Novoloop, yet another loop rule

For discussion of other cellular automata.
Post Reply
User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Novoloop, yet another loop rule

Post by A for awesome » September 26th, 2014, 4:29 pm

Hi everyone! I have made yet another evolving loop rule. These loops have no sheath, and can be of two different types, or a hybrid of the two. The table is far from perfect, but I expect you'll get the idea. Feel free to improve the begin-rep, end-rep/reset, and interact sections of the rule table, and post them here. Here is the table:

Edit: As of 9-30-14, this rule table has become obsolete.

Code: Select all

@RULE Novoloop
@TABLE
n_states:10
neighborhood:Moore
#1 wire
#2 neutral head
#3 extender head
#4 extend/right turn signal
#5 turn/left turn signal
#6 starter signal
#7 signal tail/help state
#8 destructor
#9 control signal
symmetries:rotate4
var a={0,2}
var b={0,1,2,3,4,5,6,7,9}
var ba={b}
var bb={b}
var bc={b}
var bd={b}
var be={b}
var c={1,7}
var ca={c}
var d={0,2,7}
var e={0,1,2,4,5,6,7,9}
var ea={e}
var f={4,5,6,9}
var g={0,7}
var h={1,2,4,5,6,7,9}
var ha={h}
var i={0,1,2,3,4,5,6,7,8,9}
var ia={i}
var ib={i}
var ic={i}
var id={i}
var ie={i}
var if={i}
var ig={i}
var j={0,1}
var k={1,2,3}
var l={1,4,5,6,7,9}
var la={l}
var lb={l}
var lc={l}
var ld={l}
var m={1,3}
var n={6,9}
var o={2,3}
var p={0,1,7}
var q={0,1,2,3,4,5,6,7,8,9}
var r={0,1,3,4,5,6,7,9}
var s={1,2,3,4,5,6,7,9}
var t={1,2}
#signal_propagation
1,0,r,c,ba,d,e,f,ea,f
1,f,0,c,0,b,g,0,0,f
1,0,0,c,0,0,0,0,f,f
1,0,0,c,0,0,f,0,0,f
1,0,0,c,0,f,0,0,0,f
1,0,c,0,0,0,f,0,0,f
1,0,0,0,c,0,0,f,0,f
1,0,c,0,0,0,0,f,0,f
1,c,0,c,0,0,0,f,0,f
7,h,b,ha,ba,bb,bc,bd,be,1
7,h,ba,bb,ha,bc,bd,be,b,1
7,h,b,ba,bb,ha,bc,bd,be,1
7,h,b,ba,bb,bc,ha,bd,be,1
7,h,b,ba,bb,bc,bd,ha,be,1
7,b,h,ba,bb,bc,ha,bd,be,1
f,i,ia,ib,ic,id,ie,if,ig,7
0,0,6,1,0,0,0,0,0,2
2,0,7,6,0,0,0,0,0,0
0,0,2,6,1,0,0,0,0,7
7,7,6,0,0,0,0,0,0,0
1,f,0,0,2,1,0,7,0,f
#begin_rep
1,6,0,c,0,0,0,0,7,6
0,7,6,0,0,0,0,0,0,7
7,0,7,0,0,0,0,0,0,0
0,7,6,0,0,0,0,7,0,3
7,6,0,0,0,0,0,0,7,0
2,0,0,0,0,0,b,3,b,3
0,0,0,0,0,0,0,3,0,2
3,g,0,2,0,g,j,1,j,1
7,0,0,k,0,0,0,l,la,0
0,7,m,0,0,0,0,0,c,7
