Make a Spaceship With an Adjustable Slope

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » March 20th, 2022, 10:28 am

dvgrn wrote:
March 16th, 2022, 2:59 pm
Then maybe the next task is to figure out a reasonable switching system, for a regular single-channel construction arm to have room to send off that series of *WWSes, then have all future single-channel gliders pass through into a G-to-MWSS converter with 90-tick repeat time, that feeds MWSSes into the 135-degree MWSS-to-G.

Could do this by putting in a Snarkmaker recipe to divert the single-channel stream into the G-to-MWSS, but it's probably a little bit more efficient to build the Snark ahead of time and just send an elbow-destroy recipe to make the switch -- something like this:...
Another nice thing about the latter approach is that it is easy to switch back from single-channel MWSSs to firing slow *WSSs again by catching an emitted MWSS with a glider, and converting the resulting debris back into an elbow:

Code: Select all

x = 1251, y = 1135, rule = LifeHistory
131.2A27.6B$130.A.A26.6B$124.2A4.A29.6B$122.A2.A2.2A.4A24.6B$122.2A.A
.A.A.A2.A25.6B$125.A.ABABAB26.6B$125.A.AB2AB28.6B$126.AB.2B28.6B$129.
3B28.6B$129.4B6.2A18.6B$127.3B2AB6.A20.6B$127.3B2AB3.BA.A19.6B$125.
10B.B2A21.6B$124.13B22.6B$123.14B23.6B$122.15B22.6B$121.4B2.8B25.6B$
120.4B5.6B24.6B$119.4B4.9B24.6B$119.3B5.2A4.4B22.6B$119.2B7.A5.4B22.
6B$119.B5.3A7.4B20.6B$125.A10.4B20.6B$137.4B18.6B$138.4B18.6B$139.4B
16.6B$140.4B16.6B$141.4B14.6B$142.4B14.6B$143.4B12.6B$144.4B12.6B$
145.4B10.6B$146.4B10.6B$147.4B8.6B$148.4B8.6B$149.4B6.6B$150.4B6.6B$
151.4B4.6B$152.4B4.6B$153.4B2.6B$154.4B2.6B$155.10B$156.10B$157.8B$
158.8B$159.6B$160.6B$159.6B$160.6B$159.8B$160.8B$159.10B$160.10B$159.
6B2.4B$160.6B2.4B$159.6B4.4B$160.6B4.4B$159.6B6.4B$160.6B6.4B$159.6B
8.4B$160.6B8.4B$159.6B10.4B$160.6B10.4B$159.6B12.4B$160.6B12.3B$159.
6B14.2B$160.6B14.B$159.6B$160.6B$159.6B$160.6B20.2A$159.6B21.A.A$160.
6B20.A$159.6B$160.6B$159.6B$160.6B$159.6B$160.6B$159.6B$160.6B$159.6B
$160.6B$159.6B$160.6B$159.6B$160.6B$159.6B$160.6B$159.6B$160.6B$159.
6B$160.6B$159.6B$160.6B$159.6B$160.6B$129.2A28.6B$128.B2AB28.6B$129.
2B21.B6.6B$124.B3.2B21.3B6.6B$123.2AB.4B18.6B4.7B10.2A$123.2A8B10.4B
2.7B3.8B9.A$124.B.B2A6B2.2B2.27B5.BA.A$127.2A40B4.B2A$127.40BA2B2.2B$
123.25B2A16BABAB2.2B$123.25B2A16BABAB2.2B$122.2A43BA2B2.2B$122.2A14B.
B5.25B2.3B$123.B.11B11.B2.20B2.4B$125.10B15.19B4.4B$126.12B12.17B7.4B
$125.14B11.18B7.4B$9.A13.2B101.13B12.5B.11B8.4B10.2A$9.3A10.3B101.13B
12.4B2.12B8.4B9.A$12.A8.4B103.2B.8B19.4B.2BA3B9.4B10.A$11.2A7.4B108.
7B24.BABA2B3.2A5.4B5.5A$11.5B3.4B109.7B25.2A2B5.A5.4B4.A$13.3B2.4B
111.6B34.A.AB.7B2.B3A$3.2A7.9B112.7B34.2AB.7B3.2B.A$3.A8.8B113.8B35.
12B4A$2A.A.B3.10B115.8B34.7B2A3BAB2.2A$A2.3AB.2B2A7B115.8B34.7B2A2B.B
3A2.A$.2A2.BA3B2A7B114.6B2.B2A32.10B3.B.A.2A$3.4A12B114.7B.BA.A30.8B
8.A$3.A.2B3.7B.B2A113.6B4.A29.9B7.2A$4.3AB2.7B.BA.A112.6B4.2A27.4B2.
3B$7.A4.4B5.A112.6B32.4B3.5B$2.5A5.4B5.2A110.8B30.4B7.2A$2.A10.4B115.
8B30.4B8.A$4.A9.4B114.9B28.4B10.3A$3.2A10.4B113.9B27.4B13.A$16.4B111.
10B26.4B$17.4B110.3B2A5B25.4B$18.4B103.2A3.4B2A5B24.4B$126.A3.11B23.
4B$126.A.A12B22.4B$127.2A2.8B23.4B$132.7B22.4B$134.5B21.4B$134.5B20.
4B$133.7B18.4B$133.6B18.4B6.2A3.2A$134.5B17.4B6.B2AB.B2AB$134.8B13.4B
4.B3.3B2.2B$134.10B10.4B3.4B.3B.3B$133.12B8.13B.7B5.2A$133.12B6.23B5.
A$133.12B2.8B.19B.BA.A$132.13B.29B.B2A$132.45B$130.47B$128.4BA44B$
127.4BABA42B$127.4BABA40B$128.4BA43B$130.5B3.2B.B4.25B3.2A$132.B7.3B
3.B4.20B3.A$131.3B5.B2AB2.2A7.15B6.3A$130.B2AB6.2A3.A12.11B8.A$131.2A
13.3A8.13B$148.A7.15B$155.16B$154.17B$155.16B$156.13B$156.5B2A2B.3B$
158.3B2A2B2.4B$156.10B3.2A$156.4B3D2B4.A$157.4BD3B5.3A$157.2B3D2B8.A$
157.7B$158.6B$158.6B$159.5B$159.5B$158.6B$158.7B$142.2A15.6B$143.A8.B
4.8B$143.A.AB3.4B.6B2A2B$144.2AB.13B2A2B$146.18B$146.17B$147.13B$149.
12B$151.10B$151.11B$152.2B.7B$152.11B$151.11B$151.11B$151.11B$151.B3D
4B2.B2A$151.2BD4B3.BA.A$151.2B3D2B6.A$151.6B7.2A$150.7B$149.8B$148.8B
$148.8B$146.2AB2.6B$145.A.AB.7B$145.A4.6B$144.2A4.6B$150.6B$149.8B$
150.8B$149.9B$149.9B$149.10B$149.5B2A3B$149.5B2A4B3.2A$149.11B3.A$
149.12BA.A$103.B47.8B2.2A$103.2B46.7B$103.3B45.6B$103.4B40.2A2.6B$
104.4B38.A.A9B$105.4B37.A3.9B$106.4B35.2A3.9B$107.4B39.9B$108.4B38.9B
$109.4B36.11B$110.4B10.A24.11B$111.4B7.3A24.12B$112.4B5.A21.B4.14B$
113.4B4.2A19.3B3.10B.4B$106.2A6.9B17.6B2.16B$107.A7.6B13.4B2.7B.16B$
107.A.2A5.6B3.B2.2B2.29B2.B2A$108.A2.A4.45B2.BA.A$109.2AB3.46B5.A$
110.14B2A13B2A21B4.2A$111.13B2A13B2A21B$112.51B$112.17B.B5.26B$113.
15B10.B2.20B$113.15B12.20B.B.B$114.13B12.24B2A$116.13B10.24B2A$115.8B
4.2A.A6.2AB2.5B2.12B.2B$115.6B6.2AB3A3.A.AB2.4B3.13B$115.5B8.B4.A2.A
14.11B.B$115.B.B9.2A.3A2.2A14.12B2A$116.3B9.A.A20.10B.B2A$115.B2AB9.A
.A18.2AB.6B4.B$116.2A11.A18.A.AB.4B$148.A5.5B$147.2A8.2A$157.A$158.3A
$160.A294$664.3A$664.A$665.A20$687.2A$687.A.A$687.A21$709.3A$709.A$
710.A25$737.2A$737.A.A$737.A51$789.3A$789.A$790.A22$815.A$814.2A$814.
A.A54$870.2A$869.2A$871.A78$950.2A$949.2A$951.A21$973.2A$972.2A$974.A
55$1029.3A$1029.A$1030.A21$1052.3A$1052.A$1053.A55$1109.3A$1109.A$
1110.A21$1133.2A$1132.2A$1134.A55$1190.2A$1189.2A$1191.A27$1219.2A$
1219.A.A$1219.A27$1249.A$1248.2A$1248.A.A! [[ X -460 Y -480 STEP 15 ZOOM 1.5 ]]
dvgrn wrote:
March 18th, 2022, 12:10 pm
Does the universal helix burn-then-stop-burning-then-burn-again design allow for getting a target dropped safely off to one side at the halfway point, so that just one blinker puffer can be used? I guess the problem there is to get the timing right for re-lighting the fuse.
Good idea, timing will probably be a bit confusing, but avoiding building a second blinker puffer is definitely worth it. The specific stopping mechanism in the linked design is pretty good, but an extra *WSSs would have to be synchronised to deal with the escaping glider, so I looked for some other options. Here are some stopping reactions that don't have any escaping gliders (the left one is the best):

Code: Select all

x = 237, y = 49, rule = B3/S23
14bo99bo39bo39bo39bo$7b3o3b3o91b3o3b3o31b3o3b3o31b3o3b3o31b3o3b3o$bo5b
o2bo2bob2o84bo5bo2bo2bob2o24bo5bo2bo2bob2o24bo5bo2bo2bob2o24bo5bo2bo2b
ob2o$3o4bo6b3o83b3o4bo6b3o23b3o4bo6b3o23b3o4bo6b3o23b3o4bo6b3o$ob2o3bo
3bo2b3o83bob2o3bo3bo2b3o23bob2o3bo3bo2b3o23bob2o3bo3bo2b3o23bob2o3bo3b
o2b3o$b3o3bo6b2o85b3o3bo6b2o25b3o3bo6b2o25b3o3bo6b2o25b3o3bo6b2o$b3o3b
o2bo90b3o3bo2bo30b3o3bo2bo30b3o3bo2bo30b3o3bo2bo$b3o3b2o92b3o3b2o32b3o
3b2o32b3o3b2o32b3o3b2o$b2o10bo87b2o10bo27b2o10bo27b2o10bo27b2o10bo$12b
3o97b3o37b3o37b3o37b3o$12bob2o96bob2o36bob2o36bob2o36bob2o$6b3o4b3o90b
3o4b3o30b3o4b3o30b3o4b3o30b3o4b3o$13b3o97b3o37b3o37b3o37b3o$13b3o97b3o
37b3o37b3o37b3o$13b2o98b2o38b2o38b2o38b2o$6b3o97b3o37b3o37b3o37b3o4$6b
3o97b3o37b3o37b3o37b3o3$193b3o$6b3o97b3o37b3o37b3o4bo2bo29b3o$13bo179b
o$12b3o99bo38bo39bo38b3o$11b2obo98b3o36b3o39bobo35bo2bo$6b3o2b3o92b3o
4bob2o29b3o2b2obo31b3o37b3o3bo$11b3o100b3o34b3o78bo$12b2o100b2o35b3o
79bobo$151b3o$6b3o97b3o37b3o3b2o32b3o37b3o4$6b3o97b3o37b3o37b3o37b3o3$
7bo99bo39bo39bo39bo$6bobo97bobo37bobo37bobo37bobo$5bo2bo97bo2bo36bo2bo
36bo2bo36bo2bo$6b2o99b2o38b2o38b2o38b2o3$5bo103bo39bo38bo39bo$5b2o101b
2o38b2o37b2o38b2o$4bobo101bobo37bobo36bobo37bobo$9b2o93b2o38b2o$9b2o
93b2o38b2o!
I haven't found any simple ways of relighting the fuse with *WSSs for the bomb fuse, but there is a very simple way of relighting the fuse with a single MWSS if we're willing to tolerate the regular 2c/3 fuse:

Code: Select all

x = 6, y = 61, rule = B3/S23
3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o4$3o3$3bo$2b3o$2bob
2o$3b3o$3b3o$3b2o!
I think we want to fire that MWSS (or some alternative fuse-lighting salvo) right behind the original fuse, so that it follows behind. That way, the closer fuse-halting spot should be almost exactly half as far away as the further fuse-halting spot, and hopefully the error is some fixed amount which we can easily fix.

It may be the case that the above doesn't work, and the fuse-lighting salvo needs to be fired before the fuse is lit. In that case, we'd need a fuse lighting recipe which contains only *WSSs that are sufficiently separated from the blinker trail such that the fuse will pass by them, which seems quite difficult to find.
dvgrn wrote:
March 18th, 2022, 12:10 pm
I thought that both parities of LWSS and MWSS were available -- the only missing case was one of the HWSS parities.
Did you try the recipes in the code here?
Yep, I saw those recipes, but they are all for 135-degree *WSSs, and I think we want 45-degree *WSSs recipes for this project.

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make a Spaceship With an Adjustable Slope

Post by dvgrn » March 20th, 2022, 11:37 am

Goldtiger997 wrote:
March 20th, 2022, 10:28 am
Another nice thing about the latter approach is that it is easy to switch back from single-channel MWSSs to firing slow *WSSs again by catching an emitted MWSS with a glider, and converting the resulting debris back into an elbow...
True enough! I had somehow managed to not think of that. I'm not sure that feature will be needed, but it's good to have it in the toolbox.

As a corollary of that, though, the signal crossing that enables that feature will place some slightly annoying constraints on the single-channel stream. We'll have to add delays in the single-channel stream whenever a collision would otherwise happen -- might add five or ten percent to the length of the final recipe. We haven't done any "constrained single-channel" like that recently. Would have needed it for the Square Orthogonoid, which is still a fun project but it hasn't gotten finished yet.

Maybe it would make sense to design a G-to-MWSS that doesn't have that signal-crossing feature, just in case it's actually a bug and not a feature:

Code: Select all

x = 363, y = 256, rule = LifeHistory
39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B194.
6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B
194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$
38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.
6B$38.6B194.6B$39.6B194.6B$38.6B194.6B$22.B16.6B177.B16.6B$22.2B14.6B
178.2B14.6B$19.2A.3B14.6B174.2A.3B14.6B$19.2A.4B12.6B175.2A.4B12.6B$
23.4B12.6B178.4B12.6B$24.4B10.6B180.4B10.6B$25.4B10.6B180.4B10.6B$26.
4B8.6B182.4B8.6B$27.4B8.6B182.4B8.6B$28.4B6.6B184.4B6.6B$29.4B6.6B
184.4B6.6B$30.4B4.6B186.4B4.6B$31.4B4.6B186.4B4.6B$32.4B2.6B188.4B2.
6B$33.4B2.6B188.4B2.6B$34.10B190.10B$35.10B190.10B$36.8B192.8B$37.8B
192.8B$38.6B194.6B$39.6B194.6B$38.6B194.6B$39.6B194.6B$38.8B192.8B$
39.8B192.8B$38.10B190.10B$39.10B190.10B$38.6B2.4B188.6B2.4B$39.6B2.4B
188.6B2.4B$38.6B4.4B186.6B4.4B$39.6B4.4B186.6B4.4B$38.6B6.4B184.6B6.
4B$39.6B6.4B184.6B6.4B$38.6B8.4B182.6B8.4B$39.6B8.4B182.6B8.4B$38.6B
10.4B180.6B10.4B$39.6B10.4B180.6B10.4B$38.6B12.4B178.6B12.4B$39.6B12.
4B178.6B12.4B$38.6B14.4B176.6B14.4B$39.6B14.4B176.6B14.4B$38.6B16.4B
174.6B16.4B$39.6B16.4B174.6B16.4B$38.6B18.4B172.6B18.4B$39.6B18.4B
172.6B18.4B$38.6B20.4B170.6B20.4B$39.6B20.4B170.6B20.4B$38.6B22.4B
168.6B22.4B$39.6B22.4B168.6B22.4B$38.6B24.4B166.6B24.4B$39.6B24.4B
166.6B24.4B$38.6B26.4B164.6B26.4B$39.6B26.4B164.6B26.4B$38.6B28.4B
162.6B28.4B$39.6B28.4B162.6B28.4B$38.6B30.4B160.6B30.4B$39.6B30.4B
160.6B30.4B$38.6B32.4B158.6B32.4B$39.6B32.4B158.6B32.4B$38.6B34.4B
156.6B34.4B$39.6B34.4B156.6B34.4B$38.6B36.4B154.6B36.4B$39.6B36.4B
154.6B36.4B$38.6B38.4B152.6B38.4B$39.6B38.4B152.6B38.4B$38.6B40.4B
150.6B40.4B$39.6B40.4B150.6B40.4B$38.6B42.4B148.6B42.4B$39.6B42.4B
148.6B42.4B$38.6B44.4B146.6B44.4B$39.6B44.4B146.6B44.4B$8.2A28.6B46.
4B114.2A28.6B46.4B$7.B2AB28.6B46.4B112.B2AB28.6B46.4B$8.2B21.B6.6B48.
4B112.2B21.B6.6B48.4B$3.B3.2B21.3B6.6B48.4B106.B3.2B21.3B6.6B48.4B$2.
2AB.4B18.6B4.7B10.2A37.4B104.2AB.4B18.6B4.7B10.2A37.4B$2.2A8B10.4B2.
7B3.8B9.A39.4B103.2A8B10.4B2.7B3.8B9.A39.4B$3.B.B2A6B2.2B2.27B5.BA.A
40.4B103.B.B2A6B2.2B2.27B5.BA.A40.4B$6.2A40B4.B2A42.4B105.2A40B4.B2A
42.4B$6.40BA2B2.2B45.4B104.40BA2B2.2B45.4B$2.25B2A16BABAB2.2B46.4B99.
25B2A16BABAB2.2B46.4B$2.25B2A16BABAB2.2B47.4B98.25B2A16BABAB2.2B47.4B
$.2A43BA2B2.2B48.4B96.2A43BA2B2.2B48.4B$.2A14B.B5.25B2.3B48.4B95.2A
14B.B5.25B2.3B48.4B$2.B.11B11.B2.20B2.4B48.4B95.B.11B11.B2.20B2.4B48.
4B$4.10B15.19B4.4B48.4B96.10B15.19B4.4B48.4B$5.12B12.17B7.4B48.4B96.
12B12.17B7.4B48.4B$4.14B11.18B7.4B48.4B94.14B11.18B7.4B48.4B$5.13B12.
5B.11B8.4B10.2A36.4B94.13B12.5B.11B8.4B10.2A36.4B$5.13B12.4B2.12B8.4B
9.A38.4B93.13B12.4B2.12B8.4B9.A38.4B$7.2B.8B19.4B.2BA3B9.4B10.A37.4B
94.2B.8B19.4B.2BA3B9.4B10.A37.4B$11.7B24.BABA2B3.2A5.4B5.5A38.4B97.7B
24.BABA2B3.2A5.4B5.5A38.4B$11.7B25.2A2B5.A5.4B4.A44.4B96.7B25.2A2B5.A
5.4B4.A44.4B$12.6B34.A.AB.7B2.B3A42.4B96.6B34.A.AB.7B2.B3A42.4B$12.7B
34.2AB.7B3.2B.A42.4B95.7B34.2AB.7B3.2B.A42.4B$12.8B35.12B4A43.4B94.8B
35.12B4A43.4B$13.8B34.7B2A3BAB2.2A42.4B94.8B34.7B2A3BAB2.2A42.4B$13.
8B34.7B2A2B.B3A2.A42.4B93.8B34.7B2A2B.B3A2.A42.4B$12.6B2.B2A32.10B3.B
.A.2A43.4B91.6B2.B2A32.10B3.B.A.2A43.4B$12.7B.BA.A30.8B8.A47.4B90.7B.
BA.A30.8B8.A47.4B$13.6B4.A29.9B7.2A48.4B90.6B4.A29.9B7.2A48.4B$13.6B
4.2A27.4B2.3B59.4B89.6B4.2A27.4B2.3B59.4B$13.6B32.4B3.5B58.4B88.6B32.
4B3.5B58.4B$12.8B30.4B7.2A59.4B86.8B30.4B7.2A59.4B$11.8B30.4B8.A61.4B
84.8B30.4B8.A61.4B$11.9B28.4B10.3A59.4B83.9B28.4B10.3A59.4B$11.9B27.
4B13.A60.4B82.9B27.4B13.A60.4B$10.10B26.4B76.4B13.2D65.10B26.4B76.4B
13.2D$10.3B2A5B25.4B78.4B11.D.D65.3B2A5B25.4B78.4B11.D.D$4.2A3.4B2A5B
24.4B80.4B4.2D4.D61.2A3.4B2A5B24.4B80.4B4.2D4.D$5.A3.11B23.4B82.4B.D
2.D2.2D.4D58.A3.11B23.4B82.4B.D2.D2.2D.4D$5.A.A12B22.4B84.4B2D.D.D.D.
D2.D58.A.A12B22.4B84.4B2D.D.D.D.D2.D$6.2A2.8B23.4B86.4B2.D.DBDBDB61.
2A2.8B23.4B86.4B2.D.DBDBDB$11.7B22.4B88.4B.D.DB2DB67.7B22.4B88.4B.D.D
B2DB$13.5B21.4B90.4B.DB.2B70.5B21.4B90.4B.DB.2B$13.5B20.4B92.4B3.3B
69.5B20.4B92.4B3.3B$12.7B18.4B94.4B2.4B6.2D59.7B18.4B94.4B2.4B6.2D$
12.6B18.4B6.2A3.2A83.6B2DB6.D60.6B18.4B6.2A3.2A83.6B2DB6.D$13.5B17.4B
6.B2AB.B2AB83.5B2DB3.BD.D61.5B17.4B6.B2AB.B2AB83.5B2DB3.BD.D$13.8B13.
4B4.B3.3B2.2B84.10B.B2D62.8B13.4B4.B3.3B2.2B84.10B.B2D$13.10B10.4B3.
4B.3B.3B84.13B64.10B10.4B3.4B.3B.3B84.13B$12.12B8.13B.7B5.2A75.14B63.
12B8.13B.7B5.2A75.14B$12.12B6.23B5.A75.15B63.12B6.23B5.A75.15B$12.12B
2.8B.19B.BA.A74.4B2.8B65.12B2.8B.19B.BA.A74.4B2.8B$11.13B.29B.B2A74.
4B5.6B64.13B.29B.B2A74.4B5.6B$11.45B75.4B4.9B63.45B75.4B4.9B$9.47B74.
4B5.2D4.4B60.47B74.4B5.2D4.4B$7.4BA44B73.4B7.D5.4B57.4BA44B73.4B7.D5.
4B$6.4BABA42B73.4B5.3D7.4B55.4BABA42B73.4B5.3D7.4B$6.4BABA40B74.4B6.D
10.4B54.4BABA40B74.4B6.D10.4B$7.4BA43B71.4B19.4B54.4BA43B71.4B19.4B$
9.5B3.2B.B4.25B3.2A70.4B21.4B55.5B3.2B.B4.25B3.2A70.4B21.4B$11.B7.3B
3.B4.20B3.A70.4B23.4B56.B7.3B3.B4.20B3.A70.4B23.4B$10.3B5.B2AB2.2A7.
15B6.3A66.4B25.4B54.3B5.B2AB2.2A7.15B6.3A66.4B25.4B$9.B2AB6.2A3.A12.
11B8.A65.4B27.4B52.B2AB6.2A3.A12.11B8.A65.4B27.4B$10.2A13.3A8.13B72.
4B29.4B52.2A13.3A8.13B72.4B29.4B$27.A7.15B70.4B31.4B68.A7.15B70.4B31.
4B$34.16B69.4B33.4B74.16B69.4B33.4B$33.17B68.4B35.4B72.17B68.4B35.4B$
34.16B67.4B37.4B72.16B67.4B37.4B$35.13B68.4B39.4B72.13B68.4B39.4B$35.
5B2A2B.3B67.4B41.3B72.5B2A2B.3B67.4B41.3B$37.3B2A2B2.4B64.4B43.2B74.
3B2A2B2.4B64.4B43.2B$35.10B3.2A63.4B45.B72.10B3.2A63.4B45.B$35.9B4.A
63.4B119.4B3D2B4.A63.4B$36.8B5.3A59.4B121.4BD3B5.3A59.4B$36.7B8.A58.
4B122.2B3D2B8.A58.4B$36.7B66.4B123.7B66.4B$37.6B7.A57.4B125.6B65.4B$
37.6B6.A.A55.4B126.6B64.4B$38.5B6.A.A54.4B128.5B63.4B$38.6B4.2A.3A51.
4B129.5B62.4B$37.6B6.B4.A49.4B129.6B61.4B$37.7B3.B2AB3A49.4B130.7B59.
4B$38.8B.B2A.A50.4B132.6B58.4B$38.10B53.4B133.6B57.4B$37.3B2A6B52.4B
134.6B56.4B$31.2A5.2B2A6B51.4B134.8B54.4B$32.A5.10B50.4B134.8B54.4B$
32.A.AB2.11B48.4B135.9B52.4B$33.2AB.12B47.4B136.9B51.4B$35.15B45.4B
136.10B50.4B$35.16B43.4B137.3B2A5B49.4B$35.16B.2B39.4B132.2A3.4B2A5B
48.4B$35.18B2A37.4B134.A3.11B47.4B$34.17B.B2A36.4B135.A.A12B46.4B$33.
4B2.8B.4B.B36.4B137.2A2.8B47.4B$32.4B4.7B42.4B143.7B46.4B$31.4B5.6B
42.4B145.6B45.4B$30.4B6.4B43.4B146.6B2.2A40.4B$29.4B5.A3B44.4B146.9BA
.A38.4B$28.4B5.A.AB44.4B146.9B3.A37.4B$27.4B6.A.A44.4B147.9B3.2A35.4B
$26.4B8.A44.4B148.9B39.4B$25.4B6.3A44.4B149.9B38.4B$24.4B7.A45.4B149.
11B36.4B$23.4B53.4B150.11B24.A10.4B$22.4B53.4B150.12B24.3A7.4B$21.4B
53.4B150.14B4.B21.A5.4B$20.4B53.4B150.4B.10B3.3B19.2A4.4B$19.4B53.4B
150.16B2.6B17.9B6.2A$18.4B53.4B151.16B.7B2.4B13.6B7.A$17.4B53.4B150.
2AB2.29B2.2B2.B3.6B5.2A.A$16.4B53.4B150.A.AB2.45B4.A2.A$3.2A10.4B53.
4B151.A5.46B3.B2A$4.A9.4B53.4B151.2A4.21B2A13B2A14B$2.A10.4B53.4B158.
21B2A13B2A13B$2.5A5.4B5.2A46.4B158.51B$7.A4.4B5.A46.4B160.26B5.B.17B$
4.3AB2.7B.BA.A45.4B162.20B2.B10.15B$3.A.2B3.7B.B2A45.4B160.B.B.20B12.
15B$3.4A12B46.4B160.2A24B12.13B$.2A2.BA3B2A7B45.4B161.2A24B10.13B$A2.
3AB.2B2A7B44.4B163.2B.12B2.5B2.B2A6.A.2A4.8B$2A.A.B3.10B43.4B166.13B
3.4B2.BA.A3.3AB2A6.6B$3.A8.8B41.4B165.B.11B14.A2.A4.B8.5B$3.2A7.9B39.
4B165.2A12B14.2A2.3A.2A9.B.B$13.3B2.4B37.4B166.2AB.10B20.A.A9.3B$11.
5B3.4B35.4B168.B4.6B.B2A18.A.A9.B2AB$11.2A7.4B33.4B176.4B.BA.A18.A11.
2A$12.A8.4B31.4B175.5B5.A$9.3A10.4B29.4B176.2A8.2A$9.A13.4B27.4B178.A
$24.4B25.4B176.3A$25.4B23.4B177.A$26.4B21.4B$27.4B19.4B$28.4B6.A10.4B
$29.4B5.3A7.4B$30.4B7.A5.4B$31.4B5.2A4.4B$32.4B4.9B$33.4B5.6B$34.4B2.
8B$35.15B$36.14B$37.13B$38.10B.B2A$40.3B2AB3.BA.A$40.3B2AB6.A$42.4B6.
2A$42.3B$39.AB.2B$38.A.AB2AB$38.A.ABABAB$35.2A.A.A.A.A2.A$35.A2.A2.2A
.4A$37.2A4.A$43.A.A$44.2A!
The red Snark in these "irreversible switchover" designs is just built by a standard Snarkmaker, whenever all the *WSS-shooting is done.

Really the geometry seems a lot better on these. Is there some obvious reason why these won't work and the other design is needed, or was I just being silly when I didn't make these versions first? In other words, is there really a use case for being able to switch from TRANSMIT SINGLE CHANNEL mode back into FIRE mode? These designs don't have any awkward restrictions on the single-channel streams they can transmit.

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make an Omniship

Post by Goldtiger997 » March 22nd, 2022, 4:26 am

dvgrn wrote:
March 20th, 2022, 11:37 am
As a corollary of that, though, the signal crossing that enables that feature will place some slightly annoying constraints on the single-channel stream. We'll have to add delays in the single-channel stream whenever a collision would otherwise happen -- might add five or ten percent to the length of the final recipe...
In other words, is there really a use case for being able to switch from TRANSMIT SINGLE CHANNEL mode back into FIRE mode?
I have a few possible uses in mind, but I hadn't thought about the constraints and increases to the recipe size that the signal crossing would create, which definitely would be nice to avoid. Before I elaborate further, here's a pattern which should hopefully make it easier to visualise the stuff I'm going to discuss, because it's all a bit confusing:

Code: Select all

x = 274, y = 4031, rule = LifeHistory
262.2D$262.D.D4.2D$264.D4.2D$264.2D$266.D$264.3D$263.D$263.2D1783$
223.D38.2D$222.D.D37.D.D4.2D$221.D2.D39.D4.2D$222.2D40.2D$266.D$264.
3D$263.D$263.2D2$225.2D$225.2D2$214.2D$214.2D2$207.2D$206.D2.D$206.D
2.D$207.2D1768$230.A$223.3A3.3A$217.A5.A2.A2.A.2A$216.3A4.A6.3A$216.A
.2A3.A3.A2.3A$217.3A3.A6.2A$217.3A3.A2.A$217.3A3.2A$217.2A10.A$228.3A
$228.A.2A$222.3A4.3A$229.3A$229.3A$229.2A$222.3A4$222.3A4$222.3A$229.
A$228.3A$227.2A.A$222.3A2.3A$227.3A$228.2A2$222.3A4$222.3A3$223.A$
222.A.A$221.A2.A$222.2A6$225.2A$225.2A24$232.A$231.3A$230.2A.A$230.3A
$230.3A$231.2A4$264.A$263.3A$262.2A.A$262.3A$263.2A28$265.A$264.3A$
263.2A.A$263.3A$264.2A37$231.3A$231.A2.A$231.A$231.A3.A$231.A$232.A.A
94$238.A$237.3A$236.2A.A$236.3A$237.2A7$.A$.2A$A.A44$269.3A$269.A2.A$
269.A$269.A3.A$269.A$270.A.A40$269.3A$268.A2.A$271.A$267.A3.A$271.A$
268.A.A40$269.3A$269.A2.A$269.A$269.A3.A$269.A$270.A.A44$214.A$213.3A
$213.A.2A$214.3A$214.3A$214.2A!
#C [[ ZOOM 1 X 120 Y 1800 TRACK 0 -0.5 STEP 11 ]] 
#C [[ PASTET 4095 PASTE 17.C38.2C$16.C.C37.C.C4.2C$15.C2.C39.C4.2C$16.2C40.2C$60.C$58.3C$57.C$57.2C2$19.2C7.2B$19.2C7.2B2$8.2C$8.2C2$.2C$C2.C$C2.C$.2C! 206 1790 ]]
#C [[ PASTET 7550 PASTE 10B$B2C7B$BCBC4B2C$3BC4B2C$3B2C5B$5BC4B$3B3C4B$2BC7B$2B2C6B! 261 0 ]]
#C [[ LABEL 290 3600 2 "Fuse-stopping MWSS" ]]
#C [[ LABEL 330 3930 2 "Single channel stream" ]]
#C [[ LABEL 270 4030 2 "Fuse-lighting MWSS" ]]
#C [[ LABEL 170 3730 2 "Slow *WSS salvo #2" ]]
#C [[ LABEL 330 3700 2 "Slow *WSS salvo #1" ]]
The main use I was thinking of is the firing of the "fuse-lighting *WSS" -- that is the *WSS which is used to relight the blinker trail after it has been halted by the "fuse-stopping *WSS". In order for the further fuse-halting site to be twice as far away as the closer fuse-halting site, we need the fuse-lighting *WSS to be fired at a very similar time as the original lighting of the fuse. At the same time, to achieve near-c/2 speeds, we want to perform the original fuse-lighting after all the single-channel MWSSs have been fired. Therefore, the fuse-lighting *WSS will be fired after all the single-channel MWSSs are fired, which is why it would be nice to change from TRANSMIT SINGLE CHANNEL mode back into FIRE mode.

However, there are other ways of getting the fuse-lighting *WSS fired. If we're doing the original fuse light using a glider which travels around the orthogonoid using one-time turners and splitters, like in the Speed Demonoid, then we could make that TRIGGER glider also fire the fuse-lighting *WSS. Something to note is that this approach isn't particularly compatible with the fuse-lighting *WSS reaction I posted earlier (3rd code box). That reaction is dirty, so we'd need to fire a few more *WSSs to clean it up, making the "fuse-lighting *WSS" more of a "fuse-lighting salvo". Building a freeze-dried *WSS salvo seems like it would be expensive and ugly.

