Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
Sokwe
Moderator
Posts: 2881
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » December 23rd, 2013, 9:52 pm

Sphenocorona wrote:One of the miscellaneous 2-glider collisions produces a usable domino spark, and then the reactive bits can be suppressed with a third glider.
Thanks, this is much better. The bottom part can be done one glider cheaper:

Code: Select all

x = 28, y = 26, rule = B3/S23
3bo$4bo$2b3o4$10bo$10bobo$7bo2b2o$5bobo17bo$6b2o17bobo$25b2o$2b2o$bobo
$o6bo$b2o3bobo$2bo2bobo$2bobobo3bo$3bobo3bobo$4bo3bobo$7bobo$8bo$12b3o
$5b2o5bo$5bobo5bo$5bo!
Edit: Suboptimal "proof" of this synthesis:

Code: Select all

x = 158, y = 31, rule = B3/S23
133bo$21bo112bo$21bobo108b3o$21b2o92bo$115bobo$115b2o$140bo$140bobo$
137bo2b2o$15bo119bobo17bo$14bo121b2o17bobo$14b3o21bobo68bo45b2o$2b2o7b
o20b2o5b2o21b2o28b2o14bo23b2o$bobo8b2o17bobo5bo21bobo27bobo14b3o20bobo
$o10b2o17bo10bo18bo6bo22bo6bo7bo24bo6bo$b2o12b3o13b2o3bo3bo20b2o3bobo
22b2o3bobo7b2o23b2o3bobo$2bo2bo9bo16bo2bobo2b3o19bo2bobo24bo2bobo7b2o
25bo2bobo$2bobobo9bo15bobobo25bobobo25bobobo12b3o20bobobo3bo$3bobo27bo
bo27bobo27bobo3bo9bo23bobo3bobo$4bo29bo29bo29bo3bobo9bo23bo3bobo$72b2o
23bobo37bobo$71b2o25bo39bo$65b3o5bo68b3o$67bo67b2o5bo$66bo68bobo5bo$
72b3o60bo$18b2o52bo$17b2o54bo$19bo92b2o$111b2o$113bo!
Edit 2: Got another one based on a predecessor that I posted earlier:

Code: Select all

x = 32, y = 32, rule = B3/S23
6bobo12bo$7b2o11bo$7bo12b3o$18bo$19bo$17b3o11bo$6bobo20b2o$7b2o21b2o$
7bo12bobo$20b2o$21bo$bo$2bo$3o$22b2o$22b2o$17bobo$15b4obo$5b2o7bo5bo$
6b2o6bob2obo$5bo9bob2o3$7bo$7b2o$6bobo$15b2o$15bobo$15bo$7bo$7b2o$6bob
o!
Edit 3: I think this brings us down to only 7 unsynthesized 16-bit still lifes:

Code: Select all

x = 242, y = 90, rule = B3/S23
126b2o30b2o2bo33b2o32b2ob2o$6b2o2b2o35bob2o36b2ob2o32b3obo29bo3b3o30bo
bo32bo3bo$6bobo2bo34bob2obo34bobobo32bo5bo29bo5bo28bo2bobo31bobo$8b2o
36bo5bo33bo5bo31bo5bo29bo3b2o29b2obobo31b2obo$6bo2bobo35bob2obo34bo3b
2o32bob3o31bobo33bo2bo33bobo$6b2o2b2o36b2obo36bobo35b2o34b2o33bobo34bo
bo$89b2o107bo36bo9$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o12$84bo106b3o2b2o
$85bo3bo102b4o$83b3ob2o111bo3bo$88b2o105bo3b2ob2o$194bobobobob2o$81b2o
10bob2o96bo2bobo$82b2o9b2obo97b2obobo$81bo15b2o97bo2bo$98bo97bobo$91b
2obobo100bo$91bob2ob2o5$84b2o$83bobo$85bo7$87bobo$83bo3b2o$84b2o2bo4bo
b2o$83b2o8b2obo$97b2o$90b2o6bo$90bobobobo$93b2ob2o$88bo$83bo3b2o$81bob
o3bobo$82b2o8$90bo$89bo$89b3o2$88bo$89bo$87b3o3$86bo6bob2o$86b2o5b2obo
$85bobo9b2o$90b2o6bo$89bo2bobobo$89b2o2b2ob2o3$84b2o$83bobo$85bo!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 24th, 2013, 5:31 pm

A different way of expressing the same grate-related synthesis:

Code: Select all

x = 98, y = 22, rule = B3/S23
19bobo5bo$19b2o6bobo57bo6bo$13bo6bo6b2o52bo3b2o6bo$4bo7bobo65bobo3b2o
5b3o$5b2o5bobo65bobo$4b2o7bo59bobo5bo$23b3o48b2o15b3o$8bo65bo$o8b2o$b
2o5b2o19bo21b3o25bo$2o2b2o23bobo16bo2bo25b3o4b3o5bo$3bobo23b2o2b2o12b
3ob3o24bo6bo5b3o$5bo19b2o5b2o14bo2bobo30bo6bo$24b2o8bo16b3o30bo$26bo
55bo13bo$9b3o65b3o15b2o$21bo7b2o58bo5bobo$20bobo5b2o58bobo$20bobo7bo
44b3o5b2o3bobo$6b2o6bo6bo55bo6b2o3bo$5bobo6b2o60bo6bo$7bo5bobo!
The center needs to be synthesized here. (The portions that place the blocks could also be improved.)
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 2881
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » December 25th, 2013, 6:42 am

Here's a possible start on one of the remaining 16-bit still lifes:

Code: Select all

x = 52, y = 16, rule = B3/S23
25b3o$25bo$25b3o$27bo$5b2o2bobo13b3o$7b3ob2o33bo$2b2o3bo3bo30b2o6bo$2b
obo6bo15bo14bobobo$3bobo2bo19bo14bobobo$bobob4o2bo11b7o11bobobo3b2o$ob
o8bo16bo11bobo4b5o$bo5b2o2bo15bo13bo$7b2o42bo$11bo28b3o$10b2o26b7o$10b
obo27b3o!
Some reactions in Lewis' soup results inspired me to find these converters:

Code: Select all

x = 189, y = 37, rule = B3/S23
154bo$155b2o$154b2o15$12b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o43b
2o3b2o$12bobobobo23bobobobo23bobobobo23bobobobo23bobobobo43bobobobo$
14bobo27bobo27bobo27bobo27bobo47bobo$14bobo27bobo27bobo27bobo27bobo47b
obo$12bobobobo23bobobobo23bobobobo23bobobobo23bobobobo43bobobobo$12b2o
3b2o23b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o43b2o3b2o2$53b2o$9b2o42bobo
106b2o$b2o6bobo32b2o7bo107bobo$obo6bo33bobo82b3o32bo$2bo42bo25b2o31b2o
24bo$70bobo26b2o2bobo23bo40b3o$72bo25bobo4bo6b2o20b3o33bo$2b2o78b2o16b
o11bobo19bo36bo$bobo77b2o29bo22bo$3bo79bo79b2o$73b2o87bobo$72bobo89bo$
74bo!
Some unrelated converters and slight improvements to previous results:

Code: Select all

x = 107, y = 37, rule = B3/S23
bo$2bo$3o7$88bobo$89b2o$51bo37bo$52b2o$20b2o29b2o7b2o38b2o$20bo39bo39b
o$21b3o37b3o37b3o$23bo39bo39bo4$61b3o$61bo$9b2o3bo47bo41b2o$8bobo2b2o
89bobo$10bo2bobo77b3o8bo$58b2o35bo2b2o$59b2o33bo3bobo$58bo39bo2$60b2o
32b2o$33bo26bobo30bobo$32b2o26bo34bo$32bobo2$59b2o$60b2o$59bo!
A one-glider improvement to the 16-bit still life synthesis from my last post:

Code: Select all

x = 33, y = 32, rule = B3/S23
7bobo12bo$8b2o11bo$8bo12b3o$19bo$20bo$18b3o11bo$7bobo20b2o$8b2o21b2o$
8bo12bobo$21b2o$22bo4$23b2o$23b2o$18bobo$16b4obo$6b2o7bo5bo$7b2o6bob2o
bo$6bo9bob2o3$b2o5bo$obo5b2o$2bo4bobo$16b2o$16bobo$16bo$8bo$8b2o$7bobo
!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 25th, 2013, 2:03 pm

Not sure how useful this very different hat synthesis would be:

Code: Select all

x = 14, y = 4, rule = B3/S23
11b2o$3o8bobo$bo9bo$b3o!
EDIT: Missing step for the given missing 19-bit pseudo:

Code: Select all

x = 28, y = 35, rule = B3/S23
11bo$12b2o$11b2o4$2bo$obo$b2o2$22b2o$21bo2bo$12b2o8b3o$11bobo$12bo9b3o
$8bo12bo2b3o$8bo12b2o4bo$8bo17b2o$21b2o$4b2o15bo2bo$3bobo6bo9b3o$5bo5b
obo$12b2o8b3o$21bo2bo$22b2o2$b2o$obo$2bo4$11b2o$12b2o$11bo!
EDIT 2: One of the missing 16-bitters in 26 gliders:

Code: Select all

x = 181, y = 91, rule = B3/S23
57bo$58bo$56b3o24$137bo$138bo$136b3o12bo$152b2o$151b2o2$140bobo14bo$
124bo16b2o12b2o$124bobo14bo10bo3b2o$112bo7bo3b2o27b2o$110bobo8b2o22b2o
5b2o$15bo95b2o7b2o23b2o$16bo91b2o7bo$14b3o90bobo5bobo$18bo90bo6b2o34bo
5bo$17bo125b3o5bobo3bo$17b3o72b2o51bo5b2o4b3o$92b2o50bo2$bo112bo3b2o
27bo3b2o23b2o$2bo110bobobobo18b3o5bobobobo22bobo$3o91bo17bo2bobo22bo4b
o2bobo23bo2bobo$75b2o17bobo16b2obobo20bo6b2obobo23b2obobo$2bo72bobo16b
2o19bo2bo29bo2bo25bo2bo$b2o73bo38bobo30bobo9b3o14bobo$bobo87bobo22bo
32bo10bo17bo$92b2o67bo$92bo4$95bo$94b2o$94bobo4$94b3o$94bo$95bo2$82b3o
$84bo$83bo11$44bo$44b2o$43bobo6$58bo$58b2o$57bobo!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 2881
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » December 25th, 2013, 5:27 pm

A very rough potential predecessor to one of the remaining 16-bit still lifes:

Code: Select all

x = 13, y = 15, rule = B3/S23
9bo$2o6b2o$2o2bo3bob2o$3bobo2b2obo$2bobo4b2o$bobo6b2o$2bo5b2obo$3b3o5b
o$5bo2$8b5o$9bobo$9bo2bo2$10b2o!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 25th, 2013, 6:14 pm

The missing P10 in 40 gliders:

Code: Select all

x = 251, y = 31, rule = B3/S23
215bobo$215b2o$197bo18bo$198bo8bobo4bo$125bo70b3o9b2o5bo$126bo36bo38bo
5bo4b3o$o123b3o35bobo36bobo$b2o159bobo36bobo$2o5bo113b3o34bo4bo38bo13b
obo$6bo116bo32bobo57b2o$6b3o113bo34b2o58bo$19bo2b2o17bo2b2o18bo2b2o22b
o2b2o15bo17bo2b2o26b2o4bo2b2o21b3o5b2o3bo2b2o30b4o$18bobo2bo16bobo2bo
17bobo2bo21bobo2bo13b2o17bobo2bo25bobo3bobo2bo23bo5b2o2bobo2bo29b2o$3b
2o13bob3o7bo9bob3o18bob3o22bob3o15b2o16bob3o28bo3bob3o23bo10bob3o12b3o
14bo8bo$4b2ob3o9bo8b2o11bo6bo15bo6bo19bo6bo30bo6bo29bo6bo31bo6bo8bo16b
obo6b3o$3bo3bo12b3o6b2o11b3o3b3o14b3o3b3o18b3o3b3o29b3o3b3o28b3o3b3o
22bo7b3o3b3o7bo$8bo13bo21bo6bo15bo6bo19bo6bo30bo6bo29bo6bo22bo8bo6bo
23b3o6bobo$50bobo18b3o24b3o35b3obo32b3obo3bo15b3o12b3obo10bo13bo8bo$
31b2o18bo19bo25bo37bo2bobo31bo2bobo3bobo27bo2bobo2b2o5bo21b2o$31bobo
12b2o31bo17b2o36b2o2bo32b2o2bo4b2o28b2o2bo3b2o5b3o16b4o$31bo13bobo7b2o
21bo67bo37b2o17bo$47bo6b2o19b2ob3o64bo38bobo16b2o$51bo4bo17bobo68b3o
31bo4bo17bobo13bo$50b2o24bo30bo70bobo36bobo$25b3o22bobo54b2o33b3o33bob
o36bobo$27bo50b3o25bobo3bo29bo36bo25b3o4bo5bo$26bo20b3o28bo31b2o31bo
61bo5b2o9b3o$49bo29bo31b2o93bo4bobo8bo$27b2o19bo155bo18bo$26b2o176b2o$
28bo174bobo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 25th, 2013, 7:12 pm

Extrementhusiast wrote:Finished another pair from a listed predecessor:
Thanks for this one. You used Dean Hickerson's 5-glider wing-on-snake, which I had neglected to update in the synthesis for 14.24 (that I used here), reducing 14.24 and my synthesis both by 2 gliders. Nevertheless, yours is still 2 gliders smaller (plus you had posted yours a day before I even found mine), so this renders mine somewhat obsolete (except for the tail-to-hook mechanism).
Extrementhusiast wrote:I also found a way to get to here:
Good! This provides a way to turn beehives into mangoes when they're close to a hook, something not possible with any of the mechanisms I had listed. In most cases, this doesn't add new possible objects (since they can often be done in other, more expensive and round-about ways) but it does enable 1 23-bit still-life and 4 24s.
Extrementhusiast wrote:Two more in 33 and 34 gliders:
I counted 34 and 35.
Extrementhusiast wrote:Another pair done in 27/29 gliders:
I counted 25 and 27.

Trivial 17-glider synthesis of P16 blocker and mold hassling two blocks, starting with either mold or blocks. (I had previously considered this one unsolved, as I couldn't figure a way to insert the blocks or mold after the blocker was in place, but it suddenly occurred to me that adding the blocker last makes it easy.)

Code: Select all

x = 176, y = 80, rule = B3/S23
73bo$71bobo$72boo37boo28boo28boo$111b3o27b3o27b3o$111boobo21bo4boobo
26boobo$75boo36bobo18bobo6bobo20boo5bobo$76boo34bobbo19boo5bobbo20boo
4bobbo$70b3obbo13boo22boo28boo28boo$72bo15boo45boo29boo$71bo7b3o8bo43b
obo29boo$81bo54bo$80bo11$145bo$144bo$140bo3b3o$138bobo$139boo$144bo$
142boo$143boo$$147bo$146bo24boo$146b3o22b3o$76bo94boobo$74bobo29boo28b
oo28boo5bobo$75boo29boo28boo28boo4bobbo$173boo$75boo29boo28boo28boo$
74bobo29boo28boo28boo$76bo68boo$144boo$146bo16$131bo$129bobo$116bobo
11boo$117boo$117bo3bo14bo$54bo67boo10boo$55bo3bo28boo31boo5boo5boo$53b
3oboo28bobbo36bobbo$58boo27bobbo36bobbo$88boo38boo$124bo$5bo116bobo36b
oobbo$3bobo29boo28boo28boo26boo10boo20boobboo3bo$4boo25boobboo24boobb
oo24boobboo34boobboo20boo7bo$3o8boo18boo8boo18boo8boo18boo8boo28boo8b
oo19b4o5boo$bbo8b3o27b3o27b3o27b3o37b3o27b3o$bo9boobo26boobo26boobo26b
oobo20bo15boobo26boobo$6boo5bobo20boo5bobo20boo5bobo20boo5bobo19boo9b
oo5bobo21bo5bobo$6boo4bobbo20boo4bobbo20boo4bobbo20boo4bobbo18bobo9boo
4bobbo20boo4bobbo$13boo28boo28boo28boo38boo28boo$6boo28boo28boo28boo
38boo28boo$6boo28boo28boo28boo38boo29bo!
Aha! Many years ago, I created a mechanism to weld a snake to a carrier to produce a cis hook w/tail, or other similar objects. This was useful for creating pseudo-objects, and still-lifes with a siamese connection at the snake end. Unfortunately, it didn't work if something was similarly joined at the carrier end, as the carrier was in the wrong orientation. Here is an example of the mechanism (that I had developed specifically for this pseudo-object):

