Suggested LifeWiki edits

For discussion directly related to ConwayLife.com, such as requesting changes to how the forums or wiki function.
User avatar
ColorfulGalaxy
Posts: 386
Joined: July 16th, 2020, 3:37 am
Location: China
Contact:

Re: Suggested LifeWiki edits

Post by ColorfulGalaxy » December 18th, 2020, 1:10 am

Add "XKCD RIP John Conway" to "pure glider generator"

Code: Select all

x = 9, y = 9, rule = LifeColorful
6E.2B$6E.2B$7.2B$2D5.2B$2D5.2B$2D5.2B$2D$2D.6C$2D.6C!
List of helpful topics

User avatar
Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Re: Suggested LifeWiki edits

Post by Scorbie » December 19th, 2020, 1:10 am

1. Suggest changing 230P8, 209P8, 104P9, and 80P6 to something like P8 HW sparker, P8 MW sparker, P9 MW sparker, and P6 MW sparker. (Note the use of the term sparker rather than emulator)
Cause god, I'm never memorizing those populations, and somebody will optimize it at the time I do memorize it.
(I have access rights but decided to get confirmation first. Of course old names should redirect into new names.)
Best wishes to you! - Scorbie

Hunting
Posts: 4288
Joined: September 11th, 2017, 2:54 am

Re: Suggested LifeWiki edits

Post by Hunting » December 19th, 2020, 3:53 am

ColorfulGalaxy wrote:
December 18th, 2020, 1:10 am
Add "XKCD RIP John Conway" to "pure glider generator"
Done!
she/her

LeapLife is the 4th most searched non-totalistic rule on Catagolue, after Rule X3VI, Snowflakes and FishLife.

A LeapLife Status Report (NOW WITH LIFEVIEWER ANIMATION!)

LeapLife - DirtyLife - LispLife

Welcome back.

ENORMOUS_NAME
Posts: 240
Joined: August 8th, 2020, 6:39 pm
Location: idk

Re: Suggested LifeWiki edits

Post by ENORMOUS_NAME » December 20th, 2020, 7:23 pm

the sawtooth 177 page lifeviewer starts at a phase with 233 cells
viewtopic.php?f=11&t=1971&p=111934#p111934

Code: Select all

x = 3, y = 3, rule = B34eny5en/S23-a4iy5e6c
3o$o$2o!


User avatar
dvgrn
Moderator
Posts: 7648
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Suggested LifeWiki edits

Post by dvgrn » December 20th, 2020, 9:28 pm

ENORMOUS_NAME wrote:
December 20th, 2020, 7:23 pm
the sawtooth 177 page lifeviewer starts at a phase with 233 cells
Hm, that was weird. The quoted numbers for the times that the population returns to 177 seemed to be all wrong, also -- not just offset by 15 due to the pattern having been rewound a little further, but actually following the wrong formula.

The article said,

"The population is equal to 177 at generations 0, 3360, 409920, 49603680, ..., 28 * (121^n - 1), ..., giving an expansion factor of 121."

The expansion factor is correct, but it looks to me like the multiplier should be 58, not 28. What am I not thinking of here?

I changed the article to read

"The population is equal to 177 at generations 15, 6975, 849135, 102750495, 12432815055, ..., 58 * (121!n - 1) + 15, ..., giving an expansion factor of 121."

The original article gave a different formula with a multiplier of 48, but also the same expansion factor. The original pattern must have been slightly different. (?)

HartmutHolzwart
Posts: 568
Joined: June 27th, 2009, 10:58 am
Location: Germany

Re: Suggested LifeWiki edits

Post by HartmutHolzwart » December 28th, 2020, 4:02 am

As this week lifewiki features the article on greyships, maybe a few forum links could be added on more recent developments?

User avatar
creeperman7002
Posts: 223
Joined: December 4th, 2018, 11:52 pm

Re: Suggested LifeWiki edits

Post by creeperman7002 » December 31st, 2020, 1:34 pm

The OCA DOTY 2019 page needs updating to add the voting results.
B2n3-jn/S1c23-y is an interesting rule. It has a replicator, a fake glider, an OMOS and SMOS, a wide variety of oscillators, and some signals. Also this rule is omniperiodic.
viewtopic.php?f=11&t=4856

Naszvadi
Posts: 758
Joined: May 7th, 2016, 8:53 am
Contact:

Re: Suggested LifeWiki edits

Post by Naszvadi » January 2nd, 2021, 11:18 am

creeperman7002 wrote:
December 31st, 2020, 1:34 pm
The OCA DOTY 2019 page needs updating to add the voting results.
Reviewers are kindly welcome, here you are: OCA Discovery of the Year#2019

User avatar
GUYTU6J
Posts: 1307
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家)
Contact:

Re: Suggested LifeWiki edits

Post by GUYTU6J » January 2nd, 2021, 12:03 pm

Naszvadi wrote:
January 2nd, 2021, 11:18 am
creeperman7002 wrote:
December 31st, 2020, 1:34 pm
The OCA DOTY 2019 page needs updating to add the voting results.
Reviewers are kindly welcome, here you are: OCA Discovery of the Year#2019
Be careful with some of my suggestions — as you can see from the comments in those patterns in the Golly suggestions thread, they were originally from dani (the triangular replicator), toroidalet (the replicator-ish wave thing) and Sarp (the diagonal SMOS) — and I was just doing trivial reductions and trying to promote them as I thought they are quite notable.
Lifequote:
In the drama The Peony Pavilion, Tang Xianzu wrote: 原来姹紫嫣红开遍,似这般都付与断井颓垣。
(Here multiflorate splendour blooms forlorn
Midst broken fountains, mouldering walls.)
I'm afraid there's arrival but no departure.

User avatar
ColorfulGalaxy
Posts: 386
Joined: July 16th, 2020, 3:37 am
Location: China
Contact:

Re: Suggested LifeWiki edits

Post by ColorfulGalaxy » January 3rd, 2021, 4:21 am

I seem to have found a bug about sortable tables.
It thinks 6+2*sqrt(2) is smaller than 8 but bigger than 10.
The bug can be found here

EDIT: Fixed an error in my post

Code: Select all

x = 9, y = 9, rule = LifeColorful
6E.2B$6E.2B$7.2B$2D5.2B$2D5.2B$2D5.2B$2D$2D.6C$2D.6C!
List of helpful topics

User avatar
Ian07
Posts: 674
Joined: September 22nd, 2018, 8:48 am

Re: Suggested LifeWiki edits

Post by Ian07 » January 3rd, 2021, 1:43 pm

ColorfulGalaxy wrote:
January 3rd, 2021, 4:21 am
It thinks 6+2*sqrt(2) is smaller than 8 but bigger than 10.
MediaWiki does not know that 6+2*sqrt(2) is supposed to be a number, and thus interprets the whole column as plaintext.

MathAndCode
Posts: 3712
Joined: August 31st, 2020, 5:58 pm

Re: Suggested LifeWiki edits

Post by MathAndCode » January 5th, 2021, 11:12 am

The most recent item of the In the news section should be updated to reflect the fact that 257P7H3V0 has been named Soba. Also, 396P7H3V0 should probably be added.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

MathAndCode
Posts: 3712
Joined: August 31st, 2020, 5:58 pm

Re: Suggested LifeWiki edits

Post by MathAndCode » January 12th, 2021, 3:04 pm

Does this count as a cross variant?

Code: Select all

x = 13, y = 8, rule = B3/S23
2b4ob4o$2bo2bobo2bo$3o3bo3b3o$o11bo$o11bo$3o3bo3b3o$2bo2bobo2bo$2b4ob4o!
If so, the page for Cross 2 should be updated.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
bubblegum
Posts: 790
Joined: August 25th, 2019, 11:59 pm
Location: click here to do nothing

Re: Suggested LifeWiki edits

Post by bubblegum » January 12th, 2021, 3:12 pm

MathAndCode wrote:
January 12th, 2021, 3:04 pm
Does this count as a cross variant?

Code: Select all

x = 13, y = 8, rule = B3/S23
2b4ob4o$2bo2bobo2bo$3o3bo3b3o$o11bo$o11bo$3o3bo3b3o$2bo2bobo2bo$2b4ob4o!
If so, the page for Cross 2 should be updated.
No, they have to be polyominoes.
Each day is a hidden opportunity, a frozen waterfall that's waiting to be realised, and one that I'll probably be ignoring
sonata wrote:
July 2nd, 2020, 8:33 pm
conwaylife signatures are amazing[citation needed]
anything

User avatar
creeperman7002
Posts: 223
Joined: December 4th, 2018, 11:52 pm

Re: Suggested LifeWiki edits

Post by creeperman7002 » January 20th, 2021, 9:46 pm

Can there be a LifeWiki page on Hexagonal Life (B2/S34H)? I recently discovered a c/6o spaceship with ikpx2, the first of its speed. Now there are 5 known speeds: 2c/4o and c/5o by wildmyron, and c/6o, c/14o, and c/6d by me.

EDIT: c/6d spaceship discovered, the first of its speed and direction.
Last edited by creeperman7002 on January 21st, 2021, 12:09 pm, edited 1 time in total.
B2n3-jn/S1c23-y is an interesting rule. It has a replicator, a fake glider, an OMOS and SMOS, a wide variety of oscillators, and some signals. Also this rule is omniperiodic.
viewtopic.php?f=11&t=4856

User avatar
dvgrn
Moderator
Posts: 7648
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Suggested LifeWiki edits

Post by dvgrn » January 20th, 2021, 10:44 pm

creeperman7002 wrote:
January 20th, 2021, 9:46 pm
Can there be a LifeWiki page on Hexagonal Life (B2/S34H)?
Sure! We didn't create the OCA namespace on the LifeWiki last year so that people would be afraid to use it. A certain amount of notability is still a good idea, but I'd say things can be a little more relaxed in the Wild West OCA universe. Universe of universes.

Certainly a rule that has a couple of threads devoted to it, multiple pages, and half a dozen or more researchers/contributors on those pages across multiple years, should generally be considered OCA-LifeWiki-worthy -- assuming that someone wants the page to exist badly enough to create it! The page could include links to forum threads and any other known resources online, general features of the rule, and a sampling of interesting patterns.

I picked "half a dozen" out of a hat. What do people think -- should that arbitrary dividing line be maybe a little lower, or maybe a little higher? Or would it be better to come up with some other likely metric for "at least noteworthy enough that somebody might want to look it up on LifeWiki sometime"?

The LifeWiki name should be OCA:Hexagonal_Life, right, not OCA:HexagonalLife?