To avoid that issue, we need a fuse-lighting reaction which is clean, and only requires one *WSS. This is possible if we do some preparation earlier:

Code: Select all

x = 35, y = 51, rule = B3/S23
30bo$30bo$30bo2$30bo$30bo$30bo2$30bo$30bo$30bo2$30bo$30bo$30bo2$30bo$
30bo$30bo2$30bo$29bobo$28bo2bo$29b2o6$32b2o$32b2o2$21b2o$21b2o2$14b2o$
13bo2bo$13bo2bo$14b2o2$20b3o$19bo2bo$22bo$18bo3bo$22bo$19bobo!
The preparation would be done by Slow *WSS Salvo #2 (See the first pattern in this post). Slow *WSS Salvo #2 is fired before the single-channel stream of MWSSs is, so no switching mechanism is required. However, there is quite a big constraint on Slow *WSS Salvo #2 (which also applies to #1) which is that none of the *WSSs can be on lanes where the passing fuse would interact with them on its way to the fuse-stopping *WSS. I think the best way to deal with that constraint is to build the seed in the previous codebox with slow gliders from the side, which in turn are made using the fire recipes from this post.

Something else that Slow *WSS Salvo #2 needs is a method of moving a block from one side of the blinker trail to the other (once again without using any lanes that will interact with the passing fuse). Here's a method which just barely works:

Code: Select all

x = 112, y = 379, rule = B3/S23
96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$
96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$
96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o2$13b3o2$96b3o2$13b3o2$96b3o2$
13b3o2$96b3o2$13b3o2$96b3o2$13b3o2$96b3o2$13b3o2$96b3o2$13b3o2$96b3o4$
96b3o4$96b3o2$2o$2o$96b3o4$96b3o4$96b3o3$5bo$4b3o89b3o$3b2obo$3b3o$3b
3o$3b3o90b3o$4b2o3$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$
96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o$22bo$21b3o$21bob2o$22b3o71b3o
$22b3o$22b2o2$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o3$23b3o$23bo2bo
69b3o$23bo$23bo3bo$23bo$24bobo69b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o
4$96b3o$25b3o$25bo2bo$25bo$25bo70b3o$26bobo3$96b3o4$96b3o4$96b3o4$96b
3o4$96b3o4$96b3o$88bo$87b3o$86b2obo$86b3o7b3o$86b3o$86b3o$87b2o$96b3o$
105bo$104b3o$104bob2o$96b3o6b3o$105b3o$105b2o2$96b3o4$96b3o4$96b3o4$
96b3o4$96b3o4$96b3o3$106b3o$96b3o7bo2bo$106bo$106bo3bo$106bo$96b3o8bob
o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o4$96b3o$108b3o$108bo2bo$108bo$96b
3o9bo$109bobo$96bobo$95bo2bo$95bo2bo$95bobo3$94bo$94bobo$94bobo!
All things considered, I think the best option is to not use a G-to-MWSS with a signal crossing + switching mechanism, and instead fire the fuse-lighting *WSS using a TRIGGER glider into a clean fuse-lighting seed, as outlined above.

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make an Omniship

Post by dvgrn » March 22nd, 2022, 7:56 am

No time today to do comparison-shopping for the least unreasonable design, but I'm interested in
Goldtiger997 wrote:
March 22nd, 2022, 4:26 am
That reaction is dirty, so we'd need to fire a few more *WSSs to clean it up, making the "fuse-lighting *WSS" more of a "fuse-lighting salvo". Building a freeze-dried *WSS salvo seems like it would be expensive and ugly.
versus
Goldtiger997 wrote:
March 22nd, 2022, 4:26 am
I think the best way to deal with that constraint is to build the seed in the previous codebox with slow gliders from the side, which in turn are made using the fire recipes from this post.
Seems like there's some hidden expensive-and-ugly in the slow^2-ness of those "slow gliders from the side", which might make up for the expensive-and-ugly freeze-dried *WSSes (since there will only have to be a few *WSSes, not sure how many but it's not a lot).

I guess it depends on whether there's an out-of-the-way location for the freeze-dried *WSS salvo seed or not -- I haven't looked through everything and worked that out yet. The seed itself will only cost about half a dozen small common still lifes per *WSS (slow *WSS salvos are way cheaper to build seeds for than synchronized *WSS salvos) so it's not going to be a huge complicated seed.

That said, if we have to build a seed^2 -- a seed all outside of the construction lanes, that builds and triggers a slow-*WSS-salvo seed _on_ the construction lanes after everything else has safely gone by -- then that's still "trivial", but it definitely is getting to be super-expensive-and-ugly.

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make an Omniship

Post by Goldtiger997 » March 22nd, 2022, 10:52 am

dvgrn wrote:
March 22nd, 2022, 7:56 am
Seems like there's some hidden expensive-and-ugly in the slow^2-ness of those "slow gliders from the side", which might make up for the expensive-and-ugly freeze-dried *WSSes (since there will only have to be a few *WSSes, not sure how many but it's not a lot).
I haven't been able to find anything better than 5 *WSSs (including the fuse-lighting *WSS):

Code: Select all

x = 26, y = 175, rule = B3/S23
12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$12b3o4$
12b3o4$12b3o4$12b3o4$12b3o3$15bo$14b3o$14bob2o$15b3o$15b3o$15b2o31$12b
3o$12bo2bo$12bo$12bo$13bobo26$12b3o$12bo2bo$12bo$12bo$13bobo39$22b3o$
22bo2bo$22bo$22bo$23bobo2$2bo$b3o$2obo$3o$b2o!
Still, that's not a large number, so you could be right that this method will be comparably efficient to the "slow gliders from the side" method. However, I think the number of slow^2 gliders will also be quite small. I wasn't clear in my previous post, but the only part of the constellation I was envisioning being built by gliders from the side is the loaf and the pi-supressing block (multiple different still-life/blinker placements can replace that block, which should help reduce the recipe). The pond and the other block can be made directly with a *WSS slow salvo pretty easily. Furthermore, we might be able to find a more direct method of placing the loaf by trying to convert known edgy glider slow salvo recipes for loaves into *WSS slow salvo recipes by replacing the "activation glider" with an "activation *WSS", and trying to build the activated constellation with *WSSs.

Additionally, there's another advantage of the "slow gliders from the side"-involving method which I neglected to mention in my previous post. It stems from the fact that ideally, the fuse-lighting *WSS should be fired before the original fuse lighting takes place. To see why compare the following three patterns, which are the same, except that the placement of the fuse-lighting and fuse-stopping *WSSs differs between them:

Code: Select all

x = 458, y = 120, rule = B3/S23
73bo209bo159bo$72b3o3b3o201b3o3b3o151b3o3b3o$71b2obo2bo2bo5bo194b2obo
2bo2bo5bo144b2obo2bo2bo5bo$71b3o6bo4b3o193b3o6bo4b3o143b3o6bo4b3o$71b
3o2bo3bo3b2obo193b3o2bo3bo3b2obo143b3o2bo3bo3b2obo$72b2o6bo3b3o195b2o
6bo3b3o145b2o6bo3b3o$77bo2bo3b3o200bo2bo3b3o150bo2bo3b3o$79b2o3b3o202b
2o3b3o152b2o3b3o$74bo10b2o197bo10b2o147bo10b2o$73b3o207b3o157b3o$72b2o
bo206b2obo156b2obo$72b3o4b3o200b3o4b3o150b3o4b3o$72b3o207b3o157b3o$72b
3o207b3o157b3o$73b2o208b2o158b2o$79b3o207b3o157b3o4$79b3o207b3o157b3o$
284bo159bo$283b3o157b3o$283bob2o156bob2o$79b3o202b3o2b3o152b3o2b3o$
284b3o157b3o$284b2o158b2o2$79b3o207b3o157b3o3$74bo$73b3o3b3o207b3o157b
3o$73bob2o$74b3o$74b3o$74b2o3b3o207b3o157b3o4$79b3o207b3o157b3o4$79b3o
207b3o157b3o4$79b3o207b3o157b3o4$79b3o207b3o157b3o4$79b3o207b3o157b3o
4$79b3o207b3o157b3o4$79b3o207b3o157b3o4$79b3o207b3o157b3o4$79b3o207b3o
157b3o3$80bo209bo159bo$79bobo207bobo157bobo$2o77bo2bo127b2o77bo2bo77b
2o77bo2bo$2o78b2o128b2o78b2o78b2o78b2o5$83b2o208b2o158b2o$77b2o3b2o
203b2o3b2o153b2o3b2o$77b2o5bo202b2o5bo152b2o5bo9$82bo209bo$81b3o207b3o
$80b2obo206b2obo$80b3o207b3o$80b3o207b3o$81b2o208b2o16$452bo$451b3o$
451bob2o$452b3o$452b3o$452b2o! [[ ZOOM 1 STEP 20 Y -200 ]]
Comparing the second and third patterns, we can see that moving the fuse-lighting *WSS backwards by a small distance makes the distance to the further fuse-stopping location a fair bit more than double the distance to the closer fuse-stopping location. Comparing the first and second patterns, we can see that moving the fuse-stopping *WSS backwards has the same effect. It turns out that in order to make the two faraway targets equal distances away, we want the fuse-stopping *WSS to be right behind the blinker puffer and the fuse-lighting *WSS to be fired just a bit before the original fuse lighting (not at the same time to correct for the fact that the fuse-stopping *WSS is behind the blinker puffer, and not in line). However, unless we make the fuse-stopping *WSS as part of the blinker puffer seed, the gap between the blinker puffer and the fuse-stopping *WSS is going to be quite a lot bigger than depicted in the above patterns, as it takes a while to fire an *WSS from a single channel construction arm. To correct for that, the fuse-lighting *WSS should be fired a somewhat significant amount of time before the original fuse lighting takes place.

This is a problem for the freeze-dried *WSS salvo fuse-lighting method, because many of the *WSSs in the salvo overlap with the envelope of the fuse, meaning that they have to be fired after the fuse is lit, which will lead to the distance to the far target being bigger than double the distance to the near target by some significant amount. Fortunately, this error is constant (I think), so we could fix it by adding a bunch of pushes to Slow *WSS Salvo #2, or by adding a pull (maybe utilising an 180-degree *WSS) to Slow *WSS Salvo #1. Still, that's an extra expense which the "slow gliders from the side"-involving method (I need a better name) avoids.

Also, it's nice to use the bomb fuse rather than the regular 2c/3 fuse, but that's a very minor advantage in the scheme of things.

Edit: I made a slow *WSS salvo recipe for the fuse-lighting seed, starting from a block on each side of the fuse. I only needed to use one "glider from the side", so the cost came out to a pretty cheap 18 *WSSs:

Code: Select all

x = 46, y = 536, rule = LifeHistory
17.4BA3B$18.3BA3B$17.4BA2B$18.6B$17.4BA3B$18.3BA3B$17.4BA2B$18.6B$17.
4BA3B$18.3BA3B$17.4BA2B$18.6B$17.4BA3B$18.3BA3B$17.4BA2B$18.6B$17.4BA
3B$18.3BA3B$17.4BA2B$18.6B$17.4BA3B$18.3BA3B$17.4BA2B$18.6B$17.4BA3B$
18.3BA3B$17.4BA2B$18.6B$17.4BA3B$18.3BA3B$17.4BA2B2$21.D$20.D.D$19.D
2.D$20.2D5$34.2A$23.2D9.2A$23.2D$7.2A$7.2A3$9.2D$9.2D2$2.2D$.D2.D$.D
2.D$2.2D27.3A$30.A2.A$33.A$33.A$30.A.A16$29.3A$28.A2.A$31.A$31.A$28.A
.A28$32.3A$31.A2.A$34.A$34.A$31.A.A16$37.3A$37.A2.A$37.A$37.A3.A$37.A
$38.A.A25$32.3A$31.A2.A$34.A$30.A3.A$30.A3.A$34.A$31.A.A28$41.3A$41.A
2.A$41.A$41.A3.A$41.A3.A$41.A$42.A.A13$37.A$36.3A$36.A.2A$37.3A$37.3A
$37.3A$37.2A25$35.3A$35.A2.A$35.A$35.A$36.A.A16$30.3A$29.A2.A$32.A$
28.A3.A$32.A$29.A.A25$35.3A$35.A2.A$35.A$35.A3.A$35.A3.A$35.A$36.A.A
27$29.A$28.3A$27.2A.A$27.3A$28.2A24$31.3A$30.A2.A$33.A$33.A$30.A.A22$
7.A$6.3A$6.A.2A$7.3A$7.3A$7.2A15$2.A$.3A$.A.2A$2.3A$2.3A$2.3A$2.2A10$
7.A$6.3A$5.2A.A$5.3A$5.3A$5.3A$6.2A11$3A$A2.A$A$A3.A$A$.A.A16$10.3A$
10.A2.A$10.A$10.A3.A$10.A3.A$10.A$11.A.A17$4.3A$4.A2.A$4.A$4.A$5.A.A
53$8.3C$8.C2.C$8.C$8.C3.C$8.C$9.C.C!

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make an Omniship

Post by Goldtiger997 » March 25th, 2022, 9:22 am

I realised that the current fuse-lighting plan has the nice property that we only need one trigger glider (unlike the two in the speed demonoid). Delaying the trigger glider increases the distance to both of the faraway targets, and appropriately, the distance change for the further target is twice as large as the distance change for the close target:

Code: Select all

x = 253, y = 624, rule = LifeHistory
234.D$233.D.D$232.D2.D$233.2D6$236.2D$236.2D2$225.2D$225.2D2$218.2D$
217.D2.D$217.D2.D$218.2D62$34.D$33.D.D$32.D2.D$33.2D3$39.2D$39.D.D$
40.2D$36.2D$36.2D2$25.2D$25.2D2$18.2D$17.D2.D$17.D2.D$18.2D424$35.A4.
3A192.A4.3A$34.3A3.A2.A190.3A3.A2.A$27.3A3.2A.A3.A186.3A3.2A.A3.A$27.
A2.A2.3A4.A3.A182.A2.A2.3A4.A3.A$27.A5.3A4.A186.A5.3A4.A$27.A3.A.3A5.
A.A183.A3.A.3A5.A.A$27.A3.A.2A192.A3.A.2A$27.A6.2A191.A6.2A$28.A.A8.
3A186.A.A8.3A$39.A2.A196.A2.A$34.A4.A194.A4.A$34.A4.A3.A190.A4.A3.A$
34.A4.A3.A190.A4.A3.A$39.A199.A$34.A5.A.A191.A5.A.A$34.A199.A$34.A
199.A2$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$34.A199.A$34.A4.3A
192.A4.3A$38.A2.A196.A2.A$34.A6.A192.A6.A$34.A2.A3.A192.A2.A3.A$34.A
6.A192.A6.A$38.A.A197.A.A$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$
34.A199.A$34.A199.A2$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$34.A
199.A$34.A199.A2$34.A199.A$33.A.A197.A.A$32.A2.A196.A2.A$33.2A198.2A
6$36.2A198.2A$36.2A198.2A9$23.2A4.2A192.2A4.2A$23.2A4.2A192.2A4.2A$
51.2A198.2A$51.2A198.2A3$30.2A198.2A$30.2A198.2A3$.2A198.2A$A.A197.A.
A$.A16.2A181.A16.2A$17.A2.A196.A2.A$18.A.A197.A.A$19.A199.A3$16.2A
198.2A$15.A.A197.A.A$14.A.A197.A.A$15.A199.A3$5.E$5.2E$4.E.E8$195.E$
195.2E$194.E.E!
#C [[ STEP 11 ZOOM -2.5 Y -200 ]]
#C [[ PASTET 1000 PASTE 17.C$16.C.C$15.C2.C$16.2C3$22.2C$22.C.C$23.2C$19.2C$19.2C2$8.2C$8.2C2$.2C$C2.C$C2.C$.2C! 17 80 ]]
#C [[ PASTET 1200 PASTE 17.C$16.C.C$15.C2.C$16.2C3$22.2C$22.C.C$23.2C$19.2C$19.2C2$8.2C$8.2C2$.2C$C2.C$C2.C$.2C! 217 0 ]]
The other thing the trigger glider needs to do is destroy the main orthogonoid circuitry. Before we run GoL_destroy, we need to decide on the main circuitry. Is there something better than this?:

Code: Select all

x = 654, y = 684, rule = LifeHistory
187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B
$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$156.2A28.6B$155.B2A
B28.6B$156.2B21.B6.6B$151.B3.2B21.3B6.6B$150.2AB.4B18.6B4.7B10.2A$
150.2A8B10.4B2.7B3.8B9.A$151.B.B2A6B2.2B2.27B5.BA.A$154.2A40B.2B.B2A$
154.40BA6B$150.25B2A16BABA5B$150.25B2A16BABA5B$149.2A43BA6B$149.2A14B
.B5.30B$150.B.11B11.B2.20B2.4B$152.10B15.19B4.4B$153.12B12.17B7.4B$
152.14B11.18B7.4B$153.13B12.5B.11B8.4B10.2A$153.13B12.4B2.12B8.4B9.A$
155.2B.8B19.4B.2BA3B9.4B10.A$159.7B24.BABA2B3.2A5.4B5.5A$159.7B25.2A
2B5.A5.4B4.A$160.6B27.B6.A.AB.7B2.B3A$160.7B34.2AB.7B3.2B.A$160.8B35.
12B4A$161.8B34.7B2A3BAB2.2A$161.8B34.7B2A2B.B3A2.A$160.6B2.B2A32.10B
3.B.A.2A$160.7B.BA.A30.8B8.A$161.6B4.A29.9B7.2A$161.6B4.2A27.4B2.3B$
161.6B32.4B3.5B$160.8B30.4B7.2A$159.8B30.4B8.A$159.9B28.4B10.3A$159.
9B27.4B13.A$158.10B26.4B$158.3B2A5B25.4B$152.2A3.4B2A5B24.4B$153.A3.
11B23.4B$153.A.A12B22.4B$154.2A2.8B23.4B$159.7B22.4B$161.5B21.4B$161.
5B20.4B$160.7B18.4B$160.6B18.4B6.2A3.2A$161.5B17.4B6.B2AB.B2AB$161.8B
13.4B4.B3.3B2.2B$161.10B10.4B3.4B.3B.3B$160.12B8.13B.7B5.2A$159.13B6.
23B5.A$160.12B2.8B.19B.BA.A$159.13B.29B.B2A$159.45B$157.47B$155.4BA
44B$154.4BABA42B$154.4BABA40B$155.4BA43B$157.5B3.2B.B4.25B3.2A$159.B
7.3B3.B4.20B3.A$158.3B5.B2AB2.2A7.15B6.3A$157.B2AB6.2A3.A12.11B8.A$
158.2A13.3A8.13B$175.A7.15B$182.16B$181.17B$182.16B$183.13B$183.5B2A
2B.3B$185.3B2A2B2.4B$183.10B3.2A$183.9B4.A$184.8B5.3A$184.7B8.A$184.
7B$185.6B7.A$185.6B6.A.A$186.5B6.A.A$186.6B4.2A.3A$185.6B6.B4.A$185.
7B3.B2AB3A$186.8B.B2A.A452.2A$186.10B456.2A$185.3B2A6B323.2A$179.2A5.
2B2A6B316.2A3.2B2AB$180.A5.10B315.B2AB2.4B$180.A.AB2.11B315.2B3.6B.B
21.A$181.2AB.12B316.2B2.10B19.3A$183.15B314.2B2A11B22.A15.2B$183.16B
310.B.3B2A12B20.2A14.4B$183.16B.2B306.2A18B20.B15.4B$183.18B2A305.2AB
.15B19.3B14.6B2.B$182.17B.B2A306.B3.15B16.6B13.2B2A2B.B2A$181.4B2.8B.
4B.B311.17B11.10B8.B.3BA2BA3B2A$180.4B4.7B319.19B2.2B3.11B2.2B3.7B2A
2B.2B$179.4B5.6B320.31B2A22B$178.4B6.4B323.7B.22B2A21B$177.4B5.A3B
325.6B2.45B$176.4B5.A.AB325.7B2.45B$175.4B6.A.A326.6B4.45B$174.4B8.A
328.6B10.4B.13B4.B2.13B.B$173.4B6.3A329.5B12.3B5.B.7B7.12B.B2A$172.4B
7.A330.6B13.4B19.14B2A$171.4B339.6B15.2A20.11B.2B$170.4B339.7B15.A21.
11B57.4B$169.4B340.7B16.3A19.10B56.4B$168.4B341.8B17.A23.6B2.2A51.4B$
167.4B342.8B40.9BA.A49.4B$166.4B344.8B38.9B3.A48.4B$165.4B345.3B2A2B
39.9B3.2A46.4B$164.4B344.5B2A2B39.9B50.4B$163.4B345.13B35.9B31.A17.4B
6.2A3.2A$162.4B345.16B32.11B30.3A14.4B6.B2AB.B2AB$161.4B345.17B32.11B
33.A12.4B4.B3.3B2.2B$160.4B347.16B31.12B32.2A11.4B3.4B.3B.3B$159.4B
349.15B30.14B4.B26.B11.13B.7B5.2A$158.4B351.13B30.4B.10B3.3B23.3B9.
23B5.A$157.4B353.11B30.16B2.6B19.6B4.8B.19B.BA.A$156.4B354.13B27.17B.
7B2.4B10.10B2.29B.B2A$155.4B355.14B25.4B.29B2.2B3.44B$154.5B.B.B.B.B.
B.B.B269.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.16B24.4B2.41B2A37B$152.21B268.87B23.4B3.41B2A37B$149.B.22B
268.87B22.4B3.21B2A57B$148.2A23B268.86B22.4B4.21B2A55B$148.2A23B268.
88B19.4B4.81B$149.B2.21B268.87B2A17.4B6.26B5.B.13B4.25B3.2A$151.2B2.B
.B.B.B.B.B.B.B.B269.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.16BABA16.4B8.20B2.B13.B.7B4.B4.20B3.A$151.2AB
359.4B2A9BA2B14.4B6.B.B.20B27.2A7.15B6.3A$150.A.A361.2BA2BA3B.6B14.4B
6.2A24B26.A12.11B8.A$148.3A.A.A360.2B2A4B3.3B14.4B7.2A24B27.3A8.13B$
147.A5.2A361.6B20.4B9.2B.12B2.5B2.B2A27.A7.15B$147.2A366.6B20.4B12.
13B3.4B2.BA.A33.16B$515.6B19.4B11.B.11B14.A32.17B$516.6B6.A10.4B11.2A
12B14.2A32.16B$514.9B5.3A7.4B12.2AB.10B49.13B$514.2A4.4B7.A5.4B14.B4.
6B.B2A47.5B2A2B.3B$515.A5.4B5.2A4.4B22.4B.BA.A48.3B2A2B2.4B$512.3A7.
4B4.9B21.5B5.A48.8B3.2A$512.A10.4B5.6B22.2A8.2A46.8B4.A$524.4B2.8B23.
A56.8B5.3A$525.15B18.3A57.7B8.A$526.14B18.A59.7B$527.13B79.6B7.A$528.
10B.B2A77.6B6.A.A$530.3B2AB3.BA.A77.5B6.A.A$530.3B2AB6.A77.6B4.2A.3A$
532.4B6.2A75.6B6.B4.A$532.3B84.7B3.B2AB3A$529.AB.2B86.8B.B2A.A$528.A.
AB2AB85.10B$528.A.ABABAB83.3B2A6B$525.2A.A.A.A.A2.A75.2A5.2B2A6B$525.
A2.A2.2A.4A76.A5.10B$527.2A4.A80.A.AB2.11B$533.A.A79.2AB.12B$534.2A
81.15B$617.16B$617.16B.2B$617.18B2A$616.17B.B2A$615.4B2.8B.4B.B$614.
4B4.7B$613.4B5.6B$612.4B6.4B$611.4B5.A3B$610.4B5.A.AB$609.4B6.A.A$
608.4B8.A$607.4B6.3A$606.4B7.A$605.4B$604.4B$603.4B$602.4B$601.4B$
600.4B$599.4B$598.4B$597.4B$596.4B$587.2A6.4B5.2A$588.A5.5B5.A3.A$
588.A.AB.7B.BA.A2.A.A$589.2AB.7B.B2A3.A.A$591.5BA5B4.2A.3A$591.4BABA
4B5.B4.A$591.4BABA6B.B2AB3A$593.3BA7B.B2A.A$594.12B$594.13B$594.13B2A
$595.12BA.A$593.10B.2B.B.A2.A$593.2A3.6B4.2A.A.A$594.A2.6B6.A2.2A$
591.3A4.6B3.A.A$591.A5.6B4.2A$598.6B$597.6B$598.6B$597.6B$598.6B$597.
6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$
597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B170$36.
2A559.6B$36.2A560.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B
$598.6B$597.6B$598.6B$597.6B$598.6B$38.6B553.6B$37.6B555.6B$38.6B553.
6B$37.6B555.6B28.2A$38.6B553.6B28.B2AB$37.6B555.6B6.B21.2B$38.6B553.
6B6.3B21.2B3.B$37.6B542.2A10.7B4.6B18.4B.B2A$38.6B542.A9.8B3.7B2.4B
10.8B2A$37.6B543.A.AB5.27B2.2B2.6B2AB.B$38.6B543.2AB.2B.40B2A$37.6B
546.6BA40B$38.6B545.5BABA16B2A25B$37.6B546.5BABA16B2A25B$38.6B545.6BA
43B2A$37.6B545.30B5.B.14B2A$38.6B543.4B2.20B2.B11.11B.B$37.6B543.4B4.
19B15.10B$38.6B541.4B7.17B12.12B$37.6B541.4B7.18B11.14B$38.6B527.2A
10.4B8.11B.5B12.13B$37.6B529.A9.4B8.12B2.4B12.13B$38.6B526.A10.4B9.3B
A2B.4B19.8B.2B$37.6B527.5A5.4B5.2A3.2BABAB24.7B$38.6B531.A4.4B5.A5.2B
2A25.7B$37.6B529.3AB2.7B.BA.A6.B27.6B$38.6B527.A.2B3.7B.B2A34.7B$37.
6B528.4A12B35.8B$38.6B525.2A2.BA3B2A7B34.8B$37.6B525.A2.3AB.2B2A7B34.
8B$38.6B524.2A.A.B3.10B32.2AB2.6B$37.6B528.A8.8B30.A.AB.7B$38.6B527.
2A7.9B29.A4.6B$37.6B42.4B492.3B2.4B27.2A4.6B$38.6B42.4B489.5B3.4B32.
6B$37.6B44.4B488.2A7.4B30.8B$38.6B44.4B488.A8.4B30.8B$7.2A28.6B46.4B
484.3A10.4B28.9B$6.B2AB28.6B46.4B483.A13.4B27.9B$7.2B21.B6.6B48.4B
497.4B26.10B$2.B3.2B21.3B6.6B48.4B497.4B25.5B2A3B$.2AB.4B18.6B4.7B10.
2A37.4B497.4B24.5B2A4B3.2A$.2A8B10.4B2.7B3.8B9.A39.4B497.4B23.11B3.A$
2.B.B2A6B2.2B2.27B5.BA.A40.4B497.4B22.12BA.A$5.2A40B4.B2A42.4B497.4B
23.8B2.2A$5.40BA2B2.2B45.4B497.4B22.7B$.25B2A16BABAB2.2B46.4B497.4B
21.5B$.25B2A16BABAB2.2B47.4B497.4B20.5B$2A43BA2B2.2B48.4B497.4B18.7B$
2A14B.B5.25B2.3B48.4B484.2A3.2A6.4B18.6B$.B.11B11.B2.20B2.4B48.4B482.
B2AB.B2AB6.4B17.5B$3.10B15.19B4.4B48.4B482.2B2.3B3.B4.4B13.8B$4.12B
12.17B7.4B48.4B482.3B.3B.4B3.4B10.10B$3.14B11.18B7.4B48.4B473.2A5.7B.
13B8.12B$4.13B12.5B.11B8.4B10.2A36.4B473.A5.23B6.13B$4.13B12.4B2.12B
8.4B9.A38.4B472.A.AB.19B.8B2.12B$6.2B.8B19.4B.2BA3B9.4B10.A37.4B472.
2AB.29B.13B$10.7B24.BABA2B3.2A5.4B5.5A38.4B473.45B$10.7B25.2A2B5.A5.
4B4.A44.4B472.47B$11.6B34.A.AB.7B2.B3A42.4B471.44BA4B$11.7B34.2AB.7B
3.2B.A42.4B471.42BABA4B$11.8B35.12B4A43.4B472.40BABA4B$12.8B34.7B2A3B
AB2.2A42.4B469.43BA4B$12.8B34.7B2A2B.B3A2.A42.4B468.2A3.25B4.B.2B3.5B
$11.6B2.B2A32.10B3.B.A.2A43.4B468.A3.20B4.B3.3B7.B$11.7B.BA.A30.8B8.A
47.4B464.3A6.15B7.2A2.B2AB5.3B$12.6B4.A29.9B7.2A48.4B463.A8.11B12.A3.
2A6.B2AB$12.6B4.2A27.4B2.3B59.4B470.13B8.3A13.2A$12.6B32.4B3.5B58.4B
468.15B7.A$11.8B30.4B7.2A59.4B467.16B$10.8B30.4B8.A61.4B466.17B$10.9B
28.4B10.3A59.4B465.16B$10.9B27.4B13.A60.4B466.13B$9.10B26.4B76.4B13.
2D450.3B.2B2A5B$9.3B2A5B25.4B78.4B11.D.D448.4B2.2B2A3B$3.2A3.4B2A5B
24.4B80.4B4.2D4.D450.2A3.10B$4.A3.11B23.4B82.4B.D2.D2.2D.4D447.A4.9B$
4.A.A12B22.4B84.4B2D.D.D.D.D2.D444.3A5.8B$5.2A2.8B23.4B86.4B2.D.DBDBD
B446.A8.7B$10.7B22.4B88.4B.D.DB2DB456.7B$12.5B21.4B90.4B.DB.2B449.A7.
6B$12.5B20.4B92.4B3.3B447.A.A6.6B$11.7B18.4B94.4B2.4B6.2D438.A.A6.5B$
11.6B18.4B6.2A3.2A83.6B2DB6.D437.3A.2A4.6B$12.5B17.4B6.B2AB.B2AB83.5B
2DB3.BD.D436.A4.B6.6B$12.8B13.4B4.B3.3B2.2B84.10B.B2D438.3AB2AB3.7B$
12.10B10.4B3.4B.3B.3B84.13B442.A.2AB.8B$11.12B8.13B.7B5.2A75.14B446.
10B$11.12B6.23B5.A75.15B121.2A323.6B2A3B$11.12B2.8B.19B.BA.A74.4B2.8B
122.B2A2B3.2A316.6B2A2B5.2A$10.13B.29B.B2A74.4B5.6B123.4B2.B2AB315.
10B5.A$10.45B75.4B4.9B96.A21.B.6B3.2B315.11B2.BA.A$8.47B74.4B5.2D4.4B
93.3A19.10B2.2B316.12B.B2A$6.4BA44B73.4B7.D5.4B74.2B15.A22.11B2A2B
314.15B$5.4BABA42B73.4B5.3D7.4B72.4B14.2A20.12B2A3B.B310.16B$5.4BABA
40B74.4B6.D10.4B71.4B15.B20.18B2A306.2B.16B$6.4BA43B71.4B19.4B66.B2.
6B14.3B19.15B.B2A305.2A18B$8.5B3.2B.B4.25B3.2A70.4B21.4B64.2AB.2B2A2B
13.6B16.15B3.B306.2AB.17B$10.B7.3B3.B4.20B3.A70.4B23.4B63.2A3BA2BA3B.
B8.10B11.17B311.B.4B.8B2.4B$9.3B5.B2AB2.2A7.15B6.3A66.4B25.4B63.2B.2B
2A7B3.2B2.11B3.2B2.19B319.7B4.4B$8.B2AB6.2A3.A12.11B8.A65.4B27.4B65.
22B2A31B320.6B5.4B$9.2A13.3A8.13B72.4B29.4B65.21B2A22B.7B323.4B6.4B$
26.A7.15B70.4B31.4B64.45B2.6B325.3BA5.4B$33.16B69.4B33.4B63.45B2.7B
325.BA.A5.4B$32.17B68.4B35.4B61.45B4.6B326.A.A6.4B$33.16B67.4B37.4B
58.B.13B2.B4.13B.4B10.6B328.A8.4B$34.13B68.4B39.4B56.2AB.12B7.7B.B5.
3B12.5B329.3A6.4B$34.5B2A2B.3B67.4B41.3B56.2A14B19.4B13.6B330.A7.4B$
36.3B2A2B2.4B64.4B43.2B57.2B.11B20.2A15.6B339.4B$34.10B3.2A63.4B45.4B
57.11B21.A15.7B339.4B$34.4B3D2B4.A63.4B47.4B56.10B19.3A16.7B340.4B$
35.4BD3B5.3A59.4B49.4B51.2A2.6B23.A17.8B341.4B$35.2B3D2B8.A58.4B51.4B
49.A.A9B40.8B342.4B$35.7B66.4B53.4B48.A3.9B38.8B344.4B$36.6B65.4B55.
4B46.2A3.9B39.2B2A3B345.4B$36.6B64.4B57.4B50.9B39.2B2A5B344.4B$37.5B
63.4B46.2A3.2A6.4B17.A31.9B35.13B345.4B$37.5B62.4B46.B2AB.B2AB6.4B14.
3A30.11B32.16B345.4B$36.6B61.4B48.2B2.3B3.B4.4B12.A33.11B32.17B345.4B
$36.7B59.4B50.3B.3B.4B3.4B11.2A32.12B31.16B347.4B$37.6B58.4B43.2A5.7B
.13B11.B26.B4.14B30.15B349.4B$37.6B57.4B45.A5.23B9.3B23.3B3.10B.4B30.
13B351.4B$37.6B56.4B46.A.AB.19B.8B4.6B19.6B2.16B30.11B353.4B$36.8B54.
4B48.2AB.29B2.10B10.4B2.7B.17B27.13B354.4B$35.8B54.4B51.44B3.2B2.29B.
4B25.14B355.4B$35.9B52.4B52.37B2A41B2.4B24.16B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B269.B.B.B.B.B.B.B.5B$
35.9B51.4B53.37B2A41B3.4B23.87B268.21B$34.10B50.4B55.57B2A21B3.4B22.
87B268.22B.B$34.3B2A5B49.4B58.55B2A21B4.4B22.86B268.23B2A$28.2A3.4B2A
5B48.4B57.81B4.4B19.88B268.23B2A$29.A3.11B47.4B58.2A3.25B4.13B.B5.26B
6.4B17.2A87B268.21B2.B$29.A.A12B46.4B60.A3.20B4.B4.7B.B13.B2.20B8.4B
16.ABA16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B269.B.B.B.B.B.B.B.B.B2.2B$30.2A2.8B47.4B58.3A6.15B7.2A27.
20B.B.B6.4B14.2BA9B2A4B359.B2A$35.7B46.4B59.A8.11B12.A26.24B2A6.4B14.
6B.3BA2BA2B361.A.A$36.6B45.4B68.13B8.3A27.24B2A7.4B14.3B3.4B2A2B360.A
.A.3A$36.6B2.2A40.4B68.15B7.A27.2AB2.5B2.12B.2B9.4B20.6B361.2A5.A$35.
9BA.A38.4B69.16B33.A.AB2.4B3.13B12.4B20.6B366.2A$34.9B3.A37.4B70.17B
32.A14.11B.B11.4B19.6B$34.9B3.2A35.4B71.16B32.2A14.12B2A11.4B10.A6.6B
$34.9B39.4B74.13B49.10B.B2A12.4B7.3A5.9B$34.9B38.4B75.3B.2B2A5B47.2AB
.6B4.B14.4B5.A7.4B4.2A$33.11B36.4B74.4B2.2B2A3B48.A.AB.4B22.4B4.2A5.
4B5.A$33.11B24.A10.4B75.2A3.8B48.A5.5B21.9B4.4B7.3A$32.12B24.3A7.4B
77.A4.8B46.2A8.2A22.6B5.4B10.A$31.14B4.B21.A5.4B75.3A5.8B56.A23.8B2.
4B$30.4B.10B3.3B19.2A4.4B76.A8.7B57.3A18.15B$29.16B2.6B17.9B6.2A78.7B
59.A18.14B$29.16B.7B2.4B13.6B7.A71.A7.6B79.13B$27.2AB2.29B2.2B2.B3.6B
5.2A.A70.A.A6.6B77.2AB.10B$26.A.AB2.45B4.A2.A71.A.A6.5B77.A.AB3.B2A3B
$26.A5.46B3.B2A70.3A.2A4.6B77.A6.B2A3B$25.2A4.21B2A13B2A14B70.A4.B6.
6B75.2A6.4B$31.21B2A13B2A13B72.3AB2AB3.7B84.3B$30.51B75.A.2AB.8B86.2B
.BA$31.26B5.B.17B79.10B85.B2ABA.A$32.20B2.B10.15B80.6B2A3B83.BABABA.A
$29.B.B.20B12.15B80.6B2A2B5.2A75.A2.A.A.A.A.2A$28.2A24B12.13B81.10B5.
A76.4A.2A2.A2.A$28.2A24B10.13B82.11B2.BA.A80.A4.2A$29.2B.12B2.5B2.B2A
6.A.2A4.8B81.12B.B2A79.A.A$31.13B3.4B2.BA.A3.3AB2A6.6B80.15B81.2A$29.
B.11B14.A2.A4.B8.5B79.16B$28.2A12B14.2A2.3A.2A9.B.B76.2B.16B$28.2AB.
10B20.A.A9.3B76.2A18B$29.B4.6B.B2A18.A.A9.B2AB75.2AB.17B$36.4B.BA.A
18.A11.2A77.B.4B.8B2.4B$34.5B5.A116.7B4.4B$34.2A8.2A116.6B5.4B$35.A
128.4B6.4B$32.3A131.3BA5.4B$32.A134.BA.A5.4B$168.A.A6.4B$169.A8.4B$
170.3A6.4B$172.A7.4B$181.4B$182.4B$183.4B$184.4B$185.4B$186.4B$187.4B
$188.4B$189.4B$190.4B$184.2A5.4B6.2A$181.A3.A5.5B5.A$180.A.A2.A.AB.7B
.BA.A$180.A.A3.2AB.7B.B2A$178.3A.2A4.5BA5B$177.A4.B5.4BABA4B$178.3AB
2AB.6BABA4B$180.A.2AB.7BA3B$184.12B$183.13B$181.2A13B$180.A.A12B$177.
A2.A.B.2B.10B$176.A.A.2A4.6B3.2A$176.2A2.A6.6B2.A$180.A.A3.6B4.3A$
181.2A4.6B5.A$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B
$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.
6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B30$188.3A$187.A2.A$190.A$
186.A3.A$190.A$187.A.A!