Code: Select all

x = 174, y = 69, rule = B3/S23
105bo$103b2o$104b2o2$11b2o18b2o18b2o18b2o38b2o18b2o18b2o18b2o$12bo19bo
19bo19bo39bo19bo19bo19bo$9bobo17bobo17bobo17bobo26b2o9bobo17bobo17bobo
17bobo$8bo19bo19bo19bo28bobo8bo19bo19bo19bo$8b2o18b2o18b2o18b2o29bo8b
2o18b2o18b2o18b2o$32b2o18b2o18b2o27b3o8b2o18b2o18b2o18b2o$15bo15bobo
12bo4bobo19bo27bo11bo14b2o3bo14b2o3bo14b2o3bo$11bo3bobo13b2o11bobo4b2o
19bo29bo9bo15b2o2bo15b2o2bo15b2o2bo$11b2o2b2o28b2o25b2o38b2o18b2o18b2o
18b2o$10bobo155b2o$17bo25b2o3b2o53b3o62b2o$17b2o23bobo2bobo4b2o49bo$
16bobo25bo4bo3b2o49bo42bobo$55bo92b2o$148bo$50b2o$51b2o94b3o$50bo98bo$
148bo14$163b2o$163bobo$163bo5$48bobo$11b2o18b2o16b2o10b2o18b2o18b2o18b
2o28b2o18b2o$12bo19bo16bo12bo19bo19bo19bo14bobo12bo19bo$9bobo17bobo27b
obo17bobo17bobo17bobo16b2o9bobo17bobo$8bo19bo18b2o9bo19bo19bo19bo19bo
9bo19bo$8b2o18b2o16bobo9b2o18b2o18b2o18b2o28b2o18b2o$12b2o18b2o14bo13b
2o18b2o18b2o18b2o28b2o18b2o$8b2o3bo14b2o3bo24b2o3bo14b2o3bo14b2o3bo14b
2o3bo24b2o3bo14b2o3bo$2bobo3b2o2bo16bo2bo17bo8bo2bo13bo2bo2bo13bo2bo2b
o13bo2bo2bo23bo2bo2bo6bobo7bo2bo$3b2o7b2o13bo4b2o16b2o5bo4b2o12b2o4b2o
12b2o4b2o12b2o4b2o22b2o4b2o5b2o8bobo$3bo4b2o8bobo6b2o20bobo5b2o101bo9b
o$8b2o8b2o99b2o28b2o$2o13bo3bo98bo2bo26bo2bo10bo$b2o11b2o102bo2bo12b2o
12bo2bo10bobo$o6b3o4bobo102b2o14b2o12b2o11b2o$9bo39b2o83bo4b3o$8bo39bo
bo9b2o79bo19bo$50bo9bobo77bo19b2o$10b3o47bo36b2o61bobo$10bo85bobo44bo$
11bo86bo2b2o40b2o9b2o$100b2o40bobo8b2o$102bo34b2o16bo$109b2o25bobo$
108b2o28bo$110bo!
However, I just figured out how to modify this to work from the opposite side, allowing creation of the 16-bit doubly-siamese still-life from 34 gliders:

Code: Select all

x = 129, y = 96, rule = B3/S23
84bo$83bo$83b3o$45bobo33bo$46boo34bo$46bo33b3o$85bo$50bo33bo$49bo34b3o
$49b3o51boo$53b3o22bo25bo$53bo13boo10boo6boo14bo3boo$23boo18boo9bo8boo
3bo9boo3boo3bo14boo3bo$24bo19bo19bobbo16bobbo16bobbo$3boo19bobo17bobo
17bobo17bobo17bobo$4boo19boo18boo18bo13b3o3bo19bo$3bo3boo70bo$7bobo41b
oo23bo3bo$7bo43bobo22boo$51bo23bobo$$46b3o$48bo$47bo$51bo$50boo$50bobo
15$99bo$98bo$13bo84b3o$13bobo91bo$13boo80bobo9bobo$83bo12boo5bo3boo$
13bo18boo18boo28bobo11bo5bobo15boo$12boo17bobbo16bobbo26bobo17bobo17bo
$3boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo10boo3b3o$4bo19bo7b
oo10bo7boo20bo6bo12bo6bo12bobbo$3bo3boo14bo3boo14bo3boo9bobo12bo3boo
14bo3boo14bo3boo$3boo3bo14boo3bo14boo3bo9boo13boo3bo14boo3bo6bo7boo3bo
$4bobbo16bobbo16bobbo11bo14bobbo16bobbo6boo8bobbo$4bobo17bobo17bobo27b
obo17bobo7bobo7bobo$5bo19bo19bo11boo16bo19bo19bo$56boo$58bo15$3bo$3bob
o86bo$3boo88bo$91b3o$bbo$obo94bobo6bo$boo5bo88boo6bo$8bobo87bo6b3o$8b
oo74bobo$56bobo26boo$52bo3boo27bo$53boobbo$26bo19bo5boo12bo16boo11bo$
25bobo17bobo17bobo3boo9bobo10bobo3boo$25bobo17bobo17bobobbobo11bo10bob
obbobo$10boo14bo3boo14bo3boo14bo3bo25bo3bo$11bo19bo19bo19bo14bo14bo24b
o$3boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o24bobo$4bobbo16bobbo
16bobbo16bobbo17bobo6bobbo26bobbo$3bo3boo14bo3boo14bo3boo14bo3boo24bo
3boo24bo3boo$3boo3bo14boo3bo14boo3bo14boo3bo24boo3bo9b3o12boo3bo$4bobb
o16bobbo16bobbo16bobbo26bobbo10bo15bobbo$4bobo17bobo17bobo17bobo27bobo
12bo14bobo$5bo19bo19bo19bo29bo29bo!
And also another related 16 from 27 gliders (UPDATE: I'm not sure how many yours takes, to see which is smaller):

Code: Select all

x = 161, y = 101, rule = B3/S23
14bo$15bo72bo$13b3o19bo50bobo$36bo50boo$34b3o33bo19bo$69bobo17bobo$35b
o33bobo17bobo$35boo33bo19bo$34bobo37boo18boo18boo18boo18boo$73bobo17bo
bo17bobo17bobo17bobo$72bo19bo19bo19bo19bo6bo$73boo18boo18boo18boo7bo
10boo3bobo$74bo19bo19bo19bo7bobo9bobbobo$71b3o17b3o17b3o17b3o8boo7b3o
3boo$70bo19bo19bo19bo7b3o9bo$70boo18boo18boo18boo6bo11boo$139bo5bo$
144boo$144bobo11$55b3o$55bo$56bo8$8bo5bo$8boo4boo$7bobo3bobo10$66bo$
65boo$65bobo15$7bo$8boo$7boo$$13bo$11boo$8bo3boo$9boo$8boo$$4boo18boo
18boo18boo18boo18boo16bo11boo18boo$3bobo17bobobboo13bobobboo13bobobboo
13bobobboo13bobobboo13bo9bobobboo13bobobboo$bbo6bo12bo6bo12bo6bo12bo6b
o12bo6bo12bo6bo11b3o8bo6bo12bo6bo$3boo3bobo12boo3bo14boo3bo14boo3bo14b
oo3bo14boo3bo24boo3bo14boo3bo$4bobbobo14bobbo16bobbo16bobbo16bobbo16bo
bbo26bobbo6bobo7bobbo$b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o
3boo22b3o3boo5boo8bobo$o13bo5bo19bo19bo19bo19bo29bo14bo9bo$oo11boo5boo
18boo18boo3bo14boo3bo15bo3bo25bo3bo$13bobo48bobo17bobo12bobobbobo22bob
obbobo10bo$64bobo17bobo12boo3bobo22boo3bobo10bobo$65bo12boo5bo19bo29bo
11boo$74bobboo$74boo3bo66bo$73bobo69boo$42boo101bobo$41bobo80b3o6bo$
43bo5boo75bo6boo$49bobo73bo6bobo$49bo$138b3o$47boo89bo$46bobo90bo$48bo
!
This also solves the one unsolved 21-bit P5 for 43 (and thus also all remaining unsolved P5 pseudo-oscillators up to 25 bits):

Code: Select all

x = 145, y = 136, rule = B3/S23
37bo$35bobo$36boo$72bo$72bobo$72boo$36bo$34bobo$35boo$$33bo$34bo$32b3o
6$bbobo$3boo4bo62bo$3bo3boo61boo$8boo61boo$5bo$6bo$4b3o$93boo18boo18b
oo$69bo23bo19bo19bo$obo22bobo27bobo10boo24bobbo16bobbo16bobbo$boo25bo
29bo9bobo25boo4boo12boo4boo12boo4boo$bo22bobbo26bobbo38bo3bobbo12bo3bo
bbo12bo3bobbo$23bobobo25bobobo37bo4boo13bo4boo13bo4boo$23bobbo26bobbo
38boo9bo8boo9bo8boo$24boo28boo17boo30bobo17bobo$72boo31bobo17bobo$74bo
31bo19bo$bb3o123boo$4bo123bobo$3bo124bo13$33b3o$35bo$34bo$$116bo$103b
oo10bo17boo$103bo11b3o15bo$104bobbo26bobbo$106boo4boo5bobo14boo$106bo
3bobbo5boo15bo3boboo$105bo4boo8bo14bo4boobo$105boo9boo4boo11boo$115boo
5bobo$117bo4bo$112boo$111bobo$113bo10$14bo9bo$15boo5boo$14boo7boo$$25b
o$24boo$24bobo$$30bo$13boo15bobo10boo18boo28boo18boo18boo$13bo16boo11b
o19bo29bo9boo8bo9boo8bo9boo$14bobbo26bobbo4boo10bobbo4boo20bobbo4bobo
9bobbo4bobo9bobbo4bobo$16boo28boo4bo13boo4bo23boo4bo13boo4bo13boo4bo$
16bo3boboo22bo3bobo13bo3bobo23bo3bobo13bo3bobo13bo3bobo$15bo4boobo21bo
4boo13bo4boo5bo17bo4boo13bo4boo13bo4boo$15boo28boo18boo9bo18boo18boo
18boo$76b3o$139boboo$75boo3boo41b3o13boobo$74bobo3bobo36boobbo$24boo
50bo3bo33b3o3boobbo$25boo89bobbo$24bo90bo9bo$124boo$124bobo7$109bo$
107bobo$70bo37boo$68boo52bo$69boo51bobo$122boo$68bo$67boo$3boo28boo18b
oo12bobo13boo10boo6boo10boo16boo$3bo9boo18bo9boo8bo9boo18bo9bobbo6bo9b
obbo16bo$4bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4bob
oo18bobbo$6boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo11boo$6bo3bobo
8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bobo9boo12bo3bo$5bo4boo23bo4boo3b
oo8bo4boo3boo18bo4boo3boo8bo4boo3boo6boo10bo4b3o$5boo28boo7bobbo7boo7b
obbo17boo7bobbo7boo7bobbo17boo6bo$28bo16boo18boo28boo18boo25bo$9boboo
14bo11boboo16boboo26boboo16boboo26bobo$9boobo14b3o9boobo16boobo26boobo
16boobo13boo11boo$23b3o100bobo$23bo102bo$24bo3$111boo$112boo6boo$111bo
7boo$115b3o3bo$117bo$116bo!
This similarly solves one of the two unsolved 22-bit Silver's P5s for 53:

Code: Select all

x = 182, y = 61, rule = B3/S23
100boo18boo18boo28boo$100bo9boo8bo9boo8bo9boo18bo9boo$101bobbo4bobo9bo
bbo4bobo9bobbo4bobo19bobbo4bobo$103boo4bo13boo4bo13boo4bo23boo4bo$103b
o3bobo13bo3bobo13bo3bobo23bo3bobo$102bo4boo13bo4boo13bo4boo23bo4boo$
102boo18boo18boo28boo$$160bo17bo$125boboo16boboo10bo15bobobo$109b3o13b
oobo16boobo6boobb3o13boobbo$105boobbo45bobo21boo$100b3o3boobbo44bo$
102bobbo57boo$101bo9bo50boo$110boo52bo$110bobo$145b3o$147bo9b3o$146bo
10bo$158bo12$146bo$144bobo$107bo37boo$105boo52bo$106boo51bobo$159boo$
105bo$104boo$oo18boo18boo28boo18boo12bobo13boo10boo6boo10boo16boo$o9b
oo8bo9boo8bo9boo18bo9boo8bo9boo18bo9bobbo6bo9bobbo16bo$bobbo4bobo9bobb
o4bobo9bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4boboo
18bobbo$3boo4bo13boo4bo13boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo
11boo$3bo3bobo13bo3bobo13bo3bobo8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bo
bo9boo12bo3bo$bbo4boo13bo4boo13bo4boo23bo4boo3boo8bo4boo3boo18bo4boo3b
oo8bo4boo3boo6boo10bo4b3o$bboo10bo7boo18boo28boo7bobbo7boo7bobbo17boo
7bobbo7boo7bobbo17boo6bo$12boo51bo16boo18boo28boo18boo25bo$8bo4boo3bo
9boo18boo14bo13boo18boo28boo18boo28bo$5bobobo7bo7bobobo15bobobo14b3o8b
obobo15bobobo25bobobo15bobobo13boo10bobo$5boobbo7b3o5boo18boo13b3o12b
oo18boo28boo18boo16bobo9boo$9boo49bo102bo$14bo46bo$13boo$7boo4bobo$3bo
bboo140boo$3boo3bo140boo6boo$bbobo143bo7boo$152b3o3bo$154bo$153bo!
A slight variation of this mechanism allows welding of bridged corner objects, yielding another way to make the twin canoes. While much more expensive, this can be generalized to many other similar objects:

Code: Select all

x = 164, y = 153, rule = B3/S23
99bo$100bo$98b3o$102bo$102bobo$102boo$53bo$5bo45boo55bo$4bo47boo54bobo
$4b3o101boo$55bo12bo29bo$bobo50boo12bo29bo17boo18boo18boo$bboo50bobo
11bo29bo17bobbo16bobbo16bobo$bbo21boo18boo18boo28boo18boobboo14boobboo
14boo3bo$24bo19bo19bo29bo19bo19bo8bo10bo5bo$25bo19bo19bo29bo19bo19bo5b
oo12bo3boo$26bo19bo19bo29bo19bo19bo5boo12bo$3o22boo18boo18boo28boo18b
oo18boo18boo$bbo3b3o132bo$bo4bo133boo$7bo132bobo$$98bo$98boo$97bobo13$
41bobo$42boo$42bo$$66boo18boo18boo28boo18boo$66bobo17bobo17bobo27bobo
17bobo$69bo19bo19bo29bo14boo3bo$70bo5bobo11bo13bo5bo23bo5bo13bo5bo$69b
oo6boo10boo13bo4boo12bobo8bo4boo14bo3boo$46bo30bo26bo19boo8bo19boo$46b
oo76bo$45bobo3bo27boo$49boo29boo44boo$39boo9boo27bo47boo$38bobo85bo$
40bo4$124boo16b3o$123bobo16bo$125bo17bo$$139b3o$139bo$140bo9$56boo18b
oo18boo18boo18boo18boo$56bobo17bobo17bobo17bobo17bobo17bobo$54boo3bo
14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo$54bo5bo13bo5bo13bo5bo13bo5bo
13bo5bo13bo5bo$55bo3boo14bo3boo5bobo6bo3boo14bo3boo14bo3boo14bo3boo$
54boo18boo11boo5boo20bo19bo19bo$87bo29bo19bo17boo$77boo18boo19bo13bobo
3bo$57boo17bobbo5bo10bobbo19bo13boo4bo$58boob3o12bobbo3bobo10bobbo18b
oo13bo4boo$57bo3bo15boo5boo11boo43bo$62bo68boo8boo$86bo44bobo7bobo$86b
oo43bo$85bobo$$92boo$93boo$92bo10$60bo$58boo$6boo18boo18boo11boo15boo
18boo18boo18boo18boo$6bobo17bobo17bobo27bobo17bobo7bobo7bobo17bobo17bo
bo$4boo3bo14boo3bo14boo3bo11bo12boo3bo14boo3bo6boo6boo3bo14boo3bo14boo
3bo$4bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo5bo13bo5bo$5bo
3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo14bo3boo14bo3boo$6bo
19bo7boo10bo7boo20bo6bo12bo6bo12bobbo16bobbo16bobbo$5boo7bobo8boo6bobb
o8boo6bobbo18boo5bobo10boo5bobo10boo3b3o12boo3b3o12boo3b3o$14boo17bobb
o16bobbo26bobo17bobo17bo19bo19bo$15bo18boo18boo28bobo11bo5bobo15boo18b
oo18boo$85bo12boo5bo3boo$15boo80bobo9bobo$15bobo91bo$15bo84b3o$100bo$
101bo54boo$136boo17bobbo$137boob3o12bobbo$136bo3bo15boo$141bo10$138bo$
136boo$36boo18boo18boo18boo28boo9boo17boo$36bobo17bobo17bobo17bobo27bo
bo27bobo$34boo3bo14boo3bo14boo3bo14boo3bo24boo3bo24boo3bo$34bo5bo13bo
5bo13bo5bo13bo5bo23bo5bo23bo5bo$35bo3boo14bo3boo14bo3boo14bo3boo24bo3b
oo24bo3boo$36bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo$35boo3b
3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o7boo15boo$43bo19bo19bo19bo
14bo14bo6bobo$42boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo$57bobo17bobo
6bo10bobobboo12bo10bobobboo$58bo19bo7b3o9bo15bobo11bo$115boo$84b3o$41b
oo43bo30bo$36boobboo43bo31boo18bo$35bobbo3bo73bobo11bo5boo$35bobbo90b
oo5bobo$36boo91bobo$$123b3o$125bo$124bo!
This also permits synthesis of the 16-bit eater bridge long canoe from 24 gliders (and also allows it to be synthesized starting from either still-life alone):