User avatar
GUYTU6J
Posts: 1307
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家)
Contact:

Re: Suggested LifeWiki edits

Post by GUYTU6J » January 23rd, 2021, 6:17 am

Do we have examples of an intermitting glider gun (or intermittent) that can be added to the LifeWiki?
(And also, is it related to regulators?)

Meanwhile,
creeperman7002 wrote:
January 20th, 2021, 9:46 pm
Can there be a LifeWiki page on Hexagonal Life (B2/S34H)? ...
there is Callahan's B2o/S2m34, too, that seems to be page-worthy.
Lifequote:
In the drama The Peony Pavilion, Tang Xianzu wrote: 原来姹紫嫣红开遍,似这般都付与断井颓垣。
(Here multiflorate splendour blooms forlorn
Midst broken fountains, mouldering walls.)
I'm afraid there's arrival but no departure.

User avatar
dvgrn
Moderator
Posts: 7648
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Suggested LifeWiki edits

Post by dvgrn » January 23rd, 2021, 9:03 am

GUYTU6J wrote:
January 23rd, 2021, 6:17 am
Do we have examples of an intermitting glider gun (or intermittent) that can be added to the LifeWiki?
(And also, is it related to regulators?)
There's not really any relation to regulators, which take unsynchronized signals and get them synchronized to some particular period. In an IMG, usually everything has to be carefully synchronized, or it won't work.

Here are the emails from which the definition of IMG came. Notice this was in 1996, when Herschel conduits were still in their infancy and guns wre much more difficult to build. The first odd-period glider gun was only a year old at that time. (!) There are so many ways to build intermitting glider guns these days that there hasn't been much interest in creating new ones, for a couple of decades now.
On 15 Sep 1996, Dieter Leithner wrote:Subject: Intermitting Glider Guns

Peter Rott writes:

Two types of intermitting glider guns (IMG) exist. In IMGs of the first type two facing guns are duelling each other like heroes in a western
movie. Each glider hitting one of the guns inhibits that gun from shooting. In IMGs of the second type a gun and a glider reflector are facing each other. That means the gliders are going to the reflector and the reflected gliders are hitting the gun and inhibit it from firing. If the gun does not fire, there will not be reflected gliders and if there are no reflected gliders, the gun will fire.

IMGs are very useful modules for the construction of glider guns with periods which are multiples of the periods of known basic guns. To construct such guns, let the anti parallel glider streams of the IMG interact with an orthogonally crossing glider stream of another gun. With this construction principle I often found guns with periods which are prime number multiples of the base period. Normally such periods are not easy to find.

IMGs can be modified by changing the distance of the two guns or between gun and reflector. This changes the interaction between the two anti parallel glider streams of the IMG and the orthogonally crossing glider stream from another gun. It is possible to construct guns of all periods p = n * b where n = 4, 5, 6, ... and b is one of the base periods 30, 44, 46 or 94 mainly by IMGs. How this can be done will be dealt with in the next letters.

Examples of IMGs and glider guns based on them for the base period 30

Code: Select all

#C p30 IMG of type 1 (found in 1994)
x = 60, y = 40
35bo$32b4o$31b4o16bo$24b2o5bo2bo8b2o5bobo$24b2o5b4o14bo3b2o$32b4o3b2ob
obo4bo3b2o3b2o$35bo2bo3b2o5bo3b2o3b2o$39bo10bobo$39bo2bo8bo23$8bo8bo2b
o$7bobo10bo$5b2o3bo5b2o3bo2bo$2o3b2o3bo4bobob2o3b4o$2o3b2o3bo14b4o5b2o
$7bobo5b2o8bo2bo5b2o$8bo16b4o$24b4o$24bo!

Code: Select all

#C p390 (= 13 * 30) glider gun based on p30 IMG of type 1
#C Our smallest p390 gun yet.
x = 66, y = 45
22bo$22b4o$6bo16b4o5b2o$5bobo5b2o8bo2bo5b2o$3b2o3bo14b4o$3b2o3bo4bobob
2o3b4o17bo$3b2o3bo5b2o3bo2bo17b4o$5bobo10bo20b4o16bo$6bo8bo2bo13b2o5bo
2bo8b2o5bobo$32b2o5b4o14bo3b2o$40b4o3b2obobo4bo3b2o$3bo39bo2bo3b2o5bo
3b2o$b2ob2o19bo21bo10bobo$26bo20bo2bo8bo$o5bo17b3o2$2obob2o55bo$30bo9b
o19b2ob2o$29b3o7bo$28b2ob2o6b3o17bo5bo$27b3o$28bob2o27b2obob2o$29b2o$
30bo2$3b2o$3b2o4$34b3o24b2o$36bo24b2o$35bo4$16bo8bo2bo$15bobo10bo$13b
2o3bo5b2o3bo2bo$8b2o3b2o3bo4bobob2o3b4o$8b2o3b2o3bo14b4o5b2o$15bobo5b
2o8bo2bo5b2o$16bo16b4o18bo$32b4o20bo$32bo21b3o!

Code: Select all

#C p30 IMG of type 2 (found in 1996)
x = 77, y = 59
55bo$55bobo$56bobo7bo$43b2o11bo2bo6b2o$43b2o11bobo2b2o4b2o$55bobo3b2o
4b3o$55bo5b2o4b2o$66b2o$66bo9$71b5o$70bob3obo$71bo3bo$72b3o$73bo4$72b
2o$72b2o15$16bo$16bobo$5b2o12b2o$5b2o12b2o$19b2o$16bobo$16bo3$9b2o9b3o
$9bo2bo9bo$b5o7bo7bo5bo$o5bo6bo12b4o$o3b2o7bo11b2obobo3b2o$bo7bo2bo11b
3obo2bo2b2o$9b2o14b2obobo15bo$26b4o17bo$27bo17b3o!

Code: Select all

#C p1230 (= 41 * 30) glider gun based on p30 IMG of type 2
#C Our smallest p1230 gun yet.
x = 77, y = 59
55bo$55bobo$56bobo7bo$43b2o11bo2bo6b2o$10b2o31b2o11bobo2b2o4b2o$10b2o
43bobo3b2o4b3o$55bo5b2o4b2o$66b2o$66bo6$11bo$10b3o$9b5o$8b2o3b2o56b5o$
9b5o56bob3obo$9bo3bo57bo3bo$10bobo37b3o19b3o$11bo40bo20bo$51bo2$9bo29b
o$7b2ob2o26bo33b2o$16bo21b3o31b2o$6bo5bo4bo$15b3o$6b2obob2o9$9b2o$9b2o
2$16bo$16bobo$5b2o12b2o$5b2o12b2o$19b2o$16bobo$16bo3$9b2o9b3o$9bo2bo9b
o$b5o7bo7bo5bo$o5bo6bo12b4o$o3b2o7bo11b2obobo3b2o$bo7bo2bo11b3obo2bo2b
2o$9b2o14b2obobo15bo$26b4o17bo$27bo17b3o!
Examples of IMGs and glider guns based on them for the base period 44

Code: Select all

#C p44 IMG of type 1 (found in 1994)
#C To construct the p44 IMG I had to modify David Buckingham's gun a bit.
x = 126, y = 136
75b2o6b2o$75b2o6b2o3$75b3o4b3o$77bo4bo$75b2o6b2o$59b2o38b2o$58bobo38bo
bo$58bobob2o3b2o22b2o3b2obobo$59bobobo3b2o22b2o3bobobo$61bo36bo$59bo2b
o34bo2bo$62bo34bo$58bo3bo5bo7b2o4b2o7bo5bo3bo$58bo3bo3b2ob2o5b3o2b3o5b
2ob2o3bo3bo$62bo5bo7b2o4b2o7bo5bo6b2o10b2o$59bo2bo34bo2bo2bo2bo8bo2bo$
61bo36bo4b3o2b6o2b3o$59bobobo32bobobo5b2o6b2o$58bobob2o32b2obobo3bo10b
o$58bobo38bobo3b2obo4bob2o$59b2o38b2o9b2o2$74b3o6b3o$73bo3b2o2b2o3bo
28b2o$73bo12bo12b2o14b2o$73b2o10b2o12b2o$75bo2bo2bo2bo$75b3o4b3o3$64b
2o44bo$63bo2bo16bo25b3o12b2o$63bobobo16bo23bo3bo11b2o$64bob3o14bo24b2o
b2o$66b3o$79b2obo4b2o$78bobobobob2o$78bo7bo$77b2o29b2ob2o$108bo3bo11b
2o$109b3o12b2o$96b2o12bo$95bobo$95bo$94b2o3$115b2o$115b2o3$110b2o$105b
2obo4bob2o$105bo10bo$106b2o6b2o$103b3o2b6o2b3o$103bo2bo8bo2bo$104b2o
10b2o17$8b2o4b2o4b2o$7bo2bobo4bobo2bo$7b3o10b3o$10b2o6b2o$9bo2b6o2bo$
9b2o8b2o4$9b2o$9b2o3b3o$14b3o$13bobobo$30b2o$30bo$13b2ob2o9b2obo$13b2o
b2o11bo$6o7b2ob2o7bo$4o2bo8bo8bo$3bob2o17b2obo19b2o$4b2o19b2o20bo$6b3o
13b3o20bobo$6b3o13b3o20b2o11b2o$4b2o19b2o31b3o$3bob2o17b2obo11bo12bo5b
2obo$4o2bo8bo8bo2bo10bobo10bobo6bobo$6o7b2ob2o7b3o9bo3bo8bo3bo4bo2bo$
13b2ob2o19bo3bo8bo3bo5b2o$13b2ob2o19bo3bo8bo3bo$38bobo10bobo$39bo12bo$
13bobobo$14b3o8b2o9b2o16b2o$9b2o3b3o8b2o8bo2b2o12b2o2bo$9b2o25bobo2bo
8bo2bobo$42bo6bo$37b5o8b5o$25b2o12b2o10b2o12b2o$9b2o8b2o3bobo38bobo$9b
o2b6o2bo3bobob2o32b2obobo$10b2o6b2o5bobobo32bobobo$7b3o10b3o4bo13b3o4b
3o13bo$7bo2bobo4bobo2bo3bo2bo10bo2bo4bo2bo10bo2bo$8b2o4b2o4b2o4bo12bo
3bo4bo3bo12bo$26bo3bo8bo12bo8bo3bo$26bo3bo8bo3bo4bo3bo8bo3bo$26bo13bo
2bo4bo2bo13bo$26bo2bo11b3o4b3o11bo2bo$27bo36bo$25bobobo3b2o22b2o3bobob
o$24bobob2o3b2o22b2o3b2obobo$24bobo38bobo$25b2o38b2o6$41b2o6b2o$41b2o 6b2o!