User avatar
AlbertArmStain
Posts: 135
Joined: January 28th, 2022, 7:18 pm

Re: Make an Omniship

Post by AlbertArmStain » March 25th, 2022, 3:34 pm

Goldtiger997 wrote:
March 25th, 2022, 9:22 am
I realised that the current fuse-lighting plan has the nice property that we only need one trigger glider (unlike the two in the speed demonoid). Delaying the trigger glider increases the distance to both of the faraway targets, and appropriately, the distance change for the further target is twice as large as the distance change for the close target:

Code: Select all

x = 253, y = 624, rule = LifeHistory
234.D$233.D.D$232.D2.D$233.2D6$236.2D$236.2D2$225.2D$225.2D2$218.2D$
217.D2.D$217.D2.D$218.2D62$34.D$33.D.D$32.D2.D$33.2D3$39.2D$39.D.D$
40.2D$36.2D$36.2D2$25.2D$25.2D2$18.2D$17.D2.D$17.D2.D$18.2D424$35.A4.
3A192.A4.3A$34.3A3.A2.A190.3A3.A2.A$27.3A3.2A.A3.A186.3A3.2A.A3.A$27.
A2.A2.3A4.A3.A182.A2.A2.3A4.A3.A$27.A5.3A4.A186.A5.3A4.A$27.A3.A.3A5.
A.A183.A3.A.3A5.A.A$27.A3.A.2A192.A3.A.2A$27.A6.2A191.A6.2A$28.A.A8.
3A186.A.A8.3A$39.A2.A196.A2.A$34.A4.A194.A4.A$34.A4.A3.A190.A4.A3.A$
34.A4.A3.A190.A4.A3.A$39.A199.A$34.A5.A.A191.A5.A.A$34.A199.A$34.A
199.A2$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$34.A199.A$34.A4.3A
192.A4.3A$38.A2.A196.A2.A$34.A6.A192.A6.A$34.A2.A3.A192.A2.A3.A$34.A
6.A192.A6.A$38.A.A197.A.A$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$
34.A199.A$34.A199.A2$34.A199.A$34.A199.A$34.A199.A2$34.A199.A$34.A
199.A$34.A199.A2$34.A199.A$33.A.A197.A.A$32.A2.A196.A2.A$33.2A198.2A
6$36.2A198.2A$36.2A198.2A9$23.2A4.2A192.2A4.2A$23.2A4.2A192.2A4.2A$
51.2A198.2A$51.2A198.2A3$30.2A198.2A$30.2A198.2A3$.2A198.2A$A.A197.A.
A$.A16.2A181.A16.2A$17.A2.A196.A2.A$18.A.A197.A.A$19.A199.A3$16.2A
198.2A$15.A.A197.A.A$14.A.A197.A.A$15.A199.A3$5.E$5.2E$4.E.E8$195.E$
195.2E$194.E.E!
#C [[ STEP 11 ZOOM -2.5 Y -200 ]]
#C [[ PASTET 1000 PASTE 17.C$16.C.C$15.C2.C$16.2C3$22.2C$22.C.C$23.2C$19.2C$19.2C2$8.2C$8.2C2$.2C$C2.C$C2.C$.2C! 17 80 ]]
#C [[ PASTET 1200 PASTE 17.C$16.C.C$15.C2.C$16.2C3$22.2C$22.C.C$23.2C$19.2C$19.2C2$8.2C$8.2C2$.2C$C2.C$C2.C$.2C! 217 0 ]]
The other thing the trigger glider needs to do is destroy the main orthogonoid circuitry. Before we run GoL_destroy, we need to decide on the main circuitry. Is there something better than this?:

Code: Select all

x = 654, y = 684, rule = LifeHistory
187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B
$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$156.2A28.6B$155.B2A
B28.6B$156.2B21.B6.6B$151.B3.2B21.3B6.6B$150.2AB.4B18.6B4.7B10.2A$
150.2A8B10.4B2.7B3.8B9.A$151.B.B2A6B2.2B2.27B5.BA.A$154.2A40B.2B.B2A$
154.40BA6B$150.25B2A16BABA5B$150.25B2A16BABA5B$149.2A43BA6B$149.2A14B
.B5.30B$150.B.11B11.B2.20B2.4B$152.10B15.19B4.4B$153.12B12.17B7.4B$
152.14B11.18B7.4B$153.13B12.5B.11B8.4B10.2A$153.13B12.4B2.12B8.4B9.A$
155.2B.8B19.4B.2BA3B9.4B10.A$159.7B24.BABA2B3.2A5.4B5.5A$159.7B25.2A
2B5.A5.4B4.A$160.6B27.B6.A.AB.7B2.B3A$160.7B34.2AB.7B3.2B.A$160.8B35.
12B4A$161.8B34.7B2A3BAB2.2A$161.8B34.7B2A2B.B3A2.A$160.6B2.B2A32.10B
3.B.A.2A$160.7B.BA.A30.8B8.A$161.6B4.A29.9B7.2A$161.6B4.2A27.4B2.3B$
161.6B32.4B3.5B$160.8B30.4B7.2A$159.8B30.4B8.A$159.9B28.4B10.3A$159.
9B27.4B13.A$158.10B26.4B$158.3B2A5B25.4B$152.2A3.4B2A5B24.4B$153.A3.
11B23.4B$153.A.A12B22.4B$154.2A2.8B23.4B$159.7B22.4B$161.5B21.4B$161.
5B20.4B$160.7B18.4B$160.6B18.4B6.2A3.2A$161.5B17.4B6.B2AB.B2AB$161.8B
13.4B4.B3.3B2.2B$161.10B10.4B3.4B.3B.3B$160.12B8.13B.7B5.2A$159.13B6.
23B5.A$160.12B2.8B.19B.BA.A$159.13B.29B.B2A$159.45B$157.47B$155.4BA
44B$154.4BABA42B$154.4BABA40B$155.4BA43B$157.5B3.2B.B4.25B3.2A$159.B
7.3B3.B4.20B3.A$158.3B5.B2AB2.2A7.15B6.3A$157.B2AB6.2A3.A12.11B8.A$
158.2A13.3A8.13B$175.A7.15B$182.16B$181.17B$182.16B$183.13B$183.5B2A
2B.3B$185.3B2A2B2.4B$183.10B3.2A$183.9B4.A$184.8B5.3A$184.7B8.A$184.
7B$185.6B7.A$185.6B6.A.A$186.5B6.A.A$186.6B4.2A.3A$185.6B6.B4.A$185.
7B3.B2AB3A$186.8B.B2A.A452.2A$186.10B456.2A$185.3B2A6B323.2A$179.2A5.
2B2A6B316.2A3.2B2AB$180.A5.10B315.B2AB2.4B$180.A.AB2.11B315.2B3.6B.B
21.A$181.2AB.12B316.2B2.10B19.3A$183.15B314.2B2A11B22.A15.2B$183.16B
310.B.3B2A12B20.2A14.4B$183.16B.2B306.2A18B20.B15.4B$183.18B2A305.2AB
.15B19.3B14.6B2.B$182.17B.B2A306.B3.15B16.6B13.2B2A2B.B2A$181.4B2.8B.
4B.B311.17B11.10B8.B.3BA2BA3B2A$180.4B4.7B319.19B2.2B3.11B2.2B3.7B2A
2B.2B$179.4B5.6B320.31B2A22B$178.4B6.4B323.7B.22B2A21B$177.4B5.A3B
325.6B2.45B$176.4B5.A.AB325.7B2.45B$175.4B6.A.A326.6B4.45B$174.4B8.A
328.6B10.4B.13B4.B2.13B.B$173.4B6.3A329.5B12.3B5.B.7B7.12B.B2A$172.4B
7.A330.6B13.4B19.14B2A$171.4B339.6B15.2A20.11B.2B$170.4B339.7B15.A21.
11B57.4B$169.4B340.7B16.3A19.10B56.4B$168.4B341.8B17.A23.6B2.2A51.4B$
167.4B342.8B40.9BA.A49.4B$166.4B344.8B38.9B3.A48.4B$165.4B345.3B2A2B
39.9B3.2A46.4B$164.4B344.5B2A2B39.9B50.4B$163.4B345.13B35.9B31.A17.4B
6.2A3.2A$162.4B345.16B32.11B30.3A14.4B6.B2AB.B2AB$161.4B345.17B32.11B
33.A12.4B4.B3.3B2.2B$160.4B347.16B31.12B32.2A11.4B3.4B.3B.3B$159.4B
349.15B30.14B4.B26.B11.13B.7B5.2A$158.4B351.13B30.4B.10B3.3B23.3B9.
23B5.A$157.4B353.11B30.16B2.6B19.6B4.8B.19B.BA.A$156.4B354.13B27.17B.
7B2.4B10.10B2.29B.B2A$155.4B355.14B25.4B.29B2.2B3.44B$154.5B.B.B.B.B.
B.B.B269.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.16B24.4B2.41B2A37B$152.21B268.87B23.4B3.41B2A37B$149.B.22B
268.87B22.4B3.21B2A57B$148.2A23B268.86B22.4B4.21B2A55B$148.2A23B268.
88B19.4B4.81B$149.B2.21B268.87B2A17.4B6.26B5.B.13B4.25B3.2A$151.2B2.B
.B.B.B.B.B.B.B.B269.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.16BABA16.4B8.20B2.B13.B.7B4.B4.20B3.A$151.2AB
359.4B2A9BA2B14.4B6.B.B.20B27.2A7.15B6.3A$150.A.A361.2BA2BA3B.6B14.4B
6.2A24B26.A12.11B8.A$148.3A.A.A360.2B2A4B3.3B14.4B7.2A24B27.3A8.13B$
147.A5.2A361.6B20.4B9.2B.12B2.5B2.B2A27.A7.15B$147.2A366.6B20.4B12.
13B3.4B2.BA.A33.16B$515.6B19.4B11.B.11B14.A32.17B$516.6B6.A10.4B11.2A
12B14.2A32.16B$514.9B5.3A7.4B12.2AB.10B49.13B$514.2A4.4B7.A5.4B14.B4.
6B.B2A47.5B2A2B.3B$515.A5.4B5.2A4.4B22.4B.BA.A48.3B2A2B2.4B$512.3A7.
4B4.9B21.5B5.A48.8B3.2A$512.A10.4B5.6B22.2A8.2A46.8B4.A$524.4B2.8B23.
A56.8B5.3A$525.15B18.3A57.7B8.A$526.14B18.A59.7B$527.13B79.6B7.A$528.
10B.B2A77.6B6.A.A$530.3B2AB3.BA.A77.5B6.A.A$530.3B2AB6.A77.6B4.2A.3A$
532.4B6.2A75.6B6.B4.A$532.3B84.7B3.B2AB3A$529.AB.2B86.8B.B2A.A$528.A.
AB2AB85.10B$528.A.ABABAB83.3B2A6B$525.2A.A.A.A.A2.A75.2A5.2B2A6B$525.
A2.A2.2A.4A76.A5.10B$527.2A4.A80.A.AB2.11B$533.A.A79.2AB.12B$534.2A
81.15B$617.16B$617.16B.2B$617.18B2A$616.17B.B2A$615.4B2.8B.4B.B$614.
4B4.7B$613.4B5.6B$612.4B6.4B$611.4B5.A3B$610.4B5.A.AB$609.4B6.A.A$
608.4B8.A$607.4B6.3A$606.4B7.A$605.4B$604.4B$603.4B$602.4B$601.4B$
600.4B$599.4B$598.4B$597.4B$596.4B$587.2A6.4B5.2A$588.A5.5B5.A3.A$
588.A.AB.7B.BA.A2.A.A$589.2AB.7B.B2A3.A.A$591.5BA5B4.2A.3A$591.4BABA
4B5.B4.A$591.4BABA6B.B2AB3A$593.3BA7B.B2A.A$594.12B$594.13B$594.13B2A
$595.12BA.A$593.10B.2B.B.A2.A$593.2A3.6B4.2A.A.A$594.A2.6B6.A2.2A$
591.3A4.6B3.A.A$591.A5.6B4.2A$598.6B$597.6B$598.6B$597.6B$598.6B$597.
6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$
597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B170$36.
2A559.6B$36.2A560.6B$597.6B$598.6B$597.6B$598.6B$597.6B$598.6B$597.6B
$598.6B$597.6B$598.6B$597.6B$598.6B$38.6B553.6B$37.6B555.6B$38.6B553.
6B$37.6B555.6B28.2A$38.6B553.6B28.B2AB$37.6B555.6B6.B21.2B$38.6B553.
6B6.3B21.2B3.B$37.6B542.2A10.7B4.6B18.4B.B2A$38.6B542.A9.8B3.7B2.4B
10.8B2A$37.6B543.A.AB5.27B2.2B2.6B2AB.B$38.6B543.2AB.2B.40B2A$37.6B
546.6BA40B$38.6B545.5BABA16B2A25B$37.6B546.5BABA16B2A25B$38.6B545.6BA
43B2A$37.6B545.30B5.B.14B2A$38.6B543.4B2.20B2.B11.11B.B$37.6B543.4B4.
19B15.10B$38.6B541.4B7.17B12.12B$37.6B541.4B7.18B11.14B$38.6B527.2A
10.4B8.11B.5B12.13B$37.6B529.A9.4B8.12B2.4B12.13B$38.6B526.A10.4B9.3B
A2B.4B19.8B.2B$37.6B527.5A5.4B5.2A3.2BABAB24.7B$38.6B531.A4.4B5.A5.2B
2A25.7B$37.6B529.3AB2.7B.BA.A6.B27.6B$38.6B527.A.2B3.7B.B2A34.7B$37.
6B528.4A12B35.8B$38.6B525.2A2.BA3B2A7B34.8B$37.6B525.A2.3AB.2B2A7B34.
8B$38.6B524.2A.A.B3.10B32.2AB2.6B$37.6B528.A8.8B30.A.AB.7B$38.6B527.
2A7.9B29.A4.6B$37.6B42.4B492.3B2.4B27.2A4.6B$38.6B42.4B489.5B3.4B32.
6B$37.6B44.4B488.2A7.4B30.8B$38.6B44.4B488.A8.4B30.8B$7.2A28.6B46.4B
484.3A10.4B28.9B$6.B2AB28.6B46.4B483.A13.4B27.9B$7.2B21.B6.6B48.4B
497.4B26.10B$2.B3.2B21.3B6.6B48.4B497.4B25.5B2A3B$.2AB.4B18.6B4.7B10.
2A37.4B497.4B24.5B2A4B3.2A$.2A8B10.4B2.7B3.8B9.A39.4B497.4B23.11B3.A$
2.B.B2A6B2.2B2.27B5.BA.A40.4B497.4B22.12BA.A$5.2A40B4.B2A42.4B497.4B
23.8B2.2A$5.40BA2B2.2B45.4B497.4B22.7B$.25B2A16BABAB2.2B46.4B497.4B
21.5B$.25B2A16BABAB2.2B47.4B497.4B20.5B$2A43BA2B2.2B48.4B497.4B18.7B$
2A14B.B5.25B2.3B48.4B484.2A3.2A6.4B18.6B$.B.11B11.B2.20B2.4B48.4B482.
B2AB.B2AB6.4B17.5B$3.10B15.19B4.4B48.4B482.2B2.3B3.B4.4B13.8B$4.12B
12.17B7.4B48.4B482.3B.3B.4B3.4B10.10B$3.14B11.18B7.4B48.4B473.2A5.7B.
13B8.12B$4.13B12.5B.11B8.4B10.2A36.4B473.A5.23B6.13B$4.13B12.4B2.12B
8.4B9.A38.4B472.A.AB.19B.8B2.12B$6.2B.8B19.4B.2BA3B9.4B10.A37.4B472.
2AB.29B.13B$10.7B24.BABA2B3.2A5.4B5.5A38.4B473.45B$10.7B25.2A2B5.A5.
4B4.A44.4B472.47B$11.6B34.A.AB.7B2.B3A42.4B471.44BA4B$11.7B34.2AB.7B
3.2B.A42.4B471.42BABA4B$11.8B35.12B4A43.4B472.40BABA4B$12.8B34.7B2A3B
AB2.2A42.4B469.43BA4B$12.8B34.7B2A2B.B3A2.A42.4B468.2A3.25B4.B.2B3.5B
$11.6B2.B2A32.10B3.B.A.2A43.4B468.A3.20B4.B3.3B7.B$11.7B.BA.A30.8B8.A
47.4B464.3A6.15B7.2A2.B2AB5.3B$12.6B4.A29.9B7.2A48.4B463.A8.11B12.A3.
2A6.B2AB$12.6B4.2A27.4B2.3B59.4B470.13B8.3A13.2A$12.6B32.4B3.5B58.4B
468.15B7.A$11.8B30.4B7.2A59.4B467.16B$10.8B30.4B8.A61.4B466.17B$10.9B
28.4B10.3A59.4B465.16B$10.9B27.4B13.A60.4B466.13B$9.10B26.4B76.4B13.
2D450.3B.2B2A5B$9.3B2A5B25.4B78.4B11.D.D448.4B2.2B2A3B$3.2A3.4B2A5B
24.4B80.4B4.2D4.D450.2A3.10B$4.A3.11B23.4B82.4B.D2.D2.2D.4D447.A4.9B$
4.A.A12B22.4B84.4B2D.D.D.D.D2.D444.3A5.8B$5.2A2.8B23.4B86.4B2.D.DBDBD
B446.A8.7B$10.7B22.4B88.4B.D.DB2DB456.7B$12.5B21.4B90.4B.DB.2B449.A7.
6B$12.5B20.4B92.4B3.3B447.A.A6.6B$11.7B18.4B94.4B2.4B6.2D438.A.A6.5B$
11.6B18.4B6.2A3.2A83.6B2DB6.D437.3A.2A4.6B$12.5B17.4B6.B2AB.B2AB83.5B
2DB3.BD.D436.A4.B6.6B$12.8B13.4B4.B3.3B2.2B84.10B.B2D438.3AB2AB3.7B$
12.10B10.4B3.4B.3B.3B84.13B442.A.2AB.8B$11.12B8.13B.7B5.2A75.14B446.
10B$11.12B6.23B5.A75.15B121.2A323.6B2A3B$11.12B2.8B.19B.BA.A74.4B2.8B
122.B2A2B3.2A316.6B2A2B5.2A$10.13B.29B.B2A74.4B5.6B123.4B2.B2AB315.
10B5.A$10.45B75.4B4.9B96.A21.B.6B3.2B315.11B2.BA.A$8.47B74.4B5.2D4.4B
93.3A19.10B2.2B316.12B.B2A$6.4BA44B73.4B7.D5.4B74.2B15.A22.11B2A2B
314.15B$5.4BABA42B73.4B5.3D7.4B72.4B14.2A20.12B2A3B.B310.16B$5.4BABA
40B74.4B6.D10.4B71.4B15.B20.18B2A306.2B.16B$6.4BA43B71.4B19.4B66.B2.
6B14.3B19.15B.B2A305.2A18B$8.5B3.2B.B4.25B3.2A70.4B21.4B64.2AB.2B2A2B
13.6B16.15B3.B306.2AB.17B$10.B7.3B3.B4.20B3.A70.4B23.4B63.2A3BA2BA3B.
B8.10B11.17B311.B.4B.8B2.4B$9.3B5.B2AB2.2A7.15B6.3A66.4B25.4B63.2B.2B
2A7B3.2B2.11B3.2B2.19B319.7B4.4B$8.B2AB6.2A3.A12.11B8.A65.4B27.4B65.
22B2A31B320.6B5.4B$9.2A13.3A8.13B72.4B29.4B65.21B2A22B.7B323.4B6.4B$
26.A7.15B70.4B31.4B64.45B2.6B325.3BA5.4B$33.16B69.4B33.4B63.45B2.7B
325.BA.A5.4B$32.17B68.4B35.4B61.45B4.6B326.A.A6.4B$33.16B67.4B37.4B
58.B.13B2.B4.13B.4B10.6B328.A8.4B$34.13B68.4B39.4B56.2AB.12B7.7B.B5.
3B12.5B329.3A6.4B$34.5B2A2B.3B67.4B41.3B56.2A14B19.4B13.6B330.A7.4B$
36.3B2A2B2.4B64.4B43.2B57.2B.11B20.2A15.6B339.4B$34.10B3.2A63.4B45.4B
57.11B21.A15.7B339.4B$34.4B3D2B4.A63.4B47.4B56.10B19.3A16.7B340.4B$
35.4BD3B5.3A59.4B49.4B51.2A2.6B23.A17.8B341.4B$35.2B3D2B8.A58.4B51.4B
49.A.A9B40.8B342.4B$35.7B66.4B53.4B48.A3.9B38.8B344.4B$36.6B65.4B55.
4B46.2A3.9B39.2B2A3B345.4B$36.6B64.4B57.4B50.9B39.2B2A5B344.4B$37.5B
63.4B46.2A3.2A6.4B17.A31.9B35.13B345.4B$37.5B62.4B46.B2AB.B2AB6.4B14.
3A30.11B32.16B345.4B$36.6B61.4B48.2B2.3B3.B4.4B12.A33.11B32.17B345.4B
$36.7B59.4B50.3B.3B.4B3.4B11.2A32.12B31.16B347.4B$37.6B58.4B43.2A5.7B
.13B11.B26.B4.14B30.15B349.4B$37.6B57.4B45.A5.23B9.3B23.3B3.10B.4B30.
13B351.4B$37.6B56.4B46.A.AB.19B.8B4.6B19.6B2.16B30.11B353.4B$36.8B54.
4B48.2AB.29B2.10B10.4B2.7B.17B27.13B354.4B$35.8B54.4B51.44B3.2B2.29B.
4B25.14B355.4B$35.9B52.4B52.37B2A41B2.4B24.16B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B269.B.B.B.B.B.B.B.5B$
35.9B51.4B53.37B2A41B3.4B23.87B268.21B$34.10B50.4B55.57B2A21B3.4B22.
87B268.22B.B$34.3B2A5B49.4B58.55B2A21B4.4B22.86B268.23B2A$28.2A3.4B2A
5B48.4B57.81B4.4B19.88B268.23B2A$29.A3.11B47.4B58.2A3.25B4.13B.B5.26B
6.4B17.2A87B268.21B2.B$29.A.A12B46.4B60.A3.20B4.B4.7B.B13.B2.20B8.4B
16.ABA16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B269.B.B.B.B.B.B.B.B.B2.2B$30.2A2.8B47.4B58.3A6.15B7.2A27.
20B.B.B6.4B14.2BA9B2A4B359.B2A$35.7B46.4B59.A8.11B12.A26.24B2A6.4B14.
6B.3BA2BA2B361.A.A$36.6B45.4B68.13B8.3A27.24B2A7.4B14.3B3.4B2A2B360.A
.A.3A$36.6B2.2A40.4B68.15B7.A27.2AB2.5B2.12B.2B9.4B20.6B361.2A5.A$35.
9BA.A38.4B69.16B33.A.AB2.4B3.13B12.4B20.6B366.2A$34.9B3.A37.4B70.17B
32.A14.11B.B11.4B19.6B$34.9B3.2A35.4B71.16B32.2A14.12B2A11.4B10.A6.6B
$34.9B39.4B74.13B49.10B.B2A12.4B7.3A5.9B$34.9B38.4B75.3B.2B2A5B47.2AB
.6B4.B14.4B5.A7.4B4.2A$33.11B36.4B74.4B2.2B2A3B48.A.AB.4B22.4B4.2A5.
4B5.A$33.11B24.A10.4B75.2A3.8B48.A5.5B21.9B4.4B7.3A$32.12B24.3A7.4B
77.A4.8B46.2A8.2A22.6B5.4B10.A$31.14B4.B21.A5.4B75.3A5.8B56.A23.8B2.
4B$30.4B.10B3.3B19.2A4.4B76.A8.7B57.3A18.15B$29.16B2.6B17.9B6.2A78.7B
59.A18.14B$29.16B.7B2.4B13.6B7.A71.A7.6B79.13B$27.2AB2.29B2.2B2.B3.6B
5.2A.A70.A.A6.6B77.2AB.10B$26.A.AB2.45B4.A2.A71.A.A6.5B77.A.AB3.B2A3B
$26.A5.46B3.B2A70.3A.2A4.6B77.A6.B2A3B$25.2A4.21B2A13B2A14B70.A4.B6.
6B75.2A6.4B$31.21B2A13B2A13B72.3AB2AB3.7B84.3B$30.51B75.A.2AB.8B86.2B
.BA$31.26B5.B.17B79.10B85.B2ABA.A$32.20B2.B10.15B80.6B2A3B83.BABABA.A
$29.B.B.20B12.15B80.6B2A2B5.2A75.A2.A.A.A.A.2A$28.2A24B12.13B81.10B5.
A76.4A.2A2.A2.A$28.2A24B10.13B82.11B2.BA.A80.A4.2A$29.2B.12B2.5B2.B2A
6.A.2A4.8B81.12B.B2A79.A.A$31.13B3.4B2.BA.A3.3AB2A6.6B80.15B81.2A$29.
B.11B14.A2.A4.B8.5B79.16B$28.2A12B14.2A2.3A.2A9.B.B76.2B.16B$28.2AB.
10B20.A.A9.3B76.2A18B$29.B4.6B.B2A18.A.A9.B2AB75.2AB.17B$36.4B.BA.A
18.A11.2A77.B.4B.8B2.4B$34.5B5.A116.7B4.4B$34.2A8.2A116.6B5.4B$35.A
128.4B6.4B$32.3A131.3BA5.4B$32.A134.BA.A5.4B$168.A.A6.4B$169.A8.4B$
170.3A6.4B$172.A7.4B$181.4B$182.4B$183.4B$184.4B$185.4B$186.4B$187.4B
$188.4B$189.4B$190.4B$184.2A5.4B6.2A$181.A3.A5.5B5.A$180.A.A2.A.AB.7B
.BA.A$180.A.A3.2AB.7B.B2A$178.3A.2A4.5BA5B$177.A4.B5.4BABA4B$178.3AB
2AB.6BABA4B$180.A.2AB.7BA3B$184.12B$183.13B$181.2A13B$180.A.A12B$177.
A2.A.B.2B.10B$176.A.A.2A4.6B3.2A$176.2A2.A6.6B2.A$180.A.A3.6B4.3A$
181.2A4.6B5.A$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B
$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.
6B$186.6B$187.6B$186.6B$187.6B$186.6B$187.6B30$188.3A$187.A2.A$190.A$
186.A3.A$190.A$187.A.A!
This may help:

Code: Select all

x = 81, y = 52, rule = B3/S23
7b2o$7b2o3$b2o$b2o$5b2o$5b2o$45bo$26b2o16bobo$26b2o16bobo$2o43bo$2o7$
43bo$42bobo$42b2o4$52bo23bo$50b3o22bo$49bo25b3o$36b2o11b2o11bo$36b2o
24b3o$65bo$64b2o$79b2o$79bo$76b2obo$5b2o68bo2bo$5b2o69b2o$11b2o48b2o$
11b2o17b2o29b2o$30bo$31b3o$9b2o22bo$9b2o5b2o30b2o3bo$16b2o30bo3bobo$
49bo3bobo$36b2o12bo3bobob2o$37bo10bob4o2bob2o$34b3o10bobo3bobo$34bo12b
obo2bo2b2ob2o$48bo3b2o2bobo$56bobo10b2o$57bo11b2o!
This one has a faster repeat time:

Code: Select all

x = 92, y = 92, rule = LifeHistory
9$42.2D$41.D2.D$42.2D9.A$52.A.A$53.2A15$42.2A$42.2A2$41.3D$42.D$40.3D
2$74.2A$74.A$76.A$56.2A14.5A$57.A13.A$57.A.A12.3A$58.2A15.A$72.4A$67.
2A3.A3.2A$67.2A4.3A2.A$75.A.2A$75.A$74.2A2$40.2A$40.2A24.2A$66.A$31.
2A.A7.D24.3A$31.A.2A6.3D25.A$40.2D2.D5$32.A$32.3A$23.A11.A$23.3A8.2A
14.A$26.A22.A.A$25.2A16.D6.A$42.3D$42.D2$47.2A$47.A.A$49.A$24.C24.2A$
24.C.C18.2A$24.3C18.A$26.C11.2A6.3A$38.A9.A$39.3A$41.A2$17.2A$18.A$
15.3A$15.A!

Code: Select all

x = 17, y = 22, rule = B3/S23
8bo4bo$9bob2o$7b3o2b2o2$7bo$2b2obo3bo$2bo$3b2o$3o2b7o$o2bo6b2o$b2o8b2o
$12bo2$12b3o$8bo2b4o$6b3o6bo$5bo4b6o$6b5o5bo$8bo2b5o$11bo$13bo$12b2o!

User avatar
LLAMASKYWALKER
Posts: 168
Joined: December 2nd, 2021, 1:02 pm

Re: Make a Spaceship With an Adjustable Slope

Post by LLAMASKYWALKER » March 25th, 2022, 5:20 pm

I dont think this will help, but a house blinker fuse can be cleanly made with a single MWSS:

Code: Select all

x = 17, y = 41, rule = B3/S23
15bo$8b3o3b3o$2bo4bo2bo2b2obo$b3o6bo2b3o$2obo6bo2b3o$3o4bo2bo3b2o$3o5b
2o$3o$b2o11bo$13b3o$7b3o2b2obo$12b3o$12b3o$12b3o$7b3o3b2o4$7b3o4$7b3o
4$7b3o4$7b3o4$7b3o2$8bo$6bo3bo$5bo$5bo4bo$5b5o!

Code: Select all

x = 5, y = 5, rule = B3/S12o3H
bo$2obo$3bo$b2obo$3bo!

Code: Select all

x = 15, y = 11, rule = 23/34/10
2$6.F.B$5.GICDA$4.H3I2D2A$4.I3.GF2A$7.FAD2A$8.2A!