Code: Select all

x = 200, y = 129, rule = B3/S23
117bo$116bo$116b3o$$110bo$73bo37bo$71bobo8bo26b3o9bo$72boo7bo37boo$81b
3o31bobobboo$68bo47boo15boo18boo28boo$69bo46bo8bo7bobo17bobo27bobo$67b
3o54boo10bobo17bobo27bobo8boo$124bobo10boo18boo8bobo17boo7bobbo$93boo
18boo18boo18boo12boo14boo11bobbo$94bo19bo19bo19bo13bo15bo12boo$94boboo
16boboo16boboo16boboo26boboo$95boobo16boobo16boobo16boobo9boo15boobo$
98bo19bo19bo19bo9bobo17bo$78bo4b3o12bobo17bobo17bobo17bobo7bo19bobo$
77bo5bo15boo18boo18boo18boo28boo$77b3o4bo$$78bo$77boo$77bobo6$162bo$
163bo$161b3o3bo$157bo7boo$158boo6boo$157boo4$73boo18boo18boo18boo18boo
16bo11boo$73bobo17bobo17bobo17bobo17bobo15bobo9bobo$76bobo8boo7bobo17b
obo17bobo17bobo12boo13bo$77boo7bobbo7boo18boo18boo18boo28bo$73boo11bo
bbo3boo6bo11boo6bo11boo6bo11boo6bo21boo3bo$74bo12boo5bo5bobo11bo5bobo
11bo5bobo11bo5bobo21bobboo$74boboo16boboo3bo12boboo3bo12boboo3bo12bob
oo3bo6boo14bobo$75boobo7bo8boobo16boobo16boobo16boobo8boo16boo$78bo6b
oo11bo19bo19bo19bo10bo$78bobo4bobo10bobo17bobo17boboo16boboo$79boo18b
oo18boo18bobo17bobo$124bo15bo19bo$124bobo$121booboo25bo15boo$120bobo
28boo13boo$122bo27bobo15bo$$158boo$157boo$159bo13$125bo$123boo$53boo
18boo18boo18boo9boo17boo18boo7bo10boo$54bo19bo5bo13bo19bo29bo19bo5boo
12bo$33boo19bobo17bobo3bobo11bobo17bobo9bo17bobo17bobo4boo11boboo$34b
oo19boo18boo3boo13boo18boo8boo18boo18boo7boo9boobo$33bo3boo86bobo46bob
o11bo$37bobo40bo18boo18boo27bo19bo5bo13bobo$37bo41boo17bobbo16bobbo25b
obo17bobo19boo$79bobo16bobbo16bobbo26bobo17bobo$99boo18boo28bobo17bobo
$150bo12boo5bo$164boo$163bo$171b3o$171bo$172bo10$bbo$obo$boo5$10bo3bo$
8boboboo$9boobboo3$23boo18boo18boo18boo18boo18boo18boo18boo18boo$23bob
o17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$26bobo17bobo17bobo
17bobo17bobo17bobo17bobo17bobo17bobo$27boo18boo18boo18boo18boo18boo18b
oo18boo18boo$8bo54boo18boo18boo18boo18boo18boo7bo10boo$8boo54bo19bo19b
o19bo19bo19bo5boo12bo$7bobo33boo19bobo17bobo17bobo17bobo17bobo17bobo4b
oo11boboo$44boo19boo18boo18boo18boo18boo18boo7boo9boobo$43bo3boo125bob
o11bo$47bobo98bo19bo5bo13bobo$47bo60boo18boo17bobo17bobo19boo$88boo17b
obbo16bobbo17bobo17bobo$89boob3o12bobbo16bobbo18bobo17bobo$88bo3bo15b
oo18boo20bo12boo5bo$93bo70boo$121bo41bo$121boo48b3o$120bobobboo44bo$
124boo46bo$126bo!
And also the 16-bit carrier on-and-bridged-with cis-shillelagh directly, from 34 (also buildable starting from the carrier):

Code: Select all

x = 205, y = 133, rule = B3/S23
103bo$102bo$102b3o4$138bo$138bobo$35bobo100boo$36boo3bo$36bobboo$40boo
$56boo18boo28boo18boo28boo18boo18boo$57bo19bo29bo19bo29bo19bo19bo$obo
15bo19bo17bo19bo29bo19bo29bo3boo14bo3boo14bo3boo$oo16b3o17b3o14bo19bo
29bo19bo29bo5bo4boo7bo5bo4boo7bo5bo$bo19bo19bo13bobo17bobo4boobboo17bo
boboo14boboboo24bobobo6boo7bobobo6boo7bobobo$20boo18boo14boo18boo5boob
obo17booboo15booboo25booboo15booboo8boo5booboo$bb3o77bo3bo102bobo$bbo
133boo51bo$3bo132bobo5bo$136bo6boo$143bobo$134boo$133bobo$37boo96bo$
36bobo$38bo13$182bo$177bo3bo15boo$178boob3o12bobbo$177boo17bobbo$142bo
54boo$141bo$56bo84b3o$56bobo91bo$56boo80bobo9bobo$126bo12boo5bo3boo$
56bo18boo18boo28bobo11bo5bobo15boo18boo18boo$55boo17bobbo16bobbo26bobo
17bobo17bo19bo19bo$46boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo
10boo3b3o12boo3b3o12boo3b3o$47bo19bo7boo10bo7boo20bo6bo12bo6bo12bobbo
16bobbo16bobbo$46bo3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo
14bo3boo14bo3boo$45bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo
5bo13bo5bo$45bobobo15bobobo15bobobo12bo12bobobo15bobobo7boo6bobobo15bo
bobo15bobobo$46booboo15booboo15booboo25booboo15booboo6bobo6booboo15boo
boo15booboo$100boo$99boo$101bo17$165bo$166bo$164b3o$$77boo91bobo$76bo
bbo90boo5bobo$76bobbo3bo73bobo11bo5boo$77boobboo43bo31boo18bo$82boo43b
o30bo$125b3o$156boo$99bo19bo7b3o9bo15bobo11bo$98bobo17bobo6bo10bobobb
oo12bo10bobobboo$83boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo$84bo19bo
19bo19bo14bo14bo6bobo$76boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b
3o7boo15boo$77bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo$76bo3b
oo14bo3boo14bo3boo14bo3boo24bo3boo24bo3boo$75bo5bo13bo5bo13bo5bo13bo5b
o23bo5bo23bo5bo$75bobobo15bobobo15bobobo15bobobo25bobobo25bobobo$76boo
boo15booboo15booboo15booboo25booboo25booboo$178boo$177boo$179bo8$87bo$
88boo$87boo$95bo$96boo$95boobbo$99bobo$99boo34bobo41bo$136boo42boo$55b
obo78bo42boo$55boo126bo$51bo4bo60boo18boo34bobo6boo$52boo62bobbo16bobb
o18boo14boobboobbobo$47boobboo63bobbo16bobbo19bo14bo4bo$21bobb3o19bobo
68boo18boo19bo12bo6bo17boo$22bobo23bo6bobo99bo13boo4bo19bo$20b3obbo14b
oo13boo3boo12boo4boo12boo4boo12boo4boo12boo4boo14bo3boo8bobo3bo3boo14b
o3boo$41bo14bo4bo12bo6bo12bo6bo12bo6bo12bo6bo13bo5bo13bo5bo13bo5bo$39b
o12boo5bo17bobo17bobo17bobo11bo5bobo15bobobo15bobobo15bobobo$15bobb3o
18boo10bobo5boo15booboo15booboo15booboo10boo3booboo15booboo15booboo15b
ooboo$16bobo34bo76bobo$14b3obbo$55boo$54boo$56bo!
This mechanism lengthens and flips a snake-like object, but unfortunately, it is not suitable for the smallest ones, that lack suitable smaller predecessors. For example, this fails a very long snake (from a unsable short canoe), a python (from a ship), a snake (from a block), or carrier (also unstable). For similar reasons, an eater, shillelagh or long shillelagh wouldn't work either. Furthermore, anything like a shillelagh whose opposite end extends out farther than a snake does would need a less obtrusive domino spark. Fortunately, one can usually weld one of these to something larger by welding the larger object instead. Unfortunately, this won't work if both sides are one of these (like the pseudo-still-life from which the above still-life had previously been derived).

Another 16 (and a related 17) each from 17 gliders, using a modified variant of the classic glue-tail mechnism (UPDATE: same cost as Extrementhusiast's, but done in a totally different way):

Code: Select all

x = 165, y = 54, rule = B3/S23
95bo$94bo$94b3o$$91bobo$92boo5bo$52bobo37bo6bobo$bo51boo3bo40boo$bbo
50bobboo$3obboo50boo34bobo22boo18boo18boo$4bobo87boo23bo19bo19bo$6bobb
o71boo6bo4bo6boo16boboo16boboo16boboo$9bobo19boo18boo8bo18bobbo6bo9bo
bbo16bobbo16bobbo16bobbo$9boo20bo19bo8bo20bobo4b3o10bobo17bobo17bobo
17bobo$29bobo17bobo8b3o16boboboo14boboboo14boboboo14boboboo14boboboo$
4b3o21bobo17bobo6bo20bobo17bobo18boo18boo18boo$6bo20bobo17bobo6boo19bo
bo12bo4bobo$5bo22bo19bo7bobo4b3o12bo13boo4bo15b3o17b3o$63bo27bobo36b3o
$64bo67bo$131bo$102b3o$102bo$103bo7$95bo$94bo$94b3o$$91bobo$92boo5bo$
92bo6bobo$99boo$$93bobo22boo18boo18boo$94boo23bo19bo19bo$89bo4bo6boo
16boboo16boboo16boboo$90bo9bobbo16bobbo16bobbo16bobbo$88b3o10bobo17bob
o17bobo17bobo$99boboboo14boboboo14boboboo14boboboo$98bobo17bobo17bobo
17bobo$92bo4bobo19bo19bo19bo$92boo4bo15b3o17b3o$91bobo36b3o$132bo$131b
o$102bo$101boo$101bobo!
A naive partial synthesis of one of the remaining 16s. It would need the remaining pre-block to be brought in simultaneously; I'm not sure if this is possible or not. (I also tried to use this method to make the recent eater-domino-eater, but that won't work, as the second eater gets too close to the one being destroyed) (UPDATE: This is now obsolete):

Code: Select all

x = 174, y = 22, rule = B3/S23
159b3o$84bo73bo3bo$83bo78bo$83b3o74boo$160bo$80bobo$4bo76boo5bo71bo$4b
obo74bo6bobo$o3boo82boo$boo19boo28boo18boo18boo18boo18boo18boo18boo$oo
19bobo27bobo17bobo8bobo6bobo13boobbobo13boobbobo13boobbobo13boobbobo$
21bo29bo19bo11boo6bo16bobbo16bobbo16bobbo16bobbo$20boo28boo18boo11bo6b
oo16boboo16boboo4bo11boboo16boboo$69bo19bo19bo19bo5bo13bo19bo$20boo28b
oo18boo18boo18boo18boo3b3o11bo17bobo$21bo29bo19bo19bo19bo19bo35boo$oo
19bobo10bo3bo12bobo17bobo17bobo17bobo17bobo$boo19boo11boobobo11boo18b
oo18boo18boo18boo$o3boo28boobboo$4bobo127b3o$4bo129bo$135bo!
So, there appear to be only 6 remaining 16-bit still-lifes unaccounted for (UPDATE: now down to 3):

Code: Select all

x = 37, y = 7, rule = B3/S23
2o2b2o10bob2o10b2ob2o$obo2bo9bob2obo9bo3bo$2b2o11bo5bo9bobo$o2bobo10bo
b2obo10b2obo$2o2b2o11b2obo13bobo$34bobo$35bo!
Etrementhusiast wrote:Suggested SL in 16 gliders:
See above for a totally different way to do it, also in 16 gliders.
Extrementhusiast wrote:Also, is it too soon for 17-bitters?
I decided to take a look at the 17-bit still-lifes. There are 7773 of them, with a bit over 300 that can't currently be synthesized automatically. I haven't yet sorted these into "ones that can easily be made manually by slightly customizing existing tools" versus "I have no idea yet". One of these looks particularly interesting. I think calling it a Valentine might be appropriate (and having a synthesis for it by Feb. 14 would be particularly appropriate). Here is a partial synthesis of it. It uses 5 sparks, 4 of which are trivial and 1 which shouldn't be too hard. All should be easy to make separately, although together they might prove to be a bit more work:

Code: Select all

x = 30, y = 11, rule = B3/S23
bo9bo13b3o$bb3o3b3o$5b3o$$bbo3bo3bo13booboo$bbobbobobbo12bobobobo$4bob
obo14bobbobbo$4bobobo15bobobo$oo3bobo3boo12bobo$3o3bo3b3o13bo$boo7boo!
Sokwe wrote:Got another one based on a predecessor that I posted earlier:
This mechanism will likely be useful for many similar syntheses of larger sizes as well!
Sokwe wrote:I think this brings us down to only 7 unsynthesized 16-bit still lifes:
Now only three (see above)!

EDIT:
Sokwe wrote:A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):
This would be good, as the griddle between two beehives is a predecessor to several other unsolved ones. If one could grow the loaf into a mango, one could reduce the mango to a beehive thus:

Code: Select all

x = 28, y = 16, rule = B3/S23
10bo$10bobo$10boo$$10bo$4boo3bobo12boo$bb3o4boo11b3o$bo4bo14bo4bo$ob4o
bo12bob4obo$obobbobbobbobo6bobobbobo$bo4bobobboo8bo4bo$7bo4bo$$11bo$
10boo$10bobo!

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 25th, 2013, 10:11 pm

Final steps to two missing P3s:

Code: Select all

x = 79, y = 39, rule = B3/S23
53bo$54b2o$53b2o5$7bo4b2o$5bobo3b3o47bobo$6b2o3b2obo12bo32bo$12b3o4bo
5b2o33bo12bo$13bo4bobo5b2o25bobo4bo2bo2b2o5bobo$18b2o32bo7b3o3b2o5b2o$
22b2o22bo5bo17b2o$22b2o20bobo5bo2bo14b2o$10bobo32b2o5b3o5bo$11b2o9b2o
5bo31bo8b2o$11bo10b2o5bobo27b3o8b2o4bobo$29b2o45b2o$18b2o46b2o9bo$18bo
bo30bo14bobo$19bo29bobo15bo$b2o47b2o$o2bo$o2bo13b2o46b2o$b2o14bo35b2o
10bo$11bo2bo3bo33bo2bo3bo2bo3bo6b2o$3bo7b4o4bo5b3o25b2o4b4o4bo4b2o$3b
2o13b2o5bo40b2o6bo$2bobo6b2o13bo32b2o$11b2o34b2o10b2o$48b2o$47bo$67b2o
$20b2o45bobo$19b2o32b2o12bo$4b3o14bo32b2o$6bo46bo$5bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 25th, 2013, 10:32 pm

Extrementhusiast wrote:Final steps to two missing P3s:
Nice! With a little bit of work, this might also give us the trans pair of poles (if one could make the block with two trans attached dominoes - much harder than the cis ones from the table).

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 26th, 2013, 5:03 pm

Here are a few partial results I have had for some of the remaining objects; some of these may be of use.

The first remaining 16: I vaguely remember seeing it posted as a result of a spectacular symmetric glider collision several years back. Unfortunately, I have no record of it, and nobody else I've asked remembers it either, so I'm not sure if my memory may have been mistaken.

The second remaining 16: It is similar to one of the 15s. Some similar 14s and 15s are most easily formed by attaching a strategic bit on the corner of a forming predecessor, and that could work here, if one can get the bit into the right place at the right time. First row: glider synthesis of the 15, generation 42 with critical predecessor, and generation 43 where object appears. Second row: predecessor with additional magic bit, and desired result. Third row: my best attempt so far at perturbing the corner, using two gliders and a LWSS to stir (the LWSS can be moved for different kinds of erroneous outcomes):

Code: Select all

x = 110, y = 131, rule = B3/S23
18bo$19boo$18boo$27bo$25bobo$17bo8boo$18bo$16b3o3$47bo$45boo30bo$46boo
29bo$obbo$4bo44bo$o3bo43bo12boboo28boo7bo$b4o43b3o10boboo6b3o19boo6bob
o$21b3o47b3o19bo6bobbo$23bo8bo31b3obobbo22bobo3booboo$4bobbo14bo8bobo
31boobobbobobobo23bobbo$8bo23bo32bo6bobbobo16boo4bobbo$4bo3bo56bo4boob
o27boo3boo$5b4o68b3o28bo$65bo41bobo$70bobo5bo21bo$68b4o4bo22bo$71boo$
68booboo25boo$21bo47b5o30bo$21boo46bo3boo24bobo$20bobo50boo28boo$$47b
oo$46boo$32bobo13bo$32boo$33bo$$32boo37boo28boo$32bobo36boo28boo$32bo
11$77bo$77bo3$61boboo9bo18boo7boo$61boboo6b3o19boo6bobbo$71b3o19bo6bo
bbo$64b3obobbo22bobo3booboo$65boobobbobobobo23bobbo$65bo6bobbobo16boo
4bobbo$65bo4boobo27boo3boo$77b3o28bo$65bo41bobo$70bobo5bo21bo$68b4o4bo
22bo$71boo$68booboo25boo$69b5o30bo$69bo3boo24bobo$73boo28boo8$71boo28b
oo$71boo28boo$37boo$37b3o$36boboo$36b3o$37bo6$19bo$20boo$19boo3$17bo
27bobo$18bo26boo$16b3o27bo3$47bo$45boo$46boo$obbo28bo$4bo26bobo15bo$o
3bo26bobo14bo53boo$b4o27bo15b3o50bobbo$100bobbo$32bo67booboo$4bobbo23b
obo67bobbo$8bo23bo67bobbo$4bo3bo92boo$5b4o6$21bo$21boo$20bobo$$47boo$
46boo$32bobo13bo$32boo$33bo$$32boo67boo$32bobo66boo$32bo!
The third remaining 16: I have no clue.