0,0,0,m,0,7,0,l,l,7
7,0,m,0,0,0,0,0,l,0
3,0,0,2,0,0,7,0,0,1
1,0,0,1,0,0,7,0,0,2
3,0,0,a,0,0,0,n,0,n
7,0,0,o,0,0,0,1,0,1
0,0,0,o,0,0,2,6,1,6
1,0,0,2,0,0,0,6,0,3
3,0,0,2,0,0,0,7,0,1
0,0,2,3,1,1,7,0,0,7
1,0,3,m,m,m,1,0,0,0
1,1,1,7,0,3,0,0,0,7
3,0,7,l,1,0,0,3,0,2
1,7,0,l,la,0,0,2,0,0
3,2,0,0,0,2,0,0,0,1
3,6,0,0,0,1,0,0,0,2
7,0,c,2,ca,0,0,0,0,0
#turn/extend
2,0,0,0,0,0,0,4,0,3
3,0,0,0,0,0,0,7,0,1
1,0,0,o,0,0,0,f,g,f
0,0,0,0,0,0,0,2,5,2
2,5,0,0,0,0,0,0,0,1
1,2,0,0,0,0,0,f,0,f
2,0,0,0,0,4,7,0,0,3
3,0,0,0,0,7,1,0,0,1
2,0,0,0,0,0,0,6,0,3
2,0,0,1,0,0,0,1,0,1
3,0,0,2,0,0,0,f,0,f
0,0,0,0,0,3,4,0,0,7
0,0,0,0,0,2,3,7,0,3
3,7,0,2,0,0,0,7,0,1
2,0,0,0,0,0,0,3,7,1
0,3,0,0,0,0,0,0,5,7
0,2,0,0,0,0,0,7,3,3
2,0,0,0,0,0,7,3,0,1
7,1,t,0,0,0,0,0,l,0
7,0,0,0,2,3,7,0,0,0
3,0,0,2,0,0,0,1,1,1
3,0,0,2,0,7,0,7,0,1
7,3,2,0,0,0,0,0,7,0
3,1,0,0,0,2,0,0,1,1
1,f,0,0,0,m,0,0,7,f
6,3,0,0,7,7,1,0,0,1
2,0,7,1,0,0,0,0,0,0
0,1,0,7,0,l,la,0,0,l
1,l,0,1,1,3,0,7,0,0
7,0,1,1,3,0,0,0,0,0
3,0,7,1,1,1,0,0,0,1
0,7,1,3,l,0,0,0,0,7
1,7,0,1,1,1,0,3,0,0
1,6,7,0,2,1,0,0,0,6
2,6,7,0,0,0,0,0,0,3
0,0,2,6,2,0,0,0,0,7
#end-rep/reset
0,3,0,0,l,la,lb,0,0,2
2,m,0,0,l,la,lb,0,0,1
l,1,0,la,0,0,0,lb,7,3
3,1,0,l,0,0,0,7,0,1
0,3,l,0,0,0,0,0,la,7
7,6,1,0,0,0,0,0,g,0
0,1,p,0,0,0,0,7,6,7
0,0,0,0,8,l,la,0,0,8
0,0,0,8,q,l,la,0,0,8
c,0,0,0,0,0,0,la,0,8
l,0,8,la,0,0,0,lb,lc,7
0,0,0,7,l,la,lb,lc,ld,7
0,0,m,2,l,la,lb,0,0,7
1,0,l,la,3,lb,lc,0,0,0
l,1,la,3,0,0,0,lb,0,0
3,l,0,la,0,0,0,lb,1,l
l,la,0,2,0,lb,0,0,0,3
3,7,7,l,0,la,0,0,0,1
1,0,l,1,1,1,la,0,0,0
1,l,0,1,1,1,7,7,0,0
1,0,l,0,1,1,0,0,0,0
1,1,0,1,1,0,0,0,0,7
1,7,0,f,0,7,0,c,0,f
l,f,0,0,2,la,0,0,0,7
3,0,7,1,1,1,0,1,0,1
1,1,1,0,8,7,7,0,0,7
7,7,0,0,0,0,0,0,1,0
la,l,0,0,1,1,7,0,0,0
2,l,0,0,la,3,lb,0,0,1
3,2,0,l,0,0,0,la,0,1
0,0,8,0,l,0,0,0,0,7
1,l,0,1,1,3,7,0,0,0
3,1,1,1,0,l,0,7,0,1
1,7,0,0,0,0,0,0,1,0
1,l,1,0,0,0,0,0,0,7
#interact
2,5,0,0,0,0,0,0,7,8
s,0,0,0,0,0,0,0,0,8
8,i,ia,ib,ic,id,ie,if,ig,0
0,b,ba,2,bb,bc,bd,2,be,1
2,0,0,1,0,0,0,1,0,1
i,8,ia,ib,ic,id,ie,if,ig,0
@COLORS
0 30 30 30
1 0 128 128
2 0 255 0
3 255 0 0
4 255 128 0
5 255 255 0
6 128 0 128
7 128 128 128
8 255 255 255
9 128 128 255
Here are some example loops:

