Extrementhusiast wrote:Finished another pair from a listed predecessor:
Thanks for this one. You used Dean Hickerson's 5-glider wing-on-snake, which I had neglected to update in the synthesis for 14.24 (that I used here), reducing 14.24 and my synthesis both by 2 gliders. Nevertheless, yours is still 2 gliders smaller (plus you had posted yours a day before I even found mine), so this renders mine somewhat obsolete (except for the tail-to-hook mechanism).
Extrementhusiast wrote:I also found a way to get to here:
Good! This provides a way to turn beehives into mangoes when they're close to a hook, something not possible with any of the mechanisms I had listed. In most cases, this doesn't add new possible objects (since they can often be done in other, more expensive and round-about ways) but it does enable 1 23-bit still-life and 4 24s.
Extrementhusiast wrote:Two more in 33 and 34 gliders:
I counted 34 and 35.
Extrementhusiast wrote:Another pair done in 27/29 gliders:
I counted 25 and 27.
Trivial 17-glider synthesis of P16 blocker and mold hassling two blocks, starting with either mold or blocks. (I had previously considered this one unsolved, as I couldn't figure a way to insert the blocks or mold after the blocker was in place, but it suddenly occurred to me that adding the blocker last makes it easy.)
Code: Select all
x = 176, y = 80, rule = B3/S23
73bo$71bobo$72boo37boo28boo28boo$111b3o27b3o27b3o$111boobo21bo4boobo
26boobo$75boo36bobo18bobo6bobo20boo5bobo$76boo34bobbo19boo5bobbo20boo
4bobbo$70b3obbo13boo22boo28boo28boo$72bo15boo45boo29boo$71bo7b3o8bo43b
obo29boo$81bo54bo$80bo11$145bo$144bo$140bo3b3o$138bobo$139boo$144bo$
142boo$143boo$$147bo$146bo24boo$146b3o22b3o$76bo94boobo$74bobo29boo28b
oo28boo5bobo$75boo29boo28boo28boo4bobbo$173boo$75boo29boo28boo28boo$
74bobo29boo28boo28boo$76bo68boo$144boo$146bo16$131bo$129bobo$116bobo
11boo$117boo$117bo3bo14bo$54bo67boo10boo$55bo3bo28boo31boo5boo5boo$53b
3oboo28bobbo36bobbo$58boo27bobbo36bobbo$88boo38boo$124bo$5bo116bobo36b
oobbo$3bobo29boo28boo28boo26boo10boo20boobboo3bo$4boo25boobboo24boobb
oo24boobboo34boobboo20boo7bo$3o8boo18boo8boo18boo8boo18boo8boo28boo8b
oo19b4o5boo$bbo8b3o27b3o27b3o27b3o37b3o27b3o$bo9boobo26boobo26boobo26b
oobo20bo15boobo26boobo$6boo5bobo20boo5bobo20boo5bobo20boo5bobo19boo9b
oo5bobo21bo5bobo$6boo4bobbo20boo4bobbo20boo4bobbo20boo4bobbo18bobo9boo
4bobbo20boo4bobbo$13boo28boo28boo28boo38boo28boo$6boo28boo28boo28boo
38boo28boo$6boo28boo28boo28boo38boo29bo!