Trice tongs w/beehive can be made from yet-unbuildable trice tongs w/loaf and siamese tub:

Code: Select all

x = 40, y = 15, rule = B3/S23
bbobo10bo$3boo8bobo$3bo10boo3bo$18bo$boo15b3o$obo$bbo$13boo17bo$4bo7bo
bbo15bobobo$4boo5bobob3o13bobob3o$3bobo6bobo3bo13bobo3bo$14bobobo15bob
obo$14bo19bo$15boobbo15boobbo$18boo18boo!
On the lists I am maintaining, the two 17-bit P3s also solved 4 21-bit P3 (same replacing tubs with tub-w/tail), 4 21-bit pseudo-P3s (same with inducting block), two 25-bit P6s (same with tied bipole), 8 23-bit pseudo-P6s (same with inducting beacon), and 8 25-bit pseudo-P6s (same with inducting beacon) - a total of 20 (which is not bad). Also, since I am only counting P3s and pseudo-P3s up to 21 bits at this point (since there are probably over a thousand 22s), this totally eliminates the category of unbuildable pseudo-P3s for now! The unbuildable pseudo-P6s now drops down from 28 to 12 (all beacon on 3 unbuildable P3s). Also, the P10 eliminates the unbuildable P10 category too. I think the biggest category left is P2s (which have always been somewhat of a black art).

Sokwe
Moderator
Posts: 2881
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » December 26th, 2013, 6:42 pm

mniemiec wrote:The third remaining 16: I have no clue.
This might be a place to start:

Code: Select all

x = 16, y = 20, rule = B3/S23
9bo3bo$9b2obo$9b3obo$4b2o$4bobo$5bobo2bo3b2o$3bobob4o2b3o$2bobo8bobo$
3bo5b2o2b2o$9b2o2$14b2o$o4b2o6b2o$2o3b2o8bo$3o$4b2o$bo2b2o$2bo$3b3o$4b
2o!
The seed still life can easily be constructed based on this reaction:

Code: Select all

x = 9, y = 9, rule = B3/S23
bo2$2b2o$3bo$3bobo2bo$bobob4o$obo$bo5b2o$7b2o!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 26th, 2013, 9:08 pm

Although this is likely to be superseded via the natural predecessor, this is one of the missing griddles in 61 gliders:

Code: Select all

x = 331, y = 45, rule = B3/S23
135bo$136b2o$135b2o2$144bo$145bo$143b3o$289bo$289bobo$289b2o2$82bo205b
o$23bo59bo202bobo14bobo$24b2o55b3o203b2o14b2o5bo$23b2o24bobo241bo10bo
4bo$28bo21b2o242bo14b3o$26b2o22bo3bo16bo64bo4bo76bo34bo38b3o$27b2o24bo
15bobo65bob2o76bo18bo17bo34bo$6bo15bo30b3o14b2o63b3o2b2o75b3o16bobo13b
3o33bobo$4bobo16b2o5bo205b2o50bobo$5b2o15b2o6bobo15bobo183bo14b3o37bo$
8bo21b2o16b2o4b2o38bo137bobo16bo5b2o33b2o$8bobo16b2o20bo4bo39bobo23b2o
b2o27b2ob2o21b2o27b2o24b2o7b2o6bo5bo2bo5b2o20bo3bo2bo5b2o5b2o17bo$obo
5b2o16bo2bo17bo7bo25b2ob2o8b2o23bo2b2o2bo24bo2b2o2bo17b3o2bo23b3o2bo
29b3o14b2o4b3o22bo3b2o4b3o5b2o18bobo$b2o19bo4b2o19bo3b3obo11b2o10bo2b
2obo32b2o4b2o24b2o4b2o16bo4b2o22bo4b2o4b2o22bo4bo17bo4bo18b3o8bo4bo5bo
15bo4bo$bo19bobo7b2o13b3o2bo4bo12b2o10bo4bo4b3o27b4o28b4o17bob4o23bob
4o5b2o22bob4obo15bob4obo27bob4obo19bob4obo$22b2o7bobo18b4o12bo13b4o5bo
22bo6bo2bo28bo2bo17bobo2bo6bo16bobo2bo7bo21bobo2bobo15bobo2bobo27bobo
2bobo19bobo2bobo$b3o22b3o2bo60bo22bo59bo9bo18bo34bo4bo17bo4bo9b2o18bo
4bo21bo4bo$bo26bo23b2o17b2o9b2o29b3o69b3o90b2o$2bo24bo24bobo15bobo9bob
o63b2o2b2o54b2o2b2o2b3o58bo$21b2o30bo18bo10bo35b3o17b2o6bobo2b2o25b3o
26b2o2bobobo$22b2o4b3o79bobo8bo16bobo7bo30bo8bobo22bo3bo67b2o$21bo6bo
82b2o7bo19bo39bo7b2o96b2o$29bo81bo10b3o51b3o10bo13b3o79bo8bo$122bo55bo
26bo87b2o$108b3o12bo13b2o38bo12b3o11bo88bobo$73b3o14b2o18bo27b2o50bo
22b3o$75bo13b2o18bo27bo53bo21bo$74bo16bo122bo$163b2o$162b2o$164bo$140b
2o$141b2o$140bo!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 2881
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » December 27th, 2013, 5:42 pm

I got that first 16-cell still life from a random symmetric reaction. Here is the final step in the synthesis:

Code: Select all

x = 28, y = 33, rule = B3/S23
12bo$11bobo$5bo5bobo$6bo5bo$4b3o5$21b2o$3o18b2o$2bo6bo$bo6bobo4b2o$8bo
2bo3b2o$9b2o4$17b2o$11b2o3bo2bo$11b2o4bobo6bo$18bo6bo$5b2o18b3o$5b2o5$
21b3o$15bo5bo$14bobo5bo$14bobo$15bo!
Edit: Here is the soup that this reaction came from:

Code: Select all

x = 20, y = 19, rule = B3/S23
bobob4o5bo2bo$3b3o2bo5bo3b2o$3bo2b2o4bo6bo$obo7bo3b2obobo$2bobo4b5o3b
2o$5o2bo5bo2bo2bo$obobo2bobo5b2o2bo$o4bo2bobo3bo2bobo$b2ob3o2b2obo2bob
o$3bo4bo2bo4bo$2bobo2bob2o2b3ob2o$obo2bo3bobo2bo4bo$o2b2o5bobo2bobobo$
o2bo2bo5bo2b5o$b2o3b5o4bobo$obob2o3bo7bobo$o6bo4b2o2bo$2o3bo5bo2b3o$2b
o2bo5b4obobo!
Only two left!

Edit 2: Here is a slightly more refined predecessor of the asymmetric 16-cell still life. I'm not sure if the r-pentomino variant can be placed in that location at generation 36, but maybe it can be replaced with something better:

Code: Select all

x = 87, y = 42, rule = B3/S23
11bobo$12b2o$12bo21bo$33bo$33b3o$78bobo$77bo2bo$77bo3bo$18b2o57bo$17bo
2bo56bob2o$17bo2bo$18b2o26b3ob3o32bo$48bobo32bo$46b3ob3o25b2ob2ob3o$
48bobobo25b2ob2o2bo$46b3ob3o25b3o$13b2o58b2o$13bobo35bo21bobo$14bobo2b
o32bo21bobo2bo3b2o$12bobob4o25b9o18bobob4o2b3o$11bobo38bo18bobo8bobo$
12bo5b2o31bo20bo5b2o2b2o$18b2o58b2o2$84b2o$69bo4b2o7b2o$69b2o3b2o9bo$
69b3o$73b2o$bo68bo2b2o$b2o68bo$obo69b3o$73b2o3$12bobo$12b2o$13bo2$12b
2o57b2o$12bobo56b2o$12bo!
Edit 3: Got it:

Code: Select all

x = 40, y = 46, rule = B3/S23
34bo$34bobo$34b2o2$11bobo$12b2o$12bo21bo$33bo$33b3o4$18b2o$17bo2bo$17b
o2bo$18b2o3$33bo$32bo$13b2o17b3o$13bobo$14bobo2bo$12bobob4o$11bobo$12b
o5b2o$18b2o2$35b2o$35bobo$35bo2$31b2o$bo29bobo$b2o28bo$obo4$12bobo$12b
2o23b2o$13bo23bobo$37bo$12b2o$12bobo$12bo!
-Matthias Merzenich

towerator
Posts: 328
Joined: September 2nd, 2013, 3:03 pm

Re: Synthesising Oscillators

Post by towerator » December 28th, 2013, 5:16 am

Boom! Only one left!
I'm currently working on something totally different: I would like to do the quasar's synthesis. I wonder if it has been done before.
This is game of life, this is game of life!
Loafin' ships eaten with a knife!

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 28th, 2013, 3:51 pm

Possible predecessor for the remaining 16-bitter:

Code: Select all

x = 17, y = 15, rule = B3/S23
15bo$2bo10b2o$3bo6b2o2b2o$b3o5bobo$9bo$7b2obo4bo$6bo2bobo2bo$3o2bobobo
bo2b3o$2bo2bobo2bo$bo4bob2o$7bo$5bobo5b3o$b2o2b2o6bo$2b2o10bo$bo!
The base SL might be even harder to construct, however.

EDIT: Partial synthesis (with one missing step) of trice tongs siamese loaf siamese tub:

Code: Select all

x = 332, y = 31, rule = B3/S23
195bo$196bo$123bo70b3o$123bobo34bo7bo21bo$123b2o30bo5bo5bo20bobo6bobo$
121bo34bo2b3o5b3o19b2o6b2o$20bo60bobo38bo31b3o41bo17bo8bo14bo$21bo60b
2o36b3o92bo9b2o14bo67bo$19b3o60bo110b2o19bo10b2o15bo65bo$23bo99bobo30b
3o34bo20bo11bob2o12bo65b3o$22bo32b2o23b2o41b2o32b3o34bo18bo11bo2bo14bo
$22b3o9bobo3b2o12bo2bo2b2o17bo2bo2b2o19b2o16bo9b2o27b2o30bo2b2o13bo10b
2o3bo2b2o9bo19b2o2b2o28b2o2b2o22b2o$35b2o3b2o12bo2bo2b2o13bo3bo2bo2b2o
17bo2bo24bo2bo10bobo12bo2bo31bo2bo13bo16bo2bo9bo18bo2bo2bo27bo2bo2bo
21bo2bo$2bo32bo19b2o19b2o2b2o22b3o25b3o12b2o3bobo6b3o30bob3o14bo14bob
3o10bo17bobob3o27bobob3o4b2o15bobob3o$obo72b2o25b2o26b2o15bo5b2o4b2o
32bobo17bo13bobo13bo18bobo31bobo6b2o17bobo3bo$b2o8bo9b2o11b2o3b2o18b2o
23b2o17bob2o24bob2o18bo6bob2o29bobob2o14bo9b2o2bobob2o10bo20bob2o30bob
2o5bo18bo2bo$11bobo7bobobo7bobo3bobobo15bobobo16b2o2bobobo12bobobobobo
21bobobobo22bobobobo3b3o21b2ob2o14bo9b2o3b2ob2o10bo19b2ob2o3bo25b2obo
25bob2o$11b2o11b2o9bo6b2o10b3o5b2o16b2o5b2o12b2o5b2o22bo3b2o23bo3b2o3b
o5b3o35bo8b2o17bo28bobo20bo8bo23bo2b2o$8b2o46bo94bo19bo4bo37bo8b2o17bo
28b2o19bobo7b2o26b2o$2b2o3b2o46bo47bo47b2o24bo37bo7b3o15bo14b2o4b2o29b
2o$bobo5bo47b3o42b2o46bobo63bo6b4o13bo16b2o2bo2bo32b2o$3bo53bo44bobo
51b2o67b2o29bo4bo2bo2b3o27bobo$58bo40b2o56b2o4b2o97b2o3bo29bo$98bobo
55bo6bobo2b2o98bo$100bo62bo3b2o$169bo96b2o$155b3o109b2o$157bo108bo$
156bo14b3o96b3o$171bo98bo$172bo98bo!
42 gliders are used for the rest of the steps. (The lower part of the missing step is easy; the upper part needs to be solved.)
I Like My Heisenburps! (and others)

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Synthesising Oscillators

Post by knightlife » December 28th, 2013, 6:59 pm

Sokwe wrote: Edit 3: Got it:

Code: Select all

x = 40, y = 46, rule = B3/S23
34bo$34bobo$34b2o2$11bobo$12b2o$12bo21bo$33bo$33b3o4$18b2o$17bo2bo$17b
o2bo$18b2o3$33bo$32bo$13b2o17b3o$13bobo$14bobo2bo$12bobob4o$11bobo$12b
o5b2o$18b2o2$35b2o$35bobo$35bo2$31b2o$bo29bobo$b2o28bo$obo4$12bobo$12b
2o23b2o$13bo23bobo$37bo$12b2o$12bobo$12bo!
Three of the four extraneous still lifes cleaned up with one glider added:

Code: Select all

x = 69, y = 73, rule = B3/S23
34bo$34bobo$34b2o2$11bobo$12b2o$12bo21bo$33bo$33b3o4$18b2o$17bo2bo$17b
o2bo$18b2o3$33bo$32bo$13b2o17b3o$13bobo$14bobo2bo$12bobob4o$11bobo$12b
o5b2o$18b2o2$35b2o$35bobo$35bo2$31b2o$bo29bobo$b2o28bo$obo4$12bobo22b
2o$12b2o23bobo$13bo23bo2$12b2o$12bobo$12bo25$67b2o$66b2o$68bo!
(The south-easternmost glider was moved one cell north)

EDIT:
No glider added, two moved:

Code: Select all

x = 40, y = 45, rule = B3/S23
39bo$37b2o$38b2o$11bobo$12b2o$12bo21bo$33bo$33b3o4$18b2o$17bo2bo$17bo
2bo$18b2o3$33bo$32bo$13b2o17b3o$13bobo$14bobo2bo$12bobob4o$11bobo$12bo
5b2o$18b2o2$35b2o$35bobo$35bo2$31b2o$bo29bobo$b2o28bo$obo4$12bobo$12b
2o$13bo21b2o$34b2o$12b2o22bo$12bobo$12bo!

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 29th, 2013, 8:21 pm

Sokwe wrote:One of the recently synthesized 16-cell still lifes can be synthesized for cheap using this reaction:
This can be reduced by 1, to 9, by making block and blinker simultaneously:

Code: Select all

x = 149, y = 31, rule = B3/S23
bbo$obo$boo$7bo$7bobo$bb3obboo$4bo$3bo4$27b3o17b3o5bo11b3o17b3o$22boo
18boo10bo7boo18boo$22boo18boo10b3o5boo7bo10boo7bo$70bobo17bobo$51b3o
16bobo17bobo9boo18boo18boo$51bo19bo19bo11bo19bo19bo$52bo50boboo16boboo
16boboo$104bobo17bobo17bobo$102bobobobo13bobobobo13bobobobo$102boo3boo
13boo3boo13boo3boo4$87bobo15bo19bo$88boo15bo19bo$80boo6bo16bo19bo$81b
oo$80bo4b3o38boo$85bo40bobo$86bo39bo!
Etrementhusiast wrote:Suggested SL in 16 gliders:
UPDATE: I had misread my own post and said that mine was also 16, but it actually takes 17, making yours cheaper.
Sokwe wrote:Reduced to 24 gliders:
Reduced to 22 gliders (cheaper to add the boat later):

Code: Select all

x = 162, y = 40, rule = B3/S23
134bo$133bo$133b3o$127bo$128bo$126b3o3$132bobo$132boo$3bo129bo$bobo$bb
oo$9bo$9bobo$9boo149boo$25boo3boo13boo3boo13boo3boo13boo3boo13boo3boo
13boo3boo23boobbobo$10bo15bobbobo14bobbobo14bobbobo14bobbobo14bobbobo
7bo6bobbobo24bobbo$oo8boo3bo10bobobo15bobobo15bobo17bobo17bobo11bo5bob
o5bo21boboo$boo6bobo3bobo9bobo17bobo17bo19bo19bo10b3o6bo6bobo4bobo13bo
$o14boo11bo19bobboo81boo5boo12bobo$51bobo53bo19bo10bo3bo12boo$47boobbo
54bobo17bobo8boo$46bobo57boo18boo9bobo$48bo$87boo42boo$86bobobboo22bo
15bobo$88bobbobo21boo14bo$91bo22bobo10b3o$129bo$119boo7bo$89bo28bobo$
89boo29bo$88bobo4$117boo$116bobo$118bo!
Here are a couple of results from random soups. The first row shows a still-life I had a note about years ago, but couldn't find a synthesis file for. I'm not sure where the soup result originally came from (possibly Dean Hickerson?) but it can be distilled into a simple 6-glider synthesis.
This mechanism is fairly general and can be combined in several ways; 22 and 39-bit examples are also shown.
While attempting to file the 22-bit one, I noticed that a previous 22-bit still-life's synthesis file was missing. I had a 10-glider synthesis of it (probably from a soup result from Lewis) but it was lost, as I had saved the wrong file when I initially created it (i.e. the result, but not the synthesis itself). I looked at the soup database, and it showed two soups that make it, both doing it in exactly the same way. I was able to re-create a 10-glider synthesis, so I presume the previous one was similar. It's likely that the top cleanup can be done with one glider rather than two, which would reduce this to 9. It could be reduced even further if one can make the initial muck from less than 6 gliders:

Code: Select all

x = 137, y = 132, rule = B3/S23
59boo28boo$59boo24bo3boo$86boo$85boo$59bo29bo$58bobo27bobo$58bobo27bob
o$59bo5booboo19bo5booboo25booboo$66boboboboo22boboboboo22boboboboo$66b
obobobobo21bobobobobo21bobobobobo$65boobobobobo20boobobobobo20boobobob
obo$69bo3bo25bo3bo25bo3bo$$bbo$3bo$b3o$35bo$36boo$21bo13boo$22boo14b3o
$21boo15bo$33boo4bo$32bobo$34bo8$70boo28boo$69bobbo26bobbo$69bobbo26bo
bbo$33boo35boo28boobb3o$32bobo69bo$34bo70bo10$110bo$103bo5bo$101boo6b
3o$99bobboo$97bobo$98boo31bobbo$43bo87b4o$4bo39bo9bo39bo$5bo36b3o10bo
39bo35b4o$3b3o47b3o37b3o18bo15bo4bo$113boo14bob4o$bbo22booboo22bo22boo
boo12bo20bobo9boobobo$bboo9bo12boboboboo18boo9bo7booboboboboboo8boo9b
oo21bobobobboo$bobo8bobo11bobobobobo16bobo8bobo5bobobobobobobobo6bobo
8bobbo20bobobobobbo$12bobo10boobobobobo27bobo5bobobobobobobobo17bobo
20boobobobobo$13bo15bo3bo29bo7bo3bo3bo3bo19bo25bo3bo3$45b3o$boo44bo3b
oo38boo$obo43bo3bobo37bobo$bbo49bo39bo$$10boo48boo38boo$9boo48boo38boo
$11bo49bo39bo15$71bo$71bobo$71boo14$13bo40bo$13bobo39boo$13boo39boo$
11bo$9bobo19boo18boo4bo$10boo18bobbo16bobbo3bobo$31boo18boo4boo$$48bo$
49boo51bo$48boo4bo45bobo$53boo46boo$53bobo28bo19bo$83bobo17bobo$83bobo
17bobo$84bo19bo4$50b3o$52bo$51bo$89boo3boo13boo3boo13boo3boo$52b3o33bo
bbobobbo11bobbobobbo11bobbobobbo$52bo35booboboboo11booboboboo11boobobo
boo$53bo37bobo17bobo17bobo$88booboboboo11booboboboo11booboboboo$88bobb
obobbo11bobbobobbo11bobbobobbo$89bobobobo13bobobobo13bobobobo$90bo3bo
15bo3bo15bo3bo!
Here are the two soup seeds for the above still-life:

Code: Select all

x = 20, y = 20, rule = B3/S23
o8bo2bo$16bobo$3b2o6bo5bo$12bo4bo$2bo6bo5bo$o7bo4bo2bo$ob2o8bo$3bo9bo$
2bo6bo7bo$9bo7b2o$2bo2bobo8bo2bo$16bo$3bo3bobo$2bo3bo4bo7bo$ob2o$o2bo$
7bo2bo$o6b2o3bo$4bo4bo$17bo!