Code: Select all

#C p836 (= 19 * 44) glider gun based on p44 IMG of type 1
#C Our smallest p836 gun yet.
x = 138, y = 136
87b2o6b2o$87b2o6b2o3$87b3o4b3o$89bo4bo$87b2o6b2o$71b2o38b2o$70bobo38bo
bo$70bobob2o3b2o22b2o3b2obobo$71bobobo3b2o22b2o3bobobo$73bo36bo$41b2o
6b2o20bo2bo34bo2bo$41b2o6b2o23bo34bo$70bo3bo5bo7b2o4b2o7bo5bo3bo$70bo
3bo3b2ob2o5b3o2b3o5b2ob2o3bo3bo$74bo5bo7b2o4b2o7bo5bo6b2o10b2o$41b3o4b
3o20bo2bo34bo2bo2bo2bo8bo2bo$41bo2bo2bo2bo22bo36bo4b3o2b6o2b3o$25b2o
14bob2o2b2obo14b2o4bobobo32bobobo5b2o6b2o$24bobo13bob2o4b2obo13bobo2bo
bob2o32b2obobo3bo10bo$24bobob2o3b2o5bobo6bobo5b2o3b2obobo2bobo38bobo3b
2obo4bob2o$25bobobo3b2o4bo3bo4bo3bo4b2o3bobobo4b2o38b2o9b2o$27bo12bo
10bo12bo$25bo2bo34bo2bo19b3o6b3o$28bo34bo21bo3b2o2b2o3bo28b2o$24bo3bo
6bob3obo8bob3obo6bo3bo17bo12bo12b2o14b2o$24bo3bo6bo3bo2bo6bo2bo3bo6bo
3bo17b2o10b2o12b2o$8b2o10b2o6bo6bob3obo8bob3obo6bo23bo2bo2bo2bo$7bo2bo
8bo2bo2bo2bo34bo2bo20b3o4b3o$7b3o2b6o2b3o4bo36bo$10b2o6b2o5bobobo10bo
10bo10bobobo$9bo10bo3bobob2o9bo3bo4bo3bo9b2obobo8b2o44bo$9b2obo4bob2o
3bobo13bobo6bobo13bobo7bo2bo16bo25b3o12b2o$14b2o9b2o13bob2o4b2obo13b2o
8bobobo16bo23bo3bo11b2o$41bob2o2b2obo25bob3o14bo13bo10b2ob2o$17b2o22bo
2bo2bo2bo27b3o27bo$9b2o6b3o21b3o4b3o40b2obo4b2o7b3o$9b2o4b2o2bo5b2o63b
obobobob2o$17b2o5bo2bo62bo7bo$16b3o70b2o29b2ob2o$16bo7bo4bo90bo3bo11b
2o$14b3o104b3o12b2o$24bo83b2o12bo$28bo23bo54bobo$2o11bo3bo6bo27bo54bo$
2o11bo3bo9bo7b2o20b2o39bo7b2o$25b3o6bo22bobo37bo$14b3o18bo2bo20bo37b3o
$36b2o21b2o66b2o$41b2o84b2o$14b3o24bo$42b3o7b2o$2o11bo3bo26bo7b2o68b2o
$2o11bo3bo99b2obo4bob2o$28b2o87bo10bo$28bobo6bo80b2o6b2o$14b3o13bo7bo
48bo27b3o2b6o2b3o$16bo13b2o4b3o47bo28bo2bo8bo2bo$16b3o67b3o27b2o10b2o$
17b2o$9b2o4b2o2bo$9b2o6b3o$17b2o2$14b2o$9b2obo4bob2o$9bo10bo27bo$10b2o
6b2o29bo26bo$7b3o2b6o2b3o24b3o25bo$7bo2bo8bo2bo44b2o6b3o$8b2o10b2o44bo
bo$68bo4$20b2o4b2o4b2o$19bo2bobo4bobo2bo$19b3o10b3o24bo$22b2o6b2o28bo
4bo$21bo2b6o2bo27bo3bo$21b2o8b2o23bo2bo4b3o$55bo$57bo2$21b2o$21b2o3b3o
$26b3o$25bobobo$42b2o$42bo11bo$25b2ob2o9b2obo10bo$25b2ob2o11bo11b3o$
12b6o7b2ob2o7bo$12b4o2bo8bo8bo$15bob2o17b2obo19b2o$16b2o19b2o20bo$18b
3o13b3o20bobo$18b3o13b3o20b2o11b2o$16b2o19b2o31b3o$15bob2o17b2obo11bo
12bo5b2obo$12b4o2bo8bo8bo2bo10bobo10bobo6bobo$12b6o7b2ob2o7b3o9bo3bo8b
o3bo4bo2bo$25b2ob2o19bo3bo8bo3bo5b2o$25b2ob2o19bo3bo8bo3bo$50bobo10bob
o$51bo12bo$25bobobo$26b3o8b2o9b2o16b2o$21b2o3b3o8b2o8bo2b2o12b2o2bo$
21b2o25bobo2bo8bo2bobo$54bo6bo$49b5o8b5o$37b2o12b2o10b2o12b2o$21b2o8b
2o3bobo38bobo$21bo2b6o2bo3bobob2o32b2obobo$22b2o6b2o5bobobo32bobobo$
19b3o10b3o4bo13b3o4b3o13bo$19bo2bobo4bobo2bo3bo2bo10bo2bo4bo2bo10bo2bo
$20b2o4b2o4b2o4bo12bo3bo4bo3bo12bo$38bo3bo8bo12bo8bo3bo$38bo3bo8bo3bo
4bo3bo8bo3bo$38bo13bo2bo4bo2bo13bo$38bo2bo11b3o4b3o11bo2bo$39bo36bo$
37bobobo3b2o22b2o3bobobo$36bobob2o3b2o22b2o3b2obobo$36bobo38bobo$37b2o
38b2o5$114bo$53b2o6b2o52bo$53b2o6b2o50b3o!
I did not find any p44 IMG of type 2 yet.

Examples of IMGs and glider guns based on them for the base period 46

Code: Select all

#C p46 IMG of type 1 (found in 1994)
x = 101, y = 75
68b4o$52b2o14bo2b2o$52b2o15bo2b2o$69bo2bo9b2o$70b2o8b2ob2o14b2o$80bo2b
o15b2o$70b2o8bo2bo$69bo2bo8b2o$52b2o15bo2b2o$52b2o14bo2b2o8b2o$68b4o8b
o2bo$80bo2bo15b2o$80b2ob2o14b2o$82b2o48$10b2o$2o6b2ob2o$2o6bo2bo$8bo2b
o24b4o$9b2o25bo2b2o6b2o$37bo2b2o5b2o$9b2o26bo2bo$8bo2bo26b2o$2o6bo2bo$
2o6b2ob2o25b2o$10b2o25bo2bo$37bo2b2o5b2o$36bo2b2o6b2o$36b4o!

Code: Select all

#C p1426 (= 31 * 46) glider gun based on p46 IMG of type 1
#C Our smallest p1426 gun yet.
x = 101, y = 80
36bo$36bo2b2o$20b2o13bo5bo5b2o$20b2o14bobo2b2o4b2o11bo$36bo3b2o19bo3bo
$38b3o11b2o2b2o8bo$52b2o2bo5b2o2bo$38b3o15bobo5b2o21bo3b3o$36bo3b2o15b
2o3b3o21bobo2b5o3b2o$20b2o14bobo2b2o43bo3b2o3b2o2b2o$20b2o13bo5bo15b2o
3b3o22bo2bo3b2o$36bo2b2o15bobo5b2o22b3o3bo$36bo15b2o2bo5b2o2bo$52b2o2b
2o8bo21b3o3bo$61bo3bo21bo2bo3b2o$32bo3bo23bo25bo3b2o3b2o2b2o$20b2o9bo
5bo48bobo2b5o3b2o$20b2o15bo49bo3b3o$32bo3b2o$33b3o14bo$48bobo$33b3o13b
2o$32bo3b2o$20b2o15bo$20b2o9bo5bo$32bo3bo8b2obo$45b2ob3o$51bo$45b2ob3o
$46bobo9b2o$46bobo9b2o$47bo4$59bo$59b2o$58bobo5$73bo$71bobo$72b2o3$47b
2o$48b2o$47bo9$36bo$36b2o$35bobo5$15bo3b3o$2o12bobo2b5o$2o12bo3b2o3b2o
3bo$15bo2bo3b3o4bo3bo$16b3o3b2obo8bo12b2o$24bo5b2o2bo12b2o$16b3o3b2o2b
o5b2o$15bo2bo3b5o3b3o$2o12bo3b2o3b2o$2o12bobo2b8o3b3o$15bo3b3obo2bo5b
2o$24bo5b2o2bo12b2o$24b2o8bo12b2o$29bo3bo$28bo!

Code: Select all

#C p46 IMG of type 2 (found in 1996)
x = 114, y = 108
102b2o$101b5o$85b2o14bo4bo5b2o$85b2o14b3o2bo5b2o$102bo2b2o$103b2o$87bo
3bo$85b2obobob2o9b2o$84bob2o3b2obo7bo2b2o$83bo2bo5bo2bo5b3o2bo5b2o$84b
ob2o3b2obo6bo4bo5b2o$85b2obobob2o7b5o$87bo3bo10b2o5$91bo5b2o$91bo5b2o$
90b3o2$89b2ob2o$89b2ob2o$90bobo$91bo5$89b3o5b3o$90b3o3b3o$88bob4ob4obo
$89b2o2bobo2b2o$90b3o3b3o$91bo5bo10$90b2o5b2o$90b2o5b2o28$9b4o$2o6b2o
2bo$2o5b2o2bo$8bo2bo$9b2o2$9b2o20b2o$8bo2bo19b2o$2o5b2o2bo$2o6b2o2bo$
9b4o12$23b3o5b3o$22b2ob2o3b2ob2o$22b2obobobobob2o$23bo3bobo3bo$23bo2bo
3bo2bo$24b3o3b3o6$24b2o5b2o$24b2o5b2o!