Aha! Many years ago, I created a mechanism to weld a snake to a carrier to produce a cis hook w/tail, or other similar objects. This was useful for creating pseudo-objects, and still-lifes with a siamese connection at the snake end. Unfortunately, it didn't work if something was similarly joined at the carrier end, as the carrier was in the wrong orientation. Here is an example of the mechanism (that I had developed specifically for this pseudo-object):
Code: Select all
x = 174, y = 69, rule = B3/S23
105bo$103b2o$104b2o2$11b2o18b2o18b2o18b2o38b2o18b2o18b2o18b2o$12bo19bo
19bo19bo39bo19bo19bo19bo$9bobo17bobo17bobo17bobo26b2o9bobo17bobo17bobo
17bobo$8bo19bo19bo19bo28bobo8bo19bo19bo19bo$8b2o18b2o18b2o18b2o29bo8b
2o18b2o18b2o18b2o$32b2o18b2o18b2o27b3o8b2o18b2o18b2o18b2o$15bo15bobo
12bo4bobo19bo27bo11bo14b2o3bo14b2o3bo14b2o3bo$11bo3bobo13b2o11bobo4b2o
19bo29bo9bo15b2o2bo15b2o2bo15b2o2bo$11b2o2b2o28b2o25b2o38b2o18b2o18b2o
18b2o$10bobo155b2o$17bo25b2o3b2o53b3o62b2o$17b2o23bobo2bobo4b2o49bo$
16bobo25bo4bo3b2o49bo42bobo$55bo92b2o$148bo$50b2o$51b2o94b3o$50bo98bo$
148bo14$163b2o$163bobo$163bo5$48bobo$11b2o18b2o16b2o10b2o18b2o18b2o18b
2o28b2o18b2o$12bo19bo16bo12bo19bo19bo19bo14bobo12bo19bo$9bobo17bobo27b
obo17bobo17bobo17bobo16b2o9bobo17bobo$8bo19bo18b2o9bo19bo19bo19bo19bo
9bo19bo$8b2o18b2o16bobo9b2o18b2o18b2o18b2o28b2o18b2o$12b2o18b2o14bo13b
2o18b2o18b2o18b2o28b2o18b2o$8b2o3bo14b2o3bo24b2o3bo14b2o3bo14b2o3bo14b
2o3bo24b2o3bo14b2o3bo$2bobo3b2o2bo16bo2bo17bo8bo2bo13bo2bo2bo13bo2bo2b
o13bo2bo2bo23bo2bo2bo6bobo7bo2bo$3b2o7b2o13bo4b2o16b2o5bo4b2o12b2o4b2o
12b2o4b2o12b2o4b2o22b2o4b2o5b2o8bobo$3bo4b2o8bobo6b2o20bobo5b2o101bo9b
o$8b2o8b2o99b2o28b2o$2o13bo3bo98bo2bo26bo2bo10bo$b2o11b2o102bo2bo12b2o
12bo2bo10bobo$o6b3o4bobo102b2o14b2o12b2o11b2o$9bo39b2o83bo4b3o$8bo39bo
bo9b2o79bo19bo$50bo9bobo77bo19b2o$10b3o47bo36b2o61bobo$10bo85bobo44bo$
11bo86bo2b2o40b2o9b2o$100b2o40bobo8b2o$102bo34b2o16bo$109b2o25bobo$
108b2o28bo$110bo!
However, I just figured out how to modify this to work from the opposite side, allowing creation of the 16-bit doubly-siamese still-life from 34 gliders:
Code: Select all
x = 129, y = 96, rule = B3/S23
84bo$83bo$83b3o$45bobo33bo$46boo34bo$46bo33b3o$85bo$50bo33bo$49bo34b3o
$49b3o51boo$53b3o22bo25bo$53bo13boo10boo6boo14bo3boo$23boo18boo9bo8boo
3bo9boo3boo3bo14boo3bo$24bo19bo19bobbo16bobbo16bobbo$3boo19bobo17bobo
17bobo17bobo17bobo$4boo19boo18boo18bo13b3o3bo19bo$3bo3boo70bo$7bobo41b
oo23bo3bo$7bo43bobo22boo$51bo23bobo$$46b3o$48bo$47bo$51bo$50boo$50bobo
15$99bo$98bo$13bo84b3o$13bobo91bo$13boo80bobo9bobo$83bo12boo5bo3boo$
13bo18boo18boo28bobo11bo5bobo15boo$12boo17bobbo16bobbo26bobo17bobo17bo
$3boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo10boo3b3o$4bo19bo7b
oo10bo7boo20bo6bo12bo6bo12bobbo$3bo3boo14bo3boo14bo3boo9bobo12bo3boo
14bo3boo14bo3boo$3boo3bo14boo3bo14boo3bo9boo13boo3bo14boo3bo6bo7boo3bo
$4bobbo16bobbo16bobbo11bo14bobbo16bobbo6boo8bobbo$4bobo17bobo17bobo27b
obo17bobo7bobo7bobo$5bo19bo19bo11boo16bo19bo19bo$56boo$58bo15$3bo$3bob
o86bo$3boo88bo$91b3o$bbo$obo94bobo6bo$boo5bo88boo6bo$8bobo87bo6b3o$8b
oo74bobo$56bobo26boo$52bo3boo27bo$53boobbo$26bo19bo5boo12bo16boo11bo$
25bobo17bobo17bobo3boo9bobo10bobo3boo$25bobo17bobo17bobobbobo11bo10bob
obbobo$10boo14bo3boo14bo3boo14bo3bo25bo3bo$11bo19bo19bo19bo14bo14bo24b
o$3boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o24bobo$4bobbo16bobbo
16bobbo16bobbo17bobo6bobbo26bobbo$3bo3boo14bo3boo14bo3boo14bo3boo24bo
3boo24bo3boo$3boo3bo14boo3bo14boo3bo14boo3bo24boo3bo9b3o12boo3bo$4bobb
o16bobbo16bobbo16bobbo26bobbo10bo15bobbo$4bobo17bobo17bobo17bobo27bobo
12bo14bobo$5bo19bo19bo19bo29bo29bo!