Code: Select all

x = 20, y = 20, rule = B3/S23
o2b5o2bob3o2b2o$ob4o3bo4bob3o$2bo5b10obo$2b2obo2bo2bo5bobo$4bob2o3bo2b
o2b2o$bo3bob2o4b3o3bo$b3ob2o2bobob2ob2o$3obo2b3obo2b5o$3o2b3o3bobob2ob
2o$2o7b2o2bobob2o$bo3b2o6b2o3b2o$2bo2bo5bobo2bo2bo$obo2b2o3b2o2bo4bo$
2ob3ob6o4bobo$2bob2o2b2o2b4o2bo$ob3o3b3o2bob5o$4bo3b4o3b3obo$bo2b2obob
2obob2obobo$3o2b3o2b2o2bob4o$b2o2bob2o2bo!
And congratulations to all on the amazing progress!
towerator wrote:I'm currently working on something totally different: I would like to do the quasar's synthesis. I wonder if it has been done before.
I built this one on 2013-04-28 from 32 gliders:

Code: Select all

x = 159, y = 104, rule = B3/S23
92bo$93b2o$92b2o$96bobo$96b2o$97bo$10bo$11b2o$10b2o130b3o$14bobo$14b2o
$15bo3$50b3o37b3o47b3o2$26bobo31bo16bo22bo49bo$26b2o32bo17b2o20bo49bo$
3bo23bo32bo16b2o21bo11bobo35bo5bo$4b2o106b2o42bo$3b2o19b2o49bo37bo18bo
23bo$23b2o50b2o55bo$bo23bo22bo25bobo11bo21b2o20bo5bo$b2o45bo39bo20b2o
27bo$obo45bo39bo22bo26bo2$56b3o37b3o47b3o3$13bo$13b2o$12bobo$17b2o125b
3o$16b2o$18bo$91bo$91b2o$90bobo$95b2o$94b2o$96bo17$90bo$91bo$89b3o2$
104bo$103bo$84bo18b3o$82bobo$83b2o$104bo35b3o3b3o$103bo$92b3o8b3o4bo
27bo4bobo4bo$77bo4bo26bo28bo4bobo4bo$75bobo2bobo26b3o26bo4bobo4bo$76b
2o3b2o57b3o3b3o2$138b3o7b3o$90b3o39b3o2bo4bo3bo4bo2b3o$115bo21bo4bo3bo
4bo$100bo14bobo12bo4bobo4bo3bo4bobo4bo$100bo14b2o13bo4bo17bo4bo$100bo
5bo23bo4bo2b3o7b3o2bo4bo$106bo25b3o19b3o$82bo23bo$82bo49b3o19b3o$82bo
5bo41bo4bo2b3o7b3o2bo4bo$72b2o14bo41bo4bo17bo4bo$71bobo14bo41bo4bobo4b
o3bo4bobo4bo$73bo63bo4bo3bo4bo$96b3o33b3o2bo4bo3bo4bo2b3o$138b3o7b3o2$
106b2o3b2o27b3o3b3o$77b3o26bobo2bobo24bo4bobo4bo$79bo26bo4bo26bo4bobo
4bo$78bo4b3o8b3o41bo4bobo4bo$85bo$84bo55b3o3b3o$104b2o$104bobo$83b3o
18bo$85bo$84bo2$97b3o$97bo$98bo!

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 30th, 2013, 1:06 pm

Key step for solving one of the P2s:

Code: Select all

x = 28, y = 31, rule = B3/S23
11bobo$12b2o$12bo$20bo$19bo$19b3o$14b2o$13bo2bo8bobo$13bo2bo8b2o$14b2o
10bo3$10b2o7b2o$10bobo2b2o2b2o$11b2o2b2o2$11b2o2b2o$7b2o2b2o2bobo$7b2o
7b2o3$bo10b2o$b2o8bo2bo$obo8bo2bo$12b2o$6b3o$8bo$7bo$15bo$14b2o$14bobo
!
So what's the list of 17-bitters?

EDIT: Full synthesis in 23 gliders:

Code: Select all

x = 169, y = 31, rule = B3/S23
134bobo$135b2o$135bo$143bo$142bo$4bo96bo40b3o$2b2o98bo3bo30b2o$3b2o95b
3ob2o30bo2bo8bobo$105b2o29bo2bo8b2o$56bo80b2o10bo$55bo$55b3o53bo$o4bo
16b2o4bo19b2o21b2o28b2o8bobo19b2o7b2o17b2o$b2obo17bobo3bobo17bobo2b2o
16bobo2b2o23bobo2b2o3b2o20bobo2b2o2b2o17bobo3bo$2o2b3o16b2o3b2o19b2o2b
2o17b2o2b2o17bo6b2o2b2o6b2o18b2o2b2o27bo$31b2o60bobo18bobo44bo2b2o2bo$
23b2o6bobo15b2o21b2o2b2o16b2o6b2o2b2o6bo19b2o2b2o22bo$23b2o6bo17b2o3b
3o15b2o2bobo18b2o3b2o2bobo21b2o2b2o2bobo21bo3bobo$54bo22bo5bo12bobo8b
2o21b2o7b2o26b2o$55bo25b2o15bo$82b2o$124bo10b2o$81bo21b2o19b2o8bo2bo$
80b2o22b2ob3o13bobo8bo2bo$80bobo20bo3bo27b2o$108bo20b3o$131bo$130bo$
138bo$137b2o$137bobo!
EDIT 2: Much more reasonable predecessor for the last 16-bitter:

Code: Select all

x = 7, y = 7, rule = B3/S23
4b2o$2b2o$o2b2o$2bobo$2b2o2bo$3b2o$b2o!
A bit further back:

Code: Select all

x = 13, y = 9, rule = B3/S23
o9bo$bo4bobo$bo4b2o2b2o$bo5bo2bo$2bo7bo$2bo2bo5bo$b2o2b2o4bo$4bobo4bo$
2bo9bo!
EDIT 3: Reduced that P2 down to 21 gliders:

Code: Select all

x = 148, y = 29, rule = B3/S23
117bobo$118b2o$118bo$124bo$4bo83bo34bo$2b2o85bo3bo25b2o2b3o$3b2o82b3ob
2o25bo2bo7bobo$92b2o24bo2bo7b2o$51bo67b2o9bo$50bo$50b3o$o4bo16b2o4bo
14b2o21b2o20b2o25b2o23b2o$b2obo17bobo3bobo12bobo2b2o16bobo2b2o15bobo2b
2o20bobo2b2o18bobo3bo$2o2b3o16b2o3b2o14b2o2b2o17b2o2b2o16b2o2b2o15bo5b
2o2b2o4b3o17bo$31b2o78bo14bo13bo2b2o2bo$23b2o6bobo10b2o21b2o2b2o16b2o
2b2o14b3o4b2o2b2o5bo13bo$23b2o6bo12b2o3b3o15b2o2bobo15b2o2bobo20b2o2bo
bo18bo3bobo$49bo22bo5bo15b2o25b2o23b2o$50bo25b2o$77b2o$107bo9b2o$76bo
13b2o15b2o7bo2bo$75b2o14b2ob3o9bobo7bo2bo$75bobo12bo3bo17b3o2b2o$95bo
18bo$113bo$119bo$118b2o$118bobo!
EDIT 4: Predecessor to another P2:

Code: Select all

x = 10, y = 9, rule = B3/S23
o8bo$bo6bo$2b2o2b2o$2b6o2$2b2o2b2o$b2o4b2o$b3o2b3o$2b2o2b2o!
This implies that the starting point would be a table on some induction coil.

EDIT 5: The missing double griddle in 101 gliders:

Code: Select all

x = 632, y = 43, rule = B3/S23
104bo$105bo$103b3o$529bo$121bo408bo$120bo8bobo396b3o$85bo16bo17b3o6b2o
405bo$86bo13bobo27bo45bo358bo$84b3o14b2o73bobo356b3o$88bo16bo56bo13b2o
97bo$87bo18b2o55bo36bo72bobo$87b3o15b2o54b3o36bobo71b2o4bo248bobo38bob
o21bo$16bo24bobo151bo4b2o77bo22bo125bo42bo52bo5b2o12bobo23b2o20bobo$
16bobo22b2o13b2o9bo71bobo54bo61bo16bo3b3o18b2o127bo3bo35b2o54b2o3bo13b
2o18bo6bo21b2o$16b2o20bo3bo12bobo2bo4b2o16bo3b2o51b2o52b3o3bo57bobo14b
2o24b2o124b3ob2o37b2o52b2o19bo19bo33bobo$39bo17bo2bobo3b2o13bobo3b2o
28b2o21bo58b2o26bobo24bo3b2o14bobo17bo24bo112b2o86bo42b3o33b2o$7bo29b
3o20b2o20b2o33bo81bobo25b2o26b2o38b2o22bobo128bobo10bo57b2o23b2o52bo$
5bobo71b2o6b2o30bo18b2o88bo25b2o38b2o23b2o104b2o24b2o8bobo56b2o24bobo
23bo18bo$6b2o70bobo6b2o29b2o19b2o120bo164b2o23bo10b2o82bo14bo10bobo17b
2o9bo24bo$39b2o39bo57bo5bo27b2o45b2o8b2o18b2o9b2o16b2o20b2o21b2o18b2o
36b2o24b2o16bo11b2o18bobo13b2o26b2o30b2o25bobo9b2o17b2o9bobo22bobo$38b
obo22b2o22b2o29b2o23bobob2o23bobob2o18b2o21bobo6b2o19bobo8bobo15bobob
2o15bobo22bo19bo20bo16bo25bo29bo19b2o9bo4bo22bo4bo26bo4bo9bo13bo2bo2bo
35bo2bo22bobo$35bo2bo22bo2bo20bo2bo27bo2bo24bo3bo24bo3bo14b2obobo18b2o
bobo8bo15b2obobo2b2o19b2obobobo16bobob2o14b2o3bob2o13bo2bob2o17bobo11b
o2bob2o19bo2bob2o23bo2bob2o16bo10b3o2bob2o19b3o2bob2o23b3o2bob2o5b2o
13b2obob2o35b2obob2o21bob2o$20b2o9bo2bobobobo20b2obobo18b2obobo25b2obo
bo23b2obobo23b2obobo12bob2obobo16bob2obobo22bob2obobobo19bob2obobo13b
2obobobo15bo2bobobo13bobobobo18b2o11bobobobo19bobobobo23bobobobo13b3o
15bobobo18b2o3bobobo22b2o3bobobo6bobo13bobobo37bobo21b2obo$20bobo6bobo
2bo2bob2o22bob2o20bob2o27bob2o25bob2o25bob2o16bob2o20bob2o26bobo26bobo
14bob2obobo17b2obobo14b2obobo32b2obobo20b2obobo24b2obobo15bo14b2obobo
17bobo2b2obobo21bo2bob2obobo22bobobo37bobobo22bobo$20bo9b2o3bobo25bo
23bo30bo28bo28bo19bo23bo29bo28bo20bobo20bobo17bobo35bobo23bobo27bobo
15bo17bobo19bo5bobo23b2o4bobo24bobo39bobo22bobo$8b2o26b2o24b2o22b2o12b
2o15b2o27b2o27b2o18b2o22b2o4b2o22b2o8b2o17b2o20bo22bo19bo37bo25bo29bo
25bo9bo27bo31bo27bo41bo24bo$2o5b2o22b2o68b2o123b2o31bobo30bo6b2o21b2o
18b2o13bobo20b2o24b2o17bo12bo24b2o9bo27bo31bo35bo23b2o$b2o6bo20bobo67b
o124bo3b2o28bo32b2o19bobo41b2o66b2o12bo22bobo10bo27bo31bo33b2o22bobo$o
3b2o26bo196bobo59bobo20b2o2b2o32b2o4bo24b2obo22b2obo11bobo7b2o4bobo28b
o4bobo25bobo29bobo5bo19bobo2bobo23bo4bo$4bobo99b2o2b2o117bo84bo2b2o32b
2o30bob2o13bobo6bob2o20b2o6b2o27b2o5b2o26b2o14b2o14b2o4b2o19b2o32bobo$
4bo102b2obobo56bobo122b3o22bo28b2o3bo47b2o32bo34bobo25b2o20bobo20bobo
19bo33b2o$106bo3bo59b2o122bo52bobo51bo87b2o6b2o23bo32b2o51b2o$162b2o6b
o124bo53bo26bo113b2o7bo54bobo5b2o37b3o3b2o$163b2o209bobo25b2o85bo3b3o
60bo4b2o40bo5bo$112b3o47bo4b3o170b3o32b2o25b2o89bo69bo38bo$112bo56bo
172bo29b2o120bo$113bo54bo172bo29bobo$373bo2$604bo$559b3o41b2o$561bo41b
obo$560bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 31st, 2013, 8:16 pm

Sokwe wrote:The seed still life can easily be constructed based on this reaction:
This lowers the cost of this reaction by two (formerly done by turning a boat-bit into a teardrop, and mutating that), which also reduces the cost of two 15-bit still-lifes, and provides same-cost alternatives for several others.
Extrementhusiast wrote:Although this is likely to be superseded via the natural predecessor, this is one of the missing griddles in 61 gliders:
Nice! This should fill in a fair number of objects, as several are based on this. The last step can be reduced by 5 gliders (see below)
Sokwe wrote:A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):
This makes for a fairly cheap synthesis of the 18-bit griddle w/beehive and loaf. This object wasn't on the explicit "unbuildable" list, because it could easily be made from the griddle w/two beehives (which it was waiting for), but doing it this way for 22 gliders is much better than the old way, which currently takes 73! This uses a slightly altered version of the traditional griddle-activation mechanism (which, incidentally, can be used for the 61-glider griddle-with-two=beehives, reducing it by 5); the left spark mechanism made 1 bit that was usually harmless, but attacks anything as wide as a beehive. By using a different spark (with just one glider repositioned, and one extra for cleanup), that bit is eliminated. Unfortunately, this wll require substantial redesign for things wider than beehives, like loaves and mangos. Fortunately, in many cases, those can be added after the griddle is activated.