Code: Select all

x = 8, y = 14, rule = B3-q4z5y/S234k5j
4b2o$4bo2bo$5b3o7$2o2b3o$2obo3bo$3bo3bo$3bo3bo$4b3o!
CGoL is my hobby

User avatar
yujh
Posts: 2863
Joined: February 27th, 2020, 11:23 pm
Location: I'm not sure where I am, so please tell me if you know
Contact:

Re: Make a Spaceship With an Adjustable Slope

Post by yujh » March 25th, 2022, 5:50 pm

LLAMASKYWALKER wrote:
March 25th, 2022, 5:20 pm
I dont think this will help, but a house blinker fuse can be cleanly made with a single MWSS:

Code: Select all

snip
There's no way i can think of for this to get inserted in an optimal way.

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make an Omniship

Post by dvgrn » March 25th, 2022, 6:06 pm

AlbertArmStain wrote:
March 25th, 2022, 3:34 pm
This may help...
This one has a faster repeat time...
For these constructions you really have to know what the repeat time is. Both of those circuits have repeat times greater than 90 ticks, which means we can't use single-channel recipes in them ... unless we re-do Pavgran's clever trick with the QuickSilver Demonoid, anyway -- but that just makes the recipes less efficient, and it's not clear there's much of any benefit, so let's not do that.

I sure can't think of any big improvements immediately. Maybe it's worth test-compiling something like this

Code: Select all

x = 823, y = 589, rule = LifeHistory
785.2A$785.2A13$779.6B$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$780.
6B$779.6B$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$
780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B
$780.6B$779.6B$780.6B$779.6B$780.6B$779.6B$734.4B42.6B$733.4B42.6B$
732.4B44.6B$731.4B44.6B$730.4B46.6B28.2A$729.4B46.6B28.B2AB$728.4B48.
6B6.B21.2B$727.4B48.6B6.3B21.2B3.B$726.4B37.2A10.7B4.6B18.4B.B2A$725.
4B39.A9.8B3.7B2.4B10.8B2A$724.4B40.A.AB5.27B2.2B2.6B2AB.B$723.4B42.2A
B4.40B2A$722.4B45.2B2.2BA40B$721.4B46.2B2.BABA16B2A25B$720.4B47.2B2.B
ABA16B2A25B$719.4B48.2B2.2BA43B2A$718.4B48.3B2.25B5.B.14B2A$717.4B48.
4B2.20B2.B11.11B.B$716.4B48.4B4.19B15.10B$715.4B48.4B7.17B12.12B$714.
4B48.4B7.18B11.14B$713.4B36.2A10.4B8.11B.5B12.13B$712.4B38.A9.4B8.12B
2.4B12.13B$711.4B37.A10.4B9.3BA2B.4B19.8B.2B$710.4B38.5A5.4B5.2A3.2BA
BAB24.7B$709.4B44.A4.4B5.A5.2B2A25.7B$708.4B42.3AB2.7B.BA.A34.6B$707.
4B42.A.2B3.7B.B2A34.7B$706.4B43.4A12B35.8B$705.4B42.2A2.BA3B2A7B34.8B
$704.4B42.A2.3AB.2B2A7B34.8B$703.4B43.2A.A.B3.10B32.2AB2.6B$702.4B47.
A8.8B30.A.AB.7B$701.4B48.2A7.9B29.A4.6B$700.4B59.3B2.4B27.2A4.6B$699.
4B58.5B3.4B32.6B$698.4B59.2A7.4B30.8B$697.4B61.A8.4B30.8B$696.4B59.3A
10.4B28.9B$695.4B60.A13.4B27.9B$679.2D13.4B76.4B26.10B$679.D.D11.4B
78.4B25.5B2A3B$681.D4.2D4.4B80.4B24.5B2A4B3.2A$677.4D.2D2.D2.D.4B82.
4B23.11B3.A$677.D2.D.D.D.D.2D4B84.4B22.12BA.A$679.BDBDBD.D2.4B86.4B
23.8B2.2A$680.B2DBD.D.4B88.4B22.7B$681.2B.BD.4B90.4B21.5B$680.3B3.4B
92.4B20.5B$671.2D6.4B2.4B94.4B18.7B$301.6B365.D6.B2D6B83.2A3.2A6.4B
18.6B$300.6B366.D.DB3.B2D5B83.B2AB.B2AB6.4B17.5B$301.6B366.2DB.10B84.
2B2.3B3.B4.4B13.8B$300.6B369.13B84.3B.3B.4B3.4B10.10B$301.6B368.14B
75.2A5.7B.13B8.12B$300.6B369.15B75.A5.23B6.12B$301.6B370.8B2.4B74.A.A
B.19B.8B2.12B$300.6B371.6B5.4B74.2AB.29B.13B$301.6B369.9B4.4B75.45B$
300.6B369.4B4.2D5.4B74.47B$301.6B367.4B5.D7.4B73.44BA4B$300.6B367.4B
7.3D5.4B73.42BABA4B$301.6B365.4B10.D6.4B74.40BABA4B$300.6B365.4B19.4B
71.43BA4B$301.6B363.4B21.4B70.2A3.25B4.B.2B3.5B$300.6B363.4B23.4B70.A
3.20B4.B3.3B7.B$301.6B361.4B25.4B66.3A6.15B7.2A2.B2AB5.3B$270.2A28.6B
361.4B27.4B65.A8.11B12.A3.2A6.B2AB$269.B2AB28.6B359.4B29.4B72.13B8.3A
13.2A$270.2B21.B6.6B359.4B31.4B70.15B7.A$265.B3.2B21.3B6.6B358.3B33.
4B69.16B$264.2AB.4B18.6B4.7B10.2A346.2B35.4B68.17B$264.2A8B10.4B2.7B
3.8B9.A347.B37.4B67.16B$265.B.B2A6B2.2B2.27B5.BA.A386.4B68.13B$268.2A
40B.2B.B2A388.4B67.3B.2B2A5B$268.40BA6B391.4B64.4B2.2B2A3B$264.25B2A
16BABA5B392.4B63.2A3.10B$264.25B2A16BABA5B393.4B63.A4.2B3D4B$263.2A
43BA6B394.4B59.3A5.3BD4B$263.2A14B.B5.30B394.4B58.A8.2B3D2B$264.B.11B
11.B2.20B2.4B394.4B66.7B$266.10B15.19B4.4B394.4B65.6B$267.12B12.17B7.
4B394.4B64.6B$266.14B11.18B7.4B394.4B63.5B$267.13B12.5B.11B8.4B10.2A
382.4B62.5B$267.13B12.4B2.12B8.4B9.A384.4B61.6B$269.2B.8B19.4B.2BA3B
9.4B10.A383.4B59.7B$273.7B24.BABA2B3.2A5.4B5.5A384.4B58.6B$273.7B25.
2A2B5.A5.4B4.A390.4B57.6B$274.6B27.B6.A.AB.7B2.B3A388.4B56.6B$274.7B
34.2AB.7B3.2B.A388.4B54.8B$274.8B35.12B4A389.4B54.8B$275.8B34.7B2A3BA
B2.2A388.4B52.9B$275.8B34.7B2A2B.B3A2.A388.4B51.9B$274.6B2.B2A32.10B
3.B.A.2A389.4B50.10B$274.7B.BA.A30.8B8.A393.4B49.5B2A3B$275.6B4.A29.
9B7.2A394.4B48.5B2A4B3.2A$275.6B4.2A27.4B2.3B405.4B47.11B3.A$275.6B
32.4B3.5B404.4B46.12BA.A$274.8B30.4B7.2A405.4B47.8B2.2A$273.8B30.4B8.
A407.4B46.7B$273.9B28.4B10.3A405.4B45.6B$273.9B27.4B13.A406.4B40.2A2.
6B$272.10B26.4B422.4B38.A.A9B$272.3B2A5B25.4B424.4B37.A3.9B$266.2A3.
4B2A5B24.4B426.4B35.2A3.9B$267.A3.11B23.4B428.4B39.9B$267.A.A12B22.4B
430.4B38.9B$268.2A2.8B23.4B432.4B36.11B$273.7B22.4B434.4B10.A24.11B$
275.5B21.4B436.4B7.3A24.12B$275.5B20.4B438.4B5.A21.B4.14B$274.7B18.4B
440.4B4.2A19.3B3.10B.4B$274.6B18.4B6.2A3.2A421.2A6.9B17.6B2.16B$275.
5B17.4B6.B2AB.B2AB421.A7.6B13.4B2.7B.16B$275.8B13.4B4.B3.3B2.2B422.A.
2A5.6B3.B2.2B2.29B2.B2A$275.10B10.4B3.4B.3B.3B424.A2.A4.45B2.BA.A$
274.12B8.13B.7B5.2A417.2AB3.46B5.A$273.13B6.23B5.A419.14B2A13B2A21B4.
2A$274.12B2.8B.19B.BA.A420.13B2A13B2A21B$273.13B.29B.B2A294.B127.51B$
273.45B295.2B127.17B.B5.26B$271.47B294.3B128.15B10.B2.20B$269.4BA44B
293.4B128.15B12.20B.B.B$268.4BABA42B293.4B130.13B12.24B2A$268.4BABA
40B294.4B133.13B10.24B2A$269.4BA43B291.4B133.8B4.2A.A6.2AB2.5B2.12B.
2B$271.5B3.2B.B4.25B3.2A290.4B134.6B6.2AB3A3.A.AB2.4B3.13B$273.B7.3B
3.B4.20B3.A290.4B135.5B8.B4.A2.A14.11B.B$272.3B5.B2AB2.2A7.15B6.3A
286.4B136.B.B9.2A.3A2.2A14.12B2A$271.B2AB6.2A3.A12.11B8.A285.4B138.3B
9.A.A20.10B.B2A$272.2A13.3A8.13B292.4B138.B2AB9.A.A18.2AB.6B4.B$289.A
7.15B290.4B140.2A11.A18.A.AB.4B$296.16B289.4B173.A5.5B$295.17B288.4B
173.2A8.2A$296.16B287.4B184.A$297.13B288.4B186.3A$297.5B2A2B.3B287.4B
189.A$299.3B2A2B2.4B284.4B$297.10B3.2A283.4B$297.9B4.A283.4B$298.8B5.
3A279.4B$298.7B8.A278.4B$298.7B286.4B$299.6B7.A277.4B$299.6B6.A.A275.
4B$300.5B6.A.A274.4B$300.6B4.2A.3A271.4B$299.6B6.B4.A269.4B$299.7B3.B
2AB3A269.4B$300.8B.B2A.A270.4B$300.10B273.4B$299.3B2A6B153.2A117.4B$
293.2A5.2B2A6B146.2A3.2B2AB115.4B$294.A5.10B145.B2AB2.4B115.4B$294.A.
AB2.11B145.2B3.6B.B21.A88.4B$295.2AB.12B146.2B2.10B19.3A85.4B$297.15B
144.2B2A11B22.A15.2B66.4B$297.16B140.B.3B2A12B20.2A14.4B64.4B$297.16B
.2B136.2A18B20.B15.4B63.4B$297.18B2A135.2AB.15B19.3B14.6B2.B58.4B$
296.17B.B2A136.B3.15B16.6B13.2B2A2B.B2A56.4B$295.4B2.8B.4B.B141.17B
11.10B8.B.3BA2BA3B2A55.4B$294.4B4.7B149.19B2.2B3.11B2.2B3.7B2A2B.2B
55.4B$293.4B5.6B150.31B2A22B57.4B$292.4B6.4B153.7B.22B2A21B57.4B$291.
4B5.A3B155.6B2.45B56.4B$290.4B5.A.AB155.7B2.45B55.4B$289.4B6.A.A156.
6B4.45B53.4B$288.4B8.A158.6B10.4B.13B4.B2.13B.B50.4B$287.4B6.3A159.5B
12.3B5.B.7B7.12B.B2A48.4B$286.4B7.A160.6B13.4B19.14B2A47.4B$285.4B
169.6B15.2A20.11B.2B20.A26.4B$284.4B169.7B15.A21.11B23.3A23.4B$283.4B
170.7B16.3A19.10B26.A21.4B$282.4B171.8B17.A23.6B2.2A21.2A20.4B10.A$
281.4B172.8B40.9BA.A20.4B17.4B11.3A$280.4B174.8B38.9B3.A22.3B15.4B15.
A14.A$279.4B175.3B2A2B39.9B3.2A20.4B14.4B15.2A12.3A$278.4B174.5B2A2B
39.9B25.5B12.4B4.B.7B3.3B.2B7.A$277.4B175.13B35.9B24.6B11.4B.13B5.5B
6.2A$276.4B175.16B32.11B23.8B2.26BD9B2.5B$275.4B175.17B32.11B22.14BD
21BD15B$274.4B177.16B31.12B23.13B3D18B2D14B2A$273.4B179.15B30.14B4.B
18.7B.4BDBD15B2A2B2D13B2A$272.4B181.13B30.4B.10B3.3B16.15BD15B2A3BD
12B.B$271.4B183.11B30.16B2.6B14.19B2.2B3.23B$270.4B184.13B27.17B.7B2.
4B7.17B11.10B2.9B$269.4B185.14B25.4B.29B2.2B.15B16.6B3.8B$268.5B.B.B.
B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B101.B.B.B.B.
B.B.B.B.B.B.16B24.4B2.25BD22B19.3B4.7B$266.70B100.36B23.4B3.23BDBD13B
.8B21.B3.11B$263.B.71B100.36B22.4B3.21B2AB3D9B2A2B3.8B19.2A2.12B$262.
2A72B100.35B22.4B4.21B2ABD11B2A2B5.B3.2A20.A2.12B$262.2A72B100.37B19.
4B4.40B10.A18.3A4.11B$263.B2.70B100.36B2A17.4B6.26B5.B.3B.B12.3A15.A
4.4B.4B3DB$265.2B2.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.B.B.B.B101.B.B.B.B.B.B.B.B.B.16BABA16.4B8.20B2.B28.A20.2A4.
4BD2B$265.2AB189.4B2A9BA2B14.4B6.B.B.20B52.A4.2B3D2B$36.2A226.A.A191.
2BA2BA3B.6B14.4B6.2A24B48.3A6.6B$36.2A224.3A.A.A190.2B2A4B3.3B14.4B7.
2A24B48.A8.7B$261.A5.2A191.6B20.4B9.2B.12B2.5B2.B2A55.8B$261.2A196.6B
20.4B12.13B3.4B2.BA.A55.8B$459.6B19.4B11.B.11B14.A55.6B$460.6B6.A10.
4B11.2A12B14.2A53.6B3.2A$458.9B5.3A7.4B12.2AB.10B69.7B2.A.A$458.2A4.
4B7.A5.4B14.B4.6B.B2A51.2A15.6B4.A$459.A5.4B5.2A4.4B22.4B.BA.A51.A8.B
4.8B4.2A$456.3A7.4B4.9B21.5B5.A51.A.AB3.4B.6B2AB$456.A10.4B5.6B22.2A
8.2A51.2AB.13B2A2B$468.4B2.8B23.A63.18B$469.15B18.3A64.17B$470.14B18.
A67.13B$38.6B427.13B88.12B$37.6B429.10B.B2A88.10B$38.6B430.3B2AB3.BA.
A87.11B$37.6B431.3B2AB6.A88.2B.7B$38.6B432.4B6.2A87.11B$37.6B433.3B
95.11B$38.6B429.AB.2B95.12B$37.6B429.A.AB2AB94.12B$38.6B428.A.ABABAB
93.2B3D4B2.B2A$37.6B426.2A.A.A.A.A2.A91.3BD4B3.BA.A$38.6B425.A2.A2.2A
.4A92.2B3D2B6.A$37.6B428.2A4.A96.7B6.2A$38.6B433.A.A93.7B$37.6B435.2A
92.8B$38.6B527.8B$37.6B530.6B$38.6B525.2A3.6B$37.6B525.A.A2.7B$38.6B
524.A4.6B$37.6B468.2A54.2A4.8B$38.6B467.A.A4.2A53.6B$37.6B470.A3.B2AB
51.8B$38.6B469.2A3.2B53.8B$37.6B472.AB.3B51.9B$38.6B469.3A6B50.9B$37.
6B469.A2.B.5B50.10B$38.6B468.2A3.6B49.5B2A3B$37.6B473.8B48.5B2A4B3.2A
$38.6B473.8B47.11B3.A$37.6B473.10B46.12BA.A$38.6B473.10B47.8B2.2A$37.
6B473.6B2.4B46.7B$38.6B473.6B2.4B45.6B$37.6B42.4B427.6B4.4B40.2A2.6B$
38.6B42.4B427.6B4.4B38.A.A9B$37.6B44.4B425.6B6.4B37.A3.9B$38.6B44.4B
425.6B6.4B35.2A3.9B$7.2A28.6B46.4B423.6B8.4B39.9B$6.B2AB28.6B46.4B
423.6B8.4B38.9B$7.2B21.B6.6B48.4B421.6B10.4B36.11B$2.B3.2B21.3B6.6B
48.4B421.6B10.4B10.A24.11B$.2AB.4B18.6B4.7B10.2A37.4B437.4B7.3A24.12B
$.2A8B10.4B2.7B3.8B9.A39.4B437.4B5.A21.B4.14B$2.B.B2A6B2.2B2.27B5.BA.
A40.4B437.4B4.2A19.3B3.10B.4B$5.2A40B4.B2A42.4B429.2A6.9B17.6B2.16B$
5.40BA2B2.2B45.4B429.A7.6B13.4B2.7B.17B$.25B2A16BABAB2.2B46.4B428.A.
2A5.6B3.B2.2B2.29B.2B2A$.25B2A16BABAB2.2B47.4B428.A2.A4.45B2.BABA$2A
43BA2B2.2B48.4B428.2AB3.46B3.2BAB$2A14B.B5.25B2.3B48.4B428.14B2A13B2A
21B3.B2A$.B.11B11.B2.20B2.4B48.4B428.13B2A13B2A21B$3.10B15.19B4.4B48.
4B428.51B$4.12B12.17B7.4B48.4B427.17B.B5.26B$3.14B11.18B7.4B48.4B427.
15B10.B2.20B$4.13B12.5B.11B8.4B10.2A36.4B426.15B12.20B.B.B$4.13B12.4B
2.12B8.4B9.A38.4B426.13B12.24B2A$6.2B.8B19.4B.2BA3B9.4B10.A37.4B427.
13B10.24B2A$10.7B24.BABA2B3.2A5.4B5.5A38.4B425.8B4.2A.A6.2AB2.5B2.12B
.2B$10.7B25.2A2B5.A5.4B4.A44.4B424.6B6.2AB3A3.A.AB2.4B3.13B$11.6B34.A
.AB.7B2.B3A42.4B423.5B8.B4.A2.A14.11B.B$11.7B34.2AB.7B3.2B.A42.4B422.
B.B9.2A.3A2.2A14.12B2A$11.8B35.12B4A43.4B422.3B9.A.A20.10B.B2A$12.8B
34.7B2A3BAB2.2A42.4B420.B2AB9.A.A18.2AB.6B4.B$12.8B34.7B2A2B.B3A2.A
42.4B420.2A11.A18.A.AB.4B$11.6B2.B2A32.10B3.B.A.2A43.4B451.A5.5B$11.
7B.BA.A30.8B8.A47.4B449.2A8.2A$12.6B4.A29.9B7.2A48.4B458.A$12.6B4.2A
27.4B2.3B59.4B458.3A$12.6B32.4B3.5B58.4B459.A$11.8B30.4B7.2A59.4B$10.
8B30.4B8.A61.4B$10.9B28.4B10.3A59.4B$10.9B27.4B13.A60.4B$9.10B26.4B
76.4B13.2D$9.3B2A5B25.4B78.4B11.D.D$3.2A3.4B2A5B24.4B80.4B4.2D4.D$4.A
3.11B23.4B82.4B.D2.D2.2D.4D$4.A.A12B22.4B84.4B2D.D.D.D.D2.D$5.2A2.8B
23.4B86.4B2.D.DBDBDB$10.7B22.4B88.4B.D.DB2DB$12.5B21.4B90.4B.DB.2B$
12.5B20.4B92.4B3.3B$11.7B18.4B94.4B2.4B6.2D$11.6B18.4B6.2A3.2A83.6B2D
B6.D$12.5B17.4B6.B2AB.B2AB83.5B2DB3.BD.D$12.8B13.4B4.B3.3B2.2B84.10B.
B2D$12.10B10.4B3.4B.3B.3B84.13B$11.12B8.13B.7B5.2A75.14B$11.12B6.23B
5.A75.15B$11.12B2.8B.19B.BA.A74.4B2.8B370.6B$10.13B.29B.B2A74.4B5.6B
371.6B$10.45B75.4B4.9B369.6B$8.47B74.4B5.2D4.4B369.6B$6.4BA44B73.4B7.
D5.4B367.6B$5.4BABA42B73.4B5.3D7.4B367.6B$5.4BABA40B74.4B6.D10.4B365.
6B$6.4BA43B71.4B19.4B365.6B$8.5B3.2B.B4.25B3.2A70.4B21.4B363.6B$10.B
7.3B3.B4.20B3.A70.4B23.4B363.6B$9.3B5.B2AB2.2A7.15B6.3A66.4B25.4B361.
6B$8.B2AB6.2A3.A12.11B8.A65.4B27.4B361.6B28.2A$9.2A13.3A8.13B72.4B29.
4B359.6B28.B2AB$26.A7.15B70.4B31.4B359.6B6.B21.2B$33.16B69.4B33.3B
358.6B6.3B21.2B3.B$32.17B68.4B35.2B346.2A10.7B4.6B18.4B.B2A$33.16B67.
4B37.B347.A9.8B3.7B2.4B10.8B2A$34.13B68.4B386.A.AB5.27B2.2B2.6B2AB.B$
34.5B2A2B.3B67.4B388.2AB.2B.40B2A$36.3B2A2B2.4B64.4B391.6BA40B$34.10B
3.2A63.4B392.5BABA16B2A25B$34.4B3D2B4.A63.4B393.5BABA16B2A25B$35.4BD
3B5.3A59.4B394.6BA43B2A$35.2B3D2B8.A58.4B394.30B5.B.14B2A$35.7B66.4B
394.4B2.20B2.B11.11B.B$36.6B65.4B394.4B4.19B15.10B$36.6B64.4B394.4B7.
17B12.12B$37.5B63.4B394.4B7.18B11.14B$37.5B62.4B382.2A10.4B8.11B.5B
12.13B$36.6B61.4B384.A9.4B8.12B2.4B12.13B$36.7B59.4B383.A10.4B9.3BA2B
.4B19.8B.2B$37.6B58.4B384.5A5.4B5.2A3.2BABAB24.7B$37.6B57.4B390.A4.4B
5.A5.2B2A25.7B$37.6B56.4B388.3AB2.7B.BA.A6.B27.6B$36.8B54.4B388.A.2B
3.7B.B2A34.7B$35.8B54.4B389.4A12B35.8B$35.9B52.4B388.2A2.BA3B2A7B34.
8B$35.9B51.4B388.A2.3AB.2B2A7B34.8B$34.10B50.4B389.2A.A.B3.10B32.2AB
2.6B$34.3B2A5B49.4B393.A8.8B30.A.AB.7B$28.2A3.4B2A5B48.4B394.2A7.9B
29.A4.6B$29.A3.11B47.4B405.3B2.4B27.2A4.6B$29.A.A12B46.4B404.5B3.4B
32.6B$30.2A2.8B47.4B405.2A7.4B30.8B$35.7B46.4B407.A8.4B30.8B$36.6B45.
4B405.3A10.4B28.9B$36.6B2.2A40.4B406.A13.4B27.9B$35.9BA.A38.4B422.4B
26.10B$34.9B3.A37.4B424.4B25.5B2A3B$34.9B3.2A35.4B426.4B24.5B2A4B3.2A
$34.9B39.4B428.4B23.11B3.A$34.9B38.4B430.4B22.12BA.A$33.11B36.4B432.
4B23.8B2.2A$33.11B24.A10.4B434.4B22.7B$32.12B24.3A7.4B436.4B21.5B$31.
14B4.B21.A5.4B438.4B20.5B$30.4B.10B3.3B19.2A4.4B440.4B18.7B$29.16B2.
6B17.9B6.2A421.2A3.2A6.4B18.6B$29.16B.7B2.4B13.6B7.A421.B2AB.B2AB6.4B
17.5B$27.2AB2.29B2.2B2.B3.6B5.2A.A422.2B2.3B3.B4.4B13.8B$26.A.AB2.45B
4.A2.A424.3B.3B.4B3.4B10.10B$26.A5.46B3.B2A417.2A5.7B.13B8.12B$25.2A
4.21B2A13B2A14B419.A5.23B6.13B$31.21B2A13B2A13B420.A.AB.19B.8B2.12B$
30.51B127.B294.2AB.29B.13B$31.26B5.B.17B127.2B295.45B$32.20B2.B10.15B
128.3B294.47B$29.B.B.20B12.15B128.4B293.44BA4B$28.2A24B12.13B130.4B
293.42BABA4B$28.2A24B10.13B133.4B294.40BABA4B$29.2B.12B2.5B2.B2A6.A.
2A4.8B133.4B291.43BA4B$31.13B3.4B2.BA.A3.3AB2A6.6B134.4B290.2A3.25B4.
B.2B3.5B$29.B.11B14.A2.A4.B8.5B135.4B290.A3.20B4.B3.3B7.B$28.2A12B14.
2A2.3A.2A9.B.B136.4B286.3A6.15B7.2A2.B2AB5.3B$28.2AB.10B20.A.A9.3B
138.4B285.A8.11B12.A3.2A6.B2AB$29.B4.6B.B2A18.A.A9.B2AB138.4B292.13B
8.3A13.2A$36.4B.BA.A18.A11.2A140.4B290.15B7.A$34.5B5.A173.4B289.16B$
34.2A8.2A173.4B288.17B$35.A184.4B287.16B$32.3A186.4B288.13B$32.A189.
4B287.3B.2B2A5B$223.4B284.4B2.2B2A3B$224.4B283.2A3.10B$225.4B283.A4.
9B$226.4B279.3A5.8B$227.4B278.A8.7B$228.4B286.7B$229.4B277.A7.6B$230.
4B275.A.A6.6B$231.4B274.A.A6.5B$232.4B271.3A.2A4.6B$233.4B269.A4.B6.
6B$234.4B269.3AB2AB3.7B$235.4B270.A.2AB.8B$236.4B273.10B$237.4B117.2A
153.6B2A3B$238.4B115.B2A2B3.2A146.6B2A2B5.2A$239.4B115.4B2.B2AB145.
10B5.A$240.4B88.A21.B.6B3.2B145.11B2.BA.A$241.4B85.3A19.10B2.2B146.
12B.B2A$242.4B66.2B15.A22.11B2A2B144.15B$243.4B64.4B14.2A20.12B2A3B.B
140.16B$244.4B63.4B15.B20.18B2A136.2B.16B$245.4B58.B2.6B14.3B19.15B.B
2A135.2A18B$246.4B56.2AB.2B2A2B13.6B16.15B3.B136.2AB.17B$247.4B55.2A
3BA2BA3B.B8.10B11.17B141.B.4B.8B2.4B$248.4B55.2B.2B2A7B3.2B2.11B3.2B
2.19B149.7B4.4B$249.4B57.22B2A31B150.6B5.4B$250.4B57.21B2A22B.7B153.
4B6.4B$251.4B56.45B2.6B155.3BA5.4B$252.4B55.45B2.7B155.BA.A5.4B$253.
4B53.45B4.6B156.A.A6.4B$254.4B50.B.13B2.B4.13B.4B10.6B158.A8.4B$255.
4B48.2AB.12B7.7B.B5.3B12.5B159.3A6.4B$256.4B47.2A14B19.4B13.6B160.A7.
4B$257.4B26.A20.2B.11B20.2A15.6B169.4B$258.4B23.3A23.11B21.A15.7B169.
4B$259.4B21.A26.10B19.3A16.7B170.4B$249.A10.4B20.2A21.2A2.6B23.A17.8B
171.4B$247.3A11.4B17.4B20.A.A9B40.8B172.4B$231.A14.A15.4B15.3B22.A3.
9B38.8B174.4B$231.3A12.2A15.4B14.4B20.2A3.9B39.2B2A3B175.4B$234.A7.2B
.3B3.7B.B4.4B12.5B25.9B39.2B2A5B174.4B$233.2A6.5B5.13B.4B11.6B24.9B
35.13B175.4B$233.5B2.9BD26B2.8B23.11B32.16B175.4B$235.15BD21BD14B22.
11B32.17B175.4B$234.2A14B2D18B3D13B23.12B31.16B177.4B$234.2A13B2D2B2A
15BDBD4B.7B18.B4.14B30.15B179.4B$235.B.12BD3B2A15BD15B16.3B3.10B.4B
30.13B181.4B$237.23B3.2B2.19B14.6B2.16B30.11B183.4B$238.9B2.10B11.17B
7.4B2.7B.17B27.13B184.4B$239.8B3.6B16.15B.2B2.29B.4B25.14B185.4B$240.
7B4.3B19.22BD25B2.4B24.16B.B.B.B.B.B.B.B.B.B.B101.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.5B$237.11B3.B21.8B.13BDBD
23B3.4B23.36B100.70B$236.12B2.2A19.8B3.2B2A9B3DB2A21B3.4B22.36B100.
71B.B$236.12B2.A20.2A3.B5.2B2A11BDB2A21B4.4B22.35B100.72B2A$236.11B4.
3A18.A10.40B4.4B19.37B100.72B2A$236.B3D4B.4B4.A15.3A12.B.3B.B5.26B6.
4B17.2A36B100.70B2.B$236.2BD4B4.2A20.A28.B2.20B8.4B16.ABA16B.B.B.B.B.
B.B.B.B.B101.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.B2.2B$236.2B3D2B4.A52.20B.B.B6.4B14.2BA9B2A4B189.B2A$236.6B
6.3A48.24B2A6.4B14.6B.3BA2BA2B191.A.A$235.7B8.A48.24B2A7.4B14.3B3.4B
2A2B190.A.A.3A$234.8B55.2AB2.5B2.12B.2B9.4B20.6B191.2A5.A$233.8B55.A.
AB2.4B3.13B12.4B20.6B196.2A$235.6B55.A14.11B.B11.4B19.6B$231.2A3.6B
53.2A14.12B2A11.4B10.A6.6B$230.A.A2.7B69.10B.B2A12.4B7.3A5.9B$230.A4.
6B15.2A51.2AB.6B4.B14.4B5.A7.4B4.2A$229.2A4.8B4.B8.A51.A.AB.4B22.4B4.
2A5.4B5.A$236.B2A6B.4B3.BA.A51.A5.5B21.9B4.4B7.3A$235.2B2A13B.B2A51.
2A8.2A22.6B5.4B10.A$236.18B63.A23.8B2.4B$237.17B64.3A18.15B$240.13B
67.A18.14B$239.12B88.13B$239.10B88.2AB.10B$238.11B87.A.AB3.B2A3B$238.
7B.2B88.A6.B2A3B$237.11B87.2A6.4B$238.11B95.3B$238.12B95.2B.BA$238.
12B94.B2ABA.A$236.2AB2.4B3D2B93.BABABA.A$235.A.AB3.4BD3B91.A2.A.A.A.A
.2A$235.A6.2B3D2B92.4A.2A2.A2.A$234.2A6.7B96.A4.2A$243.7B93.A.A$243.
8B92.2A$244.8B$244.6B$243.6B3.2A$243.7B2.A.A$244.6B4.A$242.8B4.2A54.
2A$244.6B53.2A4.A.A$243.8B51.B2AB3.A$242.8B53.2B3.2A$242.9B51.3B.BA$
242.9B50.6B3A$241.10B50.5B.B2.A$241.3B2A5B49.6B3.2A$235.2A3.4B2A5B48.
8B$236.A3.11B47.8B$236.A.A12B46.10B$237.2A2.8B47.10B$242.7B46.4B2.6B$
243.6B45.4B2.6B$243.6B2.2A40.4B4.6B$242.9BA.A38.4B4.6B$241.9B3.A37.4B
6.6B$241.9B3.2A35.4B6.6B$241.9B39.4B8.6B$241.9B38.4B8.6B$240.11B36.4B
10.6B$240.11B24.A10.4B10.6B$239.12B24.3A7.4B$238.14B4.B21.A5.4B$237.
4B.10B3.3B19.2A4.4B$236.16B2.6B17.9B6.2A$235.17B.7B2.4B13.6B7.A$234.
2A2B.29B2.2B2.B3.6B5.2A.A$233.ABAB2.45B4.A2.A$232.BA2B3.46B3.B2A$232.
2AB3.21B2A13B2A14B$238.21B2A13B2A13B$237.51B$238.26B5.B.17B$239.20B2.
B10.15B$236.B.B.20B12.15B$235.2A24B12.13B$235.2A24B10.13B$236.2B.12B
2.5B2.B2A6.A.2A4.8B$238.13B3.4B2.BA.A3.3AB2A6.6B$236.B.11B14.A2.A4.B
8.5B$235.2A12B14.2A2.3A.2A9.B.B$235.2AB.10B20.A.A9.3B$236.B4.6B.B2A
18.A.A9.B2AB$243.4B.BA.A18.A11.2A$241.5B5.A$241.2A8.2A$242.A$239.3A$
239.A13$301.B3C2B$300.BC2BCB$301.3BC2B$300.C3BCB$304.C$301.C.C!
to see if it's any cheaper. It's a shame to not use the 45-degree MWSS-to-G recipes now that slsparse has them, but on the other hand I think this design ought to be adjustable to be HashLife-friendly (right?)

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » March 26th, 2022, 10:29 am

dvgrn wrote:
March 25th, 2022, 6:06 pm
I sure can't think of any big improvements immediately. Maybe it's worth test-compiling something like this...to see if it's any cheaper. It's a shame to not use the 45-degree MWSS-to-G recipes now that slsparse has them, but on the other hand I think this design ought to be adjustable to be HashLife-friendly (right?)
I compiled both MWSS-reflectors with slsparse, and the design I posted came out as slightly cheaper: 315KB vs 330KB. Still, that's a fairly small price to pay for HashLife friendliness. However, perhaps I'm misunderstanding something, but I don't think the design you posted can be adjusted to be HashLife friendly. By my calculation, the "period" of of that design is 2*2190 = 4380, which is congruent to 4 mod 8. Any adjustment to the pattern changes the period by some multiple of 8, so no matter how it is adjusted, the period will be congruent to 4 mod 8. That means the period can't be a power of 2, and that's a requirement for HashLife friendliness right?