Code: Select all

x = 15, y = 16, rule = Novoloop
ADGADGADGADGADG$G13.A$D13.D$A13.G$G13.A$I13.D$A13.G$A13.A$A13.E$A13.G
$A13.A$A13.D$G13.G$F13.A$AGDAGDAGDAGDAGD$G!

Code: Select all

x = 17, y = 16, rule = Novoloop
6.DGAFGA$6.A4.F$6.G4.G$6.E4.A$6.A4.D$GADGADG4.GAEGAD$.G14.G$.E14.A$.A
14.D$.G14.G$.DAGDAG4.GDAGEA$6.E4.A$6.A4.D$6.G4.G$6.D4.A$6.AGDAGE!
As you can see, there are some problems. However, it does show the general idea of things.
Last edited by A for awesome on October 2nd, 2014, 8:59 am, edited 2 times in total.
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » September 29th, 2014, 5:26 pm

An update: I have optimized the rule table to the point that the rule actually works, and I shall be posting the final version of the table shortly.
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 1st, 2014, 5:55 pm

I finished the rule table!

Code: Select all

@RULE Novoloop
@TABLE
n_states:10
neighborhood:Moore
#1 wire
#2 neutral head
#3 extender head
#4 extend/right turn signal
#5 turn/left turn signal
#6 starter signal
#7 signal tail/help state
#8 destructor
#9 control signal
symmetries:rotate4
var a={0,2}
var b={0,1,2,3,4,5,6,7,9}
var ba={b}
var bb={b}
var bc={b}
var bd={b}
var be={b}
var c={1,7}
var ca={c}
var d={0,2,7}
var e={0,1,2,4,5,6,7,9}
var ea={e}
var f={4,5,6,9}
var g={0,7}
var ga={g}
var h={1,2,4,5,6,7,9}
var ha={h}
var i={0,1,2,3,4,5,6,7,8,9}
var ia={i}
var ib={i}
var ic={i}
var id={i}
var ie={i}
var if={i}
var ig={i}
var j={0,1}
var k={1,2,3}
var l={1,4,5,6,7,9}
var la={l}
var lb={l}
var lc={l}
var ld={l}
var m={1,3}
var n={6,9}
var o={2,3}
var p={0,1,7}
var q={0,1,2,3,4,5,6,7,8,9}
var r={0,1,3,4,5,6,7,9}
var s={1,2,3,4,5,6,7,9}
var t={1,2}
var u={1,3,4,5,6,7,9}
var v={4,5,9}
var w={0,3}
var x={4,5}
var y={1,2,3,7}
#signal_propagation
1,0,r,c,ba,d,e,f,ea,f
1,f,0,c,0,b,g,0,ga,f
1,0,0,c,0,0,0,0,f,f
1,0,0,c,0,0,f,0,0,f
1,w,0,c,0,f,0,0,0,f
1,0,c,0,0,0,f,0,0,f
1,0,0,0,c,0,0,f,0,f
1,0,c,0,0,0,0,f,0,f
1,c,0,c,0,0,0,f,0,f
7,h,b,ha,ba,bb,bc,bd,be,1
7,h,ba,bb,ha,bc,bd,be,b,1
7,h,b,ba,bb,ha,bc,bd,be,1
7,h,b,ba,bb,bc,ha,bd,be,1
7,h,b,ba,bb,bc,bd,ha,be,1
7,b,h,ba,bb,bc,ha,bd,be,1
f,i,ia,ib,ic,id,ie,if,ig,7
0,0,6,1,0,0,0,0,0,2
2,0,7,6,0,0,0,0,0,0
0,0,2,6,1,0,0,0,0,7
7,7,6,0,0,0,0,0,0,0
1,f,0,0,2,1,0,7,0,f
1,f,0,2,0,c,0,0,0,f
1,0,1,f,0,c,0,0,0,f
1,7,0,0,3,f,7,0,0,f
1,f,0,0,l,c,8,0,0,f
#begin_rep
0,7,6,l,la,0,0,0,0,7
7,0,l,la,lb,0,0,0,0,0
7,6,l,0,0,0,0,0,0,0
0,7,6,0,0,0,0,0,0,7
0,7,0,7,6,0,0,0,0,3
3,l,la,0,0,3,0,0,0,0
3,3,0,0,0,2,0,0,0,1