Code: Select all

#C p1058 (= 23 * 46) glider gun based on p46 IMG of type 2
x = 114, y = 108
102b2o$101b5o$85b2o14bo4bo5b2o$47bo3b3o31b2o14b3o2bo5b2o$46bobo2b5o3b
2o41bo2b2o$46bo3b2o3b2o2b2o42b2o$18bob2o25bo2bo3b2o31bo3bo$12b2o3bo2b
2o2b3o21b3o3bo30b2obobob2o9b2o$12b2o3bo6b2o58bob2o3b2obo7bo2b2o$17b2o
3b3o23b3o3bo28bo2bo5bo2bo5b3o2bo5b2o$19bo3bo23bo2bo3b2o28bob2o3b2obo6b
o4bo5b2o$46bo3b2o3b2o2b2o24b2obobob2o7b5o$19bo3bo22bobo2b5o3b2o26bo3bo
10b2o$17b2o3b3o22bo3b3o$12b2o3bo6b2o$12b2o3bo2b2o2b3o14bobo$18bob2o20b
2o$42bo48bo5b2o$91bo5b2o$90b3o2$89b2ob2o$89b2ob2o$80bo9bobo$78b2o11bo$
70bo8b2o$53bo16b2o$54b2o13bobo$53b2o$89b3o5b3o$90b3o3b3o$88bob4ob4obo$
89b2o2bobo2b2o$90b3o3b3o$91bo5bo10$90b2o5b2o$90b2o5b2o3$47bo$47b2o$46b
obo11$87bobo$88b2o$88bo6$34bo$32b2o$24bo8b2o$24b2o$9b4o10bobo$2o6b2o2b
o$2o5b2o2bo$8bo2bo$9b2o2$9b2o20b2o$8bo2bo19b2o$2o5b2o2bo$2o6b2o2bo$9b
4o12$23b3o5b3o$22b2ob2o3b2ob2o$22b2obobobobob2o$23bo3bobo3bo$23bo2bo3b
o2bo$24b3o3b3o6$24b2o5b2o$24b2o5b2o!
Examples of IMGs and glider guns based on them for the base period 94

Code: Select all

#C p94 IMG of type 1 (found in 1996)
#C To construct the p94 IMG I had to modify Paul Callahan's gun.
x = 114, y = 105
75bo3bo3bo$73b3o2bobo2b3o$72bo5bobo5bo$71bob5obob5obo$71bo5bo3bo5bo$
72bobobo2bobobo2bo$73b2o3b3ob2obo$81bob2o$78b3ob2o$75b4o4bo$75bo4b2obo
2$92bo$90b3o$89bo$89b2o2$70b2o$70b2o$79b3o11b2o$82bo10bo$79bo3bo7bobo$
78b2o3bo7b2o$72b2o3bo5bo$71bobo8bo2bo$71bo5bo3bo2bobo$70b2o7bo4bobo$
93b2o$84bo2bo5b2o5bo3bo3bo$98b3o2bobo2b3o$83bo3bo9bo5bobo5bo$11bo3bo3b
o64b3o9bob5obob5obo$9b3o2bobo2b3o74bo5bo3bo5bo$8bo5bobo5bo74bo2bobobo
2bobobo$7bob5obob5obo74bob2ob3o3b2o$7bo5bo3bo3bobo75b2obo$8bob2obobobo
b2obo77b2ob3o$9b3o2b2o5bo78bo4b4o$100bob2o4bo$12bob4o72b2o$11b4o4b2o
68b2o$11bobo4bo72bo2$2bo100bo$2b3o98b3o$5bo95bo3bo6b2o$4b2o106b2o$89b
2o10bo$23b2o65bo$23b2o65bobo11b2obo$2o89b2o11bo2bo$bo103b2o3b2o$bobo
106bobo$2b2o3b2o103bo$6bo2bo11b2o89b2o$6bob2o11bobo65b2o$23bo65b2o$12b
o10b2o$2o106b2o$2o6bo3bo95bo$8b3o98b3o$10bo100bo2$22bo71bobo4bo$23b2o
69b4o4b2o$22b2o71bob4o$5bob2o4bo$5bo4b4o78b3o2b2o5bo$5b2ob3o80bob2obob
obob2obo$4b2obo82bo5bo3bo3bobo$3bob2ob3o3b2o74bob5obob5obo$2bo2bobobo
2bobobo74bo5bobo5bo$bo5bo3bo5bo74b3o2bobo2b3o$bob5obob5obo9b3o64bo3bo
3bo$2bo5bobo5bo9bo3bo$3b3o2bobo2b3o$5bo3bo3bo5b2o5bo2bo$19b2o$27bobo4b
o7b2o$27bobo2bo3bo5bo$28bo2bo8bobo$30bo5bo3b2o$21b2o7bo3b2o$20bobo7bo
3bo$20bo10bo$19b2o11b3o$42b2o$42b2o2$23b2o$24bo$21b3o$21bo2$30bo4b2obo
$30b4o4bo$33b3ob2o$36bob2o$28b2o3b3ob2obo$27bobobo2bobobo2bo$26bo5bo3b
o5bo$26bob5obob5obo$27bo5bobo5bo$28b3o2bobo2b3o$30bo3bo3bo!

Code: Select all

#C p1222 (= 13 * 94) glider gun based on a modified p94 IMG of type 1
#C This IMG is not based on a pair of intermitting guns but consists of C
#only one intermitting and one normal gun. This is possible because C the
#outgoing glider stream of the intermitting gun is killed by the C gliders
#of the orthogonal glider stream of the third gun before it C reaches the
#normal gun and destroys it. Our smallest p1222 gun yet.
x = 145, y = 129
106bo3bo3bo$104b3o2bobo2b3o$103bo5bobo5bo$102bob5obob5obo$102bobo3bo3b
o5bo$103bob2obobobob2obo$104bo5b2o2b3o2$108b4obo$105b2o4b4o$107bo4bobo
2$123bo$121b3o$120bo$120b2o2$101b2o$101b2o$124b2o$124bo$122bobo$116b3o
3b2o$103b2o10bo3bo$102bobo9bo5bo$102bo12bo3bo$101b2o13b3o$124b2o$124b
2o5bo3bo3bo$129b3o2bobo2b3o$128bo5bobo5bo$127bob5obob5obo$127bo5bo3bo
3bobo$128bob2obobobob2obo$129b3o2b2o5bo2$132bob4o$131b4o4b2o$131bobo4b
o7$143b2o$128b2o13b2o$120b2o6bobo$121bo6bo$121bobo8bo$122b2o9bo$129b2o
2bo7b2o$131bo2bo6bobo$132b2o9bo$143b2o$120b2o5b2o$120b2o5b2o$78bo50bo$
76b2o50bo10b2o$77b2o49bo10bo$140b3o$142bo2$125bo4b2obo$125b4o4bo$128b
3ob2o$131bob2o$123b2o3b3ob2obo$19bo7b2o93bobobo2bobobo2bo$19b3o5b2o12b
2o78bo5bo3bo5bo$12b2o8bo17bo2bo77bob5obob5obo$13bo7b2o16bo2bobo77bo5bo
bo5bo$13bobo23b2obobo78b3o2bobo2b3o$14b2o19b2o2b2obob2o79bo3bo3bo$36b
2o4bo$3b2o30b2o3b3o$2bo2bo30b2obo3b2o$bobo2bo30bob2obo2bo$bobob2o30bo
5b2o$2obo5b2o26bo2b3o$3bobo3bo25bo6bo$3b2o4bo11bo14bo3bobob2o7bobo$b2o
3bob2o10bobo13bo3bobobo8b2o$o2bob2obo10bo3bo15bob2obo9bo$b2o3bobobo8bo
3bo16bo2bo$3b3obo2bo8bo3bo17b2o$3bo2bobo11bobo$2obob6o10bo$bobo3bo$bob
o2bo16b2o$2bo2bo17bo$3b2o12b2o5b3o$17b2o7bo7$27b2o15b2o$27b2o15b2o4$
22b2o7bo$8b2o12b2o5b3o$7bo2bo17bo$6bob2obo16b2o$6bobobo3bo$5b2obobo3bo
$8bo6bo11bo$8b3o2bo11b2obo17b2o$6b2o5bo11bo2bo16bo2bo$5bo2bob2obo6bo4b
3o16bo2bobo$6b2o3bob2o4bo2bo21b2obobo$8b3o3b2o4b2o18b2o5bob2o$8bo4b2o
26bo3bobo$5b2obob2o2b2o25bo4b2o$6bobob2o29b2obo3b2o$6bobo2bo30bob2obo
2bo$7bo2bo29bobobo3b2o$8b2o30bo2bob3o$42bobo2bo$19b2o19b6obob2o$18bobo
22bo3bobo$18bo7b2o16bo2bobo$17b2o8bo17bo2bo21bo$24b3o5b2o12b2o23bo$24b
o7b2o35b3o!

Code: Select all

#C p94 IMG of type 2 (found in 1996)
x = 128, y = 135
98bo3bo3bo$96b3o2bobo2b3o$95bo5bobo5bo$94bob5obob5obo$94bobo3bo3bo5bo$
95bob2obobobob2obo$96bo5b2o2b3o2$100b4obo$97b2o4b4o$99bo4bobo2$115bo$
113b3o$112bo$112b2o2$93b2o14b2o$93b2o13bobo$110bo5b2o$116bo$114bobo$
103bo10b2o$95b2o5b2obobo$94bobo5b2obobo$94bo$93b2o9b3o3bo$108b4o4b2o$
107b2o3bo3b2o$106bo3b2o$107b4o$108bo4$104bo4b2obo$104b4o4bo$107b3ob2o$
68b2o18bobo19bob2o$69bo18b2o12b2o3b3ob2obo$69bobo17bo11bobobo2bobobo2b
o$70b2o28bo5bo3bo5bo$100bob5obob5obo$101bo5bobo5bo$102b3o2bobo2b3o$
105bobobobo$105bobobobo$85bo16b3o2bobo2b3o$84b2o15bo5bobo5bo$84bobo13b
ob5obob5obo$100bo5bo3bo5bo$101bobobo2bobobo2bo$102b2o3b3ob2obo$110bob
2o$107b3ob2o$104b4o4bo$104bo4b2obo2$108bo$108bo$107bobo$108bo$108bo$
116b2o$116b2o$93b2o$94bo$5bo3bo3bo80bobo$3b3o2bobo2b3o79b2o4bobo$2bo5b
obo5bo84bobo10b2o$bob5obob5obo83bo12bobo$bo5bo3bo3bobo83b2o3bo9bo$2bob
2obobobob2obo84b2ob2o10b2o$3b3o2b2o5bo77b2o8b2o$93b2o$6bob4o$5b4o4b2o
97b2o$5bobo4bo99bo$113b3o$22bo92bo$20b3o$19bo79bo4bobo$19b2o76b2o4b4o$
100b4obo$2o$2o94bo5b2o2b3o$23b2o70bob2obobobob2obo$23bo70bobo3bo3bo5bo
$21bobo70bob5obob5obo$15b3o3b2o72bo5bobo5bo$2b2o10bo3bo77b3o2bobo2b3o$
bobo9bo5bo78bo3bo3bo$bo12bo3bo$2o13b3o$23b2o$23b2o2$4b2o$5bo$2b3o$2bo
6$9b2o$9b2o$16b3o13b2o$15bo3bo12bo$14bo5bo9bobo$15bo3bo10b2o$11b2o3b3o
$10bobo$10bo$9b2o$32b2o$32b2o2$13b2o$14bo$11b3o$11bo2$21bo4bobo$19b2o
4b4o$22b4obo2$18bo5b2o2b3o$17bob2obobobob2obo$16bobo3bo3bo5bo$16bob5ob
ob5obo$17bo5bobo5bo$18b3o2bobo2b3o$20bo3bo3bo!