Code: Select all

x = 173, y = 95, rule = B3/S23
43bo$44bo$42b3o25$96bo$95bo$13bo81b3o$11bobo18boo58boo33boo$12boob3o
13bobbo45bo6bo3bobbo33b3o$15bo16bobo43bobo5boo4bobo31bo4bo$16bo16bo45b
oo5bobo4bo31bob4o$124bobbobbobo$84boo12bo26boo4boo$78b3obbobo12bobo$
80bo4bo12boo$79bo15boo$95bobo15boo$95bo17boo24$144bo$145bo$143b3o$127b
oo18boo$126bobbo16bobbo$127boo18boo$95bo$96bo$88bo5b3o$89boo14bo$88boo
13boo$104boo3$105bo$91boo13boo$17boo18boo18boo18boo11bobo4boo6boo21bo
19bo19bo$18b3o17b3o17b3o17b3o11bo5b3o8bobo16bobo17bobo17bobo$16bo4bo
14bo4bo14bo4bo14bo4bo14bo4bo7boo15bo4bo14bo4bo14bo4bo$15bob4o14bob4o
14bob4o14bob4obo12bob4obo7bo14bob4obo12bob4obo12bob4obo$14bobbobbobo
11bobbobbobo11bobbobbobo4bo6bobbobbobo11bobbobbobo21bobbobbobo11bobbo
bbobo11bobbobbobo$15boo4boo12boo4boo12boo4boo4bobo5boo4bo13boo4bo23boo
4bo13boo4bo13boo4bo$67boo$103boo$64b3o35bobo$3boo59bo39bo$3boo60bo45b
oo$111bobo$boo108bo$obo$bbo!
From Lewis's soup collection: a natural anvil from 4 gliders that can attach itself wherever a boat-bit can (I found 5 of these there, all of which form exactly the same way). This might be cheaper if there is a way to make the mangled house from 3 gliders. (With the target in place, the house must approach like a B-heptomino, as shown here; however, if a beacon is created simultaneously, a conventional house predecessor can be used. Unfortunately, I couldn't find any way to mangle one with only one glider, so unless someone else can find one, this option is moot):

Code: Select all

x = 72, y = 26, rule = B3/S23
13bobo37bobo$bbo10boo27bo10boo$obo11bo25bobo11bo$boo38boo5$6bo39bo$4b
oo38boo$5boo38boo$8b3o17boboo16b3o17boboo$8bo17b3obo17bo17b3obo$9bo15b
o4bo18bo15bo4bo$26b4o36b4o$$6boo18boo18boo18boo$6boo18boo18bo19bo$49bo
19bo$48boo18boo4$13boo$13bobo$13bo!
Extrementhusiast wrote:Key step for solving one of the P2s: (16-bit p2!):
Nice! I'll have to see how well this applies to others (as there are many that have a similar look on one side.
Extrementhusiast wrote:So what's the list of 17-bitters?
Here are the 20 unknown 17-bit P2s. Removed from this list are ones for which explicit syntheses have been developed (such as the recent griddle w/two beehives). Also omitted are 11 additional unknown ones that have trivial partial syntheses - i.e. unknown 16-bit ones plus "extend barberpole by one".

Code: Select all

x = 144, y = 19, rule = B3/S23
ooboo10boobboo10boobboo8boo5bo7boo5boo6boo5boo6boo4bo8boo14boobo10boo$
bobobo9bobobbo10bobobbo8bo6bo7bobo3bobo6bobo3bobo6bobobobboo6bobobo11b
o3boo8bobo3boo$obbo15bo15bo10bobobobbo40bo14bobo10bo19bo$ooboboo9bo15b
o29bobobo8bobboobo10bo3bo10bo5bo10bo12bobobo$3bo11bobbobo13bobo9bobbob
obo22bo14bo14bo6bo8bo3bo$3boo10boo4bo8boobbobo10bo4boo7b3ob3o8bo3b3o8b
oob3o9boobobobo6boo4bo10bobboo$20boo10bo3bo10bo63bo12bobo9bobbo$122bob
o11boo3$3bo12bo14bo3bo10boo4bo7boo13boo13boo13boo14boo13boo$3boboboo7b
o14bo3bo10bobo3bo7bobo12bobo12bobo3bo8bobobobo9bobo12bobo$bo6bo6bobbo
3boo6bobbobbo13bobbo28boo12bo12bo30bo$7bo15bo24bo11bobboob3o6bobboobob
o8bobobbo8boo4boo7bobboo10bo3bo$oo13boboboobo8boobbobo8bo4boo8bo14bo
34bo14bo14bo$6bobo6boo21bo7bo14bo3bobo8bo3bobbo7b3obobo8bobbo10boo13b
oo$bbobobboo12b3o8b3obboo7bobobo17bo13bo15bo9bobo15bobo12bobo$4bo43bo
18boo13bo14boo9bo13bobobboo8bobobboo$124bo14bo!
Here are the 48 unknown 18-bit P2s (similar notes to the 17-bit ones):

Code: Select all

x = 148, y = 51, rule = B3/S23
oo3bo9boo13boo13boo13boo5bo7boo3bo11boo13boo13boo12boo$obobobo8boboboo
9boboboo9bobobooboo6bobbobbobo6bobobobobo9b3o11bo3boo9bobo12bo3bo$5bob
o12bo14bo14boboo7bob4obo11boboo7bo4bo12bobbo11bo11bo3bobo$obbobobo7bo
bboboboo6bobboboboo6bobbobo11bo4bo7bobbobo9bob4obo7b5obo8b5oboo7bob4ob
o$bobbobo9bobbobobo7bobbooboo7bobboo12bobo10bobboo10bo4bo8bo4bo9bo4bob
o8bo4bo$bo3bo10bo3bo10bo14bo18bo10bo15bobo11bobo12bobo13bobo$94bo13bo
14bo15bo4$oo4boo7booboo10booboo12boo11boo3bo9boo5bo7boo3bobo9boo12bo3b
o9boo$obo4bo8bobo12bobo12bobo11bo4bo9bo6bo7bo4bo10bobobbo9bobobboo7bob
obboo$4bobo9bo4bo9bo4bo11boboobo7bobobbo9bobobobbo7bobo4boo8bobobo8bob
o15bobo$bbo14b4obo9b4obo7booboboboo43bo7boobobbo13bo11bo$5bo16bo14bo
10bo12bo3bobo8bobbobobo7bo3bo12bo13bo17bo$bobobbo12bobo12b3o10bobo10bo
bbobobo9bo6bo5bobbobo11bo16bobo9bobo$boobboo12boo13bo13bo11boo5bo9bo5b
oo5boo16b3o9boobbobo9boobbobo$110bo11bo3bo14boo3$oo4bo10bo12boo4bo9bo
14bo14bo3bo9boo13boo3bo9bo3bo14bo$obo3bo10bo4boo6bo5bo9bo6boo6bobo12bo
3bobo7bobo5boo5bo4bobo7bo3bobo12bobo$4bobbo7bobbo4bo7bobobobbo6bobbo3b
obo6bobobo9bobbo20bo6bobo10bobbo14bo5bobo$bbo17bobo44bo15boo5bobboobob
o14boo12boo6boo6bo$5boo8boobbo11bobbobboo6boboboobo9bo4bobo6boo13bo15b
o12boo17bo6boo$bobo17b3o8bo12boo14bo6bo14bo7bo3bobbo7bo6bo12bobbo7bobo
5bo$boobb3o8b3o13bobb3o13b3o7boobobobo6b3obobo15bo8boobobo10bobo3bo12b
obo$66bo14bo15bo13bo12bo3bo14bo3$bbo13bobboo10boo12boo13boobo11boobo
13boo12bo14boo12boo$bbobobo9bobobo10bobo11bobobobo8bo3boo9bo3boo12bo
12bo14bobo11bobo$bbobo11bo18bo13bo11bo14bo15bo3bo8bobbo16bobo$7boo9bo
3boo7bobbobo10bo4boo9bo3bo10bo3boo10bobobo14boo6bo3bo9bobboo3bo$bbo3bo
11bo4bo12bo14bo11bo3bo10bo4bo6boo6bo6boboboobobo13boo6bo6bo$oo17boobo
7boo15boobobo11boobbo10boobo14bobo5boo13boo5bo8bo3boobbo$4bobo29bobo
52bo5bo13bobbo11bobo$bbobobo14b3o8bobobboo7b3o17bobo12b3o9bobo17bo8bob
o17bobo$6bo27bo32boo24bo19bo10bo18boo$$oo15bobo29bo11bobo14bo14bo14bo$
obo16bo12bobo14bo13bo14bobo12bobo12bobo$15boo4bo12bo12bobbo8boo4bo10bo
14bo5bo8bo5bo$obboo3boo7bo4boo6boo4bo8boo14bo19boo14bo14bo$bo7bo22bo4b
oo10bobobo11boo8boo6bo6boo6bo6boo6bo$bo3boobo9boo4bo9bo12bobobo10boo$
20bo4boo7bo4bo14boo11bo9bo6boo6bo6boo6bo6boo$7b3o12bo12bo4boo8bobbo9bo
4boo8boo13bo14boo$22bobo12bo13bo13bo18bo8bo5bo14bo$37bobo11bo13bobo12b
obo12bobo12bobo$82bo14bo14bo!
Here are the 72 unknown 19-bit P2s (similar notes to the 17-bit ones):

Code: Select all

x = 146, y = 83, rule = B3/S23
3bobo9bo14booboobbo7booboobboo6boo6boo5booboo10booboo10booboo10booboo
13bo$bobbobbo7b3o4boo7bobo3bo8bobobbobo6bobbobbobbo6bobobo10boboo10boo
bobo9boobobo10b5o$obobobobo9bobbobo6bobbobobbo6bobbo12bob4obo7bobo11bo
17bo14bo11bo5bo$o3bo3bo6boobobbo8boobbo10boobboobbo8bo4bo7booboboo8bob
5o11boboo8booboboo8bob4obo$booboboo7boobobbo14bobo13bo10bobo9bobbo12bo
4bo8boobo11bobbo12bo4bo$4bo14boo16boo13bo12bo11bobo12bobo10bobobo12bob
o12bobo$78bo15bo13bo14bo15bo4$3boo12boo13boobo10boobboo9booboo10booboo
9boo13boo13boobboo12bo$b3obo10bob3o10bobboo11bobbo11bobo10bobobobo8bob
oboo9boo4boo7bo3bobo9b3o3boo$o5bo8bo5bo8bobo13bo4bo9bo4bo8bo3bo12bobob
o12bobbo9bobo10bo6bo$ob4obo7bob4obo8bob5o7bob4obo7bob4obo8bobboboo8bo
bbo10b5obo9booboboo7bob4obo$bo4bo9bo4bo10bo4bo8bo4bo9bo4bo10bobo11boob
oboo7bo4bo10bobbo11bo4bo$bbobo12bobo13bobo11bobo12bobo13bobo13bo11bobo
14bobo11bobo$4bo14bo15bo13bo14bo14bo14boo12bo15bo14bo4$bbobo12boo12boo
12boo13boo13boo13boo3boo8boo13boo15boo$3bobbo9bobo3boo8bo4boo6bobboobb
oo6bobo12bobo3bo8bo4bobo7bobo12bobo3bo9bobobbo$oobobo9bo6bo8bo3bobbo7b
obobbobo10bo15bobo8b3obo14booboo10bobobo8bobobo$3boboboo6bob4obo7bob4o
bo7boobo11bobboboboo8bobobobo9boboboo8boboboboo7boboboboo5boobobbo$bob
obo10bo4bo9bo4bo12boobbo7bo3bobo13bobo11bo15bo14bo11b3o$3bobobo9bobo
12bobo17bo8bobboobbo7b3obobo11bobo9b3oboo9b3oboo10bo$5bo13bo14bo17bo
14boo12bo13bo42bo$137boo3$boo12boo4boo7boo4boo7boobbo12bobo11bo3bo9boo
13boo13boo13boo6boo$bbo12bobo4bo7bobo4bo7bobbobo13bo11bobobboo7bobobb
oo8bobo5bo6bobo3bo8bobobobobbo$bo4boo11bobo12bobo9bobobbo8boo4boo8bobo
15bobo12bobobo12bo12bobbo$ob3obbo9bo14bo14bo4bo9bo5bo11bo11bo14bo3bobo
8bobobbo8boo$o4boo13bo14bo12b3obo7bobo3bobo7bo5bo7bo5bo45boo$bobbo11bo
bo12bobobbo14bo9bo5bo7bo6bo7bo6bo9bobobbo9bo3bobo8bo$bbobo11bobobboo7b
o4boo13bo10bobobo9boobobobo7boboboboo8bo4bo9bobbobobo10bobo$3bo12bo3bo
9boo18boo11bo16bo11bo13boo3bo9boo5bo10bo3$oo5bo7boo3bo9boo3bobo9bo12b
oo13boo16bobo10boo13boo12boo4boo$obo4bo7bo4bobo7bo4bo11bo6boo4bobo12bo
bo3bobo9bo12bobbobo8bobbo11bobbo3bo$6bobbo6bobo12bobo4boo6bobbo3bobo8b
obo14bo9bo4boo9bobo11boo13bobobo$bbobo18boo12bo24bo3bo10bobo4boo9bo16b
oo9b3o16bo$5bobboo7bo14bo3bobo7boboboobo14bo14bo6boobbobboo6boo4bo11bo
bbo9boo$b3o19bo10bo10bo16bobo4boo6bo3bo11bo16bobo12bo16boo$6b3o6bobobo
bo8boobbo10boo5b3o6bo4bo9bobbobo9boo4bo7bobbo18bo9bo$15boo4bo10bo28boo
3bobo7boo17bo11bobo13bobobo11bobo$93bobo11bo15boobbo11bo$$oobo15bo14bo
14bo$o3boo13bobo12bobo8boobbobo12bo14bo14bo12bo12bobboo10boo$bo14boo
13boo5bo6bobo12boobbobo8boobbobo8boobboboboo7bo12bobobo10bobobo$3bo11b
o6boo6bo6bobo12boo6bobo12bobo5bo6bobo6bo5bobbo11bo6boo10bobo$bbobbo9bo
bo6bo5bobo6bo6boo19boo13bobo12bo15boo7bo3bobo7boo$3b3o10bo5bobo6bo5boo
13bo8boo6bo6boo6bo6boo12boobboobobo7bo19boo$6boo9bo5bo8bo14bo6bo12bobo
12boo13boo24boobo10bo$5bobbo10bobo12bobo12boboboo7bo5bo8bo14bo13b3obo
bbo25bobbo$6boo11bo14bo14bo14bobo12bobo12bobo15bo12b3o11bobobbo$64bo
14bo14bo17bo30boo$$oobo12bo13bo14boo$o3boo10bo13b3o3bo8bobo12boo15bobo
12bobo11bo13boo13boo$bo6boo5bobbo5boo7bobbobo15boo4bobobo14bobboo10bo
bboo7bo13bobo12bobo$3bo3bobo15bo6bobo10bobboo3bobo8bobob3o4boo4bobo6b
oo4bobo6bobbo$3bo11boboboobobo7bo6boo5bo15bo14bo14bo27bobboo10bobboo$
4boobo7boo16boo11bo3boobo14boo13bo10bo3bo6boboboo3boo5bo14bo7boo$21bo
bbo14bo22boo14boo14bo10boo8bo5bo3boob3o5bo3boobobo$6b3o14bo11bobo14b3o
13bo11bobboo10bobboo11boobo$23bo13bo26bobo60bobo12bobbo$66bo14b3o12b3o
14b3o14bo13bo$129boo13bo$3bo14bo$3bobo12bobo$bo5bo8bo5bo$6bobo12bobo$
oo6bo6boo6bo$$bbo6boo6bo6boo$3bo14boo$3bo5bo14bo$5bobo12bobo$7bo14bo!
Some of the above could probably be made from others, especially some of the griddle-based ones.

I'll try to have a look at the 17-bit still-lifes this week, and post a redacted list. I don't have them handy at the moment.
Extrementhusiast wrote:The missing double griddle in 101 gliders:
Wow! Congratulations! I've been beating my head against this one for over a decade!

Coincidentally, the base still-life also solves the 7th of the above-mentioned 18-bit P2s, so you solved a problem as I was composing it, before I even hit send!