0,6,1,0,0,3,0,0,2,6
3,6,0,0,0,1,0,0,0,6
0,7,6,1,0,0,0,0,0,7
7,0,7,6,0,0,0,0,0,0
0,3,0,0,0,0,0,0,0,2
2,3,0,0,0,0,0,g,0,3
3,1,0,0,0,2,0,0,g,1
0,0,7,3,0,0,0,0,0,2
7,3,0,0,0,0,0,0,l,0
0,7,3,0,0,0,0,0,0,7
0,0,7,2,0,0,0,0,0,2
3,l,la,0,0,2,7,0,0,0
7,0,3,2,0,0,0,0,0,0
#turn/extend
2,0,0,0,0,0,0,4,0,3
3,0,0,0,0,0,0,7,0,1
1,0,0,o,0,0,0,f,g,f
0,0,0,0,0,0,0,2,5,2
2,5,0,0,0,0,0,0,0,1
1,2,0,0,0,0,0,f,0,f
2,0,0,0,0,4,7,0,0,3
3,0,0,0,0,7,1,0,0,1
2,0,0,0,0,0,0,6,0,3
2,0,0,1,0,0,0,1,0,1
3,0,0,2,0,0,0,f,0,f
0,0,0,0,0,3,4,0,0,7
0,0,0,0,0,2,3,7,0,3
3,7,0,2,0,0,0,7,0,1
2,0,0,0,0,0,0,3,7,1
0,3,0,0,0,0,0,0,5,7
0,2,0,0,0,0,0,7,3,3
2,0,0,0,0,0,7,3,0,1
7,1,t,0,0,0,0,0,l,0
7,0,0,0,2,3,7,0,0,0
3,0,0,2,0,0,0,1,1,1
3,0,0,2,0,7,0,7,0,1
7,3,2,0,0,0,0,0,7,0
3,1,0,0,0,2,0,0,1,1
1,f,0,0,0,m,0,0,7,f
6,3,0,0,7,7,1,0,0,1
2,0,7,1,0,0,0,0,0,0
0,1,0,7,0,l,la,0,0,l
1,l,0,1,1,3,0,7,0,0
7,0,1,1,3,0,0,0,0,0
3,0,7,1,1,1,0,0,0,1
0,7,1,3,l,0,0,0,0,7
1,7,0,1,1,1,0,3,0,0
1,6,7,0,2,1,0,0,0,6
2,6,7,0,0,0,0,0,0,3
0,0,2,6,2,0,0,0,0,7
3,n,0,0,0,0,0,0,0,1
2,0,1,2,0,0,0,0,0,0
1,f,0,0,0,t,2,0,0,f
7,1,0,0,0,3,0,0,0,1
2,0,l,1,2,0,0,0,0,0
1,f,0,0,2,1,0,0,0,f
7,1,0,3,0,0,0,0,0,1
2,7,1,m,2,0,0,0,0,0
1,1,1,0,2,0,0,0,0,0
0,0,7,6,2,0,0,0,0,7
7,0,3,7,1,0,0,0,0,0
1,f,0,1,2,7,0,0,0,f
1,2,0,0,1,f,7,0,0,f
1,l,la,0,2,0,0,0,0,0
7,3,0,0,0,l,la,0,0,1
2,0,l,0,0,0,0,0,0,0
1,f,0,7,7,0,0,0,0,f
1,y,0,7,0,f,7,0,0,f
#end-rep/reset
0,3,0,0,l,la,lb,0,0,2
2,m,0,0,l,la,lb,0,0,1
2,c,0,0,l,la,lb,0,0,c
0,0,u,2,l,la,lb,0,0,7
l,7,la,lb,0,0,0,lc,0,0
7,0,l,la,lb,lc,ld,0,0,0
0,a,8,0,l,0,0,0,0,7
0,7,0,v,1,0,0,0,0,7
7,0,v,0,0,0,0,0,0,0
0,l,la,8,0,0,0,0,0,7
1,l,la,0,lb,0,0,0,lc,0
l,8,i,ia,ib,ic,id,ie,if,0
l,i,0,0,0,0,0,0,0,8
1,0,l,2,la,lb,lc,0,0,0
1,f,7,2,0,c,0,0,0,f
1,l,la,0,0,0,0,0,0,7
1,l,0,la,h,1,0,0,0,0
1,0,l,la,lb,lc,ld,0,0,0
1,2,l,la,lb,0,0,0,0,0
0,7,6,1,c,l,la,0,0,2
1,c,2,f,0,0,0,0,0,f
1,c,0,2,7,f,0,0,0,f
1,c,0,0,2,f,0,0,0,f
2,0,l,1,7,6,1,0,0,0
0,2,6,1,c,0,0,0,0,7
1,f,0,1,1,c,0,0,0,0
1,7,1,f,0,c,0,0,0,f
#interact
2,5,0,0,0,0,0,0,7,8
s,0,0,0,0,0,0,0,0,8
8,i,ia,ib,ic,id,ie,if,ig,0
0,b,ba,2,bb,bc,bd,2,be,1
2,0,0,1,0,0,0,1,0,1
i,8,ia,ib,ic,id,ie,if,ig,0
0,3,0,0,7,6,0,0,0,8
0,x,0,1,7,0,0,0,0,1
0,n,0,c,g,0,0,0,0,n
1,l,0,la,0,lb,0,lc,0,8
0,0,8,1,8,0,0,0,0,3
0,2,8,0,8,2,0,0,0,3
2,3,0,0,2,0,0,0,0,3
2,0,2,0,l,la,0,0,0,0
1,l,la,0,lb,lc,0,0,0,0
1,f,0,0,7,3,2,0,0,0
1,f,0,0,e,f,0,0,0,0
@COLORS
0 30 30 30
1 0 128 128
2 0 255 0
3 255 0 0
4 255 128 0
5 255 255 0
6 128 0 128
7 128 128 128
8 255 255 255
9 128 128 255
Here are some patterns:
Small hybrid-type loop:

Code: Select all

x = 6, y = 7, rule = Novoloop
.G$AFGADG$G4.A$D4.D$A4.G$A4.A$GI2AGD!
A loop that gets bigger with each replication:

Code: Select all

x = 11, y = 10, rule = Novoloop
DGADGADGAD$A8.G$G8.A$D8.D$A8.G$G8.A$D8.D$A8.G$G8.A$DAGIAGDAGFG!
Smallest loop that actually does anything:

Code: Select all

x = 5, y = 4, rule = Novoloop
.DGAD$.A2.G$.G2.A$GFAGI!
Incidentally, this is what happens to a 3x3 loop:

Code: Select all

x = 4, y = 3, rule = Novoloop
GFGA$.A.A$.AGI!
Last edited by A for awesome on October 2nd, 2014, 6:22 pm, edited 2 times in total.
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
dvgrn
Moderator
Posts: 7280
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Novoloop, yet another loop rule

Post by dvgrn » October 1st, 2014, 6:11 pm

A for awesome wrote:I finished the rule table!
...
Here are some patterns:
Small hybrid-type loop...
Interesting how messy the replication pattern gets after a while, considering how organized it is when it's starting out. Some descendant loops even manage to get themselves offset a short distance diagonally, so that they can then expand right through the middle of quiescent parts of the grid of older loops.