In the meantime, I started running GoL-destroy on part of the design I posted in case we end up using it:

Code: Select all

x = 262, y = 218, rule = LifeHistory
7.2C8.2C$7.C.C6.C2.C$8.C4.C3.C.C$12.C.C3.C$12.C2.C$13.2C11$30.2A$29.A
.A$.C21.2A4.A$C.C18.A2.A2.2A.4A$2C19.2A.A.A.A.A2.A$24.A.A.A.A$4.2C18.
A.A.2A$3.C2.C18.A$4.2C$38.2A$29.2A7.A$6.2C21.2A5.A.A$5.C2.C27.2A$5.C.
C$6.C5$26.2A$27.A$24.3A$24.A62$178.2C$177.C2.C73.2E$178.C.C73.2E4.2E$
179.C80.2E$183.2C45.2A$182.C.C5.C39.2A5.2A$183.C5.C.C45.2A$190.2C12.A
$202.3A55.2E$201.A33.2A23.2E$201.2A32.2A$241.2A$241.2A$178.2A4.2A$
178.2A3.A2.A$184.2A$204.2A35.C$204.2A34.C.C$239.C2.C$240.2C3$179.2A
65.2E$179.2A44.2C19.2E$214.2A8.C2.C$198.2C15.A9.C.C$197.C2.C11.3A11.C
$179.2A17.C.C11.A$178.A.A18.C$178.A$106.E70.2A53.2A$105.E.E124.2A$
106.E9.2A3.2A27.A$116.2A3.2A25.3A$147.A$147.2A$109.2A$110.A$110.A.A
96.C$104.2C5.2A95.C.C$104.2C102.2C$150.2A$150.2A$171.2A$171.2A$104.2C
$103.C2.C7.2A105.2A$104.2C9.A105.A.A$112.3A28.2A77.A9.2A$112.A31.A50.
2A34.A2.A$141.3A51.2A35.2A$141.A6.2C19.2A$147.C2.C17.A.A$147.C.C18.A$
148.C4.2C12.2A26.2A7.C17.A$106.2C44.C.C3.2C35.2A6.C.C14.3A$105.C2.C
18.2A24.C3.C.C21.2A20.C.C13.A15.2A$106.C.C18.2A29.C11.C9.A.A21.C14.2A
14.A$107.C11.2A48.C.C8.A20.C34.3A$120.A48.C.C7.2A8.2A9.C.C35.A$117.3A
50.C18.A9.C2.C$117.A72.3A7.2C$192.A$118.A$109.2C6.A.A89.2A$108.C.C6.A
.A88.A.A5.2A$109.C5.3A.2A87.A7.2A$114.A92.2A$115.3A.2A$117.A.2A100.A$
217.2A.A.A$127.2A87.A.A.A.A$127.2A7.2A75.A2.A.A.A.A.2A$136.A76.4A.2A
2.A2.A$134.A.A80.A4.2A$134.2A79.A.A$215.2A3$114.2A$114.2A4$145.2C$
130.A14.2C$129.A.A$129.A.A18.C$130.A18.C.C$131.3A15.C.C$127.2C4.A16.C
$127.2C8$200.3A$134.C65.A2.A$133.C.C9.2A15.2A36.A$133.C.C6.A3.A15.A
37.A3.A$134.C6.A.A2.A.A11.A.A37.A$141.A.A3.2A11.2A39.A.A$139.3A.2A9.A
$138.A14.A.A$139.3A.2A8.A.A$141.A.2A9.A3$142.2A$141.A.A$138.A2.A$137.
A.A.2A13.2A$137.2A2.A14.A$141.A.A13.3A$142.2A15.A!
The still-lifes near the Snark should be out of the way of the Snarkmaker.

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make a Spaceship With an Adjustable Slope

Post by dvgrn » March 26th, 2022, 11:25 am

Goldtiger997 wrote:
March 26th, 2022, 10:29 am
Any adjustment to the pattern changes the period by some multiple of 8, so no matter how it is adjusted, the period will be congruent to 4 mod 8. That means the period can't be a power of 2, and that's a requirement for HashLife friendliness right?
Agh, you're right of course. Was in too much of a hurry when I posted that, and I must have started my test run from some multiple-of-four generation count instead of from 0, or some equivalently boneheaded blunder.

Here's my replacement candidate for HashLife-friendly circuitry: 4400 really is a multiple of 8...

Code: Select all

x = 812, y = 670, rule = LifeHistory
774.2A$774.2A13$768.6B$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$769.
6B$768.6B$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$
769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B
$769.6B$768.6B$769.6B$768.6B$769.6B$768.6B$723.4B42.6B$722.4B42.6B$
721.4B44.6B$720.4B44.6B$719.4B46.6B28.2A$718.4B46.6B28.B2AB$717.4B48.
6B6.B21.2B$716.4B48.6B6.3B21.2B3.B$715.4B37.2A10.7B4.6B18.4B.B2A$714.
4B39.A9.8B3.7B2.4B10.8B2A$713.4B40.A.AB5.27B2.2B2.6B2AB.B$712.4B42.2A
B4.40B2A$711.4B45.2B2.2BA40B$710.4B46.2B2.BABA16B2A25B$709.4B47.2B2.B
ABA16B2A25B$708.4B48.2B2.2BA43B2A$707.4B48.3B2.25B5.B.14B2A$706.4B48.
4B2.20B2.B11.11B.B$705.4B48.4B4.19B15.10B$704.4B48.4B7.17B12.12B$703.
4B48.4B7.18B11.14B$702.4B36.2A10.4B8.11B.5B12.13B$701.4B38.A9.4B8.12B
2.4B12.13B$700.4B37.A10.4B9.3BA2B.4B19.8B.2B$699.4B38.5A5.4B5.2A3.2BA
BAB24.7B$698.4B44.A4.4B5.A5.2B2A25.7B$697.4B42.3AB2.7B.BA.A34.6B$696.
4B42.A.2B3.7B.B2A34.7B$695.4B43.4A12B35.8B$694.4B42.2A2.BA3B2A7B34.8B
$693.4B42.A2.3AB.2B2A7B34.8B$692.4B43.2A.A.B3.10B32.2AB2.6B$691.4B47.
A8.8B30.A.AB.7B$690.4B48.2A7.9B29.A4.6B$689.4B59.3B2.4B27.2A4.6B$688.
4B58.5B3.4B32.6B$687.4B59.2A7.4B30.8B$686.4B61.A8.4B30.8B$685.4B59.3A
10.4B28.9B$684.4B60.A13.4B27.9B$668.2D13.4B76.4B26.10B$668.D.D11.4B
78.4B25.5B2A3B$670.D4.2D4.4B80.4B24.5B2A4B3.2A$666.4D.2D2.D2.D.4B82.
4B23.11B3.A$666.D2.D.D.D.D.2D4B84.4B22.12BA.A$668.BDBDBD.D2.4B86.4B
23.8B2.2A$669.B2DBD.D.4B88.4B22.7B$670.2B.BD.4B90.4B21.5B$669.3B3.4B
92.4B20.5B$660.2D6.4B2.4B94.4B18.7B$661.D6.B2D6B83.2A3.2A6.4B18.6B$
661.D.DB3.B2D5B83.B2AB.B2AB6.4B17.5B$662.2DB.10B84.2B2.3B3.B4.4B13.8B
$664.13B84.3B.3B.4B3.4B10.10B$664.14B75.2A5.7B.13B8.12B$664.15B75.A5.
23B6.12B$666.8B2.4B74.A.AB.19B.8B2.12B$666.6B5.4B74.2AB.29B.13B$665.
9B4.4B75.45B$664.4B4.2D5.4B74.47B$663.4B5.D7.4B73.44BA4B$662.4B7.3D5.
4B73.42BABA4B$661.4B10.D6.4B74.40BABA4B$660.4B19.4B71.43BA4B$659.4B
21.4B70.2A3.25B4.B.2B3.5B$658.4B23.4B70.A3.20B4.B3.3B7.B$657.4B25.4B
66.3A6.15B7.2A2.B2AB5.3B$656.4B27.4B65.A8.11B12.A3.2A6.B2AB$655.4B29.
4B72.13B8.3A13.2A$654.4B31.4B70.15B7.A$653.4B33.4B69.16B$652.4B35.4B
68.17B$651.4B37.4B67.16B$650.4B39.4B68.13B$649.4B41.4B67.3B.2B2A5B$
648.4B43.4B64.4B2.2B2A3B$647.4B45.4B63.2A3.10B$300.C345.4B47.4B63.A4.
2B3D4B$645.4B49.4B59.3A5.3BD4B$297.B3C2B341.4B51.4B58.A8.2B3D2B$296.B
C2BCB341.4B53.4B66.7B$297.3BC2B339.4B55.4B65.6B$296.C3BCB339.4B57.4B
64.6B$297.3BC2B337.4B59.4B63.5B$296.BCBC2B337.4B61.4B62.5B$297.6B335.
4B63.4B61.6B$296.6B335.4B65.4B59.7B$297.6B333.4B67.4B58.6B$296.6B333.
4B69.4B57.6B$297.6B332.3B71.4B56.6B$296.6B408.4B54.8B$297.6B408.4B54.
8B$296.6B410.4B52.9B$297.6B410.4B51.9B$296.6B412.4B50.10B$297.6B412.
4B49.5B2A3B$296.6B414.4B48.5B2A4B3.2A$297.6B414.4B47.11B3.A$266.2A28.
6B416.4B46.12BA.A$265.B2AB28.6B416.4B47.8B2.2A$266.2B21.B6.6B418.4B
46.7B$261.B3.2B21.3B6.6B418.4B45.6B$260.2AB.4B18.6B4.7B10.2A407.4B40.
2A2.6B$260.2A8B10.4B2.7B3.8B9.A409.4B38.A.A9B$261.B.B2A6B2.2B2.27B5.B
A.A410.4B37.A3.9B$264.2A40B.2B.B2A412.4B35.2A3.9B$264.40BA6B415.4B39.
9B$260.25B2A16BABA5B416.4B38.9B$260.25B2A16BABA5B417.4B36.11B$259.2A
43BA6B418.4B10.A24.11B$259.2A14B.B5.30B418.4B7.3A24.12B$260.B.11B11.B
2.20B2.4B418.4B5.A21.B4.14B$262.10B15.19B4.4B418.4B4.2A19.3B3.10B.4B$
263.12B12.17B7.4B410.2A6.9B17.6B2.16B$262.14B11.18B7.4B410.A7.6B13.4B
2.7B.16B$263.13B12.5B.11B8.4B10.2A397.A.2A5.6B3.B2.2B2.29B2.B2A$263.
13B12.4B2.12B8.4B9.A399.A2.A4.45B2.BA.A$265.2B.8B19.4B.2BA3B9.4B10.A
398.2AB3.46B5.A$269.7B24.BABA2B3.2A5.4B5.5A399.14B2A13B2A21B4.2A$269.
7B25.2A2B5.A5.4B4.A405.13B2A13B2A21B$270.6B27.B6.A.AB.7B2.B3A403.51B$
270.7B34.2AB.7B3.2B.A402.17B.B5.26B$270.8B35.12B4A403.15B10.B2.20B$
271.8B34.7B2A3BAB2.2A401.15B12.20B.B.B$271.8B34.7B2A2B.B3A2.A401.13B
12.24B2A$270.6B2.B2A32.10B3.B.A.2A403.13B10.24B2A$270.7B.BA.A30.8B8.A
405.8B4.2A.A6.2AB2.5B2.12B.2B$271.6B4.A29.9B7.2A405.6B6.2AB3A3.A.AB2.
4B3.13B$271.6B4.2A27.4B2.3B415.5B8.B4.A2.A14.11B.B$271.6B32.4B3.5B
413.B.B9.2A.3A2.2A14.12B2A$270.8B30.4B7.2A414.3B9.A.A20.10B.B2A$269.
8B30.4B8.A414.B2AB9.A.A18.2AB.6B4.B$269.9B28.4B10.3A412.2A11.A18.A.AB
.4B$269.9B27.4B13.A444.A5.5B$268.10B26.4B458.2A8.2A$268.3B2A5B25.4B
469.A$262.2A3.4B2A5B24.4B471.3A$263.A3.11B23.4B474.A$263.A.A12B22.4B$
264.2A2.8B23.4B$269.7B22.4B$271.5B21.4B$271.5B20.4B$270.7B18.4B$270.
6B18.4B6.2A3.2A$271.5B17.4B6.B2AB.B2AB$271.8B13.4B4.B3.3B2.2B$271.10B
10.4B3.4B.3B.3B$270.12B8.13B.7B5.2A$269.13B6.23B5.A$270.12B2.8B.19B.B
A.A$269.13B.29B.B2A$269.45B$267.47B$265.4BA44B$264.4BABA42B$264.4BABA
40B$265.4BA43B$267.5B3.2B.B4.25B3.2A$269.B7.3B3.B4.20B3.A$268.3B5.B2A
B2.2A7.15B6.3A$267.B2AB6.2A3.A12.11B8.A$268.2A13.3A8.13B$285.A7.15B$
292.16B$291.17B$292.16B$293.13B$293.5B2A2B.3B$295.3B2A2B2.4B$293.10B
3.2A$293.9B4.A$294.8B5.3A$294.7B8.A$294.7B$295.6B7.A$295.6B6.A.A$296.
5B6.A.A$296.6B4.2A.3A$295.6B6.B4.A$295.7B3.B2AB3A$296.8B.B2A.A$296.
10B$295.3B2A6B$289.2A5.2B2A6B$290.A5.10B$290.A.AB2.11B$291.2AB.12B$
293.15B$293.16B225.B$293.16B.2B221.4B$293.18B2A150.2A67.4B$292.17B.B
2A149.A.A66.4B$291.4B2.8B.4B.B144.2A4.A67.4B$290.4B4.7B149.A2.A2.2A.
4A62.4B$289.4B5.6B150.2A.A.A.A.A2.A61.4B$288.4B6.4B155.A.ABABAB62.4B$
287.4B5.A3B157.A.AB2AB62.4B$286.4B5.A.AB159.AB.2B62.4B$285.4B6.A.A
163.3B60.4B$284.4B8.A164.4B6.2A50.4B$283.4B6.3A163.3B2AB6.A50.4B$282.
4B7.A165.3B2AB3.BA.A49.4B$281.4B172.10B.B2A49.4B$280.4B172.13B50.4B$
279.4B172.14B18.A30.4B$278.4B172.15B18.3A27.4B$277.4B172.4B2.8B23.A
25.4B$276.4B161.A10.4B5.6B22.2A8.2A14.4B$275.4B162.3A7.4B4.9B21.5B5.A
14.4B$274.4B166.A5.4B5.2A4.4B22.4B.BA.A13.4B$273.4B166.2A4.4B7.A5.4B
14.B4.6B.B2A13.4B$272.4B167.9B5.3A7.4B12.2AB.10B14.4B$271.4B170.6B6.A
10.4B11.2A12B13.4B$270.4B170.6B19.4B11.B.11B12.4B$269.4B171.6B20.4B
12.13B3.4B2.4B$268.4B173.6B20.4B9.2B.12B2.5B2.3B$267.4B173.2B2A4B3.3B
14.4B7.2A25B$266.4B173.2BA2BA3B.6B14.4B6.2A24B$265.4B173.4B2A9BA2B14.
4B6.B.B.20B$264.5B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B.B.B.B81.B.B.B.B.B.B.B.B.B.B.B.B.B.B.16BABA16.4B8.20B2.B28.A$
262.70B80.45B2A17.4B6.26B5.B.3B.B12.3A15.A$259.B.71B80.46B19.4B4.40B
10.A18.3A$258.2A72B80.44B22.4B4.21B2ABD11B2A2B5.B3.2A20.A15.2B$258.2A
72B80.45B22.4B3.21B2AB3D9B2A2B3.8B19.2A14.4B$259.B2.70B80.45B23.4B3.
23BDBD13B.8B21.B15.4B$261.2B2.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.B.B.B.B81.B.B.B.B.B.B.B.B.B.B.B.B.B.B.16B24.4B2.
25BD22B19.3B14.6B2.B$261.2AB179.14B25.4B.29B2.2B.15B16.6B13.2B2A2B.B
2A$260.A.A180.13B27.17B.7B2.4B7.17B11.10B8.B.3BA2BA3B2A$258.3A.A.A
178.11B30.16B2.6B14.19B2.2B3.11B2.2B3.7B2A2B.2B$257.A5.2A177.13B30.4B
.10B3.3B16.15BD15B2A3BD18B$257.2A182.15B30.14B4.B18.7B.4BDBD15B2A2B2D
17B$440.16B31.12B23.13B3D18B2D18B$36.2A401.17B32.11B22.14BD21BD18B$
36.2A402.16B32.11B23.8B2.26BD18B$441.13B35.9B24.6B11.2B.B.13B4.B2.13B
.B$441.5B2A2B39.9B25.5B12.B7.B.7B7.12B.B2A$443.3B2A2B39.9B3.2A20.4B
37.9BD4B2A$443.8B38.9B3.A22.3B16.2A20.7B3DB.2B$442.8B40.9BA.A20.4B17.
A21.6B2D2BD$442.8B17.A23.6B2.2A21.2A20.3A19.10B$442.7B16.3A19.10B26.A
22.A23.7B$442.7B15.A21.11B23.3A46.7B5.2A$443.6B15.2A20.11B.2B20.A48.
8B3.A.A$443.6B13.4B19.14B2A68.8B3.A$444.5B12.3B5.B.7B7.12B.B2A68.9B.
2A$444.6B10.4B.13B4.B2.13B.B68.11B$38.6B399.6B4.45B69.12B$37.6B400.7B
2.45B70.12B$38.6B400.6B2.45B63.2A6.10B$37.6B401.7B.22B2A21B64.A7.11B$
38.6B399.31B2A22B63.A.AB.14B$37.6B400.19B2.2B3.11B2.2B3.7B2A2B.2B61.
2AB.13B2A$38.6B398.17B11.10B8.B.3BA2BA3B2A62.15B2A$37.6B395.B3.15B16.
6B13.2B2A2B.B2A61.15B.B$38.6B393.2AB.15B19.3B14.6B2.B63.14B$37.6B394.
2A18B20.B15.4B65.2AB.11B$38.6B394.B.3B2A12B20.2A14.4B64.A.AB3.9B$37.
6B398.2B2A11B22.A15.2B65.A8.8B$38.6B398.2B2.10B19.3A82.2A9.7B$37.6B
398.2B3.6B.B21.A92.11B$38.6B396.B2AB2.4B117.12B$37.6B398.2A3.2B2AB
116.12B$38.6B404.2A117.11B$37.6B524.B3D4B.4B$38.6B523.2BD4B4.2A$37.6B
524.2B3D2B4.A$38.6B523.7B5.3A$37.6B523.7B8.A$38.6B521.8B$37.6B521.8B$
38.6B520.8B$37.6B519.2AB2.6B$38.6B517.A.AB.7B$37.6B518.A4.6B$38.6B
460.2A54.2A4.8B$37.6B461.A.A4.2A53.6B$38.6B462.A3.B2AB51.8B$37.6B463.
2A3.2B53.8B$38.6B464.AB.3B51.9B$37.6B42.4B417.3A6B50.9B$38.6B42.4B
415.A2.B.5B50.10B$37.6B44.4B414.2A3.6B49.5B2A3B$38.6B44.4B417.8B48.5B
2A4B3.2A$7.2A28.6B46.4B417.8B47.11B3.A$6.B2AB28.6B46.4B415.10B46.12BA
.A$7.2B21.B6.6B48.4B415.10B47.8B2.2A$2.B3.2B21.3B6.6B48.4B413.6B2.4B
46.7B$.2AB.4B18.6B4.7B10.2A37.4B413.6B2.4B45.6B$.2A8B10.4B2.7B3.8B9.A
39.4B411.6B4.4B40.2A2.6B$2.B.B2A6B2.2B2.27B5.BA.A40.4B411.6B4.4B38.A.
A9B$5.2A40B4.B2A42.4B409.6B6.4B37.A3.9B$5.40BA2B2.2B45.4B409.6B6.4B
35.2A3.9B$.25B2A16BABAB2.2B46.4B407.6B8.4B39.9B$.25B2A16BABAB2.2B47.
4B407.6B8.4B38.9B$2A43BA2B2.2B48.4B405.6B10.4B36.11B$2A14B.B5.25B2.3B
48.4B405.6B10.4B10.A24.11B$.B.11B11.B2.20B2.4B48.4B403.6B12.4B7.3A24.
12B$3.10B15.19B4.4B48.4B403.6B12.4B5.A21.B4.14B$4.12B12.17B7.4B48.4B
401.6B14.4B4.2A19.3B3.10B.4B$3.14B11.18B7.4B48.4B401.6B6.2A6.9B17.6B
2.16B$4.13B12.5B.11B8.4B10.2A36.4B399.6B8.A7.6B13.4B2.7B.16B$4.13B12.
4B2.12B8.4B9.A38.4B399.6B7.A.2A5.6B3.B2.2B2.29B.2B2A$6.2B.8B19.4B.2BA
3B9.4B10.A37.4B397.6B9.A2.A4.45B2.BA.A$10.7B24.BABA2B3.2A5.4B5.5A38.
4B397.6B9.2AB3.46B5.A$10.7B25.2A2B5.A5.4B4.A44.4B395.6B11.14B2A13B2A
21B4.2A$11.6B34.A.AB.7B2.B3A42.4B395.6B11.13B2A13B2A21B$11.7B34.2AB.
7B3.2B.A42.4B393.6B13.51B$11.8B35.12B4A43.4B393.6B12.17B.B5.26B$12.8B
34.7B2A3BAB2.2A42.4B391.6B14.15B10.B2.20B$12.8B34.7B2A2B.B3A2.A42.4B
391.6B13.15B12.20B.B.B$11.6B2.B2A32.10B3.B.A.2A43.4B389.6B15.13B12.
24B2A$11.7B.BA.A30.8B8.A47.4B389.6B16.13B10.24B2A$12.6B4.A29.9B7.2A
48.4B387.6B16.8B4.2A.A6.2AB2.5B2.12B.2B$12.6B4.2A27.4B2.3B59.4B387.6B
15.6B6.2AB3A3.A.AB2.4B3.13B$12.6B32.4B3.5B58.4B385.6B16.5B8.B4.A2.A
14.11B.B$11.8B30.4B7.2A59.4B385.6B15.B.B9.2A.3A2.2A14.12B2A$10.8B30.
4B8.A61.4B383.6B17.3B9.A.A20.10B.B2A$10.9B28.4B10.3A59.4B383.6B15.B2A
B9.A.A18.2AB.6B4.B$10.9B27.4B13.A60.4B381.6B17.2A11.A18.A.AB.4B$9.10B
26.4B76.4B13.2D366.6B48.A5.5B$9.3B2A5B25.4B78.4B11.D.D365.6B48.2A8.2A
$3.2A3.4B2A5B24.4B80.4B4.2D4.D368.6B57.A$4.A3.11B23.4B82.4B.D2.D2.2D.
4D363.6B59.3A$4.A.A12B22.4B84.4B2D.D.D.D.D2.D364.6B60.A$5.2A2.8B23.4B
86.4B2.D.DBDBDB365.6B$10.7B22.4B88.4B.D.DB2DB367.6B$12.5B21.4B90.4B.D
B.2B367.6B$12.5B20.4B92.4B3.3B367.6B$11.7B18.4B94.4B2.4B6.2D357.6B$
11.6B18.4B6.2A3.2A83.6B2DB6.D359.6B$12.5B17.4B6.B2AB.B2AB83.5B2DB3.BD
.D358.6B$12.8B13.4B4.B3.3B2.2B84.10B.B2D360.6B$12.10B10.4B3.4B.3B.3B
84.13B361.6B$11.12B8.13B.7B5.2A75.14B362.6B$11.12B6.23B5.A75.15B361.
6B$11.12B2.8B.19B.BA.A74.4B2.8B$10.13B.29B.B2A74.4B5.6B$10.45B75.4B4.
9B$8.47B74.4B5.2D4.4B$6.4BA44B73.4B7.D5.4B$5.4BABA42B73.4B5.3D7.4B$5.
4BABA40B74.4B6.D10.4B$6.4BA43B71.4B19.4B$8.5B3.2B.B4.25B3.2A70.4B21.
4B$10.B7.3B3.B4.20B3.A70.4B23.4B$9.3B5.B2AB2.2A7.15B6.3A66.4B25.4B$8.
B2AB6.2A3.A12.11B8.A65.4B27.4B$9.2A13.3A8.13B72.4B29.4B$26.A7.15B70.
4B31.4B$33.16B69.4B33.4B$32.17B68.4B35.4B$33.16B67.4B37.4B$34.13B68.
4B39.4B$34.5B2A2B.3B67.4B41.4B$36.3B2A2B2.4B64.4B43.4B$34.10B3.2A63.
4B45.4B$34.4B3D2B4.A63.4B47.4B$35.4BD3B5.3A59.4B49.4B$35.2B3D2B8.A58.
4B51.4B$35.7B66.4B53.4B$36.6B65.4B55.4B$36.6B64.4B57.4B$37.5B63.4B59.
4B$37.5B62.4B61.4B$36.6B61.4B63.4B$36.7B59.4B65.4B$37.6B58.4B67.4B
333.6B$37.6B57.4B69.4B333.6B$37.6B56.4B71.4B331.6B$36.8B54.4B73.4B
331.6B$35.8B54.4B75.4B329.6B$35.9B52.4B77.4B329.6B$35.9B51.4B79.4B
327.6B$34.10B50.4B81.4B327.6B$34.3B2A5B49.4B83.4B325.6B$28.2A3.4B2A5B
48.4B414.6B$29.A3.11B47.4B414.6B$29.A.A12B46.4B416.6B28.2A$30.2A2.8B
47.4B416.6B28.B2AB$35.7B46.4B418.6B6.B21.2B$36.6B45.4B418.6B6.3B21.2B
3.B$36.6B2.2A40.4B407.2A10.7B4.6B18.4B.B2A$35.9BA.A38.4B409.A9.8B3.7B
2.4B10.8B2A$34.9B3.A37.4B410.A.AB5.27B2.2B2.6B2AB.B$34.9B3.2A35.4B
412.2AB.2B.40B2A$34.9B39.4B415.6BA40B$34.9B38.4B416.5BABA16B2A25B$33.
11B36.4B417.5BABA16B2A25B$33.11B24.A10.4B418.6BA43B2A$32.12B24.3A7.4B
418.30B5.B.14B2A$31.14B4.B21.A5.4B418.4B2.20B2.B11.11B.B$30.4B.10B3.
3B19.2A4.4B418.4B4.19B15.10B$29.16B2.6B17.9B6.2A410.4B7.17B12.12B$29.
16B.7B2.4B13.6B7.A410.4B7.18B11.14B$27.2AB2.29B2.2B2.B3.6B5.2A.A397.
2A10.4B8.11B.5B12.13B$26.A.AB2.45B4.A2.A399.A9.4B8.12B2.4B12.13B$26.A
5.46B3.B2A398.A10.4B9.3BA2B.4B19.8B.2B$25.2A4.21B2A13B2A14B399.5A5.4B
5.2A3.2BABAB24.7B$31.21B2A13B2A13B405.A4.4B5.A5.2B2A25.7B$30.51B403.
3AB2.7B.BA.A6.B27.6B$31.26B5.B.17B402.A.2B3.7B.B2A34.7B$32.20B2.B10.
15B403.4A12B35.8B$29.B.B.20B12.15B401.2A2.BA3B2A7B34.8B$28.2A24B12.
13B401.A2.3AB.2B2A7B34.8B$28.2A24B10.13B403.2A.A.B3.10B32.2AB2.6B$29.
2B.12B2.5B2.B2A6.A.2A4.8B405.A8.8B30.A.AB.7B$31.13B3.4B2.BA.A3.3AB2A
6.6B405.2A7.9B29.A4.6B$29.B.11B14.A2.A4.B8.5B415.3B2.4B27.2A4.6B$28.
2A12B14.2A2.3A.2A9.B.B413.5B3.4B32.6B$28.2AB.10B20.A.A9.3B414.2A7.4B
30.8B$29.B4.6B.B2A18.A.A9.B2AB414.A8.4B30.8B$36.4B.BA.A18.A11.2A412.
3A10.4B28.9B$34.5B5.A444.A13.4B27.9B$34.2A8.2A458.4B26.10B$35.A469.4B
25.5B2A3B$32.3A471.4B24.5B2A4B3.2A$32.A474.4B23.11B3.A$508.4B22.12BA.
A$509.4B23.8B2.2A$510.4B22.7B$511.4B21.5B$512.4B20.5B$513.4B18.7B$
501.2A3.2A6.4B18.6B$500.B2AB.B2AB6.4B17.5B$501.2B2.3B3.B4.4B13.8B$
502.3B.3B.4B3.4B10.10B$494.2A5.7B.13B8.12B$495.A5.23B6.13B$495.A.AB.
19B.8B2.12B$496.2AB.29B.13B$498.45B$498.47B$498.44BA4B$499.42BABA4B$
501.40BABA4B$499.43BA4B$499.2A3.25B4.B.2B3.5B$500.A3.20B4.B3.3B7.B$
497.3A6.15B7.2A2.B2AB5.3B$497.A8.11B12.A3.2A6.B2AB$505.13B8.3A13.2A$
504.15B7.A$504.16B$504.17B$504.16B$506.13B$506.3B.2B2A5B$504.4B2.2B2A
3B$504.2A3.10B$505.A4.9B$502.3A5.8B$502.A8.7B$511.7B$503.A7.6B$502.A.
A6.6B$502.A.A6.5B$500.3A.2A4.6B$499.A4.B6.6B$500.3AB2AB3.7B$502.A.2AB
.8B$506.10B$506.6B2A3B$506.6B2A2B5.2A$506.10B5.A$505.11B2.BA.A$505.
12B.B2A$504.15B$503.16B$500.2B.16B$347.2A150.2A18B$347.A.A149.2AB.17B
$349.A4.2A144.B.4B.8B2.4B$345.4A.2A2.A2.A149.7B4.4B$345.A2.A.A.A.A.2A
150.6B5.4B$281.4B62.BABABA.A155.4B6.4B$282.4B62.B2ABA.A157.3BA5.4B$
283.4B62.2B.BA159.BA.A5.4B$284.4B60.3B163.A.A6.4B$285.4B50.2A6.4B164.
A8.4B$286.4B50.A6.B2A3B163.3A6.4B$287.4B49.A.AB3.B2A3B165.A7.4B$288.
4B49.2AB.10B172.4B$289.4B50.13B172.4B$290.4B30.A18.14B172.4B$291.4B
27.3A18.15B172.4B$292.4B25.A23.8B2.4B172.4B$293.4B14.2A8.2A22.6B5.4B
10.A161.4B$294.4B14.A5.5B21.9B4.4B7.3A162.4B$295.4B13.A.AB.4B22.4B4.
2A5.4B5.A166.4B$296.4B13.2AB.6B4.B14.4B5.A7.4B4.2A166.4B$297.4B14.10B
.B2A12.4B7.3A5.9B167.4B$298.4B13.12B2A11.4B10.A6.6B170.4B$299.4B12.
11B.B11.4B19.6B170.4B$300.4B2.4B3.13B12.4B20.6B171.4B$301.3B2.5B2.12B
.2B9.4B20.6B173.4B$302.25B2A7.4B14.3B3.4B2A2B173.4B$303.24B2A6.4B14.
6B.3BA2BA2B173.4B$304.20B.B.B6.4B14.2BA9B2A4B173.4B$273.A28.B2.20B8.
4B16.ABA16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B81.B.B.B.B.B.B.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.5B$257.A15.3A12.B.3B.B5.26B6.4B17.
2A45B80.70B$255.3A18.A10.40B4.4B19.46B80.71B.B$237.2B15.A20.2A3.B5.2B
2A11BDB2A21B4.4B22.44B80.72B2A$236.4B14.2A19.8B3.2B2A9B3DB2A21B3.4B
22.45B80.72B2A$236.4B15.B21.8B.13BDBD23B3.4B23.45B80.70B2.B$232.B2.6B
14.3B19.22BD25B2.4B24.16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B81.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B2.2B$231.2AB.2B
2A2B13.6B16.15B.2B2.29B.4B25.14B179.B2A$231.2A3BA2BA3B.B8.10B11.17B7.
4B2.7B.17B27.13B180.A.A$232.2B.2B2A7B3.2B2.11B3.2B2.19B14.6B2.16B30.
11B178.A.A.3A$235.18BD3B2A15BD15B16.3B3.10B.4B30.13B177.2A5.A$236.17B
2D2B2A15BDBD4B.7B18.B4.14B30.15B182.2A$236.18B2D18B3D13B23.12B31.16B$
236.18BD21BD14B22.11B32.17B$235.18BD26B2.8B23.11B32.16B$233.B.13B2.B
4.13B.B.2B11.6B24.9B35.13B$232.2AB.12B7.7B.B7.B12.5B25.9B39.2B2A5B$
232.2A4BD9B37.4B20.2A3.9B39.2B2A3B$233.2B.B3D7B20.2A16.3B22.A3.9B38.
8B$236.D2B2D6B21.A17.4B20.A.A9B40.8B$236.10B19.3A20.2A21.2A2.6B23.A
17.8B$235.7B23.A22.A26.10B19.3A16.7B$229.2A5.7B46.3A23.11B21.A15.7B$
229.A.A3.8B48.A20.2B.11B20.2A15.6B$231.A3.8B68.2A14B19.4B13.6B$231.2A
.9B68.2AB.12B7.7B.B5.3B12.5B$233.11B68.B.13B2.B4.13B.4B10.6B$233.12B
69.45B4.6B$233.12B70.45B2.7B$234.10B6.2A63.45B2.6B$232.11B7.A64.21B2A
22B.7B$232.14B.BA.A63.22B2A31B$231.2A13B.B2A61.2B.2B2A7B3.2B2.11B3.2B
2.19B$231.2A15B62.2A3BA2BA3B.B8.10B11.17B$232.B.15B61.2AB.2B2A2B13.6B
16.15B3.B$234.14B63.B2.6B14.3B19.15B.B2A$235.11B.B2A65.4B15.B20.18B2A
$235.9B3.BA.A64.4B14.2A20.12B2A3B.B$234.8B8.A65.2B15.A22.11B2A2B$234.
7B9.2A82.3A19.10B2.2B$233.11B92.A21.B.6B3.2B$233.12B117.4B2.B2AB$233.
12B116.B2A2B3.2A$234.11B117.2A$232.4B.4B3DB$232.2A4.4BD2B$233.A4.2B3D
2B$230.3A5.7B$230.A8.7B$239.8B$240.8B$240.8B$239.6B2.B2A$239.7B.BA.A$
240.6B4.A$238.8B4.2A54.2A$240.6B53.2A4.A.A$239.8B51.B2AB3.A$238.8B53.
2B3.2A$238.9B51.3B.BA$238.9B50.6B3A$237.10B50.5B.B2.A$237.3B2A5B49.6B
3.2A$231.2A3.4B2A5B48.8B$232.A3.11B47.8B$232.A.A12B46.10B$233.2A2.8B
47.10B$238.7B46.4B2.6B$239.6B45.4B2.6B$239.6B2.2A40.4B4.6B$238.9BA.A
38.4B4.6B$237.9B3.A37.4B6.6B$237.9B3.2A35.4B6.6B$237.9B39.4B8.6B$237.
9B38.4B8.6B$236.11B36.4B10.6B$236.11B24.A10.4B10.6B$235.12B24.3A7.4B
12.6B$234.14B4.B21.A5.4B12.6B$233.4B.10B3.3B19.2A4.4B14.6B$232.16B2.
6B17.9B6.2A6.6B$232.16B.7B2.4B13.6B7.A8.6B$230.2A2B.29B2.2B2.B3.6B5.
2A.A7.6B$229.A.AB2.45B4.A2.A9.6B$229.A5.46B3.B2A9.6B$228.2A4.21B2A13B
2A14B11.6B$234.21B2A13B2A13B11.6B$233.51B13.6B$234.26B5.B.17B12.6B$
235.20B2.B10.15B14.6B$232.B.B.20B12.15B13.6B$231.2A24B12.13B15.6B$
231.2A24B10.13B16.6B$232.2B.12B2.5B2.B2A6.A.2A4.8B16.6B$234.13B3.4B2.
BA.A3.3AB2A6.6B15.6B$232.B.11B14.A2.A4.B8.5B16.6B$231.2A12B14.2A2.3A.
2A9.B.B15.6B$231.2AB.10B20.A.A9.3B17.6B$232.B4.6B.B2A18.A.A9.B2AB15.
6B$239.4B.BA.A18.A11.2A17.6B$237.5B5.A48.6B$237.2A8.2A48.6B$238.A57.
6B$235.3A59.6B$235.A60.6B$297.6B$296.6B$297.6B$296.6B$297.6B$296.6B$
297.6B$296.6B$297.6B$296.6B$297.6B$296.6B$297.B3C2B$296.BC2BCB$297.3B
C2B$296.C3BCB$299.BCB$297.C.C!