And also another related 16 from 27 gliders (UPDATE: I'm not sure how many yours takes, to see which is smaller):
Code: Select all
x = 161, y = 101, rule = B3/S23
14bo$15bo72bo$13b3o19bo50bobo$36bo50boo$34b3o33bo19bo$69bobo17bobo$35b
o33bobo17bobo$35boo33bo19bo$34bobo37boo18boo18boo18boo18boo$73bobo17bo
bo17bobo17bobo17bobo$72bo19bo19bo19bo19bo6bo$73boo18boo18boo18boo7bo
10boo3bobo$74bo19bo19bo19bo7bobo9bobbobo$71b3o17b3o17b3o17b3o8boo7b3o
3boo$70bo19bo19bo19bo7b3o9bo$70boo18boo18boo18boo6bo11boo$139bo5bo$
144boo$144bobo11$55b3o$55bo$56bo8$8bo5bo$8boo4boo$7bobo3bobo10$66bo$
65boo$65bobo15$7bo$8boo$7boo$$13bo$11boo$8bo3boo$9boo$8boo$$4boo18boo
18boo18boo18boo18boo16bo11boo18boo$3bobo17bobobboo13bobobboo13bobobboo
13bobobboo13bobobboo13bo9bobobboo13bobobboo$bbo6bo12bo6bo12bo6bo12bo6b
o12bo6bo12bo6bo11b3o8bo6bo12bo6bo$3boo3bobo12boo3bo14boo3bo14boo3bo14b
oo3bo14boo3bo24boo3bo14boo3bo$4bobbobo14bobbo16bobbo16bobbo16bobbo16bo
bbo26bobbo6bobo7bobbo$b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o
3boo22b3o3boo5boo8bobo$o13bo5bo19bo19bo19bo19bo29bo14bo9bo$oo11boo5boo
18boo18boo3bo14boo3bo15bo3bo25bo3bo$13bobo48bobo17bobo12bobobbobo22bob
obbobo10bo$64bobo17bobo12boo3bobo22boo3bobo10bobo$65bo12boo5bo19bo29bo
11boo$74bobboo$74boo3bo66bo$73bobo69boo$42boo101bobo$41bobo80b3o6bo$
43bo5boo75bo6boo$49bobo73bo6bobo$49bo$138b3o$47boo89bo$46bobo90bo$48bo
!
This also solves the one unsolved 21-bit P5 for 43 (and thus also all remaining unsolved P5 pseudo-oscillators up to 25 bits):
Code: Select all
x = 145, y = 136, rule = B3/S23
37bo$35bobo$36boo$72bo$72bobo$72boo$36bo$34bobo$35boo$$33bo$34bo$32b3o
6$bbobo$3boo4bo62bo$3bo3boo61boo$8boo61boo$5bo$6bo$4b3o$93boo18boo18b
oo$69bo23bo19bo19bo$obo22bobo27bobo10boo24bobbo16bobbo16bobbo$boo25bo
29bo9bobo25boo4boo12boo4boo12boo4boo$bo22bobbo26bobbo38bo3bobbo12bo3bo
bbo12bo3bobbo$23bobobo25bobobo37bo4boo13bo4boo13bo4boo$23bobbo26bobbo
38boo9bo8boo9bo8boo$24boo28boo17boo30bobo17bobo$72boo31bobo17bobo$74bo
31bo19bo$bb3o123boo$4bo123bobo$3bo124bo13$33b3o$35bo$34bo$$116bo$103b
oo10bo17boo$103bo11b3o15bo$104bobbo26bobbo$106boo4boo5bobo14boo$106bo
3bobbo5boo15bo3boboo$105bo4boo8bo14bo4boobo$105boo9boo4boo11boo$115boo
5bobo$117bo4bo$112boo$111bobo$113bo10$14bo9bo$15boo5boo$14boo7boo$$25b
o$24boo$24bobo$$30bo$13boo15bobo10boo18boo28boo18boo18boo$13bo16boo11b
o19bo29bo9boo8bo9boo8bo9boo$14bobbo26bobbo4boo10bobbo4boo20bobbo4bobo
9bobbo4bobo9bobbo4bobo$16boo28boo4bo13boo4bo23boo4bo13boo4bo13boo4bo$