Code: Select all

#C p470 (= 5 * 94) glider gun based on p94 IMG of type 2
#C This is not a spectacular period and the gun is rather big but I
#C didn't find a better p94 IMG type 2 example until now.
x = 128, y = 135
98bo3bo3bo$96b3o2bobo2b3o$95bo5bobo5bo$94bob5obob5obo$94bo5bo3bo3bobo$
95bob2obobobob2obo$96b3o2b2o5bo2$99bob4o$98b4o4b2o$98bobo4bo2$115bo$
113b3o$112bo$112b2o2$93b2o$93b2o$116b2o$116bo$114bobo$109b2o3b2o$95b2o
11bo2bo$94bobo11b3o$19bo7b2o65bo14bo$19b3o5b2o12b2o50b2o$12b2o8bo17bo
2bo72b2o$13bo7b2o16bob2obo63bo7b2o$13bobo20bo3bobobo61b2o$14b2o20bo3bo
bob2o60b3o$35bo6bo$3b2o32bo2b3o$2bo2bo31bo5b2o48bobo$bobo2bo30bob2obo
2bo47b2o$bobo3bo28b2obo3b2o49bo9bob2o4bo$2obob6o24b2o3b3o61bo4b4o$3bo
2bobo27b2o4bo61b2ob3o$3b3obo2bo4b2o18b2o2b2obob2o22b2o33b2obo$b2o3bobo
bo3bo6bo17b2obobo24bo32bob2ob3o3b2o$o2bob2obo11b3o16bo2bobo24bobo29bo
2bobobo2bobobo$b2o3bob2o9bo3bo16bo2bo26b2o28bo5bo3bo5bo$3b2o4bo10b2obo
17b2o57bob5obob5obo$3bobo3bo11b2o78bo5bobo5bo$2obo5b2o91b3o2bobo2b3o$b
obob2o98bobobobo$bobo2bo16b2o80bobobobo$2bo2bo17bo78b3o2bobo2b3o$3b2o
12b2o5b3o74bo5bobo5bo$17b2o7bo73bob5obob5obo$100bo5bo3bo5bo$101bo2bobo
bo2bobobo$90bo11bob2ob3o3b2o$89b2o12b2obo$89bobo12b2ob3o$104bo4b4o$
104bob2o4bo3$46bo$47bo61bo$45b3o61bo$108bo$109b2o5b2o$54b2o53b2o5b2o$
53bo2bo7b2o27b2o$53bo2bo7b2o28bo9b2o$5bo3bo3bo40b2o38bobo6bo2bo$3b3o2b
obo2b3o79b2o7bo2b2o$2bo5bobo5bo87bo9b2o$bob5obob5obo87bo8bobo$bobo3bo
3bo5bo91bo6bo$2bob2obobobob2obo90bobo6b2o$3bo5b2o2b3o77b2o13b2o$93b2o$
7b4obo$4b2o4b4o98b2o$6bo4bobo98bo$113b3o$22bo92bo$20b3o28b2o$10bo8bo
32b2o44bobo4bo$8bobo8b2o30bo46b4o4b2o$6b2ob2o88bob4o$2o$2o7bo86b3o2b2o
5bo$5bo3bo13b2o70bob2obobobob2obo$6bo2bo5bo7bo70bo5bo3bo3bobo$9bo3b2ob
2o3bobo70bob5obob5obo$12bo4bo3b2o72bo5bobo5bo$2b2o7bo84b3o2bobo2b3o$bo
bo8bo3bo81bo3bo3bo$bo11b3o$2o$23b2o$23b2o2$4b2o$5bo$2b3o$2bo3$28bo$28b
2o$27bobo$9b2o$9b2o$32b2o$18b3o11bo$17bo3bo8bobo$22bo7b2o$11b2o3bo4bo$
10bobo3b2ob2o3bo$10bo7bo5bo2bo$9b2o13bo3bo$24bo7b2o$32b2o$23b2ob2o$13b
2o8bobo$14bo8bo$11b3o$11bo2$20bobo4bo$20b4o4b2o$21bob4o2$18b3o2b2o5bo$
17bob2obobobob2obo$16bo5bo3bo3bobo84bo$16bob5obob5obo82bobo$17bo5bobo
5bo84b2o$18b3o2bobo2b3o$20bo3bo3bo!
Peter Rott
On 6 Oct 1996, Dieter Leithner wrote:Subject: Extendible p94 Glider Guns

Peter Rott writes:

Construction of "Extendible Guns" in the p94 World by using
Intermitting Glider Guns (IMG) and a "Loops the Loop Gun":


You will get all guns with the pseudo period p = n * b, where in the p94 world n equals all integers greater or equal 4 and b is the base period 94. Because I've found only three of the four needed IMGs, I built the fourth needed gun by using the well known loops the loop module which is extendible too. For constructing the p94 IMGs, I had to modify the p94 base gun of Paul Callahan.

Four guns are needed, two for the odd and two for the even period multiples.

- GG94odd1 (a p470 gun using a p94 IMG)
- GG94odd2 (a p658 gun using a p94 IMG)
- GG94eve1 (a p376 gun using a loops the loop module)
- GG94eve2 (a p564 gun using a p94 IMG)

To change the pseudo period of the two odd and the even2 IMGs, the upper right gun of the IMG pair has to be moved to NE for 47n pixels (n = 1, 2, ...) and the missing gliders in the anti parallel glider stream has to be inserted manually. To change the pseudo period of the even1 gun the lower left part of the "loops the loop" module has to be moved to SE for 47n pixels (n = 1, 2, ...) and the missing gliders in the glider stream has to be inserted manually. In all the cases the pseudo period will be changed by a value of 376n (= 4b * n), n = 1, 2, ...

For demonstrating the construction principle the following examples show the four extendible guns without change and additionally in changed form as required for the first step (extended for 47 pixels).

Code: Select all

#C GG94odd1, unchanged (K94U5)
#C to get the pseudo periods p = b * (5 + 4n), n = 1, 2, ...
x = 162, y = 161
97bo7b2o$97b3o5b2o12b2o$90b2o8bo17bo2bo$91bo7b2o16bob2obo$91bobo20bo3b
obobo$92b2o20bo3bobob2o$113bo6bo$81b2o32bo2b3o$80bo2bo31bo5b2o$79bobo
2bo30bob2obo2bo$79bobo3bo28b2obo3b2o$78b2obob6o9b3o12b2o3b3o$81bo2bobo
10bo3bo12b2o4bo$81b3obo2bo8bo3bo11b2o2b2obob2o$79b2o3bobobo6b2o5b2o13b
2obobo$78bo2bob2obo7bo4bo4bo12bo2bobo$79b2o3bob2o6bo3bobo3bo13bo2bo$
81b2o4bo6bo4bob2obo14b2o$81bobo3bo7b3o$78b2obo5b2o34b2o7bo$79bobob2o
38b2o5b3o$79bobo2bo16b2o26bo8b2o$80bo2bo17bo27b2o7bo$81b2o12b2o5b3o31b
obo$95b2o7bo31b2o$127b2o$129bo17b2o$122b2o3bobo16bo2bo$122bo4b2o16bo2b
obo$121b2o22b2obobo$141b2o2b2obob2o$123bobo16b2o4bo$141b2o3b3o$142b2ob
o3b2o$143bob2obo2bo$143bo5b2o$143bo2b3o$141bo6bo$29bo3bo3bo104bo3bobob
2o$27b3o2bobo2b3o102bo3bobobo$26bo5bobo5bo86b2o16bob2obo$25bob5obob5ob
o75bobo8bo17bo2bo$25bo5bo3bo5bo75b2o6b3o5b2o12b2o$26bobobo2bobobo2bo
77bo6bo7b2o$27b2o3b3ob2obo$35bob2o$32b3ob2o$29b4o4bo$29bo4b2obo2$20bo
12bo$20b3o10bo$23bo8bobo$22b2o9bo$33bo$41b2o$41b2o$18b2o$19bo$19bobo$
20b2o4bobo$26bobo10b2o$26bo12bobo$26b2o3bo9bo$26b2ob2o10b2o52bo$18b2o
8b2o63b2o$18b2o74b2o2$39bo$37bobo$38b2o40bo$80b2o$79bobo$23bobo4bo$23b
4o4b2o$24bob4o2$21b3o2b2o5bo$20bob2obobobob2obo$19bo5bo3bo3bobo$19bob
5obob5obo$20bo5bobo5bo$21b3o2bobo2b3o$23bo3bo3bo5$70bobo$70b2o$71bo$
62bo$63bo$61b3o$56b2o$57b2o$56bo19$86bo$84bobo$17b2o7bo6bo51b2o$3b2o
12b2o5b3o6b2o$2bo2bo17bo8bobo$bobo2bo16b2o$bobob2o83b2o$2obob2o2b2o79b
o$3bo4b2o81b3o$3b3o3b2o82bo$b2o3bob2o$o2bob2obo$b2o5bo$3b3o2bo$3bo6bo
15bobo$2obobo3bo$bobobo3bo19b2o$bob2obo16b2o4bo$2bo2bo16bobo3b2o$3b2o
17bo$23b2o$14b2o31bo7b2o$13bobo31b3o5b2o12b2o$13bo7b2o27bo17bo2bo$12b
2o8bo26b2o16bo2bobo$19b3o5b2o37bo3bobo$19bo7b2o34b6obob2o$54b3o8bobo2b
o$31b2o14bob2obo4bo5bo2bob3o$30bo2bo13bo3bobo3bo5bobobo3b2o$29bob2obo
12bo4bo4bo7bob2obo2bo$29bobobo3bo10b2o5b2o7b2obo3b2o$28b2obobo3bo12bo
3bo9bo4b2o$31bo6bo11bo3bo9bo3bobo$31b3o2bo14b3o9b2o5bob2o$29b2o5bo30b
2obobo$28bo2bob2obo30bo2bobo$29b2o3bob2o30bo2bo$31b3o3b2o30b2o$31bo4b
2o$28b2obob2o2b2o19b2o$29bobob2o23bobo$29bobo2bo16b2o7bo$30bo2bo17bo8b
2o$31b2o12b2o5b3o$45b2o7bo!