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » March 27th, 2022, 9:42 am

I put together the full *WSS salvo. Turn the red cells on at some even generation greater than 10000, and two faraway MWSS-to-G converters with SPEBOEs will be created (run in Golly):

Code: Select all

x = 95, y = 5175, rule = LifeHistory
48.A4.3A$47.3A3.A2.A$40.3A3.2A.A3.A$40.A2.A2.3A4.A3.A$40.A5.3A4.A$40.
A3.A.3A5.A.A$40.A3.A.2A$40.A6.2A$41.A.A8.3A$52.A2.A$47.A4.A$47.A4.A3.
A$47.A4.A3.A$52.A$47.A5.A.A$47.A$47.A2$47.A$47.A$47.A2$47.A$47.A$47.A
4.3E$51.E2.E$47.A6.E$47.A2.E3.E$47.A6.E$51.E.E$47.A$47.A$47.A2$47.A$
47.A$47.A2$47.A$47.A$47.A2$47.A$47.A$47.A2$47.A$46.A.A$45.A2.A$46.2A
6$49.2A$49.2A16$78.3C$77.C2.C$80.C$80.C$77.C.C12$.2D$D.D53.3A$.D53.A
2.A$58.A$58.A$28.2D4.2D19.A.A$28.2D4.2D5$35.2D$28.2D5.2D$27.D2.D$28.D
.D$29.D2$56.3A$26.2D28.A2.A$25.D.D28.A$24.D.D29.A$25.D31.A.A3$15.D$
15.2D$14.D.D5$58.A$57.3A$56.2A.A$56.3A$56.3A$57.2A45$34.3A17.3A$33.A
2.A16.A2.A$36.A19.A$36.A19.A$33.A.A17.A.A20$37.A$36.3A$35.2A.A$35.3A$
35.3A$36.2A11$37.3A$36.A2.A$39.A$39.A$36.A.A26$36.3A$35.A2.A$38.A$38.
A$35.A.A124$59.3A$58.A2.A$61.A$57.A3.A$57.A3.A$61.A$58.A.A15$57.3A$
56.A2.A$59.A$55.A3.A$59.A$56.A.A15$58.3A$58.A2.A$58.A$58.A3.A$58.A$
59.A.A6$54.3A$53.A2.A$56.A$56.A$53.A.A47$56.3A$55.A2.A$58.A$54.A3.A$
58.A$55.A.A36$63.3A$62.A2.A$65.A$65.A$62.A.A277$78.3A$77.A2.A$80.A$
80.A$77.A.A18$84.3A$83.A2.A$86.A$82.A3.A$86.A$83.A.A11$79.3A$79.A2.A$
79.A$79.A$80.A.A9$82.3A$82.A2.A$82.A$82.A$83.A.A5$80.3A$80.A2.A$80.A$
80.A$81.A.A20$83.3A$82.A2.A$85.A$85.A$82.A.A21$81.3A$80.A2.A$83.A$83.
A$80.A.A5$84.3A$83.A2.A$86.A$86.A$83.A.A5$85.3A$85.A2.A$85.A$85.A$86.
A.A5$89.3A$88.A2.A$91.A$91.A$88.A.A18$92.3A$91.A2.A$94.A$90.A3.A$90.A
3.A$94.A$91.A.A23$83.3A$83.A2.A$83.A$83.A3.A$83.A3.A$83.A$84.A.A33$
74.A$73.3A$73.A.2A$74.3A$74.3A$74.3A$74.2A55$84.A$83.3A$83.A.2A$84.3A
$84.2A34$61.A$60.3A$59.2A.A$59.3A$60.2A43$60.3A$59.A2.A$62.A$58.A3.A$
58.A3.A$62.A$59.A.A64$62.A$61.3A$61.A.2A$62.3A$62.2A40$66.3A$66.A2.A$
66.A$66.A3.A$66.A3.A$66.A$67.A.A41$60.3A$59.A2.A$62.A$62.A$59.A.A58$
67.A$66.3A$65.2A.A$65.3A$65.3A$65.3A$66.2A45$62.3A$62.A2.A$62.A$62.A
3.A$62.A$63.A.A77$80.3A$79.A2.A$82.A$82.A$79.A.A46$78.3A$77.A2.A$80.A
$80.A$77.A.A48$76.3A$75.A2.A$78.A$78.A$75.A.A46$77.3A$77.A2.A$77.A$
77.A$78.A.A16$69.3A$68.A2.A$71.A$67.A3.A$67.A3.A$71.A$68.A.A33$73.3A$
72.A2.A$75.A$71.A3.A$71.A3.A$75.A$72.A.A45$63.A$62.3A$62.A.2A$63.3A$
63.2A26$62.A$61.3A$61.A.2A$62.3A$62.2A31$72.3A$71.A2.A$74.A$74.A$71.A
.A34$81.A$80.3A$80.A.2A$81.3A$81.2A45$76.3A$76.A2.A$76.A$76.A3.A$76.A
3.A$76.A$77.A.A43$79.A$78.3A$78.A.2A$79.3A$79.3A$79.2A43$85.A$84.3A$
84.A.2A$85.3A$85.2A82$83.A$82.3A$81.2A.A$81.3A$81.3A$81.3A$82.2A45$
83.A$82.3A$82.A.2A$83.3A$83.3A$83.3A$83.2A323$59.A$58.3A$57.2A.A$57.
3A$57.3A$57.3A$58.2A61$36.3A$35.A2.A$38.A$34.A3.A$34.A3.A$38.A$35.A.A
50$74.3A$74.A2.A$74.A$74.A3.A$74.A$75.A.A14$81.A$80.3A$79.2A.A$79.3A$
80.2A17$72.3A$72.A2.A$72.A$72.A3.A$72.A$73.A.A30$68.3A$68.A2.A$68.A$
68.A$69.A.A16$67.3A$67.A2.A$67.A$67.A$68.A.A26$57.3A$56.A2.A$59.A$59.
A$56.A.A16$55.3A$54.A2.A$57.A$57.A$54.A.A28$58.3A$57.A2.A$60.A$60.A$
57.A.A16$63.3A$63.A2.A$63.A$63.A3.A$63.A$64.A.A25$58.3A$57.A2.A$60.A$
56.A3.A$56.A3.A$60.A$57.A.A28$67.3A$67.A2.A$67.A$67.A3.A$67.A3.A$67.A
$68.A.A13$63.A$62.3A$62.A.2A$63.3A$63.3A$63.3A$63.2A25$61.3A$61.A2.A$
61.A$61.A$62.A.A16$56.3A$55.A2.A$58.A$54.A3.A$58.A$55.A.A25$61.3A$61.
A2.A$61.A$61.A3.A$61.A3.A$61.A$62.A.A27$55.A$54.3A$53.2A.A$53.3A$54.
2A24$57.3A$56.A2.A$59.A$59.A$56.A.A27$28.A$27.3A$27.A.2A$28.3A$28.3A$
28.2A15$23.A$22.3A$22.A.2A$23.3A$23.3A$23.3A$23.2A10$28.A$27.3A$26.2A
.A$26.3A$26.3A$26.3A$27.2A11$21.3A$21.A2.A$21.A$21.A3.A$21.A$22.A.A
16$31.3A$31.A2.A$31.A$31.A3.A$31.A3.A$31.A$32.A.A17$25.3A$25.A2.A$25.
A$25.A$26.A.A85$74.A$73.3A$73.A.2A$74.3A$74.2A16$70.A$69.3A$69.A.2A$
70.3A$70.3A$70.3A$70.2A507$78.3A$77.A2.A$80.A$80.A$77.A.A18$84.3A$83.
A2.A$86.A$82.A3.A$86.A$83.A.A11$79.3A$79.A2.A$79.A$79.A$80.A.A9$82.3A
$82.A2.A$82.A$82.A$83.A.A5$80.3A$80.A2.A$80.A$80.A$81.A.A20$83.3A$82.
A2.A$85.A$85.A$82.A.A21$81.3A$80.A2.A$83.A$83.A$80.A.A5$84.3A$83.A2.A
$86.A$86.A$83.A.A5$85.3A$85.A2.A$85.A$85.A$86.A.A5$89.3A$88.A2.A$91.A
$91.A$88.A.A18$92.3A$91.A2.A$94.A$90.A3.A$90.A3.A$94.A$91.A.A23$83.3A
$83.A2.A$83.A$83.A3.A$83.A3.A$83.A$84.A.A33$74.A$73.3A$73.A.2A$74.3A$
74.3A$74.3A$74.2A55$84.A$83.3A$83.A.2A$84.3A$84.2A34$61.A$60.3A$59.2A
.A$59.3A$60.2A43$60.3A$59.A2.A$62.A$58.A3.A$58.A3.A$62.A$59.A.A64$62.
A$61.3A$61.A.2A$62.3A$62.2A40$66.3A$66.A2.A$66.A$66.A3.A$66.A3.A$66.A
$67.A.A41$60.3A$59.A2.A$62.A$62.A$59.A.A58$67.A$66.3A$65.2A.A$65.3A$
65.3A$65.3A$66.2A45$62.3A$62.A2.A$62.A$62.A3.A$62.A$63.A.A77$80.3A$
79.A2.A$82.A$82.A$79.A.A46$78.3A$77.A2.A$80.A$80.A$77.A.A48$76.3A$75.
A2.A$78.A$78.A$75.A.A46$77.3A$77.A2.A$77.A$77.A$78.A.A16$69.3A$68.A2.
A$71.A$67.A3.A$67.A3.A$71.A$68.A.A33$73.3A$72.A2.A$75.A$71.A3.A$71.A
3.A$75.A$72.A.A45$63.A$62.3A$62.A.2A$63.3A$63.2A26$62.A$61.3A$61.A.2A
$62.3A$62.2A31$72.3A$71.A2.A$74.A$74.A$71.A.A34$81.A$80.3A$80.A.2A$
81.3A$81.2A45$76.3A$76.A2.A$76.A$76.A3.A$76.A3.A$76.A$77.A.A43$79.A$
78.3A$78.A.2A$79.3A$79.3A$79.2A43$85.A$84.3A$84.A.2A$85.3A$85.2A82$
83.A$82.3A$81.2A.A$81.3A$81.3A$81.3A$82.2A45$83.A$82.3A$82.A.2A$83.3A
$83.3A$83.3A$83.2A!
All of the green *WSSs are no problem to create, because they don't need to be synchronised. The white LWSS does need to be synchronised in order to catch an escaping glider and create a block, so we'll need to make a seed for this:

Code: Select all

x = 41, y = 77, rule = B3/S23
8bo4b3o$7b3o3bo2bo$3o3b2obo3bo$o2bo2b3o4bo3bo$o5b3o4bo$o3bob3o5bobo$o
3bob2o$o6b2o$bobo8b3o$12bo2bo$7bo4bo$7bo4bo3bo$7bo4bo3bo$12bo$7bo5bobo
$7bo$7bo56$38b3o$37bo2bo$40bo$40bo$37bobo!
If it turns out that that LWSS is very annoying to synchronise, it is possible to use other placements, as long as the LWSS still catches the glider to create a constellation. The yellow MWSS does not need to be synchronised (though it does need to keep its even/odd parity). However, if we take too long to fire it, the distances between the MWSS-to-G converters become more unequal, which may be expensive to correct. For that reason, I don't want to fire it just like all the other *WSSs, because firing a MWSS from a single channel construction arm is fairly slow (> 2500 ticks).

We could build the yellow MWSS as part of the seed, keeping in mind that it can be advanced/reversed by multiples of 2 to our convenience. Alternatively, we could have a MWSS seed lying behind the blinker puffer which is separately triggered by a zero-degree glider just after the blinker puffer seed is triggered. This will take a little bit of time, but it should take less time than the "fire MWSS straight from the construction arm" method, because gliders can be fired more quickly than MWSSs. I'm not sure which option is better.

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make a Spaceship With an Adjustable Slope

Post by dvgrn » March 27th, 2022, 5:24 pm

Goldtiger997 wrote:
March 27th, 2022, 9:42 am
If it turns out that that LWSS is very annoying to synchronise, it is possible to use other placements, as long as the LWSS still catches the glider to create a constellation. The yellow MWSS does not need to be synchronised (though it does need to keep its even/odd parity)... We could build the yellow MWSS as part of the seed, keeping in mind that it can be advanced/reversed by multiples of 2 to our convenience.
Rather than getting bogged down in figuring out which option is better, I went ahead and built a proof-of-concept seed for the whole thing exactly as shown in the example pattern... assuming I'm understanding everything correctly:

Code: Select all

x = 126, y = 133, rule = B3/S23
24bo$23bobo$23bo2bo$24b2o$19b2o$18bobo$19bo3$67b2o$66bobo$66b2o3$62b2o
$17b2o42bobo$11b2o3bobo4b2o36b2o$10bobo3b2o5b2o2b2o19b2o3b2o$11bo15b2o
19bobo2b2o$49b2o2$42b2o10bo$43bo8b3o$41bo9bo$41b2o8b2o2$79bo$60b2o16bo
bo$56b2o2b2o17bo$30bo25b2o$30bo$30bo3$77b2o$76bo2bo$76bobo$77bo3$54bo$
54bo$54bo$32b2o$31bo2bo4bo35b3o$32bobo3bobo$33bo3bo2bo$38b2o13bo$52bob
o20b2o$53bobo19bo$54b2o17bobo$48bo24b2o$47bobo$48bo6$8b2o29bo4b2o$7bob
o28bobo3b2o$8bo30b2o3$14bo$13bobo$13bobo$14bo4$12bo$11bobo$11bo2bo$12b
2o3$bo$b2o$obo2$46b2o4b2o$46b2o4b2o3$41b2o$40bobo$41bo11b2o$53b2o3$
122b2o$122bo$123b3o$125bo23$75b2o$75bobo$76b2o5$81b2o$81bobo$82b2o4$
78b2o$77bobo$78bo!
I ran into some trouble with the geometry, obviously, so I'll probably try one more rebuild of this to get the pieces closer together. Maybe just take a look at this one and see if there's an obvious, "No no this won't work because ____" response.

EDIT: Okay, this seems a little closer to half-decent:

Code: Select all

x = 113, y = 111, rule = B3/S23
40bo$39bobo$39bo2bo$40b2o$35b2o$34bobo$35bo3$83b2o$82bobo$82b2o3$78b2o
$33b2o42bobo$27b2o3bobo4b2o36b2o$26bobo3b2o5b2o2b2o19b2o3b2o$27bo15b2o
19bobo2b2o$65b2o2$58b2o10bo$59bo8b3o$57bo9bo$57b2o8b2o2$95bo$76b2o16bo
bo$72b2o2b2o17bo$30bo15bo25b2o$29bobo14bo$30b2o14bo3$93b2o$92bo2bo$92b
obo$93bo3$70bo$70bo$70bo$48b2o$47bo2bo4bo35b3o$48bobo3bobo$49bo3bo2bo$
34b2o18b2o13bo$33bo2bo31bobo20b2o$33bobo5b2o26bobo19bo$34bo5bo2bo26b2o
17bobo$41b2o21bo24b2o$63bobo$64bo6$bo53bo4b2o$b2o51bobo3b2o$obo52b2o$
109b2o$109bo$110b3o$112bo8$16bo$15bobo$16b2o6$62b2o4b2o$62b2o4b2o5$69b
2o$69b2o4$50b2o$49bobo$50bo$55b2o$55bobo$56b2o5$61b2o$61bobo$62b2o4$
58b2o$57bobo$58bo!

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » March 28th, 2022, 11:04 am

Here's an alternative HashLife friendly design which slsparse says is slightly cheaper to build (335KB vs 345KB):

Code: Select all

x = 309, y = 516, rule = LifeHistory
40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$9.
2A28.6B$8.B2AB28.6B$9.2B21.B6.6B$4.B3.2B21.3B6.6B$3.2AB.4B18.6B4.7B
10.2A$3.2A8B10.4B2.7B3.8B9.A$4.B.B2A6B2.2B2.27B5.BA.A$7.2A40B.2B.B2A$
7.40BA6B$3.25B2A16BABA5B$3.25B2A16BABA5B$2.2A43BA6B$2.2A14B.B5.30B$3.
B.11B11.B2.20B2.4B$5.10B15.19B4.4B$6.12B12.17B7.4B$5.14B11.18B7.4B$6.
13B12.5B.11B8.4B10.2A$6.13B12.4B2.12B8.4B9.A$8.2B.8B19.4B.2BA3B9.4B
10.A$12.7B24.BABA2B3.2A5.4B5.5A$12.7B25.2A2B5.A5.4B4.A$13.6B27.B6.A.A
B.7B2.B3A$13.7B34.2AB.7B3.2B.A$13.8B35.12B4A$14.8B34.7B2A3BAB2.2A$14.
8B34.7B2A2B.B3A2.A$13.6B2.B2A32.10B3.B.A.2A$13.7B.BA.A30.8B8.A$14.6B
4.A29.9B7.2A$14.6B4.2A27.4B2.3B$14.6B32.4B3.5B$13.8B30.4B7.2A$12.8B
30.4B8.A$12.9B28.4B10.3A$12.9B27.4B13.A$11.10B26.4B$11.3B2A5B25.4B$5.
2A3.4B2A5B24.4B$6.A3.11B23.4B$6.A.A12B22.4B$7.2A2.8B23.4B$12.7B22.4B$
14.5B21.4B$14.5B20.4B$13.7B18.4B$13.6B18.4B6.2A3.2A$14.5B17.4B6.B2AB.
B2AB$14.8B13.4B4.B3.3B2.2B$14.10B10.4B3.4B.3B.3B$13.12B8.13B.7B5.2A$
13.12B6.23B5.A$13.12B2.8B.19B.BA.A$12.13B.29B.B2A$12.45B$10.47B$8.4BA
44B$7.4BABA42B$7.4BABA40B$8.4BA43B$10.5B3.2B.B4.25B3.2A$12.B7.3B3.B4.
20B3.A$11.3B5.B2AB2.2A7.15B6.3A$10.B2AB6.2A3.A12.11B8.A$11.2A13.3A8.
13B$28.A7.15B$35.16B$34.17B$35.16B$36.13B$36.5B2A2B.3B$38.3B2A2B2.4B$
36.10B3.2A$36.9B4.A$37.8B5.3A$37.7B8.A$37.7B$38.6B7.A$38.6B6.A.A$39.
5B6.A.A$39.6B4.2A.3A$38.6B6.B4.A$38.7B3.B2AB3A$39.8B.B2A.A$39.10B$38.
3B2A6B$32.2A5.2B2A6B$33.A5.10B$33.A.AB2.11B$34.2AB.12B$36.15B$36.16B$
36.16B.2B$36.18B2A120.2A$35.17B.B2A119.A.A$34.4B2.8B.4B.B114.2A4.A$
33.4B4.7B119.A2.A2.2A.4A$32.4B5.6B120.2A.A.A.A.A2.A$31.4B6.4B125.A.AB
ABAB$30.4B5.A3B127.A.AB2AB$29.4B5.A.AB129.AB.2B$28.4B6.A.A133.3B$27.
4B8.A134.4B6.2A$26.4B6.3A133.3B2AB6.A$25.4B7.A135.3B2AB3.BA.A$24.4B
142.10B.B2A$23.4B142.13B$22.4B142.14B18.A$21.4B142.15B18.3A$20.4B142.
4B2.8B23.A$19.4B131.A10.4B5.6B22.2A8.2A$18.4B132.3A7.4B4.9B21.5B5.A
14.B$17.4B136.A5.4B5.2A4.4B22.4B.BA.A13.2B$16.4B136.2A4.4B7.A5.4B14.B
4.6B.B2A13.3B$15.4B137.9B5.3A7.4B12.2AB.10B14.4B$14.4B140.6B6.A10.4B
11.2A12B13.4B$13.4B140.6B19.4B11.B.11B12.4B$12.4B141.6B20.4B12.13B3.
4B2.4B$11.4B143.6B20.4B9.2B.12B2.5B2.3B$10.4B143.2B2A4B3.3B14.4B7.2A
25B$9.4B143.2BA2BA3B.6B14.4B6.2A24B67.E$8.4B143.4B2A9BA2B14.4B6.B.B.
20B66.3E$7.5B.B.B.B.B.B.B.B.B.B.B.B.B89.B.B.B.B.B.B.B.B.B.B.B.B.B.B.
16BABA16.4B8.20B2.B28.A34.E$5.31B89.45B2A17.4B6.26B5.B.3B.B12.3A15.A
18.2E7.2A3.2A$2.B.32B89.46B19.4B4.40B10.A18.3A14.4B6.B2AB.B2AB$.2A33B
89.44B22.4B4.21B2ABD11B2A2B5.B3.2A20.A12.3B5.B3.3B2.2B$.2A33B89.45B
22.4B3.21B2AB3D9B2A2B3.8B19.2A11.4B3.4B.3B.3B$2.B2.31B89.45B23.4B3.
23BDBD13B.8B21.B11.13B.7B5.2A$4.2B2.B.B.B.B.B.B.B.B.B.B.B.B.B.B91.B.B
.B.B.B.B.B.B.B.B.B.B.B.B.16B24.4B2.25BD22B19.3B9.23B5.A$4.2AB149.14B
25.4B.29B2.2B.15B16.6B4.8B.19B.BA.A$3.A.A150.13B27.17B.7B2.4B7.18B10.
10B2.29B.B2A$.3A.A.A148.11B30.16B2.6B14.19B2.2B3.44B$A5.2A147.13B30.
4B.10B3.3B16.15BD15B2A37B$2A152.15B30.14B4.B18.7B.4BDBD15B2A37B$153.
16B31.12B23.13B3D53B$152.17B32.11B22.14BD53B$153.16B32.11B23.8B2.59B$
154.13B35.9B24.6B7.2B2.2B.B.13B4.25B3.2A$154.5B2A2B39.9B25.5B12.B7.B.
7B4.B4.20B3.A$156.3B2A2B39.9B3.2A20.4B33.2A7.15B6.3A$156.8B38.9B3.A
22.3B16.2A15.A12.11B8.A$155.8B40.9BA.A20.4B17.A17.3A8.13B$155.8B17.A
23.6B2.2A21.2A20.3A16.A7.15B$155.7B16.3A19.10B26.A22.A23.16B$155.7B
15.A21.11B23.3A46.17B$156.6B15.2A20.11B.2B20.A49.16B$156.6B13.4B19.
14B2A70.13B$157.5B12.3B5.B.7B7.12B.B2A70.5B2A2B.3B$157.6B10.4B.13B4.B
2.13B.B73.3B2A2B2.4B$156.6B4.45B75.8B3.2A$156.7B2.45B75.8B4.A$157.6B
2.45B75.8B5.3A$157.7B.22B2A21B75.7B8.A$156.31B2A22B74.7B$156.19B2.2B
3.11B2.2B3.7B2A2B.2B72.6B7.A$155.17B11.10B8.B.3BA2BA3B2A71.6B6.A.A$
151.B3.15B16.6B13.2B2A2B.B2A72.5B6.A.A$150.2AB.15B19.3B14.6B2.B73.6B
4.2A.3A$150.2A18B20.B15.4B76.6B6.B4.A$151.B.3B2A12B20.2A14.4B76.7B3.B
2AB3A$154.2B2A11B22.A15.2B78.8B.B2A.A$155.2B2.10B19.3A96.10B$154.2B3.
6B.B21.A97.3B2A6B$153.B2AB2.4B117.2A5.2B2A6B$154.2A3.2B2AB117.A5.10B$
161.2A118.A.AB2.11B$282.2AB.12B$284.15B$284.16B$284.16B.2B$284.18B2A$
283.17B.B2A$282.4B2.8B.4B.B$281.4B4.7B$280.4B5.6B$279.4B6.4B$278.4B5.
A3B$277.4B5.A.AB$276.4B6.A.A$275.4B8.A$274.4B6.3A$273.4B7.A$272.4B$
271.4B$270.4B$269.4B$268.4B$267.4B$266.4B$265.4B$264.4B$263.4B$262.4B
$253.2A6.4B5.2A$254.A5.5B5.A3.A$254.A.AB.7B.BA.A2.A.A$255.2A9B.B2A3.A
.A$257.5BA5B4.2A.3A$257.4BABA4B5.B4.A$257.4BABA6B.B2AB3A$259.3BA7B.B
2A.A$260.12B$260.13B$260.13B2A$261.12BA.A$259.10B.2B.B.A2.A$259.2A3.
6B4.2A.A.A$260.A2.6B6.A2.2A$257.3A4.6B3.A.A$257.A5.6B4.2A$264.6B$263.
6B$264.6B$263.6B$264.6B$263.6B$264.6B$263.6B$264.6B$263.6B$264.6B$
263.6B$264.6B$263.6B$264.6B$263.6B$264.6B$263.6B$264.6B$263.6B$264.6B
$263.6B$264.6B$263.6B22$263.6B$264.6B$263.6B$264.6B$263.6B$264.6B$
263.6B$264.6B$263.6B$264.6B$263.6B$264.6B28.2A$263.6B28.B2AB$264.6B6.
B21.2B$263.6B6.3B21.2B3.B$251.2A10.7B4.6B18.4B.B2A$252.A9.8B3.7B2.4B
10.8B2A$252.A.AB5.27B2.2B2.6B2AB.B$253.2AB.2B.40B2A$255.6BA40B$255.5B
ABA16B2A25B$255.5BABA16B2A25B$255.6BA43B2A$254.30B5.B.14B2A$253.4B2.
20B2.B11.11B.B$252.4B4.19B15.10B$251.4B7.17B12.12B$250.4B7.18B11.14B$
237.2A10.4B8.11B.5B12.13B$238.A9.4B8.12B2.4B12.13B$236.A10.4B9.3BA2B.
4B19.8B.2B$236.5A5.4B5.2A3.2BABAB24.7B$241.A4.4B5.A5.2B2A25.7B$238.3A
B2.7B.BA.A6.B27.6B$237.A.2B3.7B.B2A34.7B$237.4A12B35.8B$235.2A2.BA3B
2A7B34.8B$234.A2.3AB.2B2A7B34.8B$234.2A.A.B3.10B32.2AB2.6B$237.A8.8B
30.A.AB.7B$237.2A7.9B29.A4.6B$247.3B2.4B27.2A4.6B$245.5B3.4B32.6B$
245.2A7.4B30.8B$246.A8.4B30.8B$243.3A10.4B28.9B$243.A13.4B27.9B$258.
4B26.10B$259.4B25.5B2A3B$260.4B24.5B2A4B3.2A$261.4B23.11B3.A$262.4B
22.12BA.A$263.4B23.8B2.2A$264.4B22.7B$265.4B21.5B$266.4B20.5B$267.4B
18.7B$255.2A3.2A6.4B18.6B$254.B2AB.B2AB6.4B17.5B$255.2B2.3B3.B4.4B13.
8B$256.3B.3B.4B3.4B10.10B$248.2A5.7B.13B8.12B$249.A5.23B6.12B$249.A.A
B.19B.8B2.12B$250.2AB.29B.13B$252.45B$252.47B$252.44BA4B$253.42BABA4B
$255.40BABA4B$253.43BA4B$253.2A3.25B4.B.2B3.5B$254.A3.20B4.B3.3B7.B$
251.3A6.15B7.2A2.B2AB5.3B$251.A8.11B12.A3.2A6.B2AB$259.13B8.3A13.2A$
258.15B7.A$258.16B$258.17B$258.16B$260.13B$260.3B.2B2A5B$258.4B2.2B2A
3B$258.2A3.10B$259.A4.9B$256.3A5.8B$256.A8.7B$265.7B$257.A7.6B$256.A.
A6.6B$256.A.A6.5B$254.3A.2A4.6B$253.A4.B6.6B$254.3AB2AB3.7B$256.A.2AB
.8B$260.10B$260.6B2A3B$260.6B2A2B5.2A$260.10B5.A$259.11B2.BA.A$259.
12B.B2A$258.15B$257.16B$254.2B.16B$131.2A120.2A18B$131.A.A119.2AB.17B
$133.A4.2A114.B.4B.8B2.4B$129.4A.2A2.A2.A119.7B4.4B$129.A2.A.A.A.A.2A
120.6B5.4B$131.BABABA.A125.4B6.4B$132.B2ABA.A127.3BA5.4B$133.2B.BA
129.BA.A5.4B$132.3B133.A.A6.4B$123.2A6.4B134.A8.4B$124.A6.B2A3B133.3A
6.4B$124.A.AB3.B2A3B135.A7.4B$125.2AB.10B142.4B$127.13B142.4B$108.A
18.14B142.4B$106.3A18.15B142.4B$105.A23.8B2.4B142.4B$95.2A8.2A22.6B5.
4B10.A131.4B$81.B14.A5.5B21.9B4.4B7.3A132.4B$81.2B13.A.AB.4B22.4B4.2A
5.4B5.A136.4B$81.3B13.2AB.6B4.B14.4B5.A7.4B4.2A136.4B$81.4B14.10B.B2A
12.4B7.3A5.9B137.4B$82.4B13.12B2A11.4B10.A6.6B140.4B$83.4B12.11B.B11.
4B19.6B140.4B$84.4B2.4B3.13B12.4B20.6B141.4B$85.3B2.5B2.12B.2B9.4B20.
6B143.4B$86.25B2A7.4B14.3B3.4B2A2B143.4B$19.E67.24B2A6.4B14.6B.3BA2BA
2B143.4B$19.3E66.20B.B.B6.4B14.2BA9B2A4B143.4B$22.E34.A28.B2.20B8.4B
16.ABA16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B89.B.B.B.B.B.B.B.B.B.B.B.B.5B$7.
2A3.2A7.2E18.A15.3A12.B.3B.B5.26B6.4B17.2A45B89.31B$6.B2AB.B2AB6.4B
14.3A18.A10.40B4.4B19.46B89.32B.B$7.2B2.3B3.B5.3B12.A20.2A3.B5.2B2A
11BDB2A21B4.4B22.44B89.33B2A$8.3B.3B.4B3.4B11.2A19.8B3.2B2A9B3DB2A21B
3.4B22.45B89.33B2A$2A5.7B.13B11.B21.8B.13BDBD23B3.4B23.45B89.31B2.B$.
A5.23B9.3B19.22BD25B2.4B24.16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B91.B.B.B.B.
B.B.B.B.B.B.B.B.B.B2.2B$.A.AB.19B.8B4.6B16.15B.2B2.29B.4B25.14B149.B
2A$2.2AB.29B2.10B10.18B7.4B2.7B.17B27.13B150.A.A$4.44B3.2B2.19B14.6B
2.16B30.11B148.A.A.3A$4.37B2A15BD15B16.3B3.10B.4B30.13B147.2A5.A$4.
37B2A15BDBD4B.7B18.B4.14B30.15B152.2A$5.53B3D13B23.12B31.16B$7.53BD
14B22.11B32.17B$5.59B2.8B23.11B32.16B$5.2A3.25B4.13B.B.2B2.2B7.6B24.
9B35.13B$6.A3.20B4.B4.7B.B7.B12.5B25.9B39.2B2A5B$3.3A6.15B7.2A33.4B
20.2A3.9B39.2B2A3B$3.A8.11B12.A15.2A16.3B22.A3.9B38.8B$11.13B8.3A17.A
17.4B20.A.A9B40.8B$10.15B7.A16.3A20.2A21.2A2.6B23.A17.8B$10.16B23.A
22.A26.10B19.3A16.7B$10.17B46.3A23.11B21.A15.7B$10.16B49.A20.2B.11B
20.2A15.6B$12.13B70.2A14B19.4B13.6B$12.3B.2B2A5B70.2AB.12B7.7B.B5.3B
12.5B$10.4B2.2B2A3B73.B.13B2.B4.13B.4B10.6B$10.2A3.8B75.45B4.6B$11.A
4.8B75.45B2.7B$8.3A5.8B75.45B2.6B$8.A8.7B75.21B2A22B.7B$17.7B74.22B2A
31B$9.A7.6B72.2B.2B2A7B3.2B2.11B3.2B2.19B$8.A.A6.6B71.2A3BA2BA3B.B8.
10B11.17B$8.A.A6.5B72.2AB.2B2A2B13.6B16.15B3.B$6.3A.2A4.6B73.B2.6B14.
3B19.15B.B2A$5.A4.B6.6B76.4B15.B20.18B2A$6.3AB2AB3.7B76.4B14.2A20.12B
2A3B.B$8.A.2AB.8B78.2B15.A22.11B2A2B$12.10B96.3A19.10B2.2B$12.6B2A3B
97.A21.B.6B3.2B$12.6B2A2B5.2A117.4B2.B2AB$12.10B5.A117.B2A2B3.2A$11.
11B2.BA.A118.2A$11.12B.B2A$10.15B$9.16B$6.2B.16B$5.2A18B$5.2AB.17B$6.
B.4B.8B2.4B$13.7B4.4B$14.6B5.4B$16.4B6.4B$18.3BA5.4B$19.BA.A5.4B$20.A
.A6.4B$21.A8.4B$22.3A6.4B$24.A7.4B$33.4B$34.4B$35.4B$36.4B$37.4B$38.
4B$39.4B$40.4B$41.4B$42.4B$43.4B$37.2A5.4B6.2A$34.A3.A5.5B5.A$33.A.A
2.A.AB.7B.BA.A$33.A.A3.2AB.9B2A$31.3A.2A4.5BA5B$30.A4.B5.4BABA4B$31.
3AB2AB.6BABA4B$33.A.2AB.7BA3B$37.12B$36.13B$34.2A13B$33.A.A12B$30.A2.
A.B.2B.10B$29.A.A.2A4.6B3.2A$29.2A2.A6.6B2.A$33.A.A3.6B4.3A$34.2A4.6B
5.A$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B
$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$39.6B$40.6B$
39.6B$40.B3A2B$40.A2.A$43.A$39.A3.A$43.A$40.A.A!
If you remove the yellow eater, a second glider stream is fired. If we use this design, instead of using a Snarkmaker to divert the glider stream into a G-to-MWSS converter, we could allow the stream to flow into a G-to-MWSS converter by deleting the yellow eater with an elbow-destroying 90-degree glider recipe (we'd also need to build an eater on the original stream's lane just before that). Something like this:

Code: Select all

x = 317, y = 330, rule = LifeHistory
37.6B$38.6B$37.6B$38.6B$37.6B$38.6B$37.6B$38.6B225.A$7.2A28.6B225.A$
6.B2AB28.6B224.3A$7.2B21.B6.6B$2.B3.2B21.3B6.6B$.2AB.4B18.6B4.7B10.2A
$.2A8B10.4B2.7B3.8B9.A$2.B.B2A6B2.2B2.27B5.BA.A$5.2A40B4.B2A$5.40BA2B
2.2B$.25B2A16BABAB2.2B$.25B2A16BABAB2.2B$2A43BA2B2.2B$2A14B.B5.25B2.
3B$.B.11B11.B2.20B2.4B$3.10B15.19B4.4B$4.12B12.17B7.4B$3.14B11.18B7.
4B$4.13B12.5B.11B8.4B10.2A$4.13B12.4B2.12B8.4B9.A$6.2B.8B19.4B.2BA3B
9.4B10.A$10.7B24.BABA2B3.2A5.4B5.5A$10.7B25.2A2B5.A5.4B4.A$11.6B34.A.
AB.7B2.B3A$11.7B34.2AB.7B3.2B.A$11.8B35.12B4A$12.8B34.7B2A3BAB2.2A$
12.8B34.7B2A2B.B3A2.A$11.6B2.B2A32.10B3.B.A.2A$11.7B.BA.A30.8B8.A$12.
6B4.A29.9B7.2A$12.6B4.2A27.4B2.3B$12.6B32.4B3.5B$11.8B30.4B7.2A$10.8B
30.4B8.A$10.9B28.4B10.3A$10.9B27.4B13.A$9.10B26.4B$9.3B2A5B25.4B$3.2A
3.4B2A5B24.4B$4.A3.11B23.4B$4.A.A12B22.4B$5.2A2.8B23.4B$10.7B22.4B$
12.5B21.4B$12.5B20.4B$11.7B18.4B$11.6B18.4B6.2A3.2A$12.5B17.4B6.B2AB.
B2AB$12.8B13.4B4.B3.3B2.2B$12.10B10.4B3.4B.3B.3B$11.12B8.13B.7B5.2A$
11.12B6.23B5.A$11.12B2.8B.19B.BA.A$10.13B.29B.B2A$10.45B$8.47B$6.4BA
44B$5.4BABA42B$5.4BABA40B$6.4BA43B$8.5B3.2B.B4.25B3.2A$10.B7.3B3.B4.
20B3.A$9.3B5.B2AB2.2A7.15B6.3A60.2A$8.B2AB6.2A3.A12.11B8.A59.A.A$9.2A
13.3A8.13B61.2A4.A$26.A7.15B58.A2.A2.2A.4A$33.16B58.2A.A.A.A.A2.A$32.
17B61.A.ABABAB$33.16B61.A.AB2AB$34.13B64.AB.2B$34.5B2A2B.3B67.3B$36.
3B2A2B2.4B65.4B6.2A$34.10B3.2A63.3B2AB6.A$34.4B3D2B4.A64.3B2AB3.BA.A$
35.4BD3B5.3A59.10B.B2A$35.2B3D2B8.A58.13B$35.7B66.14B$36.6B65.15B$36.
6B64.4B2.8B$37.5B63.4B5.6B$37.5B62.4B4.9B$36.6B61.4B5.2A4.4B$36.7B59.
4B7.A5.4B$37.6B58.4B5.3A7.4B$37.6B57.4B6.A10.4B$37.6B56.4B$36.8B54.4B
162.2A$35.8B54.4B163.A.A$35.9B52.4B166.A4.2A$35.9B51.4B163.4A.2A2.A2.
A$34.10B50.4B164.A2.A.A.A.A.2A$34.3B2A5B49.4B167.BABABA.A$28.2A3.4B2A
5B48.4B169.B2ABA.A$29.A3.11B47.4B171.2B.BA$29.A.A12B46.4B171.3B$30.2A
2.8B47.4B163.2A6.4B$35.7B46.4B165.A6.B2A3B$36.6B45.4B166.A.AB3.B2A3B$
36.6B2.2A40.4B168.2AB.10B$35.9BA.A38.4B171.13B$34.9B3.A37.4B153.A18.
14B$34.9B3.2A35.4B152.3A18.15B$34.9B39.4B152.A23.8B2.4B$34.9B38.4B
143.2A8.2A22.6B5.4B10.A$33.11B36.4B130.B14.A5.5B21.9B4.4B7.3A$33.11B
24.A10.4B131.2B13.A.AB.4B22.4B4.2A5.4B5.A$32.12B24.3A7.4B132.3B13.2AB
.6B4.B14.4B5.A7.4B4.2A$31.14B4.B21.A5.4B133.4B14.10B.B2A12.4B7.3A5.9B
$30.4B.10B3.3B19.2A4.4B135.4B13.12B2A11.4B10.A6.6B$29.16B2.6B17.9B6.
2A129.4B12.11B.B11.4B19.6B$29.16B.7B2.4B13.6B7.A131.4B2.4B3.13B12.4B
20.6B$27.2AB2.29B2.2B2.B3.6B5.2A.A132.3B2.5B2.12B.2B9.4B20.6B$26.A.AB
2.45B4.A2.A134.25B2A7.4B14.3B3.4B2A2B$26.A5.46B3.B2A68.E67.24B2A6.4B
14.6B.3BA2BA2B$25.2A4.21B2A13B2A14B69.3E66.20B.B.B6.4B14.2BA9B2A4B$
31.21B2A13B2A13B73.E34.A28.B2.20B8.4B16.ABA16B.B.B.B.B.B.B.B.B.B.B.B.
B.B.B$30.51B59.2A3.2A7.2E18.A15.3A12.B.3B.B5.26B6.4B17.2A45B$31.26B5.
B.17B58.B2AB.B2AB6.4B14.3A18.A10.40B4.4B19.46B$32.20B2.B10.15B60.2B2.
3B3.B5.3B12.A20.2A3.B5.2B2A11BDB2A21B4.4B22.44B$29.B.B.20B12.15B61.3B
.3B.4B3.4B11.2A19.8B3.2B2A9B3DB2A21B3.4B22.45B$28.2A24B12.13B54.2A5.
7B.13B11.B21.8B.13BDBD23B3.4B23.45B$28.2A24B10.13B57.A5.23B9.3B19.22B
D25B2.4B24.16B.B.B.B.B.B.B.B.B.B.B.B.B.B.B$29.2B.12B2.5B2.B2A6.A.2A4.
8B56.A.AB.19B.8B4.6B16.15B.2B2.29B.4B25.14B$31.13B3.4B2.BA.A3.3AB2A6.
6B57.2AB.29B2.10B10.18B7.4B2.7B.17B27.13B$29.B.11B14.A2.A4.B8.5B59.
44B3.2B2.19B14.6B2.16B30.11B$28.2A12B14.2A2.3A.2A9.B.B59.37B2A15BD15B
16.3B3.10B.4B30.13B$28.2AB.10B20.A.A9.3B60.37B2A15BDBD4B.7B18.B4.14B
30.15B$29.B4.6B.B2A18.A.A9.B2AB60.53B3D13B23.12B31.16B$36.4B.BA.A18.A
11.2A63.53BD14B22.11B32.17B$34.5B5.A93.59B2.8B23.11B32.16B$34.2A8.2A
92.2A3.25B4.13B.B.2B2.2B7.6B24.9B35.13B$35.A103.A3.20B4.B4.7B.B7.B12.
5B25.9B39.2B2A5B$32.3A101.3A6.15B7.2A33.4B20.2A3.9B39.2B2A3B$32.A103.
A8.11B12.A15.2A16.3B22.A3.9B38.8B$144.13B8.3A17.A17.4B20.A.A9B40.8B$
143.15B7.A16.3A20.2A21.2A2.6B23.A17.8B$143.16B23.A22.A26.10B19.3A16.
7B$143.17B46.3A23.11B21.A15.7B$143.16B49.A20.2B.11B20.2A15.6B$145.13B
70.2A14B19.4B13.6B$145.3B.2B2A5B70.2AB.12B7.7B.B5.3B12.5B$143.4B2.2B
2A3B73.B.13B2.B4.13B.4B10.6B$143.2A3.8B75.45B4.6B$144.A4.8B75.45B2.7B
$141.3A5.8B75.45B2.6B$141.A8.7B75.21B2A22B.7B$150.7B74.22B2A31B$142.A
7.6B72.2B.2B2A7B3.2B2.11B3.2B2.19B$141.A.A6.6B71.2A3BA2BA3B.B8.10B11.
17B$141.A.A6.5B72.2AB.2B2A2B13.6B16.15B3.B$139.3A.2A4.6B73.B2.6B14.3B
19.15B.B2A$138.A4.B6.6B76.4B15.B20.18B2A$139.3AB2AB3.7B76.4B14.2A20.
12B2A3B.B$141.A.2AB.8B78.2B15.A22.11B2A2B$145.10B96.3A19.10B2.2B$145.
6B2A3B97.A21.B.6B3.2B$145.6B2A2B5.2A117.4B2.B2AB$145.10B5.A117.B2A2B
3.2A$144.11B2.BA.A118.2A$144.12B.B2A$143.15B$142.16B$139.2B.16B$138.
2A18B$138.2AB.17B$139.B.4B.8B2.4B$146.7B4.4B$147.6B5.4B$149.4B6.4B$
151.3BA5.4B$152.BA.A5.4B$153.A.A6.4B$154.A8.4B$155.3A6.4B$157.A7.4B$
166.4B$167.4B$168.4B$169.4B$170.4B$171.4B$172.4B$173.4B$174.4B$175.4B
$176.4B$170.2A5.4B6.2A$167.A3.A5.5B5.A$166.A.A2.A.AB.7B.BA.A$166.A.A
3.2AB.9B2A$164.3A.2A4.5BA5B$163.A4.B5.4BABA4B$164.3AB2AB.6BABA4B$166.
A.2AB.7BA3B$170.12B$169.13B$167.2A13B$166.A.A12B$163.A2.A.B.2B.10B$
162.A.A.2A4.6B3.2A$162.2A2.A6.6B2.A$166.A.A3.6B4.3A$167.2A4.6B5.A$
172.6B$173.6B$172.6B$173.6B$172.6B$173.6B$172.6B$173.6B$172.6B$173.6B
$172.6B$173.6B$172.6B$173.6B$172.6B$173.6B$172.6B$173.6B$172.6B$173.
6B$172.6B$173.6B$172.6B$173.B3A2B$173.A2.A$176.A$172.A3.A$176.A$173.A
.A85$174.3A$173.A2.A$176.A$172.A3.A$176.A$173.A.A!
#C [[ PASTET 900 PASTE 2A$.A$.A.A$2.2A! 179 79 ]] 
I don't think this saves on the number of Snarks constructed, but it does allow the MWSS single channel stream to be fired sooner after the blinker puffer, since we don't need to wait for a Snarkmaker recipe to complete. I think that makes the orthogonoid a little faster.
dvgrn wrote:
March 27th, 2022, 5:24 pm
I ran into some trouble with the geometry, obviously, so I'll probably try one more rebuild of this to get the pieces closer together. Maybe just take a look at this one and see if there's an obvious, "No no this won't work because ____" response...
EDIT: Okay, this seems a little closer to half-decent:...
Looks good to me, thanks!

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make an Omniship

Post by Goldtiger997 » April 1st, 2022, 11:54 am

Today seemed liked a good day to complete* the Speed Orthogonoid. The velocity of the spaceship below is (0,56000466)c/152004592, which is approximately c/2.718:

orthogonoidv1!.mc
(3.19 MiB) Downloaded 32 times

It should be adjustable to arbitrary orthogonal velocities slower than c/2, and also adjustable into HashLife-friendliness, though I haven't yet verified those properties.

Edit: Unfortunately, it turns out that the displacement is not adjustable into a power of 2, so it cannot be made HashLife-friendly. I must have forgot to check displacement in addition to period when I checked the design in my previous post.

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make an Omniship

Post by Goldtiger997 » April 2nd, 2022, 5:53 am

Now that it's no longer April Fool's day, I'll give some more detail about the Speed Orthogonoid I posted. The velocity I posted is correct, but the approximate velocity is better described c/2.714, rather than c/2.718. Here's the underlying design that was used:

Code: Select all

x = 715, y = 706, rule = LifeHistory
671.6B$66.D4.3D598.6B$65.3D3.D2.D596.6B$58.3D3.2D.D3.D600.6B$58.D2.D
2.3D4.D3.D11.2D$58.D5.3D4.D15.D.D4.2D$58.D3.D.3D5.D.D14.D4.2D$58.D3.D
.2D23.2D$58.D6.2D24.D$59.D.D8.3D16.3D$70.D2.D14.D$65.D4.D17.2D$65.D4.
D3.D$65.D4.D3.D$70.D$65.D5.D.D$65.D$65.D2$65.D$65.D$65.D2$47.A17.D$
46.A.A16.D$46.A2.A15.D$47.2A$42.2A21.D$41.A.A21.D$42.A22.D2$65.D$65.D
24.2A$65.D23.A.A$89.2A$65.D$65.D$65.D19.2A$40.2A42.A.A$34.2A3.A.A4.2A
17.D18.2A$33.A.A3.2A5.2A2.2A13.D5.2A3.2A$34.A15.2A13.D5.A.A2.2A$72.2A
2$65.2A10.A$66.A8.3A$64.A9.A$64.2A8.2A2$102.A$83.2A16.A.A$79.2A2.2A
17.A$37.A15.A25.2A$36.A.A14.A$37.2A14.A3$100.2A$99.A2.A$99.A.A$22.2A
76.A$21.A.A$22.A$77.A$77.A$77.A$55.2A$54.A2.A4.A35.3A$55.A.A3.A.A$56.
A3.A2.A$41.2A18.2A13.A$40.A2.A31.A.A20.2A$40.A.A5.2A26.A.A19.A$41.A5.
A2.A26.2A17.A.A$48.2A21.A24.2A$70.A.A$71.A6$62.A4.2A$61.A.A3.2A$62.2A
$116.2A$69.2A4.2A39.A$69.2A4.2A40.3A$119.A4$76.2A$76.2A3$23.A$22.A.A$
23.2A5$.2A$A.A$.A$48.2A$47.A.A$48.A10$62.2A$62.A.A$63.2A5$68.2A$46.2A
4.2A14.A.A$46.2A4.2A15.2A4$65.2A$53.2A9.A.A$46.2A5.2A10.A$45.A2.A$46.
A.A$47.A3$44.2A$43.A.A$42.A.A$43.A$27.2A$26.A.A$27.A11$62.2C6.2C$61.C
.C5.C2.C$62.C6.C.C$70.C2$67.2C$67.2C2$62.2A$62.2A$67.2C$67.2C637.2A$
56.2A51.2A595.2A$56.2A51.A$60.2A45.A.A$60.2A45.2A550.2A51.2A$100.A
559.A51.2A$81.2A16.A.A558.A.A45.2A$81.2A16.A.A559.2A45.2A$55.2A43.A
10.2C556.A$55.2A54.C.C554.A.A16.2A$112.C555.A.A16.2A$119.C535.2C12.A
43.2A$118.C.C534.2C56.2A$118.C.C$119.C3.2A$123.A$98.A26.A$97.A.A5.2A
14.5A519.2A$97.2A7.A13.A525.A$84.C21.A.A12.3A520.A26.A$83.C.C21.2A15.
A519.5A14.2A5.A.A$83.2C36.4A524.A13.A7.2A38.2C$92.C23.2A3.A3.2A519.3A
12.A.A46.C2.C$91.C.C22.2A4.3A2.A24.A492.A15.2A48.C.C$75.2A14.2C31.A.
2A26.2A489.4A16.C46.C$75.A.A46.A28.2A454.2A4.2A26.2A3.A3.2A10.C.C18.C
$77.A45.2A30.A453.2A4.2A25.A2.3A4.2A9.C2.C17.C.C$77.2A563.2A.A18.2C
18.C2.C5.2A$645.A39.2C5.A.A$115.2A528.2A45.A$92.2C21.A575.2A16.C$91.C
2.C21.3A489.2A98.C.C$91.C.C24.A489.2A43.2A53.2C$92.C561.A$67.2A574.C
7.3A$58.2A7.2A573.C.C6.A$59.A115.2E465.C.C$59.A.A113.2E466.C57.2A$60.
2A639.2A7.2A$710.A$708.A.A$708.2A$655.C$100.2A3.2A547.C.C$61.2C37.2A
3.2A547.C2.C50.C$61.C.C591.2C50.C.C3.C$62.C600.2A3.2A36.C2.C2.C.C$
112.2A549.2A3.2A37.2C4.2C$112.A$110.A.A$54.2C54.2A544.2A$53.C2.C600.A
$53.C.C601.A.A$54.C10.A587.2C3.2A$64.A.A585.C2.C$64.A.A585.C.C$65.A
587.C50.A$107.2A594.A.A$107.A595.A.A$73.2A3.2A28.3A593.A$64.2A7.2A3.A
31.A550.2A$64.2A13.3A580.A$81.A577.3A28.2A3.2A$73.C585.A31.A3.2A7.2A$
72.C.C613.3A13.2A$72.C2.C612.A$73.2C238.2C$81.C12.2A70.2C145.2C4.2C$
80.C.C11.2A70.2C151.2C374.C$79.C2.C19.2A590.C.C$80.2C20.A571.2A18.C.C
$103.3A53.2A467.2A44.2A19.C$105.A52.A.A467.2A28.2A6.2A$152.2A4.A160.
2C329.2A5.A.A7.A$150.A2.A2.2A.4A5.2C149.2C328.A2.A4.2A5.3A$150.2A.A.A
.A.A2.A5.2C459.2A19.A.A11.A$153.A.A.A.A155.2C312.2A20.A$80.C72.A.A.2A
155.C2.C347.A$79.C.C72.A135.2A23.C.C346.A.A$79.C2.C207.A.A23.C309.2A
36.A.A$80.2C85.2A123.A4.2A8.C318.A.A33.3A.2A$158.2A7.A120.4A.2A2.A2.A
5.C.C318.2A32.A$158.2A5.A.A120.A2.A.A.A.A.2A5.C.C353.3A.2A$165.2A124.
A.A.A.A9.C356.A.2A$104.2C186.2A.A.A$103.C2.C189.A362.2C13.2A$104.2C
30.C498.A22.C2.C12.2A7.2A$135.C.C144.2A17.C332.A.A22.C.C21.A$92.2A41.
C.C137.2C6.A7.2A7.C.C331.A2.A22.C20.A.A$79.C3.2A7.2A42.C137.C2.C5.A.A
5.2A7.2C333.2A44.2A$78.C.C3.A70.2A118.C.C6.2A401.C$78.C.C3.A.A69.A
119.C409.C.C$79.C5.2A66.3A111.A388.2C28.C.C$153.A111.3A387.C2.C2.2A
24.C$264.A8.2C381.C.C2.2A$99.2A153.2A8.2A6.C2.C37.A343.C$82.2C15.A.A
149.C3.A17.2C36.3A$81.C2.C16.A148.C.C2.A.A36.2A14.A381.C$82.C.C16.2A
147.C.C3.2A36.A15.2A379.C.C$83.C167.C18.2A23.3A379.A12.C2.C$270.2A25.
A378.A.A12.2C$108.2C566.A.A$107.C.C13.A164.2C387.A$108.C14.3A79.C81.C
.C388.3A$126.A77.C.C17.C45.2A16.C18.2A371.A$125.2A51.E25.2C17.C.C44.
2A34.A2.A$140.2A36.3E42.2C72.A9.2A$140.A19.C20.E34.A79.A.A$82.2A53.2A
.A18.C.C4.2A3.2A7.2E18.A15.3A77.2A$81.A.A52.A2.A19.2C5.2A3.2A25.3A18.
A$81.A55.2A58.A20.2A11.2A13.2A451.2A$80.2A25.2A13.2A73.2A32.2A13.2A
451.2A$107.2A13.2A35.2A$139.2C19.A$138.C2.C18.A.A533.2A$139.C.C19.2A
533.A.A$140.C144.2C407.A.A.3A$83.2A115.2A82.C2.C406.2A5.A$83.2A115.2A
83.C.C412.2A$109.2A6.A.2A117.C37.2C8.C$109.A.A3.3A.2A116.C.C36.2C$
111.A2.A122.2C$83.2A26.2A2.3A.2A43.2A$83.2A32.A.A45.A141.2A$97.2A18.A
.A10.2A30.3A28.2A57.2A53.2A$97.A.A18.A11.2A30.A31.A15.2A41.A$99.A91.
3A17.A41.A.A$89.2A8.2A90.A16.3A20.2A21.2A31.A$90.A59.2C56.A22.A55.3A$
87.3A60.C.C79.3A55.A$87.A29.2C32.C82.A54.2A$117.2C40.2C93.2A59.2C$
158.C2.C15.2A8.C15.C50.2A58.C2.C$159.C.C15.2A7.C.C8.2C3.C.C109.C.C$
160.C8.2A15.C.C8.C.C2.C2.C38.C70.C$170.A16.C10.C4.2C38.C.C$167.3A74.
2C$167.A111.2A$279.2A$168.A90.2A$167.A.A83.2A3.A2.A$167.A.A83.2A4.2A$
165.3A.2A145.2A$164.A151.2A$165.3A.2A105.2A32.2A$167.A.2A105.A33.2A$
251.2C24.3A$177.2A71.C2.C25.A$177.2A7.2A62.C.C59.2A$186.A64.C53.2A5.
2A$184.A.A118.2A$184.2A6.2C$191.C2.C$192.C.C$193.C$164.2A$164.2A5$
180.A$179.A.A$179.A.A$180.A$181.3A$176.C6.A$175.C.C$174.C2.C$175.2C8$
188.2C$188.2C6.2A15.2A$193.A3.A15.A$192.A.A2.A.A11.A.A$192.A.A3.2A11.
2A$190.3A.2A9.A$189.A14.A.A$190.3A.2A8.A.A$192.A.2A9.A$213.2C$212.C2.
C$193.2A18.2C$192.A.A$189.A2.A$188.A.A.2A13.2A$188.2A2.A14.A$192.A.A
13.3A$193.2A15.A24$200.3A$199.A2.A$202.A$198.A3.A$202.A$199.A.A310$
260.3A$259.A2.A$262.A$258.A3.A$262.A$259.A.A!
As you can see, some of the pieces were placed ambitiously close together, which made slsparse take a long time to run (about 16 hours for the left part). I actually forgot to put the yellow eater and block in the infile, and I didn't want to wait another 18 hours, so I made some ugly modifications near the end of the recipe to put them in.

As I mentioned in my previous post, this Speed Orthogonoid can't be made HashLife friendly. I've also realised that it cannot be adjusted to every single orthogonal speed -- only speeds whose simplified velocity has a period which is divisible by 4. Unfortunately, this means that this Orthogonoid can't be adjusted to make a 17c/45 spaceship smaller than the Caterpillar, as 45 is not divisible by 4. Still, it is possible to make orthogonal spaceships with velocities arbitrarily close to 17c/45 (e.g. we could make a 1173c/3104 ship).

The orthogonoid can indeed be adjusted to create arbitrarily fast orthogonal spaceships slower than 2. For example, here is a 5c/12 (56000490c/134401176) spaceship, and a 15c/32 (99027450c/211258560) spaceship:
5c12.mc
(1.93 MiB) Downloaded 10 times
15c32.mc
(1.99 MiB) Downloaded 10 times

These are both the first spaceships of their (unsimplified) speeds which is cool. Still, it's a big shame about the missing speeds. At some point, it would nice to rebuild the Speed Orthogonoid with a design that avoids that problem, such as the one dvgrn posted here

Edit: As requested by wwei47, here's a 3c/8 (56000466c/149334576) spaceship. I also fixed the 5c/12 and 15c/32 spaceships to have to correct speeds, because before they were faster than they were meant to be.
3c8.mc
(1.99 MiB) Downloaded 12 times
Last edited by Goldtiger997 on April 3rd, 2022, 11:46 am, edited 2 times in total.

User avatar
wwei47
Posts: 1603
Joined: February 18th, 2021, 11:18 am

Re: Make an Omniship

Post by wwei47 » April 2nd, 2022, 10:04 am

Goldtiger997 wrote:
April 2nd, 2022, 5:53 am
The orthogonoid can indeed be adjusted to create arbitrarily fast orthogonal spaceships slower than 2. For example, here is a 5c/12 (167009170c/400822008) spaceship, and a 15c/32 (501027450c/1068858560) spaceship:
Can you make a 3c/8 so that we can be done with it? I don't know how to build it myself.
Help me find high-period c/2 technology!
My guide: https://bit.ly/3uJtzu9
My c/2 tech collection: https://bit.ly/3qUJg0u
Overview of periods: https://bit.ly/3LwE0I5
Most wanted periods: 76,116

User avatar
dvgrn
Moderator
Posts: 8929
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Make an Omniship

Post by dvgrn » April 2nd, 2022, 10:40 am

Goldtiger997 wrote:
April 2nd, 2022, 5:53 am
.... a big shame about the missing speeds. At some point, it would nice to rebuild the Speed Orthogonoid with a design that avoids that problem, such as the one dvgrn posted here
Seems like that will be a relatively easy job, now that the blinker-puffer seeds and recipes are in working order.

Is there a way to get a HashLife-friendly Speed Orthogonoid rebuild, as a side effect of compiling an Omniship, somehow?

Seems like the Omniship design is going to be somewhat trickier, with two different recipes swapping places for the "northward" and "westward" travel stages -- one recipe is used-and-transmitted, and the other is just transmitted, and then their roles reverse in the next stage. Or is there a way to cleverly re-use the same recipe in both cases, and have the lengths of those travel stages be dictated by the positions of just a few key trigger gliders?

AforAmpere
Posts: 1318
Joined: July 1st, 2016, 3:58 pm

Re: Make a Spaceship With an Adjustable Slope

Post by AforAmpere » April 3rd, 2022, 1:34 pm

I know this is different than the current planned design, but another possible route for slope-adjustability would be to create an analogue of the small adjustable slope ships in INT. I think it would require only one recipe, but the constructor modules might be difficult to design, since they would have to have D8 symmetry, and operate in different directions depending on where the input came from.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » April 8th, 2022, 5:42 am

dvgrn wrote:
April 2nd, 2022, 10:40 am
Goldtiger997 wrote:
April 2nd, 2022, 5:53 am
.... a big shame about the missing speeds. At some point, it would nice to rebuild the Speed Orthogonoid with a design that avoids that problem, such as the one dvgrn posted here
Seems like that will be a relatively easy job, now that the blinker-puffer seeds and recipes are in working order.
Yep, I was able to make a HashLife-friendly Speed Orthogonoid by making some relatively small changes to the underlying design. For example, here's a HashLife-friendly 3c/8 (period 8*2^25) spaceship. It "runs away" in Golly for me when I give Golly 8GB of RAM:

3c8-hf.mc
(1.88 MiB) Downloaded 45 times

Furthermore, this new design avoids the "missing speeds" problem. Therefore, it is now possible to make a 17c/45 Speed Orthogonoid. Attached is a HashLife-friendly period 45*2^22 17c/45 spaceship, and a slightly smaller not HashLife-friendly period 138065400 17c/45 spaceship:

17c45-hf.mc
(1.88 MiB) Downloaded 12 times
17c45.mc
(1.93 MiB) Downloaded 10 times

I'm not sure what the minimum population is, but it's less than 4 million, which is quite a lot less than the Caterpillar's 11.9 million.

Sokwe
Moderator
Posts: 2217
Joined: July 9th, 2009, 2:44 pm

Re: Make a Spaceship With an Adjustable Slope

Post by Sokwe » April 9th, 2022, 12:20 am

Goldtiger997 wrote:
April 8th, 2022, 5:42 am
I was able to make a HashLife-friendly Speed Orthogonoid by making some relatively small changes to the underlying design.... Furthermore, this new design avoids the "missing speeds" problem.
Nice! How easily could this be adapted to make a clean rake?
-Matthias Merzenich

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » April 9th, 2022, 1:55 am

Sokwe wrote:
April 9th, 2022, 12:20 am
Nice! How easily could this be adapted to make a clean rake?
It's very easy. Attached is a predecessor to a 4c/9 HashLife-friendly forerake. To convert it back to a spaceship, simply remove the 21st to the 45th glider in the tape (zoom in to the NW end of the glider stream):

4c9-hf-rake-predecessor.mc
(1.21 MiB) Downloaded 7 times

I've been using a pattern like the above to adjust the speed of the orthogonoid. If you shift the two components on the right 2m cells further right, then the period of the spaceship goes up by 16m. If you delay the MWSS in the south by 2n ticks and shift the component in the north 4n cells further north, then the displacement goes up by 8n, and the period goes up by 16n.

User avatar
calcyman
Posts: 2591
Joined: June 1st, 2009, 4:32 pm

Re: Make a Spaceship With an Adjustable Slope

Post by calcyman » April 9th, 2022, 5:46 am

Goldtiger997 wrote:
April 8th, 2022, 5:42 am
Yep, I was able to make a HashLife-friendly Speed Orthogonoid by making some relatively small changes to the underlying design. For example, here's a HashLife-friendly 3c/8 (period 8*2^25) spaceship. It "runs away" in Golly for me when I give Golly 8GB of RAM:
Congratulations! That's the first known 3c/8 orthogonal spaceship, is it not? (The previous mechanism to make adjustable-speed orthogonal spaceships -- Michael Simkin's https://conwaylife.com/wiki/Caterloopillar -- is limited by c/4 orthogonal.)