16bo3boboo22bo3bobo13bo3bobo23bo3bobo13bo3bobo13bo3bobo$15bo4boobo21bo
4boo13bo4boo5bo17bo4boo13bo4boo13bo4boo$15boo28boo18boo9bo18boo18boo
18boo$76b3o$139boboo$75boo3boo41b3o13boobo$74bobo3bobo36boobbo$24boo
50bo3bo33b3o3boobbo$25boo89bobbo$24bo90bo9bo$124boo$124bobo7$109bo$
107bobo$70bo37boo$68boo52bo$69boo51bobo$122boo$68bo$67boo$3boo28boo18b
oo12bobo13boo10boo6boo10boo16boo$3bo9boo18bo9boo8bo9boo18bo9bobbo6bo9b
obbo16bo$4bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4bob
oo18bobbo$6boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo11boo$6bo3bobo
8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bobo9boo12bo3bo$5bo4boo23bo4boo3b
oo8bo4boo3boo18bo4boo3boo8bo4boo3boo6boo10bo4b3o$5boo28boo7bobbo7boo7b
obbo17boo7bobbo7boo7bobbo17boo6bo$28bo16boo18boo28boo18boo25bo$9boboo
14bo11boboo16boboo26boboo16boboo26bobo$9boobo14b3o9boobo16boobo26boobo
16boobo13boo11boo$23b3o100bobo$23bo102bo$24bo3$111boo$112boo6boo$111bo
7boo$115b3o3bo$117bo$116bo!
This similarly solves one of the two unsolved 22-bit Silver's P5s for 53:
Code: Select all
x = 182, y = 61, rule = B3/S23
100boo18boo18boo28boo$100bo9boo8bo9boo8bo9boo18bo9boo$101bobbo4bobo9bo
bbo4bobo9bobbo4bobo19bobbo4bobo$103boo4bo13boo4bo13boo4bo23boo4bo$103b
o3bobo13bo3bobo13bo3bobo23bo3bobo$102bo4boo13bo4boo13bo4boo23bo4boo$
102boo18boo18boo28boo$$160bo17bo$125boboo16boboo10bo15bobobo$109b3o13b
oobo16boobo6boobb3o13boobbo$105boobbo45bobo21boo$100b3o3boobbo44bo$
102bobbo57boo$101bo9bo50boo$110boo52bo$110bobo$145b3o$147bo9b3o$146bo
10bo$158bo12$146bo$144bobo$107bo37boo$105boo52bo$106boo51bobo$159boo$
105bo$104boo$oo18boo18boo28boo18boo12bobo13boo10boo6boo10boo16boo$o9b
oo8bo9boo8bo9boo18bo9boo8bo9boo18bo9bobbo6bo9bobbo16bo$bobbo4bobo9bobb
o4bobo9bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4boboo
18bobbo$3boo4bo13boo4bo13boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo
11boo$3bo3bobo13bo3bobo13bo3bobo8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bo
bo9boo12bo3bo$bbo4boo13bo4boo13bo4boo23bo4boo3boo8bo4boo3boo18bo4boo3b
oo8bo4boo3boo6boo10bo4b3o$bboo10bo7boo18boo28boo7bobbo7boo7bobbo17boo
7bobbo7boo7bobbo17boo6bo$12boo51bo16boo18boo28boo18boo25bo$8bo4boo3bo
9boo18boo14bo13boo18boo28boo18boo28bo$5bobobo7bo7bobobo15bobobo14b3o8b
obobo15bobobo25bobobo15bobobo13boo10bobo$5boobbo7b3o5boo18boo13b3o12b
oo18boo28boo18boo16bobo9boo$9boo49bo102bo$14bo46bo$13boo$7boo4bobo$3bo
bboo140boo$3boo3bo140boo6boo$bbobo143bo7boo$152b3o3bo$154bo$153bo!