Can you explain a little more about the principles behind this design -- and/or maybe your motivation for creating "yet another loop rule"? I'm curious about what else can be done with this reasonably simple nine-state no-sheathing loop rule; the patterns so far seem to be simple counterclockwise loops, but there's a left-turn state also, and your original cross-shaped loop seems to be able to use it successfully now.

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 2nd, 2014, 6:26 pm

This 4x4 loop regularizes rather quickly, into 3 puffer-like formations:

Code: Select all

x = 4, y = 5, rule = Novoloop
2ADG$A2.A$G2.A$FAGD$G!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

bprentice
Posts: 719
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

Re: Novoloop, yet another loop rule

Post by bprentice » October 2nd, 2014, 7:27 pm

And this one:

Code: Select all

x = 87, y = 41, rule = Novoloop
16A55.16A$A14.D55.A14.A$A14.G55.A14.A$A14.A55.A14.A$A14.F55.A14.A$A
14.G55.B14.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A
70.A$A14.A70.D$A14.D70.G$A14.G70.A$A14.A70.F$A14.F70.G$A14.G70.A$A14.
A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A
14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$
A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A$A14.A70.A
$AGFAGD31AGFAGD7AGFAGD33A$50.G!
Brian Prentice

User avatar
alexv
Posts: 136
Joined: February 3rd, 2014, 11:14 am

Re: Novoloop, yet another loop rule

Post by alexv » October 3rd, 2014, 7:05 am

For me the motivation was quite natural, because after looking on shapeloop I myself was interested,
if it is possible to get rid of some auxiliary states used as support for carriers of information about shape,
but now I did not quite understand about new version of Novoloop rule: if loops with different shapes
are still possible or only rectangles are available now?

Alexander

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 3rd, 2014, 10:50 am

alexv wrote:but now I did not quite understand about new version of Novoloop rule: if loops with different shapes
are still possible or only rectangles are available now?
Loops of all types are still available---they're just harder to make, so I haven't posted any recently. I shall post one shortly. (Namely this afternoon.)
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 3rd, 2014, 1:19 pm

Zigzag loop:

Code: Select all

x = 21, y = 21, rule = Novoloop
5.GADGAD$5.E4.G$5.A4.A$5.G4.E$B4.D4.G$FG4A4.ADGAEG$A14.A$G14.D$F14.G$
A14.A$AGDAGE9.DGAEGA$5.A14.D$5.G14.G$5.D14.A$5.A14.D$5.GDAGEA4.DAGEAG
$10.G4.G$10.D4.A$10.A4.E$10.G4.G$10.D2AGDAG!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 3rd, 2014, 6:05 pm

This loop has much more interesting behavior than it would w/o the extra 9-states (try removing them):

Code: Select all

x = 14, y = 14, rule = Novoloop
GADGADGADGAIG$D11.A$A11.I$G11.G$D11.A$A11.I$G11.G$D11.A$A11.I$G11.G$D
11.A$A11.F$GDAGDAGEAGIAG$13.G!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Novoloop, yet another loop rule

Post by A for awesome » October 5th, 2014, 9:47 am

Very long and narrow loop has interesting behavior, it may or may not recover after replication:

Code: Select all

x = 9, y = 191, rule = Novoloop
3ADGAIGA$A7.F$A7.G$A7.A$A7.D$A7.G$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$
A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A
$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.
A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A
7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$
A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A
$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.
A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A
7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$
A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A
$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.
A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A
7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$A7.A$
A7.A$A7.A$A7.A$A7.A$A7.A$G7.A$D7.A$A7.A$G7.A$F7.A$A7.A$GIAGIAGDA$G!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

Post Reply