Re: Thread for basic questions
Posted: August 7th, 2024, 10:37 am
What types of symmetries can a periodic wick or agar have?
Forums for Conway's Game of Life
https://conwaylife.com/forums/
The first potentially related thing that comes to mind is "a search to find 4-glider syntheses of glider producing switch engines, with the condition that none of them produce any non-forward-facing gliders [...] hitting a 3G unstable switch engine synth with a glider":
none filps to D2_x
Code: Select all
x = 9, y = 9, rule = B3/S23:T10,10
o7bo2$6bobo2$4bobo2$2bobo2$obo!
Code: Select all
x = 8, y = 8, rule = B3/S23:T8,8
3bo3bo$2bo3bo$o3bo$bo3bo$3bo3bo$2bo3bo$o3bo$bo3bo!
Code: Select all
x = 16, y = 16, rule = B3/S23:T16,16
obo5bobo$4bobo5bobo$o7bo$5bo7bo$bo5bobo5bo$3bobo5bobo$bo7bo$4bo7bo$ob
o5bobo$4bobo5bobo$o7bo$5bo7bo$bo5bobo5bo$3bobo5bobo$bo7bo$4bo7bo!
Code: Select all
x = 106, y = 106, rule = B3/S23:T106,106
b2o5bo24b3o2b2o7bob2obo2bo22b3o3bob2o11bo$2obo3b3o22bo2bob2obo7b2o2b3o
24bo5b2o7bo$bob2obo2bo22b3o3bob2o11bo7b2o5bo24b3o2b2o$2b2o2b3o24bo5b2o
7bo11b2obo3b3o22bo2bob2obo$7bo7b2o5bo24b3o2b2o7bob2obo2bo22b3o3bob2o$
2bo11b2obo3b3o22bo2bob2obo7b2o2b3o24bo5b2o$b3o2b2o7bob2obo2bo22b3o3bo
b2o11bo7b2o5bo$o2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$3o3bob2o11bo7b
2o5bo24b3o2b2o7bob2obo2bo$bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o$15b
3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$14bo2bob2obo7b2o2b3o24bo5b2o7b
o11b2obo3b3o$14b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$15bo5b2o7bo11b
2obo3b3o22bo2bob2obo7b2o2b3o$4bo24b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b
2o$3b3o22bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo$obo2bo22b3o3bob2o11bo7b
2o5bo24b3o2b2o7bobo$2b3o24bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o$3bo7b2o
5bo24b3o2b2o7bob2obo2bo22b3o3bob2o$10b2obo3b3o22bo2bob2obo7b2o2b3o24b
o5b2o7bo$2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo24b3o$b2obo7b2o2b3o24bo
5b2o7bo11b2obo3b3o22bo2bo$2bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo22b3o$
3b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o24bo$11b3o2b2o7bob2obo2bo22b3o3b
ob2o11bo7b2o5bo$10bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$10b3o3bob2o
11bo7b2o5bo24b3o2b2o7bob2obo2bo$11bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o
2b3o$o24b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o$2o22bo2bob2obo7b2o2b3o24b
o5b2o7bo11b2obo3bo$bo22b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo$o24bo5b2o
7bo11b2obo3b3o22bo2bob2obo7b2o2b2o$7b2o5bo24b3o2b2o7bob2obo2bo22b3o3b
ob2o11bo$6b2obo3b3o22bo2bob2obo7b2o2b3o24bo5b2o7bo$7bob2obo2bo22b3o3b
ob2o11bo7b2o5bo24b3o2b2o$o7b2o2b3o24bo5b2o7bo11b2obo3b3o22bo2bob2o$2o
11bo7b2o5bo24b3o2b2o7bob2obo2bo22b3o3bo$o7bo11b2obo3b3o22bo2bob2obo7b
2o2b3o24bo5bo$7b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$6bo2bob2obo7b
2o2b3o24bo5b2o7bo11b2obo3b3o$6b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2b
o$7bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o$21b3o2b2o7bob2obo2bo22b3o
3bob2o11bo7b2o5bo$20bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$20b3o3bo
b2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$21bo5b2o7bo11b2obo3b3o22bo2bob2obo
7b2o2b3o$3b2o5bo24b3o2b2o7bob2obo2bo22b3o3bob2o11bo$2b2obo3b3o22bo2bo
b2obo7b2o2b3o24bo5b2o7bo$3bob2obo2bo22b3o3bob2o11bo7b2o5bo24b3o2b2o$4b
2o2b3o24bo5b2o7bo11b2obo3b3o22bo2bob2obo$9bo7b2o5bo24b3o2b2o7bob2obo2b
o22b3o3bob2o$4bo11b2obo3b3o22bo2bob2obo7b2o2b3o24bo5b2o$3b3o2b2o7bob2o
bo2bo22b3o3bob2o11bo7b2o5bo$2bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o
$2b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$3bo5b2o7bo11b2obo3b3o22bo2b