A slight variation of this mechanism allows welding of bridged corner objects, yielding another way to make the twin canoes. While much more expensive, this can be generalized to many other similar objects:
Code: Select all
x = 164, y = 153, rule = B3/S23
99bo$100bo$98b3o$102bo$102bobo$102boo$53bo$5bo45boo55bo$4bo47boo54bobo
$4b3o101boo$55bo12bo29bo$bobo50boo12bo29bo17boo18boo18boo$bboo50bobo
11bo29bo17bobbo16bobbo16bobo$bbo21boo18boo18boo28boo18boobboo14boobboo
14boo3bo$24bo19bo19bo29bo19bo19bo8bo10bo5bo$25bo19bo19bo29bo19bo19bo5b
oo12bo3boo$26bo19bo19bo29bo19bo19bo5boo12bo$3o22boo18boo18boo28boo18b
oo18boo18boo$bbo3b3o132bo$bo4bo133boo$7bo132bobo$$98bo$98boo$97bobo13$
41bobo$42boo$42bo$$66boo18boo18boo28boo18boo$66bobo17bobo17bobo27bobo
17bobo$69bo19bo19bo29bo14boo3bo$70bo5bobo11bo13bo5bo23bo5bo13bo5bo$69b
oo6boo10boo13bo4boo12bobo8bo4boo14bo3boo$46bo30bo26bo19boo8bo19boo$46b
oo76bo$45bobo3bo27boo$49boo29boo44boo$39boo9boo27bo47boo$38bobo85bo$
40bo4$124boo16b3o$123bobo16bo$125bo17bo$$139b3o$139bo$140bo9$56boo18b
oo18boo18boo18boo18boo$56bobo17bobo17bobo17bobo17bobo17bobo$54boo3bo
14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo$54bo5bo13bo5bo13bo5bo13bo5bo
13bo5bo13bo5bo$55bo3boo14bo3boo5bobo6bo3boo14bo3boo14bo3boo14bo3boo$
54boo18boo11boo5boo20bo19bo19bo$87bo29bo19bo17boo$77boo18boo19bo13bobo
3bo$57boo17bobbo5bo10bobbo19bo13boo4bo$58boob3o12bobbo3bobo10bobbo18b
oo13bo4boo$57bo3bo15boo5boo11boo43bo$62bo68boo8boo$86bo44bobo7bobo$86b
oo43bo$85bobo$$92boo$93boo$92bo10$60bo$58boo$6boo18boo18boo11boo15boo
18boo18boo18boo18boo$6bobo17bobo17bobo27bobo17bobo7bobo7bobo17bobo17bo
bo$4boo3bo14boo3bo14boo3bo11bo12boo3bo14boo3bo6boo6boo3bo14boo3bo14boo
3bo$4bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo5bo13bo5bo$5bo
3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo14bo3boo14bo3boo$6bo
19bo7boo10bo7boo20bo6bo12bo6bo12bobbo16bobbo16bobbo$5boo7bobo8boo6bobb
o8boo6bobbo18boo5bobo10boo5bobo10boo3b3o12boo3b3o12boo3b3o$14boo17bobb
o16bobbo26bobo17bobo17bo19bo19bo$15bo18boo18boo28bobo11bo5bobo15boo18b
oo18boo$85bo12boo5bo3boo$15boo80bobo9bobo$15bobo91bo$15bo84b3o$100bo$
101bo54boo$136boo17bobbo$137boob3o12bobbo$136bo3bo15boo$141bo10$138bo$
136boo$36boo18boo18boo18boo28boo9boo17boo$36bobo17bobo17bobo17bobo27bo
bo27bobo$34boo3bo14boo3bo14boo3bo14boo3bo24boo3bo24boo3bo$34bo5bo13bo
5bo13bo5bo13bo5bo23bo5bo23bo5bo$35bo3boo14bo3boo14bo3boo14bo3boo24bo3b
oo24bo3boo$36bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo$35boo3b
3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o7boo15boo$43bo19bo19bo19bo
14bo14bo6bobo$42boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo$57bobo17bobo
6bo10bobobboo12bo10bobobboo$58bo19bo7b3o9bo15bobo11bo$115boo$84b3o$41b
oo43bo30bo$36boobboo43bo31boo18bo$35bobbo3bo73bobo11bo5boo$35bobbo90b
oo5bobo$36boo91bobo$$123b3o$125bo$124bo!