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » January 1st, 2014, 2:44 pm

Well, one of them (block on cover siamese test tube baby) is trivial:

Code: Select all

x = 15, y = 21, rule = B3/S23
8bo$9bo$7b3o$12bo$10b2o$11b2o3$9b3o$9bo$2o4bo3bo$obo2bobo$2bo2bobo$2bo
2bobobo$3b2o3b2o$12b3o$12bo$13bo$8b3o$10bo$9bo!
EDIT: Final step for two related P2s:

Code: Select all

x = 51, y = 20, rule = B3/S23
12bo29bo$12bobo27bobo$12b2o28b2o$10bo29bo$10bo29bo$6bo3bo25bo3bo$2o2b
3o27b3o$o2bo3b2o24bo3b2o$bob2o2bobo23b2o2bobo$2bo2bobobo21b2o2bobobo$
3b3obob2o19bo2b3obob2o$6bo23b2o4bo$5bo29bo$5b2o28b2o4$18b2o28b2o$18bob
o27bobo$18bo29bo!
EDIT 2: Back another step, to a common predecessor:

Code: Select all

x = 117, y = 75, rule = B3/S23
32bo$33bo$31b3o2$36bo11bobo5bo$30bo6bo10b2o5bo$31b2o2b3o11bo5b3o$23bo
6b2o$21bobo63bo$22b2o63bobo$52b3o32b2o$52bo32bo$53bo31bo$29bo11bo2bo
36bo3bo$27bobo7b2o2b4o30b2o2b3o27b2o2bo$28b2o6bobo6b2o28bo2bo3b2o25bo
2bobo$37bo3b2o2bobo8b3o17bob2o2bobo25bob2obo$40bo2bobobo8bo20bo2bobobo
26bo2bobo$41b3obob2o8bo20b3obob2o26b3obo$44bo36bo33bo$24b2o17bo36bo33b
o$23bobo17b2o35b2o32b2o$25bo$32b2o$31bobo$33bo59b2o$93bobo$29b2o13b2o
47bo$28bobo12b2o$30bo14bo2$bo2bo$b4o$5b2o$b2o2bobo$o2bobobo$b3obob2o$
4bo$3bo28bo$3b2o25bobo$31b2o2$37bobo$38b2o$38bo2$31bobo13bo$32b2o11b2o
$32bo6bo6b2o$40bo$38b3o$87bo$30bo56bobo$28bobo56b2o$29b2o54bo$85bo$41b
o2bo36bo3bo$41b4o34b3o31bo$45b2o31bo3b2o28bobo$36b2o3b2o2bobo30b2o2bob
o27b2obo$35bo2bobo2bobobo28b2o2bobobo25b2o2bobo$36b2o3b3obob2o26bo2b3o
bob2o23bo2b3obo$44bo30b2o4bo27b2o4bo$43bo36bo33bo$43b2o35b2o32b2o2$28b
2o$27bobo$29bo10b3o50b2o$40bo52bobo$41bo51bo2$30b3o$32bo$31bo!
EDIT 3: Finished the last 16-bitter in 18 gliders, six LWSSs, and two MWSSs:

Code: Select all

x = 92, y = 73, rule = B3/S23
26bo$27bo$25b3o17$45bobo4bobo$2bo45bo6bo$3b2o28bobo2bobo3bo3bo6bo$2b2o
30b2o3b2o7bo3bo2bo$34bo4bo5bo2bo4b3o$6bo39b3o$5bo$5b3o17bo2bo25bo$29bo
10b2o11bo$8b3o14bo3bo3bobo4bobo10b3o$8bo17b4o4b2o5bobo4bo$9bo24bo7bo3b
2o$47b2o2$55bo2bo30b2o$54bo33bo2bo$54bo3bo28bo2bo$29b4o21b4o29b2ob2o$
28bo3bo55bo2bo$32bo54bo2bo$28bo2bo56b2o2$38b2o$bo37b2o3bo7bo$2bo35bo4b
obo5b2o4b4o$3o28b3o10bobo4bobo3bo3bo$33bo11b2o10bo$3b3o26bo25bo2bo$5bo
$4bo33b3o$31b3o4bo2bo5bo4bo$7b2o22bo2bo3bo7b2o3b2o$6b2o23bo6bo3bo3bobo
2bobo$8bo22bo6bo$32bobo4bobo17$59b3o$59bo$60bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 3rd, 2014, 8:14 pm

Extrementhusiast wrote:Reduced that P2 down to 21 gliders:
This also yields one trivial unknown 17 (most of which I instantiated years ago) and two trivial unknown 18s (that I'm currently working on).
Extrementhusiast wrote:The missing double griddle in 101 gliders:
I count 103, with the 18-bit one-sided griddle (previously unsolved) for 95, and the 19-bit still-life (also previously unsolved) for 87. (At this size, I frequently lose count and have to recount many times to make sure I keep getting the same number each time!)

On a related note, 18-bit griddle w/feather and siamese beehive from 30 (based on recent griddle siamese loaf and beehive):

Code: Select all

x = 40, y = 22, rule = B3/S23
bbobo$3boo$3bo12bo19bo$14bobo17bobo$boo10bo4bo14bo4bo$obo9bob4obo12bob
4obo$bbo8bobbobbobo11bobbobbobo$12boo4bo12boo5bo$4bo$4boo$3bobo7boo$
12bobbo$13boo$$21boo$20boo$5b3o14bo$7bo$6bo$17bo$16boo$16bobo!
Extrementhusiast wrote:Finished the last 16-bitter in 18 gliders, six LWSSs, and two MWSSs:
Wow. Very impressive! Plus this means that that another list is now complete. I guess we could call 2013 the "Year of the Still Life", as there has been more progress in this area in the past 6 months than in the previous decade and a half! (I see only one downside to this - now my listing of "unbuildable still-lifes" can't just be a small list of objects - it's now grown to several hundred again. But I'm not complaining!)

Here are the not-trivially-buildable 17-bit still-lifes. Like the other lists (15 and 16-bit still-lifes, P2s, etc.), this starts with the list of all still-lifes (7773 in this case). Then, the following are omitted:
- Ones trivially buildable from smaller objects by automatic appliation of one known transformation method.
- Ones similarly trivially buildable from same-sized objects (e.g. blah-with-carrier from blah-with-snake). These may not be buildable if the predecessor isn't, but once all the still-lifes are synthesized, these will implicitly also be synthesized.
- All for which explicit syntheses have been created. There are currently 21 such objects. (I currently have 88 explicit 17-bit still-life syntheses, 21 for "not obviously trivial" objects).
There remain 298 objects, grouped into three blocks of 100 (i.e. over 96% are already done):

Code: Select all

x = 145, y = 96, rule = B3/S23
4boo9boboo11boobboo9boobo11boobo11boobo11boobobo9booboboo8booboo10boob
oo$oobobboboobo3boob3o9boobbobo8boob3o9boob3o9boob3o10boboobo8boboobo
10bobobo9boboobo$oboobboboboo9bo14bo14bo14bo14bo8bo5bo13bo9bo5bo14bo$
7bo7boob3o9b6o9boob3o9b4obo9b6o9boboobo10boobo10bob3obo9b4obo$15boboo
11bobbo11boboo11bobboo10bobbo12boboo11booboo10bobobo10bobboo6$ooboo10b
ooboo10boboo11boobboo9boobobboo7booboboobo6booboo13bo13boo13boo$oboobo
9boobo11boobobbo8bobbobbo8boboo3bo7bobooboboo7boboboboo7b5o12bobboobo
6bobboboobo$6bo12b3o11bobobo8bobobobo11b3o12bo11bo3boobo6bo5boboo5b3o
3boboo5boboboboboo$ob4o9b4obbo8boobobbo8boobobbo9boobo11b3o13b3o11b3o
bboobo5bobb3o10bobbo$oobo11bobbo11boboo15boo10bobo12bo17bo13bo14bo15b
oo6$bboo13boo12boo12boboobbo8boboobbo8boboobboo7boo13booboo10booboo10b
ooboo$bobobboobo6bob3o9bobbo11boobobb3o6boobobb3o6boobobbobo6bo5bo9bob
oo10boobo11boobo$o5boboo5bo5boboo5boboboboobo9boo3bo9boo3bo9boo3bo6b3o
boboboo5bo16bo14bo$b5o10b3obboobo6booboboboo11bobo12b3o12b3o9boboboobo
6boobo9booboo10booboo$3bo14bo16bo15boo13bo14bo12bo10boboboo9bobobbo9bo
bobbo$105boo17boo12boo5$bboo13boo12bobbo11bobbo11boboo11boboo11boo13b
oo13boo13boo$obb3o9bobb3o10b4o11b4o11boobo10boboobbo8bobbo11bobbo11bo
bbobbo8bobboboo$oo4bo8boo4bo13boo13boo13boo8bo4boo9bob3o9boob3o9boob4o
8boboobo$bb3obo9boboobo8boboobbo8boboobo9boboobo10b3obo9boo4bo9bo4bo9b
o14bo4bo$bbobbo10bobobo9boobobo9boobobo9boobobo12bobo9bobb3o10bob3o10b
oboo13b3o$3boo12bo16bo14bo14bo14bo12boo13boo13bobo12boo5$boo13boobo11b
oobo11booboo9bobbo11bobbo11bobbo11bobboo10bobboo10bobboo$obboboo8bobb
oo10bobboo10bobobobo8b4o11b6o9b6o9b4obbo8b4obbo8b4obo$ooboobo8boo13boo
3boo8bobbobbo12boo15bo14bo13boo13boo14bo$bbo13bob4o10boobo10bobobo9boo
bobbo10b3obo8boobboo11boobo11b3o12b3obo$bboboo10bobobbo10bobbo11bobo
10boobobo11bobbo9bobbo13bobbo10bobbo12bobbo$3bobo11bo15boo13bo15bo13b
oo12boo14boo11boo15boo5$obo12boo13boo13boo13boo13boo13boo13boo13boo13b
oo3bo$oobobbo8bobbo11bobbo11bobbo11bobboo10bobboo10boboboo9boboboo9boo
bboo9bobobobo$3b4o10b4o11b4o10bob3o11boobo11boobo11bobobo10boobbo12bob
o10bobobo$oo19bo14bo8boo4bo14bo14bo9bobobbo9bo3boo8b4obbo9bobobo$ob3o
10b4obo9b6o9bobb3o10boboobo8b6o10bobboo10boboo10bobbobo10bobbo$4bo10bo
bboo10bobbo13boo12booboo9bobbo11boo15bobo14bo12boo5$oo3boo8boobbo10boo
bbo10boobbo10boobbobo8boobboo9boobboo9boobboo9boobboo9boobboo$obbobbo
8bobbobo9bobbobo9bobbobo9bobboboo8bobbobbo8bobbobbo8bobbobbo8bobbobbo
8bobbobbo$booboo11boobbo10boobo10boobobo10boo13booboo10booboo9boobobo
9booboo10booboo$bbobo15boo13boo10bobobo11boboo11bobo12bobo11boboo11bob
o12bobo$bobbo11boboo11boboo12bobbo12bobbo11bobbo10bobbo11bo14bobbo10bo
bbo$bboo12boobo11boobo13boo14boo13boo12boo11boo15boo12boo5$oobboo9boob
o11boobo11boobo11boobo11boobo11booboo10booboo10booboo10booboo$obobbo9b
oboo11boboo11boboobbo8bob4o9bob4o10bobo12bobo12bobobbo9bobobbo$bboo15b
oo13boo13b3o14bo14bo8bo3bo10bobbobo9bo3b3o8bobboboo$obbobo10b3obbo9b3o
bbo9b3o15boo10boobboo8boboobo10boobobo9b3o12boobo$oobbobo9bobbobo8bo4b
oo9bobbo10boobo12bobbo11bobobbo12bobo12bo14bo$5bo13boo9boo16boo10boboo
14boo15boo12boo12boo14boo5$ooboo10booboo10booboo10booboo12boo13boo13b
oo13boo13boo13boo$bobobbo8bo3bo10boboo11boobo13bobboo10boboboo8bobbo
11bobbo11bobbo11bobboboo$obboboo9boobobo13bo12bo14boobbo7boboboobo7bob
ob3o8boboobboo7boboobobo7bobboobo$oobo13bobboo9b4obo11boo10b3obbobo7b
oobo12bobo3bo8bo5bo8bobboboo8boo3bo$3bo11bobo13bobbobo9bobobbo8bo3bobo
11bo14bobboo9b5o10bobo13bobo$3boo10boo18bo10boobboo13bo12boo13boo14bo
13boo13boo5$bboo13boo13boo12bo14bo14bo3bo10bobboo10bobo12boo13boo$bobb
oboo8bobboboo7bobbobbo8bobo3boo7bobobo10bobobobo8bobobbo10boobo10bobbo
11bobbo$obboobo8bobobobo8boobobobo7bob3obbo7bobob3o9boobobo9boobo14bo
11bobo12bobobbo$boo3bo9bobobbo10bobboo9bo3boo9bobo3bo10bobboo10bob3o7b
obooboo8boobboobo7boobobobo$3b3o12bobo11bobo12bobo13bobboo10bobo12bo3b
o7boobobobo9boboboo7bobbobbo$3bo14boo13boo13boo13boo14boo11boo17bo10b
oo13boo!

Code: Select all

x = 144, y = 97, rule = B3/S23
boo13boo13boo13boo3bo9boo3bo8bo3boo9bobo12bobooboo8bobooboo8boo$obbobb
oo7bobbobboo7bobbobboo7bobbobobo7bobbobobo7b3obbo9boobo11boobobo9boobo
bo9bobbobboo$boobbobo8boobobbo8boobobbo7booboboo8b3o3bo11boo13bobbo13b
o14bobo8boobobbo$bboboo11bobobo10bobobo10bobo13b3o11bobb3o7boobobobo
11boboo11boboo9bobobo$bbobbo11bobbo11bobbo11bobo12bo13bobo3bo7bobbobbo
12bobbo11bo12bobbo$3boo13boo11boo15bo13boo13bo14boo16boo11boo13boo5$oo
13boo13boo13boo13boo13boo4boo7boobbo10boobbo10boobbo10boobbo$obbobboo
7bobboboo8bobboo10bobboo10bobbooboo7bobboobbo7bo3b3o8bobbobo9bobbobo9b
obbobo$boobobbo8boboobbo8boobbobo8boobo11booboboo8boobboo9b3o3bo8bobo
bbo9bobobo10bobobo$bbobobo10bo3boo9boboboo9boboboo9bobo12bobo13bobobo
9boboobo9bobboo10boboboo$bbobbo12b3o11bobo12bobbobo9bobo12bobo14bobo
11bobbo11boobbo11bobbo$boo17bo12boo13boo13bo14bo16bo13boo15boo11boo5$
oobbo10boobbo10boobbo10boobbobbo7boobboo9boobboo9boobboo9boobboo9boobb
oo9booboboo$obbobo9bobbobo9bobbobobo7bo3b4o7bobbobbo8bobbobbo8bobbobbo
8bobbobbo8bobbobbo8bob3obbo$b3obbo9b3obbo9booboboo8b3o13boobobo8bobobo
bo8bobobobo8boboobbo8booboobo13boo$4bobo12boobo9bobo13bobo12bobbo10bob
obo10bobobo10bobboo11bobbo12boo$3bobboo10bobbo10bobo14bobo9bobo15bo14b
o14bo13bobo12bobo$3boo14boo12bo16bo10boo16boo12boo13boo14bo14bo5$ooboo
10booboo10booboo10booboo10booboo13boo12bo14bo14boo13boo$bobo12bobobbo
9bobobboo8boboo10boobobo11bobboboo7bobo12boboboobo9bo11bobbo$bobb3o9bo
bboobo8bobbobo9bo16bobo9bobboboobo7bobo11bobboboboo9boboobo6booboboobo
$bboo3bo9boobbo10bobobo10bob3o11boboo8boobo11booboboobo7b3o11boobobob
oo8bobboboo$4b3o12bo13bobo12boobbo11bobbo10bo14boboboo10bo10bobobo12bo
bo$4bo14boo13bo16boo12boo11boo13boo13boo13bo14bo5$bo14boo12boboo3bo7b
oo13boo13boo13boo13boo13boo13boo3boobo$obobooboo8bobboobo6boobobbobo6b
obboo10bobboo10bobboo10bobobboo8bobobboobo6bobobboobo7bo3boboo$bo3bobo
8bo3boboo10b3obo7boobboboo7boobboboo7boobboboo8bobbo11bobboboo8bobbob
oo7boboo$bboo3bo7bob3o17bo10boboobo8bobboobo8bobboobo8boobo11boobo10bo
boo12bo$4b3o8bobo18bo11bo12bo13bo19boboo11bo10bo13bobo$4bo11bo19boo9b
oo12boo12boo18boobo11boo8boo13boo5$4boo11bo14boo11boboo13bo14boo13boo
13boo13boo13boo$bobbo11bobo12bobbo10boobobboo8bobo13bobo12bobo12bobo
11bobbo11bobbo$obobo10bobbobboobo5bobobo14b3obo7bob3o14bo9bobobbo9boo
bbo11bobobbo9bobobbo$bobboboobo6boo3boboo6bobboboobo14bo5boo4bo8b4obo
9boobobo10boboboo8booboboo8booboboo$4boboboo8b3o13boboboo11b3o7bob3o9b
obboboo11boboo9bobobbo11bobo11bobo$5bo12bo16bo15bo9bobo14bo14bo13bobo
13bobo11bobo$62bo14boo13boo14bo15bo13bo4$bboo13boo13boo13boo13boo13boo
13boo13boo13boo13boo$bobbo11bobbo11bobbo11bobbo11bobbo11bobbo11bobbo
11bobo12bobo12bobo$bobobbo9bobobo10bobobo9bobbobo9bobobbo9bobobo10bob
oobo10boboboo9boboboo9boboboo$ooboboo8boobobbo8boobobo9boboobbo9boboob
o8bobboboo9bobbobo8boobbobo8boobbobo8boobobo$bobo14boboo11boboo9bobboo
12bobbo9bobobbo10bobobo10bobo11bo15bobbo$bobo14bo14bo14bo13bobbo11bobo
13bobo11bobo11bobo13bobo$bbo14boo13boo13boo14boo13bo15bo13bo13boo14bo
4$bboo13boo13boo13boo13boo13boo13boo13boo13boo13boo$bobo12bobo12bobo
12bobo12bobo12bobo12bobo12bobo12bobo12bob3o$o14bo5bo8bo5bo8bo3boo9bo3b
oo9bobboboo8bobboboo8bobboboo8bobboboo8bo5bo$ob4o9bob5o8bob5o9b3obbo8b
oboobbo9b3obo9boobobo9b3obbo9b3obobo9booboo$bo4bo9bo14bo16boboo9bobboo
15bo10bobbo14bo12bo13bobo$3b3o11bobo12b3o13bo14bo14b3o11bobo12b3o12bo
14bobo$bboo14boo14bo12boo13boo14bo14bo13bo14boo14bo4$bo14boboo11boo13b
oo13boo13boo13boo13boo13boo13boo$b3o12boobbo11bo14bo14bo14bo12bobbo11b
obbo11bobbo11bobbo$4bobo12bobo8bobboo10bobboo10bobboobo8boboboo10bobo
12bobo12boo3bo9boobbo$obooboo9b3obo9b3obbo9b3obbo9booboboo8boobobbo8b
oobboo9booboboo11b4o11boobo$oobo11bobbo14bobo12boobo9bobo14boboo10boo
bbo8bobbobbo9boo13boobbo$3bo12bobo13bobboo10bobbo10bobo14bo13bobbo11bo
bo11bobbo11bobbo$3boo12bo14boo14boo12bo14boo14boo13bo14boo12boo4$boo
13boo13boo13boo13boo13boo13boobo11booboo9boo13boo$obbo11bobbo11bobbob
oo8bobboboo8bobboboo8bobo12bobboo12bobo11bo14bo$boobbo9bobobo10bobo3bo
8bobo3bo8bobo3bo8bobboo11bo13bo5bo9boboo11boboobo$3boobo9bobobo10boboo
11bob3o10bob3o10boobbo11b5o8boo3boo8boobbo10booboboo$boobbo12bobo12bo
14bo14bo13bobobo11bobbo10bobo12bobobo9bobo$obbo13bobboo11bobo11bo13bo
15bobbo10bo15bobo12bobboo9bobo$boo14boo15boo11boo12boo13boo13boo15bo
12boo14bo!