ob2obo7b2o2b3o$17b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$16bo2bob2ob
o7b2o2b3o24bo5b2o7bo11b2obo3b3o$16b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2o
bo2bo$17bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o$o5bo24b3o2b2o7bob2ob
o2bo22b3o3bob2o11bo7bo$bo3b3o22bo2bob2obo7b2o2b3o24bo5b2o7bo11b2o$b2o
bo2bo22b3o3bob2o11bo7b2o5bo24b3o2b2o7bo$2o2b3o24bo5b2o7bo11b2obo3b3o22b
o2bob2obo$5bo7b2o5bo24b3o2b2o7bob2obo2bo22b3o3bob2o$o11b2obo3b3o22bo2b
ob2obo7b2o2b3o24bo5b2o$2o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo24bo$bo
b2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o22bo$o3bob2o11bo7b2o5bo24b3o2b2o7b
ob2obo2bo22b2o$5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o24bo$13b3o2b2o7b
ob2obo2bo22b3o3bob2o11bo7b2o5bo$12bo2bob2obo7b2o2b3o24bo5b2o7bo11b2ob
o3b3o$12b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$13bo5b2o7bo11b2obo3b
3o22bo2bob2obo7b2o2b3o$2bo24b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o$b3o
22bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo$o2bo22b3o3bob2o11bo7b2o5bo24b3o
2b2o7bob2o$3o24bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o$bo7b2o5bo24b3o2b2o
7bob2obo2bo22b3o3bob2o$8b2obo3b3o22bo2bob2obo7b2o2b3o24bo5b2o7bo$2o7b
ob2obo2bo22b3o3bob2o11bo7b2o5bo24b3o$obo7b2o2b3o24bo5b2o7bo11b2obo3b3o
22bo2bobo$ob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo22b3o$b2o7bo11b2obo3b3o22b
o2bob2obo7b2o2b3o24bo$9b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$8bo2b
ob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$8b3o3bob2o11bo7b2o5bo24b3o2b2o7b
ob2obo2bo$9bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o$23b3o2b2o7bob2obo
2bo22b3o3bob2o11bo7b2o5bo$22bo2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$
22b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$23bo5b2o7bo11b2obo3b3o22bo
2bob2obo7b2o2b3o$5b2o5bo24b3o2b2o7bob2obo2bo22b3o3bob2o11bo$4b2obo3b3o
22bo2bob2obo7b2o2b3o24bo5b2o7bo$5bob2obo2bo22b3o3bob2o11bo7b2o5bo24b3o
2b2o$6b2o2b3o24bo5b2o7bo11b2obo3b3o22bo2bob2obo$11bo7b2o5bo24b3o2b2o7b
ob2obo2bo22b3o3bob2o$6bo11b2obo3b3o22bo2bob2obo7b2o2b3o24bo5b2o$5b3o2b
2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$4bo2bob2obo7b2o2b3o24bo5b2o7bo11b
2obo3b3o$4b3o3bob2o11bo7b2o5bo24b3o2b2o7bob2obo2bo$5bo5b2o7bo11b2obo3b
3o22bo2bob2obo7b2o2b3o$19b3o2b2o7bob2obo2bo22b3o3bob2o11bo7b2o5bo$18b
o2bob2obo7b2o2b3o24bo5b2o7bo11b2obo3b3o$18b3o3bob2o11bo7b2o5bo24b3o2b
2o7bob2obo2bo$19bo5b2o7bo11b2obo3b3o22bo2bob2obo7b2o2b3o!
Code: Select all
x = 24, y = 24, rule = B3/S23:T24,24
o5bo5bo5bo$3bo5bo5bo5bo$bo3bobo3bobo3bobo3bo$3bo5bo5bo5bo$o5bo5bo5bo$
2bobo3bobo3bobo3bobo$o5bo5bo5bo$3bo5bo5bo5bo$bo3bobo3bobo3bobo3bo$3bo
5bo5bo5bo$o5bo5bo5bo$2bobo3bobo3bobo3bobo$o5bo5bo5bo$3bo5bo5bo5bo$bo3b
obo3bobo3bobo3bo$3bo5bo5bo5bo$o5bo5bo5bo$2bobo3bobo3bobo3bobo$o5bo5bo
5bo$3bo5bo5bo5bo$bo3bobo3bobo3bobo3bo$3bo5bo5bo5bo$o5bo5bo5bo$2bobo3b
obo3bobo3bobo!
As far as I understand, you are interested in oscillators that have a rotor with p cells and number of alive cells in rotor changing like 1-2-...-p-1-2-...-p-... (period p).
Not sure what you might have in mind, but I'm not sure how to have infinitely many anything of a given period and population if it's going to remain well connected i.e. not pseudo. Like a sufficiently large snark loop can adjust the sides of the rectangle of the glider paths, but there's only a finite number of combinations for any finite period. Likewise, it feels like any oscillator of a given period has some well definable max bounding box based on the speed of light, and only a finite number of patterns of any sort can fit in that bounding box.