This also permits synthesis of the 16-bit eater bridge long canoe from 24 gliders (and also allows it to be synthesized starting from either still-life alone):
Code: Select all
x = 200, y = 129, rule = B3/S23
117bo$116bo$116b3o$$110bo$73bo37bo$71bobo8bo26b3o9bo$72boo7bo37boo$81b
3o31bobobboo$68bo47boo15boo18boo28boo$69bo46bo8bo7bobo17bobo27bobo$67b
3o54boo10bobo17bobo27bobo8boo$124bobo10boo18boo8bobo17boo7bobbo$93boo
18boo18boo18boo12boo14boo11bobbo$94bo19bo19bo19bo13bo15bo12boo$94boboo
16boboo16boboo16boboo26boboo$95boobo16boobo16boobo16boobo9boo15boobo$
98bo19bo19bo19bo9bobo17bo$78bo4b3o12bobo17bobo17bobo17bobo7bo19bobo$
77bo5bo15boo18boo18boo18boo28boo$77b3o4bo$$78bo$77boo$77bobo6$162bo$
163bo$161b3o3bo$157bo7boo$158boo6boo$157boo4$73boo18boo18boo18boo18boo
16bo11boo$73bobo17bobo17bobo17bobo17bobo15bobo9bobo$76bobo8boo7bobo17b
obo17bobo17bobo12boo13bo$77boo7bobbo7boo18boo18boo18boo28bo$73boo11bo
bbo3boo6bo11boo6bo11boo6bo11boo6bo21boo3bo$74bo12boo5bo5bobo11bo5bobo
11bo5bobo11bo5bobo21bobboo$74boboo16boboo3bo12boboo3bo12boboo3bo12bob
oo3bo6boo14bobo$75boobo7bo8boobo16boobo16boobo16boobo8boo16boo$78bo6b
oo11bo19bo19bo19bo10bo$78bobo4bobo10bobo17bobo17boboo16boboo$79boo18b
oo18boo18bobo17bobo$124bo15bo19bo$124bobo$121booboo25bo15boo$120bobo
28boo13boo$122bo27bobo15bo$$158boo$157boo$159bo13$125bo$123boo$53boo
18boo18boo18boo9boo17boo18boo7bo10boo$54bo19bo5bo13bo19bo29bo19bo5boo
12bo$33boo19bobo17bobo3bobo11bobo17bobo9bo17bobo17bobo4boo11boboo$34b
oo19boo18boo3boo13boo18boo8boo18boo18boo7boo9boobo$33bo3boo86bobo46bob
o11bo$37bobo40bo18boo18boo27bo19bo5bo13bobo$37bo41boo17bobbo16bobbo25b
obo17bobo19boo$79bobo16bobbo16bobbo26bobo17bobo$99boo18boo28bobo17bobo
$150bo12boo5bo$164boo$163bo$171b3o$171bo$172bo10$bbo$obo$boo5$10bo3bo$
8boboboo$9boobboo3$23boo18boo18boo18boo18boo18boo18boo18boo18boo$23bob
o17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$26bobo17bobo17bobo
17bobo17bobo17bobo17bobo17bobo17bobo$27boo18boo18boo18boo18boo18boo18b
oo18boo18boo$8bo54boo18boo18boo18boo18boo18boo7bo10boo$8boo54bo19bo19b
o19bo19bo19bo5boo12bo$7bobo33boo19bobo17bobo17bobo17bobo17bobo17bobo4b
oo11boboo$44boo19boo18boo18boo18boo18boo18boo7boo9boobo$43bo3boo125bob
o11bo$47bobo98bo19bo5bo13bobo$47bo60boo18boo17bobo17bobo19boo$88boo17b
obbo16bobbo17bobo17bobo$89boob3o12bobbo16bobbo18bobo17bobo$88bo3bo15b
oo18boo20bo12boo5bo$93bo70boo$121bo41bo$121boo48b3o$120bobobboo44bo$
124boo46bo$126bo!