Code: Select all

x = 143, y = 98, rule = B3/S23
oo13boo13boo13boo13boo13boo13boo13boo3bo9boo3boo8boo3boo$bobboo9bobboo
10bobo12bobo12bobo12bobobboo8bobobboo9bobbobo9bo3bo9bo5bo$bobobbo10boo
13bo14b3o12b3o13bobbo11bobbo9bobobbo8bo5bo10bobo$oobboo14bo11booboo9bo
3bo10bo3bo10booboo10booboo11boboo9boo3boo9booboo$bbobo11boboobo14bo9bo
boobo9boboobo10bobo11bobbo13bo13bobo12bobo$bbobo11boobobo9boboo12bobbo
11bobobo10bobo12bobo11bobo13bobo12bobo$3bo16bo10booboo12boo15bo12bo14b
o12boo15bo14bo4$oo3boo8boo3boo8boo3boo8boo3boo8boobbo10boobbo10boobbo
10boobbo10boobbo10boobbo$o5bo8bo4bo9bobo3bo8bobobbo9bobbobo9bobbobo9bo
bbobo9bobbobo9bobbobo9bobbobo$bbobo12bo3bo10bobbo12bobo10bobobbo9bobo
bbo9bobobbo9bobobbo9b3obbo9b3obbo$booboo10boobboo9boobo11boobo12boboo
11boboo11boboo11bob3o13boo12boo$bobbo12bobo13bo13bo16bo13bo14bo14bo14b
oo13bo$bbobo12bobo13bobo11bobo12bobo14bobo9bobo15bo12bobo14bobo$3bo14b
o15boo12boo12boo16boo9boo15boo13bo16boo4$oobbo10boobboo9boobboo9boobb
oo9boobboo9boobobbo8booboo10booboo10booboo10booboo$obbobo10bobbo10bo3b
o10bobbobbo8bobbobbo8bob5o9bobo12bobo12bobobo10bobobo$b3obo9bo5bo10bob
obo10booboo9boobbo25bobb3o8bo4bo10bo4bo9bo4bo$5boo8boo3boo9boobboo11bo
14boo14bo12boobbo9b4obo10b3obo10b4o$3boo12bobo12bo13bobo14bo13b3o13bo
16bo14bo$bbobo12bobo11bo13bobo13bobo12bo15bo15bo15bo14boo$3bo14bo12boo
13bo14boo13boo14boo14boo14boo13boo4$ooboo10booboo10booboo10booboo10boo
boobo10bo14bo14bo14bo14bo$bobobo10bobobo9boobo11boobo12boboboo9bobo12b
obo12bobo12bobo12bobobboo$bo4bo9bo4bo11bobbo11bobo9bo15bobboboo8bobobb
o8bobobo10boboboboo7bobobobbo$bb4o11b4o12b4o11boobo9boo12booboobo8boob
obobo7bo3bo10bo3boboo7bo3boo$4bo13bo32bo10bo15bobbo9bobobbo9bobboboo8b
obbo11bobbo$6bo9bo18boo11b3o11bobo13bobo10bobo13boboboo9bobo12bobo$5b
oo9boo17boo11bo14boo14bo12bo15bo14bo14bo4$bboo13boo13boobo10bo14bo14bo
14bo14boo13boo13boo$bobbo11bobbo11bobboo10b3o11bobobo10bobobo10boboboo
11bo14bo13bo$obbobbo8bobob3o8bobo3boo11boboo8boob3o8bobob3o9bo3bo11bob
oobo8bo15bo3bo$booboobo8bobo3bo8bo4bo9booboobo10bo3bo8bobo3bo9boobobo
8booboboo7bob3oboo10bobobo$3bobbo11bobbo12bobo8bobbo14bobobo10bobbo12b
oboo7bo15bobbobo8b3o3bo$3bobo12bobo12bobo10bobo15bobo11bobo13bo11b3o
14bobbo8bobb3o$4bo14bo14bo12bo17bo13bo13boo13bo15boo12bo4$boo13boo13b
oo12bo14bo14bo5bo8boo13boo13boo13boo$bobboobo7bobbo11bobbobboo7b3o12b
3o3bo8b3obbobo8bo4boo8bobbo11bobboo9bo$bboboboo8boobo11bobo3bo10bobbo
11bobobo10bobbo9boboobbo8bobobo10bobobbo10boboobo$boo14bobo12bob3o10bo
bbobo9bo3bo10boboo11bob3o10bobobo10bobobbo8booboboo$obbo13boboboo11bo
12boboobo8bob3o10bobo30bobo12b3o10bobo$bobo14bobobo9bo15bobbo9bobo12bo
bo14boo13bobboo10bo13bobo$bbo16bo12boo15boo11bo14bo15boo13boo13boo13bo
4$oo13boo13boo13boo13boo13boo13boo13boo13boo13boo$o14bo14bo5boo7bo4boo
8bobbo11bobboo10bobboo10bobo12bobo12bobo$bboboobo8b3obboo9bobbobo8b3o
bbo9b3o12bobobo10boobbo12bo14bo14bobboo$booboboo10bo3bo8boobbo12bobo
26bo3bo11bobo10booboboo8booboboo8boobobbo$o18b3o10boboo14boo11b3obo10b
3obo10boboo9bobbobo9bobboobo8bobbobo$b3o13bobo12bo16bobbo8bobboboo12bo
bo11bobbo10bobbo11bo14bobo$3bo13boo12boo17boo9boo18bo13boo12boo11boo
15bo4$oo13boo13boo13boo13boo13boo3bo9boobbo10boobboo9boobobbo8booboboo
$obo12bobo12bobo4bo7bobo3boo7bobobo10bo3bobo8bobbobo9bobbobo9bob5o8bob
3obbo$bbo14bobbo11bobb3o9bobbobo9boobo10bobbobbo9boobbo9bobo32bo$boob
oobo8boobobo9boobo11boobo11bo3bo11bob3o11bo3bo9bobbo13bo14boo$4boboo
10bobobo10bobo12bo12boobo13bo14bobobo10boobo12b3o12bo$b3o14bobbo11bobo
12bobo14b3o11bo14bobo14bo15bo12bo$bo17boo13bo14boo16bo10boo15bo15boo
13boo11boo4$oboo11boo13boo13boo13boo13boo16boo11bo14boo12boo$oobo3boo
6bo14bo14bobo12bobo12bobo14bobo10bobobboo9bobo12bo$4boobbo7b3o3boo7b3o
bobbo8bo14b3o12bo13bo14bobbobbo10bobbo9boboo$6boo10bobbobo9bob4o8boo
12bo3bo11boo11bo5boo9boobbo10boobobo9bobbo$6bo12b3o12bo15boobo7boobb3o
11bobboobo5b3o3bo11boo12bobbo12bobo$7bo14bo13bo10booboboo14bo10bobbob
oo7bobbo12bo11bobo14boobbo$6boo13boo12boo10bobo17boo11boo11bobo14bo9bo
bo17bobo$94bo14boo10bo18boo3$oo13boo13boo13boo13boo13boobo11bo14boo$bo
14bo14bo13bobo3bo8bobobboo8boboo11b3o12bo$boboo11boboo11boboo12bobbobo
9bobbo27bo12b3o$bbobo12bobo12bobo12boobbo10boobo10b3o13bobbo12bobbo$5b
oo12bobo12bobo12boo13bo11bobbo12boboo13b3o$3boobbo10bobobo10bobobo11bo
14bobo12b3o11bobboo14boo$3bobbo12bobbo10bobbo13bo14bobo14bo12bobbo12bo
bbo$4boo14boo12boo13boo15bo14boo13boo14boo!
Some of these may have fairly trivial syntheses, whose constraints exceed those of the search program (e.g. two simple tools being applied simultaneously). I just went through the list and synthesized (and removed) 11 such "obvious" objects, mostly ones with tubs in places of eater heads on similar 16-bit still-lifes, plus a couple where loaves similarly replace beehives. This lowered the count from 319 to 298. Tubs are notoriously difficult to add after the fact in close quarters; loaves are similarly difficult to grow from beehives in close quarters. Larger projections like boats and mangoes rarely show up in such lists, as they can usually be frown from blocks, tubs, beehives, and loaves.

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » January 3rd, 2014, 9:07 pm

You missed this one from page one:
Extrementhusiast wrote:EDIT: A lead on 28P7.1?

Code: Select all

x = 235, y = 38, rule = B3/S23
26bo$26bobo$26b2o5$148bo$75bobo68bobo$8bo67b2o69b2o85bo$8bobo65bo36bo
22bobo11bobo79b3o$3bo4b2o44bobo30bo23b2o23b2o12b2o79bo$4bo11bo37b2o22b
obo5bo25b2o23bo13bo79b2o$2b3o10bo39bo22b2o6b3o26b2o$15b3o22b2o27b2o8bo
22b2o3bo7bobo9b2o3b2o15b2o19bo57b2o$40bobob2o8bo14bobob2o27bobobobo6bo
11bobobo2bo14bobobo15bobo21bo16b3o$42bob2o7bo17bob2o3b2o24bob2o21bob4o
16bob3o13bob3o18bobo14bo3bo15bobo$41b2o10b3o14b2o5bo2bo22b2o23b2o20b2o
4bo11b2o4bo17bob3o16bo15bob3o$42bob2o25bob2o3b2o24bob2o21bob2o18bob3o
13bob3o17b2o4bo14bo13bo2bo4bo$40bobob2o8bo14bobob2o27bobobobo18bobobob
o15bobobo13bobobo20bob3o14bo14b2obob3o$40b2o12b2o13b2o8bo22b2o3bo19b2o
3bo16b2o16b2o23bobo34bobo$2b3o48bobo22b2o55b2o56bo17bo17b2o$4bo73bobo
55b2o2bo28bo$3bo4b2o125bo3b2o27b2o$8bobo65bo55bo6bobo26bobo$8bo67b2o
54b2o31b2o$75bobo53bobo30bobo$15b2o149bo$15bobo$15bo2$30b3o$30bo$31bo
2$3o$2bo$bo!
EDIT: Technique for two of them:

Code: Select all

x = 50, y = 64, rule = B3/S23
8bobo$9b2o$9bo7$43bo$21bo20bobobo$21b3o19b2ob3o$24bo24bo$19b3obo19b4ob
o$18bo2b2o20bo2b2o$17bobo$18bo8$bo$b2o8bobo$obo9b2o$12bo2$12b2o$11bobo
$13bo5$22bo$21b2o$21bobo11$11bo19bo$10bo21bo$9bo23bo$9bo23bo$8bo25bo$
8bo12bo12bo$8bo12b3o10bo$8bo15bo9bo$8bo10b5o10bo$8bo9bo2bo12bo$8bo8bob
o14bo$9bo8bo14bo$9bo23bo$10bo21bo$11bo19bo!
This should really be added to the component list, as I think about 5-10% of the syntheses I've done have used that component (at least the Herschel part of it).

EDIT 2: Technique for a third:

Code: Select all

x = 7, y = 8, rule = B3/S23
o$4b2o$ob2o$o2b2o$2bobo$2b2o2bo$3b2o$b2o!
This could come from a modification of the synthesis of the last 16-bitter, in particular, the upper LWSS on the left side and the glider immediately to the left of the upper long boat.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 3rd, 2014, 9:23 pm

Extrementhusiast wrote:You missed this one from page one:
Thanks! A lot of times, when there are intermediate still-lifes in an oscillator synthesis (or even a still-life synthesis), I don't always note all of them, because they are so many, and they are just a means to an end. At the time, I was focusing on 15- and 16-bit still-lifes, and that one didn't particularly catch my attention, as it was larger. In fact, just now, I was wondering why you were re-posting this oscillator (especially since it was incomplete), and had to reread the post twice, slowly, before I got it.
Extrementhusiast wrote:Technique for two of them:
At this rate, I'm curious how long it will take to polish this list off?

User avatar
Extrementhusiast
Posts: 1966
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » January 3rd, 2014, 9:43 pm

mniemiec wrote:
Extrementhusiast wrote:Technique for two of them:
At this rate, I'm curious how long it will take to polish this list off?
I'm thinking that they will be done by the end of 2014.

Also, the technique for a fourth:

Code: Select all

x = 16, y = 23, rule = B3/S23
2bo$obo10bo$b2o9bo$12b3o6$3bo$2bobo$2bobo$b2o2b2o$3bobo$3bobo$4bo5bo$
10bobo$10b2o3$7b3o3b3o$9bo3bo$8bo5bo!
Pond analog for one of them:

Code: Select all

x = 89, y = 27, rule = B3/S23
o7bobo$b2o6b2o$2o7bo2$15bobo$15b2o$16bo7bo5bobo36bobo$24bobo3b2o30bo6b
2o$24b2o5bo30bobo5bo$52b2o2bo5b2o3bo14b2o2b2o$2bobo17b2o28bo2bobo8b2o
14bo2bo2bo$3b2o16b2o30bobobo8bobo14bobo2bo$3bo19bo30bobo27bob2o$55bo4b
o24bo$59bo26bobo$20b3o23bobo10b3o25b2o$7b2o11bo26b2o14b3o$6bobo12bo25b
o3b2o10bo$8bo35bo5bobo11bo$44b2o6bo$43bobo4$51b3o$53bo$52bo!
EDIT: A modified version of a previous component solves a fifth:

Code: Select all

x = 37, y = 35, rule = B3/S23
11b2o$11b3o$10bob2o$10b3o$11bo2$obo11bobo$b2o12b2o$bo13bo$7bo18bobo7bo
$8b2o16b2o6b2o$7b2o18bo7b2o2$32bo$17bo12b2o$16bobo12b2o$16bo2bo$17b2o
3$11b2o13bobo$11bo2bo11b2o$12b3o12bo$15b2o$14bo2bo6b3o$15b2o7bo8bo$25b
o6b2o$32bobo3$23b2o$22b2o$18bo5bo$18b2o$17bobo!
EDIT 2: Copying the method verbatim for the griddle with cross-snake solves a sixth:

Code: Select all

x = 216, y = 30, rule = B3/S23
8bo$bo6bobo149bo$2bo5b2o149bo$3o156b3o16bobo$7bo171b2o$5bobo21bo149bo$
6b2o19bobo35b2o34b2o23b2o29b3o$21b2o5b2o10bo24bobo33bobo22bobo22b2o4bo
19b2o13b2o19b2o$19bo2bo16bo15bo6bo4bo3bo26bo4bo19bo4bo22bobo4bo17bobo
13bo20bo$19b3o17b3o14bo5b5o3bo27b5o20b5o20bo4bo24bo10bo4bo15bo4bo$54b
3o13b3o75b5o8b3o25b6o15b6o$19b3o40b3o31b7o18b3ob3o33bo18bo$18bo3bo6b2o
21b2o7bo3bo7b2o21bo2bo2bo17bo2bobo2bo17b3ob3o9bo17b2o5b4obo17b2obo$18b
2ob2o5bobo20bobo7b2ob2o7bobo44b2o5b2o16bo2bobo2bo25bobo4bo2bob2o17bob
2o$6b2o22bo22bo19bo71b2o2bo2b2o32b2o$5bobo$7bo114bo$122b2o34b2o$8b2o
111bobo29bo3b2o20bo$8bobo87b2o45bo6b2o5bo19b2o$8bo88bobo2b2o41b2o5bobo
23bobo$99bo2bobo18b3o18bobo$51b2o21b2o26bo20bo$52b2o19b2o49bo$51bo23bo
44b3o$122bo$121bo$101b3o$101bo$102bo!
EDIT 3: Key step for a seventh:

Code: Select all

x = 8, y = 10, rule = B3/S23
7bo$7bo$7bo$o2b2o2bo$4obo$5bo$2b3o$2bo2$2b2o!
EDIT 4: Presumably, the usual method can solve an eighth this way:

Code: Select all

x = 45, y = 7, rule = B3/S23
2ob2o$o3bo14bo2bo2bo12bo2bo$b3o15b7o12b6o$44bo$b3o17b3o16b3obo$bo2bo
16bo2bo15bo2bo$2b2o18b2o17b2o!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1590
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 3rd, 2014, 10:28 pm

Extrementhusiast wrote:Also, the technique for a fourth:
This one looks like it could be quite general-purpose as well.
Extrementhusiast wrote:Pond analog for one of them:
Unfortunately, turning a beehive into a pond is MUCH easier than turning one into a loaf, and turning a loaf into a pond is much easier than vice versa (unless one goes through a ship, which won't work here, or anywhere else where the loaf is attached in this way). However, this will make a good start on the 18s, which we will need soon enough!
Extrementhusiast wrote:Key step for a seventh: ... Presumably, the usual method can solve an eighth this way:
These are both specific enough to instantiate syntheses from, as all the components are known. Thanks.
Extrementhusiast wrote:Copying the method verbatim for the griddle with cross-snake solves a sixth:
I don't remember this one being solved yet. Did I miss something? (Do you remember when this was last discussed? I can't find it using the site's search function).

Post Reply