Code: Select all

#C GG94odd1, 1st change (K94U9.LIF)
x = 219, y = 208
144bo7b2o$144b3o5b2o12b2o$137b2o8bo17bo2bo$138bo7b2o16bo2bobo$138bobo
23b2obobo$139b2o19b2o2b2obob2o$161b2o4bo$128b2o22b2obo4b2o3b3o$127bo2b
o12b2o8bobo5b2obo3b2o$126bobo2bo12b2o2bo6bo6bob2obo2bo$126bobob2o13b4o
13bo5b2o$125b2obo5b2o10b2o14bo2b3o$128bobo3bo11b2ob2o9bo6bo$128b2o4bo
13b3o10bo3bobob2o$126b2o3bob2o26bo3bobobo$125bo2bob2obo30bob2obo$126b
2o3bobobo29bo2bo$128b3obo2bo30b2o$128bo2bobo$125b2obob6o34b2o7bo$126bo
bo3bo37b2o5b3o$126bobo2bo16b2o26bo8b2o$127bo2bo17bo27b2o7bo$128b2o12b
2o5b3o31bobo$142b2o7bo11bo19b2o$162b4ob2o$161bo2b3o27b2o$166bo3bo22bo
2bo$163bobo4bo21bob2obo$163bob2o3bo18bo3bobobo$164bobo22bo3bobob2o$
166b3o19bo6bo$183bo6bo2b3o$176b3o4bo6bo5b2o$176b3o11bob2obo2bo$175bo3b
o9b2obo3b2o$175bob2o9b2o3b3o$176b3o10b2o4bo$188b2o2b2obob2o$192b2obobo
$174b2o16bo2bobo$175bo17bo2bo$172b3o5b2o12b2o$172bo7b2o11$151bobo$151b
2o$152bo21$129bo$127b2o$128b2o6$29bo3bo3bo$27b3o2bobo2b3o$26bo5bobo5bo
$25bob5obob5obo$25bo5bo3bo5bo$26bo2bobobo2bobobo$27bob2ob3o3b2o$28b2ob
o$29b2ob3o$29bo4b4o$29bob2o4bo2$20bo$20b3o$23bo$22b2o$32bo71bobo$32b2o
7b2o61b2o$29bo3b2o6b2o62bo$18b2o9bobob3o$19bo9b5obo$19bobo10b2o2bo$20b
2o12b2o$39b2o$39bobo$41bo$41b2o$18b2o$18b2o7bo$26b3o$26b2obo4$26bo$24b
o4bobo$22b2o4b4o$25b4obo2$21bo5b2o2b3o48bo$20bob2obobobob2obo45b2o$19b
obo3bo3bo5bo45b2o$19bob5obob5obo$20bo5bobo5bo17bo16b2o$21b3o2bobo2b3o
16bobo17b2o$23bo3bo3bo19b2o16bo21$46bo28bo$46b2o28bo$45bobo26b3o11$17b
2o7bo$3b2o12b2o5b3o$2bo2bo17bo$bob2obo16b2o$bobobo3bo80b2o$2obobo3bo
80bo$3bo6bo9b3o68b3o$3b3o2bo11b2obo69bo$b2o5bo10bo3bo$o2bob2obo11b3o$b
2o3bob2o5bo4b3o$3b3o3b2o4bo$3bo4b2o20b3o$2obob2o2b2o21bobo$bobob2o21bo
3b2obo$bobo2bo21bo4bobo$2bo2bo22bo3bo$3b2o27b3o2bo$30b2ob4o$14b2o19bo
11bo7b2o$13bobo31b3o5b2o12b2o$13bo7b2o27bo17bo2bo$12b2o8bo26b2o16bo2bo
bo$19b3o5b2o38b2obobo$19bo7b2o34b2o5bob2o$64bo3bobo$31b2o31bo4b2o$30bo
2bo30b2obo3b2o$29bobo2bo30bob2obo2bo$29bobob2o28bobobo3b2o$28b2obob2o
2b2o9b3o12bo2bob3o$31bo4b2o10b2ob2o12bobo2bo$31b3o3b2o12b2o10b6obob2o$
29b2o3bob2o12b4o12bo3bobo$28bo2bob2obo6bo6bo2b2o12bo2bobo$29b2o5bo6bob
o8b2o12bo2bo$31b3o2bo6bob2o22b2o$31bo6bo$28b2obobo3bo20b2o$29bobobo3bo
20bobo$29bob2obo16b2o7bo$30bo2bo17bo8b2o$31b2o12b2o5b3o$45b2o7bo!

Code: Select all

#C GG94odd2, unchanged (K94U7)
#C to get the pseudo periods p = b * (7 + 4n), n = 1, 2, ...
x = 168, y = 152
129bo3bo3bo$127b3o2bobo2b3o$126bo5bobo5bo$125bob5obob5obo$125bo5bo3bo
5bo$126bo2bobobo2bobobo$127bob2ob3o3b2o$128b2obo$129b2ob3o$129bo4b4o$
129bob2o4bo2$146bo$133bo10b3o$132b3o8bo$132b3o8b2o2$124b2o$124b2o7bo$
147b2o$132bob2o11bo$133b4o8bobo$134b3o3bo4b2o$126b2o6b3o2b2o$125bobo7b
2o2b2o$125bo10b2obo$124b2o11b2o$138bo8b2o$147b2o5bo3bo3bo$128bo23b3o2b
obo2b3o$127bo23bo5bobo5bo$127b3o20bob5obob5obo$11bo3bo3bo130bo5bo3bo5b
o$9b3o2bobo2b3o129bobobo2bobobo2bo$8bo5bobo5bo129b2o3b3ob2obo$7bob5obo
b5obo136bob2o$7bo5bo3bo5bo133b3ob2o$8bobobo2bobobo2bo131b4o4bo$9b2o3b
3ob2obo132bo4b2obo$17bob2o$14b3ob2o$11b4o4bo$11bo4b2obo2$2bo$2b3o161b
2o$5bo160b2o$4b2o137b2o$15b3o126bo$14bo3bo4b2o119bobo$14bo3bo4b2o120b
2o3b2o$2o10b2o4bo130bo2bo11b2o$bo9bo4bo133b3o11bobo$bobo7bo3bobo86bo
61bo$2b2o7bo4bo87bobo59b2o$12b2o3bo3b2o81b2o37b2o$14bo2bo3bobo119b2o6b
o$14bo8bo127bob2o$15b3o5b2o128bo8b2o$2o160bo$2o161b3o$165bo2$149bo4bob
o$147b2o4b4o$150b4obo2$5bobo4bo133bo5b2o2b3o$5b4o4b2o130bob2obobobob2o
bo$6bob4o132bobo3bo3bo5bo$144bob5obob5obo$3b3o2b2o5bo129bo5bobo5bo$2bo
b2obobobob2obo129b3o2bobo2b3o$bo5bo3bo3bobo74b3o53bo3bo3bo$bob5obob5ob
o76bo$2bo5bobo5bo76bo$3b3o2bobo2b3o65bo$5bo3bo3bo66bo$18bo3bo3bo53b3o$
16b3o2bobo2b3o9bo$15bo5bobo5bo6bobo$14bob5obob5obo6b2o$14bobo3bo3bo5bo
$15bob2obobobob2obo$16bo5b2o2b3o2$20b4obo$17b2o4b4o$19bo4bobo2$9bo$9b
3o$12bo$11b2o8bo$20b2obo$23bo6b2o$30b2o$7b2o$8bo51bo$8bobo11b3o34bo3bo
$9b2o11bo2bo33bob2o$23b2o3b2o30b2o$28bobo$30bo$30b2o$7b2o$7b2o7$12bo4b
2obo$12b4o4bo$15b3ob2o$18bob2o$10b2o3b3ob2obo$9bobobo2bobobo2bo$8bo5bo
3bo5bo$8bob5obob5obo20b3o$9bo5bobo5bo23bo$10b3o2bobo2b3o23bo$12bo3bo3b
o5b2o$26b2o8bo$36b2o11b2o$35bob2o10bo$34b2o2b2o7bobo$34b2o2b3o6b2o$28b
2o4bo3b3o$27bobo8b4o$27bo11b2obo$26b2o$41bo7b2o$49b2o2$30b2o8b3o$31bo
8b3o$28b3o10bo$28bo2$37bob2o4bo$37bo4b4o$37b2ob3o$36b2obo$35bob2ob3o3b
2o$34bo2bobobo2bobobo$33bo5bo3bo5bo$33bob5obob5obo$34bo5bobo5bo59bo$
35b3o2bobo2b3o61bo$37bo3bo3bo61b3o!