And also the 16-bit carrier on-and-bridged-with cis-shillelagh directly, from 34 (also buildable starting from the carrier):
Code: Select all
x = 205, y = 133, rule = B3/S23
103bo$102bo$102b3o4$138bo$138bobo$35bobo100boo$36boo3bo$36bobboo$40boo
$56boo18boo28boo18boo28boo18boo18boo$57bo19bo29bo19bo29bo19bo19bo$obo
15bo19bo17bo19bo29bo19bo29bo3boo14bo3boo14bo3boo$oo16b3o17b3o14bo19bo
29bo19bo29bo5bo4boo7bo5bo4boo7bo5bo$bo19bo19bo13bobo17bobo4boobboo17bo
boboo14boboboo24bobobo6boo7bobobo6boo7bobobo$20boo18boo14boo18boo5boob
obo17booboo15booboo25booboo15booboo8boo5booboo$bb3o77bo3bo102bobo$bbo
133boo51bo$3bo132bobo5bo$136bo6boo$143bobo$134boo$133bobo$37boo96bo$
36bobo$38bo13$182bo$177bo3bo15boo$178boob3o12bobbo$177boo17bobbo$142bo
54boo$141bo$56bo84b3o$56bobo91bo$56boo80bobo9bobo$126bo12boo5bo3boo$
56bo18boo18boo28bobo11bo5bobo15boo18boo18boo$55boo17bobbo16bobbo26bobo
17bobo17bo19bo19bo$46boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo
10boo3b3o12boo3b3o12boo3b3o$47bo19bo7boo10bo7boo20bo6bo12bo6bo12bobbo
16bobbo16bobbo$46bo3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo
14bo3boo14bo3boo$45bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo
5bo13bo5bo$45bobobo15bobobo15bobobo12bo12bobobo15bobobo7boo6bobobo15bo
bobo15bobobo$46booboo15booboo15booboo25booboo15booboo6bobo6booboo15boo
boo15booboo$100boo$99boo$101bo17$165bo$166bo$164b3o$$77boo91bobo$76bo
bbo90boo5bobo$76bobbo3bo73bobo11bo5boo$77boobboo43bo31boo18bo$82boo43b
o30bo$125b3o$156boo$99bo19bo7b3o9bo15bobo11bo$98bobo17bobo6bo10bobobb
oo12bo10bobobboo$83boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo$84bo19bo
19bo19bo14bo14bo6bobo$76boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b
3o7boo15boo$77bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo$76bo3b
oo14bo3boo14bo3boo14bo3boo24bo3boo24bo3boo$75bo5bo13bo5bo13bo5bo13bo5b
o23bo5bo23bo5bo$75bobobo15bobobo15bobobo15bobobo25bobobo25bobobo$76boo
boo15booboo15booboo15booboo25booboo25booboo$178boo$177boo$179bo8$87bo$
88boo$87boo$95bo$96boo$95boobbo$99bobo$99boo34bobo41bo$136boo42boo$55b
obo78bo42boo$55boo126bo$51bo4bo60boo18boo34bobo6boo$52boo62bobbo16bobb
o18boo14boobboobbobo$47boobboo63bobbo16bobbo19bo14bo4bo$21bobb3o19bobo
68boo18boo19bo12bo6bo17boo$22bobo23bo6bobo99bo13boo4bo19bo$20b3obbo14b
oo13boo3boo12boo4boo12boo4boo12boo4boo12boo4boo14bo3boo8bobo3bo3boo14b
o3boo$41bo14bo4bo12bo6bo12bo6bo12bo6bo12bo6bo13bo5bo13bo5bo13bo5bo$39b
o12boo5bo17bobo17bobo17bobo11bo5bobo15bobobo15bobobo15bobobo$15bobb3o
18boo10bobo5boo15booboo15booboo15booboo10boo3booboo15booboo15booboo15b
ooboo$16bobo34bo76bobo$14b3obbo$55boo$54boo$56bo!
This mechanism lengthens and flips a snake-like object, but unfortunately, it is not suitable for the smallest ones, that lack suitable smaller predecessors. For example, this fails a very long snake (from a unsable short canoe), a python (from a ship), a snake (from a block), or carrier (also unstable). For similar reasons, an eater, shillelagh or long shillelagh wouldn't work either. Furthermore, anything like a shillelagh whose opposite end extends out farther than a snake does would need a less obtrusive domino spark. Fortunately, one can usually weld one of these to something larger by welding the larger object instead. Unfortunately, this won't work if both sides are one of these (like the pseudo-still-life from which the above still-life had previously been derived).
Another 16 (and a related 17) each from 17 gliders, using a modified variant of the classic glue-tail mechnism (UPDATE: same cost as Extrementhusiast's, but done in a totally different way):
Code: Select all
x = 165, y = 54, rule = B3/S23
95bo$94bo$94b3o$$91bobo$92boo5bo$52bobo37bo6bobo$bo51boo3bo40boo$bbo
50bobboo$3obboo50boo34bobo22boo18boo18boo$4bobo87boo23bo19bo19bo$6bobb
o71boo6bo4bo6boo16boboo16boboo16boboo$9bobo19boo18boo8bo18bobbo6bo9bo
bbo16bobbo16bobbo16bobbo$9boo20bo19bo8bo20bobo4b3o10bobo17bobo17bobo
17bobo$29bobo17bobo8b3o16boboboo14boboboo14boboboo14boboboo14boboboo$
4b3o21bobo17bobo6bo20bobo17bobo18boo18boo18boo$6bo20bobo17bobo6boo19bo
bo12bo4bobo$5bo22bo19bo7bobo4b3o12bo13boo4bo15b3o17b3o$63bo27bobo36b3o
$64bo67bo$131bo$102b3o$102bo$103bo7$95bo$94bo$94b3o$$91bobo$92boo5bo$
92bo6bobo$99boo$$93bobo22boo18boo18boo$94boo23bo19bo19bo$89bo4bo6boo
16boboo16boboo16boboo$90bo9bobbo16bobbo16bobbo16bobbo$88b3o10bobo17bob
o17bobo17bobo$99boboboo14boboboo14boboboo14boboboo$98bobo17bobo17bobo
17bobo$92bo4bobo19bo19bo19bo$92boo4bo15b3o17b3o$91bobo36b3o$132bo$131b
o$102bo$101boo$101bobo!
