bo4b2o80bo26bob3obo$3bobobobo82b3o24b2o4bo$2bobo2b2ob3o27b2o79bobo
bobo$2bo2b2o3b3o9bo14bo4bo66bobo6b3ob2o2bobo$3b2o2b2o3b2o7b4o10b2obobo
bo66bo2bobo3b3o3b2o2bo$5bobo3b3o6bo2b2o10b2o3bobobo62bo3b2obo2b2o3b2o
2b2o$3b2o2b2o3b2o6bo4bo3b2o5bob3o2bobo62b2o2bo2bob3o3bobo$2bo2b2o3b3o
8b4o4bobo4bo4b2o2bo63bo5bob2o3b2o2b2o$2bobo2b2ob3o10b2o5bo5b3obo2b2o
64b2o3bo3b3o3b2o2bo$3bobobobo18b2o6b2o3b2o66b3o6b3ob2o2bobo$5bo4b2o16b
o7b3obo2b2o64b3o9bobobobo$5bob3obo17bo6bo4b2o2bo73b2o4bo$6b2o20bo7bob
3o2bobo73bob3obo$28bo6b2o3bobobo78b2o$35b2obobobo$37bo4bo$40b2o72bo$
103b2o10b2o$102bobo8b2o$31bo35b2o33bo12bo$20b2o10b2o32bo2bo31b2o$19bob
o8b2o33b3o$19bo12bo32bo43b2o$18b2o44bobo42b2o$64bobo$26b2o28b2o$26b2o
29bo9bo$57bobo$58b2o4bo2bo$65b2o$63bo2bo$51b2o10bo2bo$50bob3obo7bobo$
50bo4b2o$48bobobobo$47bobo2b2ob3o7b2o18b2o$47bo2b2o3b3o6bo2bo14bo4bo$
48b2o2b2o3b2o5bo15b2obobobo$50bobo3b3o5bo15b2o3bobobo$48b2o2b2o3b2o4b
2o16bob3o2bobo$47bo2b2o3b3o4bobobobo12bo4b2o2bo$47bobo2b2ob3o4bobobo2b
2o10b3obo2b2o$48bobobobo8bo2bo3bo10b2o3b2o$50bo4b2o10bob2o10b3obo2b2o$
50bob3obo11bo12bo4b2o2bo$51b2o28bob3o2bobo$80b2o3bobobo$80b2obobobo$
82bo4bo$85b2o3$76bo$65b2o10b2o$64bobo8b2o$64bo12bo$63b2o2$71b2o$71b2o!
Found snake to glider reaction while attempting to stabilize:
Code: Select all
x = 56, y = 51, rule = B3/S23
30bo$29bobo$30bo2$28b5o$28bo4bo$31bo2bo$31b2obo2bo17bo$28bo5bobobo14b
3o$27bobo4bo2bo14bo$15bo11bo2bo2b2o17b2o$14bobo11b2o$15bo2$13b5o$12bo
4bo$11bo2bo$8bo2bob2o9b3o$7bobobo5bo6bobo$8bo2bo4bobo5bo2bo$11b2o2bo2b
o6bobo$16b2o7b3o3$38bob2o$14bob2o20b2obo$14b2obo3$38b2o$37bo2bo2b2o$
37bobo4bo2bo$38bo5bobobo$41b2obo2bo$41bo2bo$38bo4bo$38b5o2$40bo$26b2o
11bobo$2b2o17b2o2bo2bo11bo$3bo14bo2bo4bobo$3o14bobobo5bo$o17bo2bob2o$
21bo2bo$22bo4bo$23b5o2$25bo$24bobo$25bo!
Re: LOM Conduits?
Posted: January 14th, 2012, 7:38 pm
by knightlife
LOM propagates via blinkers:
Code: Select all
x = 105, y = 99, rule = B3/S23
30bo$30bo$30bo$5b3o$5bo2b2o$5b2o2bo$7b3o$3o16$53bo$53bo$53bo5$23b3o16$
76bo$76bo$76bo5$46b3o16$99bo$99bo$99bo5$69b3o20$104bo$104bo$104bo!