Code: Select all

#C GG94odd2, 1st change (K94U11.LIF)
x = 194, y = 183
155bo3bo3bo$153b3o2bobo2b3o$152bo5bobo5bo$151bob5obob5obo$151bo5bo3bo
5bo$152bo2bobobo2bobobo$153bob2ob3o3b2o$154b2obo$155b2ob3o$155bo4b4o$
155bob2o4bo2$172bo$170b3o$169bo$169b2o2$150b2o$150b2o7b4o$158bo2b2o10b
2o$157bo2bobo10bo$157b2o12bobo$157b2o12b2o$152b2o$151bobo$151bo$150b2o
$173b2o$173b2o5bo3bo3bo$178b3o2bobo2b3o$164b3o10bo5bobo5bo$164bobo9bob
5obob5obo$164b3o9bo5bo3bo5bo$177bobobo2bobobo2bo$178b2o3b3ob2obo$186bo
b2o$183b3ob2o$180b4o4bo$169b2o9bo4b2obo$168b2o$170bo2$141bo41bo$141bob
o38bo$141b2o39bo$192b2o$192b2o$169b2o14bo$170bo13bobo$170bobo10b2ob2o$
171b2o11bo2bo$185b2o3b2o$190bobo$192bo$192b2o$169b2o$169b2o2$188b2o$
188bo$189b3o$191bo2$175bo4bobo$173b2o4b4o$118bo57b4obo$117bo$117b3o52b
o5b2o2b3o$171bob2obobobob2obo$170bobo3bo3bo5bo$170bob5obob5obo$171bo5b
obo5bo$172b3o2bobo2b3o$174bo3bo3bo16$94bo$94bobo$94b2o11$12bo3bo3bo$
10b3o2bobo2b3o$9bo5bobo5bo$8bob5obob5obo$8bo5bo3bo5bo$9bo2bobobo2bobob
o$10bob2ob3o3b2o$11b2obo$12b2ob3o$12bo4b4o$12bob2o4bo50bo$70bo$3bo66b
3o$3b3o$6bo$5b2o2$24b2o$9b2o13b2o$b2o5b2o$2bo7bo$2bobo$3b2o8b2o$11bob
3o6b2o$11b2o2bo6bobo$13b2o9bo$24b2o$b2o5b2o$b2o5bobo$8bobo$9b2o4$47bo$
7bo4bobo32bobo$5b2o4b4o32b2o$8b4obo15bo$27bobo$4bo5b2o2b3o11b2o$3bob2o
bobobob2obo$2bobo3bo3bo5bo$2bob5obob5obo$3bo5bobo5bo$4b3o2bobo2b3o$6bo
3bo3bo7$37b2o$36bobo$38bo2$17b2o7bo$3b2o12b2o5b3o$2bo2bo17bo$bobo2bo
16b2o$bobob2o45bo$2obo5b2o42bo$3bobo3bo41b3o$3b2o4bo31b2o$b2o3bob2o30b
o2bo$o2bob2obo30bo2bobo$b2o3bobobo28b2obobo$3b3obo2bo12b3o9b2o2b2obob
2o$3bo2bobo12b2ob2o10b2o4bo$2obob6o10b2o12b2o3b3o$bobo3bo12b4o12b2obo
3b2o$bobo2bo12b2o2bo6bo6bob2obo2bo$2bo2bo12b2o8bobo6bo5b2o$3b2o22b2obo
6bo2b3o$35bo6bo$14b2o20bo3bobob2o20b2o$13bobo20bo3bobobo21bobo$13bo7b
2o16bob2obo23bo$12b2o8bo17bo2bo24b2o$19b3o5b2o12b2o$19bo7b2o!

Code: Select all

#C GG94eve1, unchanged (K94G4)
#C to get the pseudo periods p = b * (4 + 4n), n = 1, 2, ...
x = 101, y = 78
5bo3bo3bo20b2o$3b3o2bobo2b3o18bo$2bo5bobo5bo15bobo$bob5obob5obo14b2o$b
o5bo3bo5bo$2bo2bobobo2bobobo$3bob2ob3o3b2o$4b2obo$5b2ob3o$5bo4b4o10b2o
$5bob2o4bo11b2o$24bo6$2o$2o5b3o$6bo3bo12b2o$5bo5bo11bo$5bo5bo9bobo$5bo
5bo9b2o$2b2o2bo3bo70bo3bo3bo$bobo3b3o69b3o2bobo2b3o$bo76bo5bobo5bo$2o
75bob5obob5obo$23b2o52bobo3bo3bo5bo$23b2o53bob2obobobob2obo$79bo5b2o2b
3o$4b2o$5bo29bo3bo3bo39b4obo$2b3o28b3o2bobo2b3o34b2o4b4o$2bo29bo5bobo
5bo35bo4bobo$31bob5obob5obo36bo$11bobo4bo12bo5bo3bo5bo50bo$11b4o4b2o
11bo2bobobo2bobobo37b3o9b3o$12bob4o15bob2ob3o3b2o10b3o25bobo8bo$34b2ob
o18bo27b3o8b2o$9b3o2b2o5bo13b2ob3o16bo$8bob2obobobob2obo12bo4b4o32b2o$
7bo5bo3bo3bobo11bob2o4bo32b2o$7bob5obob5obo75b2o$8bo5bobo5bo3bo72bo$9b
3o2bobo2b3o4b3o68bobo$11bo3bo3bo9bo67b2o$28b2o7b3o38b2o12b2o$37b2o38bo
bo12b2o$39bo7b2o28bo10bobo2bo$47b2o27b2o10b2o2bo$24b2o62b4o7b2o$25bo
14bo58b2o$25bobo11b3o$26b2o11bo2bo37bo$40b2o3b2o31b2o$45bobo31b2o$47bo
$47b2o$24b2o61bo4b2obo$24b2o61b4o4bo$90b3ob2o$93bob2o$85b2o3b3ob2obo$
84bobobo2bobobo2bo$83bo5bo3bo5bo$83bob5obob5obo$30bo4bobo46bo5bobo5bo$
28b2o4b4o47b3o2bobo2b3o$31b4obo50bo3bo3bo2$27bo5b2o2b3o$26bob2obobobob
2obo$25bobo3bo3bo5bo$25bob5obob5obo$26bo5bobo5bo$27b3o2bobo2b3o19bo$
29bo3bo3bo22bo$58b3o!

Code: Select all

#C GG94eve1, 1st change (K94G8)
x = 148, y = 124
5bo3bo3bo20b2o$3b3o2bobo2b3o18bo$2bo5bobo5bo15bobo$bob5obob5obo14b2o$b
o5bo3bo5bo$2bo2bobobo2bobobo$3bob2ob3o3b2o$4b2obo$5b2ob3o$5bo4b4o$5bob
2o4bo9b2o$24b2o$23bo2$10bo$11bo$11bo$2o$2o$8bo14b2o$7bobo13bo$6b2ob2o
10bobo$6bo2bo11b2o$2b2o3b2o$bobo$bo$2o$23b2o$23b2o2$4b2o$5bo29bo3bo3bo
$2b3o28b3o2bobo2b3o$2bo29bo5bobo5bo$31bob5obob5obo$11bobo4bo12bo5bo3bo
5bo$11b4o4b2o11bo2bobobo2bobobo$12bob4o15bob2ob3o3b2o$34b2obo$9b3o2b2o
5bo13b2ob3o$8bob2obobobob2obo12bo4b4o$7bo5bo3bo3bobo11bob2o4bo$7bob5ob
ob5obo$8bo5bobo5bo3bo$9b3o2bobo2b3o4b3o$11bo3bo3bo9bo$28b2o$38b2o$37b
2obo6b2o$35b3o2b2o5b2o$24b2o8b2o4b2o$25bo8b2o5b2o$25bobo14bo$26b2o12b
2o$40bo4b2o$45bobo$47bo$47b2o$24b2o7bo$24b2o7bo$34bo6$30bo4bobo$28b2o
4b4o$31b4obo2$27bo5b2o2b3o88bo3bo3bo$26bob2obobobob2obo85b3o2bobo2b3o$
25bobo3bo3bo5bo83bo5bobo5bo$25bob5obob5obo82bob5obob5obo$26bo5bobo5bo
17bo65bobo3bo3bo5bo$27b3o2bobo2b3o19bo65bob2obobobob2obo$29bo3bo3bo19b
3o66bo5b2o2b3o2$130b4obo$127b2o4b4o$129bo4bobo2$145bo$143b3o$131b3o8bo
$104b3o23bo3bo7b2o$104bo$105bo17b2o5bo2bo$123b2o$131bobo4bo7b2o$131bob
o2bo3bo5bo$132bo2bo8bobo$134bo5bo3b2o$125b2o7bo3b2o$124bobo7bo3bo$124b
o10bo$123b2o11b3o$146b2o$82bo63b2o$80bobo45bo$81b2o43b2o$127b2o4$134bo
4b2obo$134b4o4bo$137b3ob2o$140bob2o$132b2o3b3ob2obo$131bobobo2bobobo2b
o$130bo5bo3bo5bo$130bob5obob5obo$131bo5bobo5bo$132b3o2bobo2b3o$134bo3b
o3bo6$105bo$106bo$104b3o!

Code: Select all

#C GG94eve2, unchanged (K94G6)
#C to get the pseudo periods p = b * (6 + 4n), n = 1, 2, ...
x = 161, y = 152
122bo3bo3bo$120b3o2bobo2b3o$119bo5bobo5bo$118bob5obob5obo$118bobo3bo3b
o5bo$119bob2obobobob2obo$120bo5b2o2b3o2$124b4obo$121b2o4b4o$123bo4bobo
2$139bo$137b3o$136bo$136b2o2$117b2o$117b2o$132b3o5b2o$131bo8bo$131bo2b
o3bobo$129b2o3bo3b2o$119b2o7bo4bo$118bobo7bo3bobo$118bo9bo4bo$117b2o
10b2o4bo$131bo3bo4b2o$131bo3bo4b2o5bo3bo3bo$132b3o10b3o2bobo2b3o$144bo
5bobo5bo$143bob5obob5obo$143bo5bo3bo3bobo$144bob2obobobob2obo$145b3o2b
2o5bo$116bo$114b2o32bob4o$115b2o30b4o4b2o$147bobo4bo5$115bo$115b2o$
114bobo25b3o14b2o$142bo16b2o$136b2o5bo$137bo$137bobo10bo$138b2o10bo$
19bo7b2o120bo7b2o$19b3o5b2o12b2o107b2o5bobo$12b2o8bo17bo2bo105b3o7bo$
13bo7b2o16bob2obo97b3o2b3o9b2o$13bobo12bo7bo3bobobo91b2o3bobobob2o$14b
3o10b3o6bo3bobob2o90b2o3bo3bo2bo$16b3o7bo3bo4bo6bo98bobo3bo$3b2o11b2o
7b3ob3o5bo2b3o99b2obobo7b2o$2bo2bo12bo7bo4bo5bo5b2o46bobo50b3o8bo$bobo
2bo20bo2b3o4bob2obo2bo45b2o63b3o$bobo3bo18bo4bo4b2obo3b2o47bo65bo$2obo
b6o15bo2b2o4b2o3b3o$3bo2bobo19b2o6b2o4bo98bo4b2obo$3b3obo2bo11b2o11b2o
2b2obob2o95b4o4bo$b2o3bobobo11bo16b2obobo99b3ob2o$o2bob2obo14b3o13bo2b
obo102bob2o$b2o3bob2o30bo2bo95b2o3b3ob2obo$3b2o4bo31b2o95bobobo2bobobo
2bo$3bobo3bo127bo5bo3bo5bo$2obo5b2o126bob5obob5obo$bobob2o131bo5bobo5b
o$bobo2bo16b2o114b3o2bobo2b3o$2bo2bo17bo117bo3bo3bo$3b2o12b2o5b3o$17b
2o7bo3$11bo3bo3bo$9b3o2bobo2b3o18bo$8bo5bobo5bo15bobo$7bob5obob5obo15b
2o$7bo5bo3bo5bo45bo$8bobobo2bobobo2bo44b2o$9b2o3b3ob2obo46b2o$17bob2o$
14b3ob2o$11b4o4bo$11bo4b2obo2$2bo$2b3o$5bo8b3o$4b2o7bobob2o$13bo3bobo$
12bo2bo3bo3b2o$12b2obobobo3b2o$2o9b3o2b3o$bo7b3o$bobo5b2o$2b2o7bo$10bo
10b2o$10bo10bobo$23bo$17bo5b2o$2o16bo$2o14b3o7$5bobo4bo$5b4o4b2o29b2o$
6bob4o33b2o$44bo$3b3o2b2o5bo$2bob2obobobob2obo$bo5bo3bo3bobo$bob5obob
5obo$2bo5bobo5bo$3b3o2bobo2b3o10b3o$5bo3bo3bo5b2o4bo3bo$19b2o4bo3bo$
25bo4b2o10b2o$27bo4bo9bo$26bobo3bo7bobo$27bo4bo7b2o$21b2o3bo3b2o$20bob
o3bo2bo$20bo8bo$19b2o5b3o$42b2o$42b2o2$23b2o$24bo$21b3o$21bo2$31bo4bob
o$29b2o4b4o$32b4obo2$28bo5b2o2b3o$27bob2obobobob2obo$26bobo3bo3bo5bo$
26bob5obob5obo$27bo5bobo5bo68bo$28b3o2bobo2b3o70bo$30bo3bo3bo70b3o!bo
3bo3bo70b3o!