A naive partial synthesis of one of the remaining 16s. It would need the remaining pre-block to be brought in simultaneously; I'm not sure if this is possible or not. (I also tried to use this method to make the recent eater-domino-eater, but that won't work, as the second eater gets too close to the one being destroyed) (UPDATE: This is now obsolete):
Code: Select all
x = 174, y = 22, rule = B3/S23
159b3o$84bo73bo3bo$83bo78bo$83b3o74boo$160bo$80bobo$4bo76boo5bo71bo$4b
obo74bo6bobo$o3boo82boo$boo19boo28boo18boo18boo18boo18boo18boo18boo$oo
19bobo27bobo17bobo8bobo6bobo13boobbobo13boobbobo13boobbobo13boobbobo$
21bo29bo19bo11boo6bo16bobbo16bobbo16bobbo16bobbo$20boo28boo18boo11bo6b
oo16boboo16boboo4bo11boboo16boboo$69bo19bo19bo19bo5bo13bo19bo$20boo28b
oo18boo18boo18boo18boo3b3o11bo17bobo$21bo29bo19bo19bo19bo19bo35boo$oo
19bobo10bo3bo12bobo17bobo17bobo17bobo17bobo$boo19boo11boobobo11boo18b
oo18boo18boo18boo$o3boo28boobboo$4bobo127b3o$4bo129bo$135bo!
So, there appear to be only 6 remaining 16-bit still-lifes unaccounted for (UPDATE: now down to 3):
Code: Select all
x = 37, y = 7, rule = B3/S23
2o2b2o10bob2o10b2ob2o$obo2bo9bob2obo9bo3bo$2b2o11bo5bo9bobo$o2bobo10bo
b2obo10b2obo$2o2b2o11b2obo13bobo$34bobo$35bo!
Etrementhusiast wrote:Suggested SL in 16 gliders:
See above for a totally different way to do it, also in 16 gliders.
Extrementhusiast wrote:Also, is it too soon for 17-bitters?
I decided to take a look at the 17-bit still-lifes. There are 7773 of them, with a bit over 300 that can't currently be synthesized automatically. I haven't yet sorted these into "ones that can easily be made manually by slightly customizing existing tools" versus "I have no idea yet". One of these looks particularly interesting. I think calling it a Valentine might be appropriate (and having a synthesis for it by Feb. 14 would be particularly appropriate). Here is a partial synthesis of it. It uses 5 sparks, 4 of which are trivial and 1 which shouldn't be too hard. All should be easy to make separately, although together they might prove to be a bit more work:
Code: Select all
x = 30, y = 11, rule = B3/S23
bo9bo13b3o$bb3o3b3o$5b3o$$bbo3bo3bo13booboo$bbobbobobbo12bobobobo$4bob
obo14bobbobbo$4bobobo15bobobo$oo3bobo3boo12bobo$3o3bo3b3o13bo$boo7boo!
Sokwe wrote:Got another one based on a predecessor that I posted earlier:
This mechanism will likely be useful for many similar syntheses of larger sizes as well!
Sokwe wrote:I think this brings us down to only 7 unsynthesized 16-bit still lifes:
Now only three (see above)!
EDIT:
Sokwe wrote:A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):
This would be good, as the griddle between two beehives is a predecessor to several other unsolved ones. If one could grow the loaf into a mango, one could reduce the mango to a beehive thus:
Code: Select all
x = 28, y = 16, rule = B3/S23
10bo$10bobo$10boo$$10bo$4boo3bobo12boo$bb3o4boo11b3o$bo4bo14bo4bo$ob4o
bo12bob4obo$obobbobbobbobo6bobobbobo$bo4bobobboo8bo4bo$7bo4bo$$11bo$
10boo$10bobo!