It's the first elementary non-monotonic c/7 spaceship, but not the first overall, because the c/7 Caterloopillar is also non-monotonic.Haycat2009 wrote: ↑August 12th, 2024, 5:44 amIs Motor Grader really the first non-monotonic c/7 spaceship?
There was a c/7 orthogonal wave with a similar front end (one half of motor grader's front end), but no complete spaceship with that front end.Haycat2009 wrote: ↑August 12th, 2024, 5:44 amI remember seeing a smaller non-monotonic c/7 spaceship once with the exact same frontend.
Code: Select all
#C c/7 orthogonal wave
x = 13, y = 53, rule = B3/S23
4bo$6bo$bo5bo$8bo$2ob3ob2o2$4bo$3bobo$2bo4b2o$2o3b4o$o3bo$2bo$2bo2$3b
5o$7bo$8bo4$4bo3b2o$2b2ob3o2bo$3bo6bo$4b2obobo$6bo$4bo3bo$2bob2o3bo$b
2obo2bo2bo$5bob3o$3b2o3bo$4b3obo$4b3o$10bo$9b2o3$7b3o$5b6o$5b7o$4b2o5b
2o3$7b3o$7b2o2bo$7b6o$3b4o$5b2o3bo2$7bo2bo$11bo$7b2obobo2$11b2o!
I think Hippo.69's recent work is by far the best collection that has been made so far -- much better documented and more comprehensive than my attempt at sorting a different enumeration earlier in that thread.
Including those with multiple islands and non-interacting rotors?May13 wrote: ↑August 8th, 2024, 11:26 amAs far as I understand, you are interested in oscillators that have a rotor with p cells and number of alive cells in rotor changing like 1-2-...-p-1-2-...-p-... (period p).
For p>4, this is impossible, because the birth of a cell in generation p-1 (active cells count p-1 -> p) should affect the death of more than 3 cells (p -> 1), but there are only 3 cells that can be affected immediately - 3 neighbours that turned it into alive state (this cell cannot die due to S3).
FWIW, I see six questions in your post, which doesn't quite match my understanding of what constitutes 'a couple of questions'.
You may need to clarify the intended question.
Infinitely many, to both questions. High-period glider loop oscillators that are SKOPs have bounded population and unbounded period.
Firstly, the statement of these two questions implicitly assumes that the answer to previous two questions is "infinity" (making it unclear why the preceding two questions were asked at all).
Code: Select all
#C Two Jubjub reflectors shuttling a glider
x = 38, y = 39, rule = B3/S23
19b2o$20bo$19bo$19b2o11bo$17b2o11b3o$16bo2b2o8bo$17bobo9b2o$16b2obobo4bo7b2o$
20b2o3bobo6bo$24bo2bo4bobo$25b2o5b2o4$17bo$4b2o9b3o$b2o2bo8bo19b2o$o2b2o3bo5b
2o15b2o2bo$obo2b4o22b2obo$bobo30bobo$3bob2o22b4o2bobo$2bo2b2o15b2o5bo3b2o2bo$
2b2o19bo8bo2b2o$20b3o9b2o$20bo$11b2o$10b2o$11b2o$4b2o$3bobo$3bo13bo$2b2o12bob
ob2o$7b2o7bobobo$8bo7b3o2bo$5b3o11b2o$5bo11b2o$18bo$17bo$17b2o!
The wording "the smallest p2 SKOP" is unnecessarily awkward, because "SKOP" means "smallest known oscillator of such-and-such period".
Whoops. Meant greater than.confocaloid wrote: ↑August 14th, 2024, 12:46 pmInfinitely many, to both questions. High-period glider loop oscillators that are SKOPs have bounded population and unbounded period.
There are pages Table of oscillators by period and User:Galoomba/Skopje, which might allow to get some estimates for those questions. Those pages may not be up-to-date.
I think there are only finitely many possibilities in any case. The number of possibilities grows with the period, and also grows with the minimum population, but remains finite.Chris857 wrote: ↑August 10th, 2024, 9:12 pmNot sure what you might have in mind, but I'm not sure how to have infinitely many anything of a given period and population if it's going to remain well connected i.e. not pseudo. Like a sufficiently large snark loop can adjust the sides of the rectangle of the glider paths, but there's only a finite number of combinations for any finite period. Likewise, it feels like any oscillator of a given period has some well definable max bounding box based on the speed of light, and only a finite number of patterns of any sort can fit in that bounding box.
Code: Select all
x = 85, y = 4, rule = B45/S12345
85o$o83bo$o83bo$85o!
Code: Select all
x = 87, y = 4, rule = B2a/S1Investigator
87E$ED83.DE$ED83.DE$87E!