Code: Select all

#C GG94eve2, 1st change (K94G10.LIF)
x = 208, y = 199
169bo3bo3bo$167b3o2bobo2b3o$166bo5bobo5bo$165bob5obob5obo$165bobo3bo3b
o5bo$166bob2obobobob2obo$167bo5b2o2b3o2$171b4obo$168b2o4b4o$170bo4bobo
2$186bo$184b3o$183bo$183b2o2$164b2o$164b2o14bo$178b3o6b2o$187bo$177bo
7bobo$176b3o6b2o$166b2o7bo6bo$165bobo8bo2b2o2bo$165bo9bo$164b2o10bo5bo
$181bo5b2o$178bobo6b2o5bo3bo3bo$179b2o11b3o2bobo2b3o$180b2o9bo5bobo5bo
$190bob5obob5obo$190bo5bo3bo3bobo$191bob2obobobob2obo$192b3o2b2o5bo2$
162bo32bob4o$160b2o32b4o4b2o$161b2o31bobo4bo6$188b3o$188bo17b2o$189bo
16b2o$183b2o$184bo$184bobo$185b2o9b3o$196bo2bo4b2o$190bo6bobo4bobo$
189b3o6bo7bo$187b2ob2o14b2o$183b3ob3o$183b4o$187b5o$187b2o3b2obo6b2o$
191b3o8bo$137bobo63b3o$137b2o66bo$138bo$188bo4b2obo$188b4o4bo$191b3ob
2o$194bob2o$186b2o3b3ob2obo$185bobobo2bobobo2bo$184bo5bo3bo5bo$184bob
5obob5obo$185bo5bobo5bo$186b3o2bobo2b3o$188bo3bo3bo10$115bo$113b2o$
114b2o13$19bo7b2o$19b3o4bo2bo11b2o$12b2o8bo6bo10bo2bo$13bo7b2o3bo12bob
2obo$13bobo10bo3bo5bo3bobobo$14b2o9bo10bo3bobob2o$24bo2bobo5bo6bo$3b2o
19bo2bobo7bo2b3o$2bo2bo18bobo2bobo5bo5b2o$bobo2bo22bo2bo4bob2obo2bo44b
obo$bobo3bo22b2o4b2obo3b2o45b2o$2obob6o19b2o3b2o3b3o48bo$3bo2bobo27b2o
4bo$3b3obo2bo11b2o11b2o2b2obob2o$b2o3bobobo10b2obo14b2obobo$o2bob2obo
13bo2bo13bo2bobo$b2o3bob2o13b2o15bo2bo$3b2o4bo31b2o$3bobo3bo$2obo5b2o$
bobob2o$bobo2bo16b2o$2bo2bo17bo$3b2o12b2o5b3o$17b2o7bo3$11bo3bo3bo$9b
3o2bobo2b3o$8bo5bobo5bo18bo$7bob5obob5obo15bobo$7bo5bo3bo5bo16b2o$8bob
obo2bobobo2bo45bo$9b2o3b3ob2obo44b2o$17bob2o46b2o$14b3ob2o$11b4o4bo$
11bo4b2obo$69bo$2bo66b2o$2b3o63bobo$5bo8b3o$4b2o6bob2o3b2o$16b5o$21b4o
$18b3ob3o$2o14b2ob2o$bo7bo6b3o$bobo4bobo6bo$2b2o4bo2bo$9b3o9b2o$21bobo
$23bo40bo$23b2o40bo$2o16bo44b3o$2o17bo$17b3o6$5bobo4bo32b2o26b2o$5b4o
4b2o31b2o25bobo$6bob4o33bo29bo$75b2o$3b3o2b2o5bo$2bob2obobobob2obo$bo
5bo3bo3bobo$bob5obob5obo$2bo5bobo5bo9b2o$3b3o2bobo2b3o11b2o$5bo3bo3bo
5b2o6bobo$19b2o5bo$25bo5bo10b2o$32bo9bo$24bo2b2o2bo8bobo$25bo6bo7b2o$
21b2o6b3o$20bobo7bo$20bo$19b2o6b3o$27bo14b2o$42b2o2$23b2o$24bo$21b3o$
21bo2$31bo4bobo$29b2o4b4o$32b4obo2$28bo5b2o2b3o$27bob2obobobob2obo$26b
obo3bo3bo5bo$26bob5obob5obo$27bo5bobo5bo$28b3o2bobo2b3o$30bo3bo3bo2b!
3bo3bo!
Peter Rott

pcallahan
Posts: 577
Joined: April 26th, 2013, 1:04 pm

Re: Suggested LifeWiki edits

Post by pcallahan » January 23rd, 2021, 5:12 pm

GUYTU6J wrote:
January 23rd, 2021, 6:17 am
there is Callahan's B2o/S2m34, too, that seems to be page-worthy.
Thanks for the plug! I would add that the above link works with LifeViewer (in case anyone missed this). I converted my old text write-up for that post and I think it turned out well.

MathAndCode
Posts: 3712
Joined: August 31st, 2020, 5:58 pm

Re: Suggested LifeWiki edits

Post by MathAndCode » January 24th, 2021, 9:26 pm

Are Hooks and Pentant really different enough to merit separate articles, or should they be merged?
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
GUYTU6J
Posts: 1307
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家)
Contact:

Re: Suggested LifeWiki edits

Post by GUYTU6J » January 25th, 2021, 8:08 am

Please write about octohash in Tutorials/Glider syntheses and check my draft for another tutorial here: https://www.conwaylife.com/w/index.php? ... ldid=77752. Thank you!
Lifequote:
In the drama The Peony Pavilion, Tang Xianzu wrote: 原来姹紫嫣红开遍,似这般都付与断井颓垣。
(Here multiflorate splendour blooms forlorn
Midst broken fountains, mouldering walls.)
I'm afraid there's arrival but no departure.

User avatar
creeperman7002
Posts: 223
Joined: December 4th, 2018, 11:52 pm

Re: Suggested LifeWiki edits

Post by creeperman7002 » January 25th, 2021, 12:30 pm

Sorry for requesting this again, but the Catagolue page desperately needs to be updated to reflect recent events, such as the 10^15 object milestone.
B2n3-jn/S1c23-y is an interesting rule. It has a replicator, a fake glider, an OMOS and SMOS, a wide variety of oscillators, and some signals. Also this rule is omniperiodic.
viewtopic.php?f=11&t=4856

User avatar
dvgrn
Moderator
Posts: 7648
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Suggested LifeWiki edits

Post by dvgrn » January 26th, 2021, 1:19 pm

GUYTU6J wrote:
January 25th, 2021, 8:08 am
Please write about octohash in Tutorials/Glider syntheses...
I've put in a section on the octohash database. If you think something needs more explanation, let me know (or just add whatever-it-is!)

I'll be checking in a couple more files into the Git repository at some point, to show how the octohash database was generated. People could easily borrow the hash-generating code and apply it to other phase-by-phase catalogues of active reactions -- the 3G/4G database, objects-plus-2-synchronized-gliders, or whatever might be useful.
GUYTU6J wrote:
January 25th, 2021, 8:08 am
... and check my draft for another tutorial here: https://www.conwaylife.com/w/index.php? ... ldid=77752.
That definitely seems like it's in good enough shape to move over into the main-namespace Tutorials section! If there's a little more editing you want to do, there's no harm doing that in the main-namespace article -- might help it get done faster if more people are looking at it.

Thanks for putting that tutorial together!

User avatar
GUYTU6J
Posts: 1307
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家)
Contact:

Re: Suggested LifeWiki edits

Post by GUYTU6J » January 28th, 2021, 2:34 am

The octohash introduction looks fine to me. I'm having a horrible internet connection to the forums, but I'd propose adding something anyways. Could you also write about popseq.c (and possibly JLS/WLS for predecessor searching) in the glider synth tutorial, write about using variables in the creating custom rules tutorial, and finally, advertise tutorials on the main page (preferably on the line that says Overview · How to contribute · ConwayLife.com)?
Lifequote:
In the drama The Peony Pavilion, Tang Xianzu wrote: 原来姹紫嫣红开遍,似这般都付与断井颓垣。
(Here multiflorate splendour blooms forlorn
Midst broken fountains, mouldering walls.)
I'm afraid there's arrival but no departure.

User avatar
ColorfulGalaxy
Posts: 386
Joined: July 16th, 2020, 3:37 am
Location: China
Contact:

Re: Suggested LifeWiki edits

Post by ColorfulGalaxy » January 28th, 2021, 8:00 am

Is there an article for Digits in Life?
If no, should I create one?

Code: Select all

x = 9, y = 9, rule = LifeColorful
6E.2B$6E.2B$7.2B$2D5.2B$2D5.2B$2D5.2B$2D$2D.6C$2D.6C!
List of helpful topics

Post Reply