Also, wow -- that was a very brave use of slmake: I wouldn't have expected it to be able to manufacture that extremely close combination of Snark and beehive, especially from the south-east:

Code: Select all

x = 321, y = 339, rule = B3/S23
47bo$46bobo$46bo2bo$47b2o$42b2o$41bobo$42bo3$90b2o$89bobo$89b2o3$85b2o
$40b2o42bobo$34b2o3bobo4b2o36b2o$33bobo3b2o5b2o2b2o19b2o3b2o$34bo15b2o
19bobo2b2o$72b2o2$65b2o10bo$66bo8b3o$64bo9bo$64b2o8b2o2$102bo$83b2o16b
obo$79b2o2b2o17bo$37bo15bo25b2o$36bobo14bo$37b2o14bo3$100b2o$99bo2bo$
99bobo$22b2o76bo$21bobo$22bo$77bo$77bo$77bo$55b2o$54bo2bo4bo35b3o$55bo
bo3bobo$56bo3bo2bo$41b2o18b2o13bo$40bo2bo31bobo20b2o$40bobo5b2o26bobo
19bo$41bo5bo2bo26b2o17bobo$48b2o21bo24b2o$70bobo$71bo6$62bo4b2o$61bobo
3b2o$62b2o$116b2o$69b2o4b2o39bo$69b2o4b2o40b3o$119bo4$76b2o$76b2o3$23b
o$22bobo$23b2o5$b2o$obo$bo$48b2o$47bobo$48bo10$62b2o$62bobo$63b2o5$68b
2o$46b2o4b2o14bobo$46b2o4b2o15b2o4$65b2o$53b2o9bobo$46b2o5b2o10bo$45bo
2bo$46bobo$47bo3$44b2o$43bobo$42bobo$43bo$27b2o$26bobo$27bo11$62b2o6b
2o$61bobo5bo2bo$62bo6bobo$70bo2$67b2o$67b2o2$62b2o$62b2o$67b2o$67b2o$
56b2o51b2o$56b2o51bo$60b2o45bobo$60b2o45b2o$100bo$81b2o16bobo$81b2o16b
obo$55b2o43bo10b2o$55b2o54bobo$112bo$119bo$118bobo$118bobo$119bo3b2o$
123bo$98bo26bo$97bobo5b2o14b5o$97b2o7bo13bo$84bo21bobo12b3o$83bobo21b
2o15bo$83b2o36b4o$92bo23b2o3bo3b2o$91bobo22b2o4b3o2bo$75b2o14b2o31bob
2o$75bobo46bo$77bo45b2o$77b2o2$115b2o$92b2o21bo$91bo2bo21b3o$91bobo24b
o$92bo$67b2o$58b2o7b2o$59bo115b2o$59bobo113b2o$60b2o5$100b2o3b2o$61b2o
37b2o3b2o$61bobo$62bo$112b2o$112bo$110bobo$54b2o54b2o$53bo2bo$53bobo$
54bo10bo$64bobo$64bobo$65bo$107b2o$107bo$73b2o3b2o28b3o$64b2o7b2o3bo
31bo$64b2o13b3o$81bo$73bo$72bobo$72bo2bo$73b2o238b2o$81bo12b2o70b2o
145b2o4b2o$80bobo11b2o70b2o151b2o$79bo2bo19b2o$80b2o20bo$103b3o53b2o$
105bo52bobo$152b2o4bo160b2o$150bo2bo2b2ob4o5b2o149b2o$150b2obobobobo2b
o5b2o$153bobobobo155b2o$80bo72bobob2o155bo2bo$79bobo72bo135b2o23bobo$
79bo2bo207bobo23bo$80b2o85b2o123bo4b2o8bo$158b2o7bo120b4ob2o2bo2bo5bob
o$158b2o5bobo120bo2bobobobob2o5bobo$165b2o124bobobobo9bo$104b2o186b2ob
obo$103bo2bo189bo$104b2o30bo$135bobo144b2o17bo$92b2o41bobo137b2o6bo7b
2o7bobo$79bo3b2o7b2o42bo137bo2bo5bobo5b2o7b2o$78bobo3bo70b2o118bobo6b
2o$78bobo3bobo69bo119bo$79bo5b2o66b3o111bo$153bo111b3o$264bo8b2o$99b2o
153b2o8b2o6bo2bo37bo$82b2o15bobo149bo3bo17b2o36b3o$81bo2bo16bo148bobo
2bobo36b2o14bo$82bobo16b2o147bobo3b2o36bo15b2o$83bo167bo18b2o23b3o$
270b2o25bo$108b2o$107bobo13bo164b2o$108bo14b3o79bo81bobo$126bo77bobo
17bo45b2o16bo18b2o$125b2o51bo25b2o17bobo44b2o34bo2bo$140b2o36b3o42b2o
72bo9b2o$140bo19bo20bo34bo79bobo$82b2o53b2obo18bobo4b2o3b2o7b2o18bo15b
3o77b2o$81bobo52bo2bo19b2o5b2o3b2o25b3o18bo$81bo55b2o58bo20b2o11b2o13b
2o$80b2o25b2o13b2o73b2o32b2o13b2o$107b2o13b2o35b2o$139b2o19bo$138bo2bo
18bobo$139bobo19b2o$140bo144b2o$83b2o115b2o82bo2bo$83b2o115b2o83bobo$
109b2o6bob2o117bo37b2o8bo$109bobo3b3ob2o116bobo36b2o$111bo2bo122b2o$
83b2o26b2o2b3ob2o43b2o$83b2o32bobo45bo141b2o$97b2o18bobo10b2o30b3o28b
2o57b2o53b2o$97bobo18bo11b2o30bo31bo15b2o41bo$99bo91b3o17bo41bobo$89b
2o8b2o90bo16b3o20b2o21b2o31bo$90bo59b2o56bo22bo55b3o$87b3o60bobo79b3o
55bo$87bo29b2o32bo82bo54b2o$117b2o40b2o93b2o59b2o$158bo2bo15b2o8bo15bo
50b2o58bo2bo$159bobo15b2o7bobo8b2o3bobo109bobo$160bo8b2o15bobo8bobo2bo
2bo38bo70bo$170bo16bo10bo4b2o38bobo$167b3o74b2o$167bo111b2o$279b2o$
168bo90b2o$167bobo83b2o3bo2bo$167bobo83b2o4b2o$165b3ob2o145b2o$164bo
151b2o$165b3ob2o105b2o32b2o$167bob2o105bo33b2o$251b2o24b3o$177b2o71bo
2bo25bo$177b2o7b2o62bobo59b2o$186bo64bo53b2o5b2o$184bobo118b2o$184b2o
6b2o$191bo2bo$192bobo$193bo$164b2o$164b2o5$180bo$179bobo$179bobo$180bo
$181b3o$176bo6bo$175bobo$174bo2bo$175b2o8$188b2o$188b2o6b2o15b2o$193bo
3bo15bo$192bobo2bobo11bobo$192bobo3b2o11b2o$190b3ob2o9bo$189bo14bobo$
190b3ob2o8bobo$192bob2o9bo$213b2o$212bo2bo$193b2o18b2o$192bobo$189bo2b
o$188bobob2o13b2o$188b2o2bo14bo$192bobo13b3o$193b2o15bo!
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Goldtiger997
Posts: 704
Joined: June 21st, 2016, 8:00 am

Re: Make a Spaceship With an Adjustable Slope

Post by Goldtiger997 » April 15th, 2022, 6:19 am

I made a script which builds a Speed Orthogonoid (predecessor) for any given any sub-c/2 orthogonal speed. A lot of the code is borrowed from dvgrn's equivalent script for Speed Demonoids (though my script doesn't produce a glider synthesis).

Code: Select all

# so-predecessor-builder-v1.py
# Lots of code is borrowed from the speed demonoid-building scripts by dvgrn: https://conwaylife.com/forums/viewtopic.php?f=2&t=4711&start=25#p108786
# The base64 decoding code is borrowed from another script by dvgrn: https://conwaylife.com/forums/viewtopic.php?f=2&t=2936&start=25#p134875

import golly as g
import math
from fractions import Fraction
import base64
import os

resp = g.getstring("Enter a sub-c/2 speed, appending 'h' if you want a HashLife-friendly Orthogonoid:","3c/8h")
if resp == "":
  g.exit("Script canceled due to lack of input.")
response = resp.replace("c","")
if response.endswith("h") or response.endswith("H"):
  response = response[:-1]
  hfriendly = 1
else:
  hfriendly = 0
if response.find("/")==-1:
  # either this is some kind of decimal representation, or they're putting us on
  if response.startswith("."):
    num = response[1:]
  elif response.startswith("0."):
    num = response[2:]
  else:
    g.exit("Invalid format for speed specification: '" + response + "'.")
  n = int(num)
  d = 10**len(num)
  response = str(int(n)) + "/" + str(int(d))
  
num, denom = response.split("/")
if num == "":
  num = "1"  # handle syntax like "c/9"
if not num.isdigit():
  g.exit("Invalid numerator '" + num + "'.")
if not denom.isdigit():
  g.exit("Invalid denominator '" + denom + "'.")

target = Fraction(int(num), int(denom))
if target > Fraction(1, 2):
  g.exit("That fraction is NOT smaller than c/2.  What you ask has been proven to be impossible.")
elif target == Fraction(1,2):
  g.new("LWSS")
  g.putcells(g.parse("b3o$o2bo$3bo$3bo$obo!"))
  g.fit()
  g.exit("You just asked for an orthogonal spaceship traveling at exactly c/2.  Orthogonoids don't go that fast.  Here, have an LWSS.")

tempfile = os.path.join(g.getdir("temp"),"mcgz.tmp")

# WARNING:  this function uses the current Golly layer to retrieve cell data,
#   so if there's anything important in the current layer,
#   a new layer should be created before calling this function
def get_cells_from_mcgz_base64(s):
  base64bytes = s.encode("ascii")
  mcgzbytes = base64.b64decode(base64bytes)
  with open(tempfile, "wb") as f:
    f.write(mcgzbytes)
  g.open(tempfile)
  return g.getcells(g.getrect())

stream_base_64 = "H4sIAAAAAAAAC2y9ubItya4kpu+vOGYsgSzhdkYAMamtUyHFtpapPLOW++8ZgMORyF31ntU9a+2VYwwYHHDgf/zf/X/++T//v//1X//1v//If+T/+vk//p8//13+2//b5ecv/N9//v7rR/889//bn+dn+Kd+P03/JPfT8k/3mJ/tn+4xP8c/3WN+2uMfl31s/nHbx+4fj30UXP2xz3Enu1XDvezIn4a72aE/DfezQ38a7miH/jTc0w796bipHfrTcVc79KfjtnboT8d97dCfjvvaoT893tHu+/fff/2NAYgjHhuW//znP3/fX+wf+593hO5Z8w4Rr7B+eIwfzSuduNKIc8QGs+NNpP3E4bxBXlrkniF8DHuAv2NyZL7P9heeLx4L3+3In/ePcdL+I+eP3olrdt2YxH4fRfBgKndmBQOm+vO9cvybH3irv/zaOv/o+ryj7p88P86qJ/Mdh50xWrzOvQrGavS8fB48bP7to8aAxGCMVYZ33KvNP+OfN/fJ+H33aScpJmK2e/sRy7jfkRhYLlPuKle81tRYDZysesk5y3P40evnr38bxDpPcer5s/BeefKyx5l4tNXrZORN6/X4RkvvFdbI8VyTV1h/Fl5oLRu059fDrvMTb/a+2N/1yttWze555R1/FlvhfPXcFccOxrX3/PGr+hrHFff+dfd97IqYyGMCZuNKp93BXzj69CtkJs444re6S+IO2ljvhNp9Txwz48/rvdPZXCcznnfpr0dpj438WX/OuZ/te7cnbv84TH/qPv/MQntMKrSHK3PezyHcnn3frj0UgeddgM+7/lprrxTYtlvjuk1snOLkpnapEKytjTtUrfFAvrycfOjmEjEEq0vEEKwuEUOwukSc/mx4qOV/9Vv6MQ2C0Tb9OyYtVgAGr/W48DNsGXBx2GD9nSPV5F2CTXApl0Yt5GUTW7Qt5GQT+bdN8J9/kSlNxk+RTfjTihvd68vmpAjvdFJe/E1hVXZ2q2+q/f38vIKracyK+qxoPIr6rIQQbzrvEm7N3qrf/+xqy/Tl4e/7K19SaNW3c5HZUmb+9Rcf+tUfLWTXuyH39pPiPmPYE49YOWP+lIH9p9Qst97v+h/Hb/RbjjSXo23ym89hiOg2pVzLtFubr6hqIUDvv69KfaCexP/uW2fyWsdGdsYbradMf3maK/iGbRtf/MMW17RbhShsV1zmPrO77lgQa9YHuhLz3jikals2CGeaLDEpYqPw/Bb9bfsobH67Apw6GDKrbS0Hj1cQ+g6ILdO235j7/c7hfeMVj3hF5l1LK2yd4yO4OaP9568U43+XJdSO5JO2864Gm+Y4oL7KGH7tZdcOqdqOz8KhXXXecXe7gnuiQxLEEHYXonf9/Bqn/rwTgGnPobwWUsjM/tgw9Ifmmw1Df3iB84pHXtce28yKV672a2D2KylNqPX2rkKdr77oV4Li77pew9ctSruA/WcXdFXaG+3H85OKLay9/ltV9G6T2juH/q9/l2N+7nBRFZZAL3p1vq/YQyTesfLrrrjLsQejYSsmrXuYxf1amec+LL91EzrtxExdyXqHp4Xp1aWszKF2B3nnBC/d6/h2N4HnKwp7iNWupj262H/bdUj3JbJHvkob5z0tJGhXe4DY5vGOGs5HswuGMdav7LyvGPK4a5FN4io83nY8/26G/V0kWx8mJ3gpF0240HZD06ZmvBujDz6cD8+wX4efaHujh2ju4xQz6V0O593tzRVen3HfaQZ4j5Hs19i8rxfz3uewGeQc+V6Jaxx/iDAV9fizdmg8e2p73sXFY/s4Zm35WM64oMvJuOCzij7rblHevYGtgGuEfOpXTN5rLHo/Ph+L5+2iy7ctYalKqfmc2aXDtOou+kLW9e1DEYPXtxZpClnCrTX8EsunysVxGc/t08GH3aYweiy+fsxl7SFM+7Uzmw1rzOvxaXlCxu1VZeu1ae5FQ3b2M8orhNp4YoTPojanFn+VerGUT/ELnyK3qfyhOJ7X7ODBZgtKiFt51B8rnMrHzI4eslyeWUynv1+npUgeeV7RLM/Jx3mHXZrtZmmcrVMlkY2QhF8vrUyPu5rt3fAxwnv6CdzVy68cBmsz+S5h1kozNSdhSUvH9pMw4u5GLGtfei9PX5wLs3YkBKP04V5uPKvLLpqf16gq8yd9l4s3F68S61lcvEqIXpHmg8H1Ynqk7dexMPsDjqmIrWSJnSBiTxardfvwhqgVWWUzQAEvquvuB8aDqD+IxCOryXkJH17U5byEQhJ1Od/DBJArZu8g93D+RUexEH2Yn1jjLoJF412rnPXxisGT4S8QEkr8Jw6eS8Lr1Lgd121XSlioMkzKSZii4oZpXtDwABymPvghdqWYoS5AefZ8HG3h/Kdl9/i6mDxKXr9Ypm0bCZErc/jDxCtMs9Zl8Mj1KnS37mQSfyqW4/EXWNwk/qohfcVlbC8udK609apcn3ih2z79/Jghl68S8lUgX8O+cvXVYsIgwIVyFfPCXbx7Mf18G9IPEDdJz2t302KR7Y8RklO2P8bmb9sGKeSoXKlgK44b8jyvVl0+MiGM5bg9KCP0lIudo3nreNjje5ULNh16m9LiFcvxjUoZUQXqfFXFNX3tYZ53+DVkpz6mbDQsSn18RZ7Ax+DC0i14taSvb3141PYF8byzpiGGtLkLo4n2Fbnni09D0mlzoCnkq17n3sC6Gd+wOcvcCH9ZPp8vBpbbdtg61wBJtT9+r+22mH1vtObcWiYaKLj6oB6pu/g6dXaN8Mz0is77vFfoqYtWdSXQcpedYsA2FwAxvoKrxHNJwbnC84uFO1qxoKfLgjDPxZaFhhBV8ecgbnn3zx230Esq29ajxoDr9fNNCIXhq/qUDXlgaMZDulzxPwMn0SuIVNWtWDcP+4vtqNIubmVv+XBoYjt2iRhkNUNEw4rV8VQjyAdcR88XLeYM1lUITh1a5PVVsWUn65ivGI1ZC9mpYzucyZubdtUwWHU+71yI41tuLPwCt3T6RppFU9AA9NGYcNd1+uPGw6uLz9D+EMHXzo+fTpGmpsTvaSEzdRkAqDRuIUGfV07ooo5aBSVb3X+iKvXVEkJUl1sMu7iGcZyrGA1BptvUqgbyqNvUqobk1e1qVUNp6Jb3zZ66htytp/Fj0N0w/R+T4sptr/RK1XWFhnxUB0QpgDsgn9X/7UriW+P643ml4+KMi/yYONNwhvSMAPp8077+ibn1r6PAi55wbNw20TAux1Od8wbVM1t5L9oKwwXrCJE7XLCOELrjMYdGj91m+fdZ3thEsntU/vYux3jJ45eMR2mwV59ciq0okRGSdTR/DNqXrkZHo5AZFbxzAURLwUV8rI7Rtl8jnqKdgulilxK1dP9ghM017mq+Nws3fHS57zwadbbaOhqhQ8Z9z/tQGnbjuCLvPr8qL7QsbibKc3e1Wz9+x/DwUpqLjkeOOHJIL5aqG6N00YZ/G6G2XNaMsA2Hi9gRAneI77VTthBfQU4ZPn1ebQn5NPgy6vGV2CdD3ZFhEOoRjye9ONVQwnBu69EO9W09QooONbE2lJEiE2sjjOIx6q50SG2kybOK8K2woQ3oCOE6AJdS1HRfTWEWjuGrKYTyGPs128Xl2tUkjCTYJhphI4zZGMGwzWfLbkzudikYgy/kSYRhzPECL7r9Ny4fv/pMrGVMHxKu5elDEqbtWB6mHSH4x2oF/XB3Nw+Un1cJ+/3o7Tu4M+6gmNHgN1zzBXdgg44QoBBgsRSOe/0FOh8hg8Zufsm49fats+L1XMrKI+WsCC9JlT8uGxmNEIdGhqEDDVMwXMqOkLLDpeygKzUdSFkUE74DQoqO4w8TUnQc38fcqX4XGj5hw/TXzBxhnMGBHuGUDzdaQyoPu9ekAeoO8Ag3ZgJH5W72q1PIqT/xDH3oQnrGCE23WzlevrVppsynuhh4zxmyYz5mm8wwO2czkGSG/J7NQZIRHsJs3eTVWPxVynsXjOtuX3vIxrMAGfGkVRe+r7zZoHWwY94gDbyQGaJ0djMMZqQDzF79n91zZGd/PSs3yCaXRvOLxUP1VfSrG0EpzffrhDY8QVgZU/wJwtKc4tHJzpixDQbBpVXeYsLlr5jCDFN+wvUjpDIrfiYifmRcxJ3+GfJtIp4fawIuuTBeLa/38vpVU012zpCWUxHsiOmCsNscPz+QN/LFEQJ4Dl8cITXm8MUxwyqZw/MKet2iCZLZTzMsUIQ45uBpsxi1MCbiQVyy0jxoWOuM1k8fjhCYc9YwBCyZeVcYBGhzgcZfZ91bc/qoTH6befOGt4mYx5WAflwMisehZkjhuXxQQhZMl6u0Sn3bUVVOPEdC4eZzxZvi8nyoj2o/BXZfNIto983lqylE7nQLdob4nBuOXKipXu4dI7QTxHYUeoYSmyU2ZQq9vAFmLixpSOsZgnV6cGqGZzWPa5vJTW9ga7vzFXe4ovW+wQzzbJ5iTmMFTAZoejV8XftVu3cef6CQr9PlKwN9T3GSBwCgp2I0y+JCvp/W4y8S0nc9UgSL7+QR63i5obdCVI56HB57FUg1RIFLJo2Y53J9sGhwNU91iMFdzcTJiustl60x783hzNXoc83i15saXm0WZNZzQCgl16g2vvvkEgJ7OT6wAi1YLl1XWLurIygZc7JrkF7ctl4Brq4O4UFEo0JmdtZi0pODsKvz+raFVkjmJbaFVuz0JS5XVqyO5fYrLULMJB9llcBVgHwZuLLklxh1WK+04/2o13LPYDO81xVG41IfjxC4C6Aj9RLM/xCmMItWfFuK35jtsct5sfBCmi43YFe82HIDdsV5a1RcB6DrGowZVUfAZQKFxRpm+a/Bi4wiAfrzwQu2T0cI0OUQwQoDd2GZcCXKKxXhVq2wvNbs77gueE76L4+I5RvDikHmfphmSq94wjUNWFwJqTmwuMJgXctzC5cwo8mlG+1uRxDCOFvLnYtOZHS/Dwlce61iEKwwbpf7iGvxGrtgBsstbQ0JtUpgD/bLuqv/tV9eXeNzs+Kx9PHbxROvPTzNKQ7chjuvEBlrrxfLkVaTFLAQGOYUH8v4bR0CjW/mxDo0DQ1oXKHNFqzX0BOWEPGKuOmB9xUSdXkYgg7iwCaIL8MX0GGw7/Eb7Phm4MkKGb4fB0/W5o8u0udr1m/iCs2dAWFwZJZ9j+N2mVKuLv8lwtzqYaUdz7tdvu6Qr7v1gDxd6gcmsj3F9NUUgB13+OuIS7fFBKrqafgC3G2no7GbKeMdEnT3ktsIxLPXGPkOKby7Tc0O8GB3w4D3dfu3S/vdER15sV4OSMROmSq1cU3e+5TVC2AlV9BwdzXsGn/iGMgt/iRhu+wiWvf8ZaRvlwk0XwwDsMvEzcW2zkwBOF60EJBAiNutzfds3EK73zxmTs3b2iG/tzpqsmPgtzpqsmn6q6MmK0yNrY6aTIY7rpC9UzwYlNZTDGdAr7Sc9/AHopQFHFdisFT1vqt3GLMwnXaYr3sYarJD/m4PVXJ1u6vcPh73nk8OaXfbYsfu2rMVX85tVhphG3ecBMZ90hhQ9JSBHWbDdnuWYOc1CV5B6JsmEwH8vcO43atCSb0AOhitPMyfgoO+DOfbEQPbbs72zSEv6bG+Z9YLkDOmudfxC8QrbrMHdjz43m4PbMaRNzAhIk4IysRAuVDaIXF3MWTl8cwMGjQu0DnV27Os9ubtbIms6ksQ3NynmtQbM3Y6Yij3k3ygq5KvgRxOykOHfiSzvO0XDqpf8E2e2ceHJZbreXxYQvof1yc7NrnARCPuuuvywUucZ1Ro9zy8qC3ZE4eeZ1XY4IOCqTtLJ4TraSWR2tUSVchxQctYzfEY12n8zeTboW9z5YGlQsZTn6vqbGNvnrmKQwlLijYQrMkTtuvpNaMU3iZNxANLlhCPhxdPWJqn27I9IXsPLNn5GpCnE4F+ihrw4N7k1U9RHqf6Z5axbDN0QqAe6X6zeHUxCXdCpB0XtutVaDzlXUOItNBJP7L90nFfcVnF7eeqIDT/cTP2hJQ9rsE5vXowUDSMbdqOB7yQ/nu0pC3BZeSi0VV9y+Mn7tgHxzGDEzc5jhmcUAcHmMEJkXuQg8XQsc3wGa+59G7s5nDZGTzNPWSmNZVRctTrZDTfHyyk4XHI4ITFe1wUCV1ueLk13fHEy52pJarpZ51YIvaIxVN0kR7jPHEJ3ssHhHnsjheckNhnteDReEzEPzcs+fJILq5OWKqnVXvFl4XF2GPNIdhFVNyjMYfZ9C5kTyzjsws69JT15/qNNt/xrKzDgOnW6lE4UEF3EmnuZ/PqZk6fzRx8s+wPBQRSBs5VHuc66+dOwjlu3Z/QnMfwgvtreLHn9LK/4QKew+SeXvYFjOxDOoAHeFMBIxGHMTIf0sMb+Mgc5rD7fs9w2/odbrv/Ya9QNHleVgJos+B9SMW4R+ShJm7vP/ROHgte33/amyD+uKibDF/6nj3yKs3rXjwZmb5ffCUzV1dO0QMQk/cQGmNN/e4kEDyteo+Rx/6EtWmmRc2C3XFv+sAHl6JN3h9/EbK4nu47/b4MXW2fKCp/6QCrw5lon4UUT50eXJ9VEbhVw3yq5rbnPSQfA4+VdAQpAe7tLjDdCLjA9wje1hFcbiwmhoWkgq91v4YcWJhGUXgQ9hETSSX0wAzOzIynTClw7Ss4QrY+6nZFfBXXezSu4S3cQziFiilUPrXjDZtRdlcEzCibGBvlWDh+dhj8c/v72ufULwvXTWSk+fvQnHkGMoifFzpBDvHT09J34ZAoEa4e4qCdiuM5qlhD4fdAfzY8y25gzJAa87jovt/5IrNSThCCjLE7yMrhyplY0ZOP6LG0VRYdZ2A6Yh+79GDICdk/4B085AY8C0t99rJnHfcdJYZJnweA1XMFneBkLQfCMpy5aRYWBnkHz1rF40T+WIYYCmUChkdkYdztjLFnnP9xoPaeuZ3rY2ye+zcpABPSPukw3h8BHDFVDQ9FhsLjiu6ElfYBBQBk3yM4cQcTlxc+WFSb83NiUTHP4TlSLJl2IJ5mRVDuMRwdF+9pIniaG5fY+afMPtgNIfJbe/Bs3O/Nrw6Jqy85ynlbPy8WGllOJIbM16FtRgGzuGPCGciqTtVU3XA3p5pxt2CTI8Hpfk82WAO3i4/h6HAzwd7M4vBFh9VDZf+VG7DW7yGJrXyBDWQxZaDaU2Faa3k7X/LGWwr51hzPoHPcP3IGd6L4vlrp54UCvwkCT3VL/Olb8sjufsZ1+MTdyS+NasBCZzYEPeO+HmO4D8kDpEEinfyDxxnuhGRCjhg4cE4+gf4QK7KUuKTSibOa80ZObM5UHOc25xUOzzswJnFaCwIZTmvh9+O0FrknZbkCdro/1Ej7/UpsuADYAHybvgl6L7YKdiBFuNHGbAAp/0Ol0eV2PICjzwcYxLRxKUu7Dm+gBYWM6sOhwc4Ay4P1M/JWmLvBuR2YO/LP8NjXE879uU81egyUtOvNPF5KokEse07WHB/BGI8+Z3l0x5lbUsca8OlCYLkrPTQIgOUETTARFEjhWzLaESufDrKK34VMs7aGvzSThk1a+ILNzIW1fvibSeJ3/dm72Aal9QEcMnOWsXEYa2sQOwy2ti0/SfBeni+QAGaPQzmQ280YJq438B7oyIujCDy4u61I8dIalGSjQGsns0udc8qFYFvtTQyIJw8JDgy5kYAGLKsZ0awh36EZEc2GkAqkYZWMd5W8QVpAcY00sQa8aiR5801kidVKelnrnqbWkv3RHbTMjG6X4ga/VazulWNIycil3XnxZNc+RQCG0LNV/w1iKue+O2DSOqVPd8ikkSXXOkCTOxSHf3DY5C4an8qQPffPqwCOiMXlJRwME2YD+0ySONa65wkzstKeYgpc6x2HcuA6Bo6iH9wcmqbQcUZWg46bHckUpCCDbBFP4ctJBl/ayRYtM+zAZmuZXGx8tuqbPDWHAGhbjj82aac3B7iAghf5Qq1LRttdlMxf6UONBLfWFU8m0IxuTHUFVhH20vwQjRWrkva7beXPqNhu+KnUi48vZIw3P50v7kHDRkLc/eCClZS4ZpPZ/C15P8+pZjgda5myrlneWRUdfdR8KDB0STIDM/sKdMWRLlHtFbRzGNyGH7FX8aJM9IK0ILXtfmgc6LoNSiYtzBdCDQ3UuMbE6AZy3L3leW3w/vUMQXtIlroD7iVcc3/BRs3MnPWqUkA7zBNHXn2SP/rClNJo7QvPRiXRFyTlaz6b6JFfUP89jBvBg43EpmekRBFwwkPSljceit+Lz7LdLjR9haTaZjw6XwFMqDAqncmHnhLqmvc26J3WXt+TqscAmdfycY8gLR9H9N2bzqoNv+ZwgyncD8934KZXtd2MR/edcyqy0/GutO/7ce1k7KWB7yvcHGBd6mPDaHczWt1LxDnuf9M2Do9SMkXIUz4a04ibMetsGOkcWCo8R7h/yh0EDiv/mv8a9DnCGn3GXXnVVsOdeB3qp/CySIJrAjVA8t394NAmTe71iVwJTp08tKa4YqdJwDaeYsYnGJ4ucK1kjoLngNxj+bzdF1fms0vH0pLH0Lhnusl7/6ol1wsDkHIaNr2x5t4gyassB4RKzgrAG3nrP9T87hBeXMXiKoAqPbAO2/xMTm1g3tU9b8K8pPNgxIXDJi7SOKj3w/a3J6IjPtWEe5FIneJFXAVkpuyD105NqF8oDYaj7Pw5SkYwv19nWbuzsoeR0kH9K3DbSDVqgrQRmrLIh8o17SltZEAhetVIymtg5bXUwMbLs7en8yADxqvQ7JarAUysJC4Hjt56Mw8b2VHqdhrZxVCoJOA1mYhc0cyclYKJgH5LQAd0vcbsgSazZg8i16qli13TwZA83lKIi+9jhqkBR+Jp4WCRdBegg1DYC4S9ZIAQRr7MFSH7BoHPPTYf7LFFWev82JdO7sohk72vc1mpXi0mifpZgOSQe3e/A1xi1ruWxYGM+yaZ87cr77VGK5rsT5o37EHZp2wlADnC+KkAyBE6DhJAjqw8oGSRf7LbEYltBljznQ82IpEYmTWFChpwUEvLgYy4qzrtL3Wxm2Ef5E8aZfhNyvH6LDGF6nD9aEzg96SEpwY57yGDx7oOUuL1CrzedpHpWxR0cbz+rFcjFLGOZZfWvTpaH4spDs3YK45kURlg9eQKNnX/KzNdpMQ/mwL6oXJoBRp0RXG9gFjbE/c4sOIUAl8p8BUCn+S5+x0C35iNAEXsbzAnJCvYdJgTJNE2owla+RXn6PfzAPBoxha0GXMKqFXLuf9jk3fdgGa+PUeoY/xCe31KCsAbV0pkRWogCenuMZfs2Pu7fqSHiV17XVqICg9FMmP0BTSguVU4MAir8Dncc8lSLyh4Q9pOU09luf/whTyZ5V6CNe3cmd+VcJ8Yprrk52KMtaN54q5zidUjWTgGT5HDODC1emA8qUt/5iABjKRzGIACKYKhS5X+VHALwytActp8QSQ/lOM0fHeSetiMX2jvTi2jE1EhUiHvH3qiHmZRfDBu8cyUxuzZ7Ysh67XZ25+MZGGoZt7X3SQlZK9AbWNckU9DTEFhSzFnr+ONKO81sglp4KHUE2EqRAY0iVfLqz2RythAPTSsJBT/WJ+UTEhaMhCb7kKeDnNZdy8ui2tD3cWXtNtTPaiHZ/nS0j8lnw5GiMtFnQeljI2/A9uMiGhHnjfIiAyZ+wuHDOJfr26BTAjxT/ZkM0KiF5iZtvGnBiahpzJYoWg10J8+q2UYalOpExSBHcaufeOuWDixXgeN+fFg6RMgGZ7EtEk268XNbMPruZQAjOBSgz9XejL2ycgIIeK0rRD3G+PmzXiK275nONGHbGRCQ3OzhzYeMuNYmKGjhBaBbTAWM8lJkRMYyhWSijTFNpxK1Mg4bOAt0qX/xiEPgppkLraBWLooX/eUfR/o8iAcb+RFuxFtUWMv2gvSmXD6oj9AHrBr7l1Y8/I7Bc7Uf5wgNe9NY4AT2IAnzHTRNmoOTQ9ytMyy8dzV4NNLSVR/UBNBmIhRFkgHfDNyvWjcdfO7a0yjTaY9AHbjZJZ98Q+dTUAUzlhSfmm+rifVEAbA+hhpvcFVGsT2B7D9Qct/jAp27jOrHO1AiEdF82EsJiLacHni9YGIDpuZgGKN9mhvmiXkxsb80msZw6n2jbmWbUzHDu5G5BvOhikkMX2VRY/8dPpmA8H5QdU9YPhn3HTMmh0MTyfF8IDVQKccN6XhP1ZleyFDpo0U91Bgg+a9sSHtralYhgcmmPmhreZmAOiJzQNrjlzG+wHbMid/1b0V4Q6+fHMTOQtIuIiiqx+yjipgbExUloHb7o4Qdrsf4LbZRL8u+0CVuZEAUK8Jbr540lEagHlY5QWvddqbgAKi5L1mnuD4K619jD4R//2RMKEOWcZjx7Ecs4MxO1lRwrHOQcNzPpVEFYt8eoT0IM6Gknx8dCR2kS3UJtY46ZNtgiDBwjRIQMvcdPGaCvcg0pSeuuS0JgCBoNMm7ZqJWO6kapiI5ZJy2YxH2fySZNQ3mNiEUpupBzdH09p5U94i/EBe5PC1Q5wo8JeZdZO7i41JbTEd62c85nxzyXaMKCW8MSszgWr2UxJ4AuufiWojWYjUy/vBp3JmDg9iuZMw95RafWZur2xF53IGg53sFL8TA6ce9Dmc4QkLfzoMpPhLrTsFJTaZHTQdJFxvHCTtckSqMhw5kSwzqQYmbHyyM9uEjZ+xjYmU9fsHTimUds+8exRH8i0Ni5Mky/vhA9s4dsJkCwB2k0b+hJE/8/VHqemGsCh5llFiN3+LmGkM+Ko0AwjMmRU8Ecud1A0TsVyS+dqcVaCCttrIhxyAO3qRLM34lqXS7lu1IWzUSQPACJl255l3+pRlg2Siwgxjel65laLJuJlvBDPuvvq/3z1em9HbCaBnUhNMAD0zC9dENHdmHYwFQGwyVjOvzDf9l9al0TXNMR5JHHe0pyZCBSLOWUPlgUZa5f3wWZbuAzHgEcDapMkwEdyduY0ikJnpYJ88T5iCk0J8QupXEEXfgj4G+drRLAlqDE67FXH/eTxmOVN+eSJP0uBg58207d3+Su391JxEQdyJ5My2kLUzc3dEzVEl9QB1nahWo2AeuZyVJhnVSsnmDA9yUd6vx9Hg9V7K0eBFEGk9B9NPdbLap76XyOtSHSe93SN4bpMSCAX5v5HveD+MGjCGZDViJiTrCkef2sV4HV8IEXBawl0LMt+InhmqM7anl5KdRC2D8RkaJmxtbsTVa2pfW7V6RwTTyeW8HzBwmSLlZj/tco+k3Qsw72lASgkLQPgeXpnJL70CNBNJKrs+48osXYh+EgSb8RbtFd+Hhj9Cmun9w/b9ulre7VQ/oEvxikFquMKYx3raGyk0oMSmH7Xgl5PM2cAJpZnICDATaWHRkRXaFljOTObT/lT1jvGh/F+Q/4vy34iK9s7JQfHhPtSy65NFAuuJ1vsaGM5MrRirHAyzbY1iAyZQuZCduYgBrcjO5NC4UdFfiWV3mXkucidYIOOFJKDmF8tzIrdjZXlm4DsrF+hEaWRumoVqJ/eh+HrAQWPpfHOfIitlZdjb7rSKr7RW5fuCN33/GEghwkYklbb1qdLnEF6aCaCOtqfOQFulPCDpv5gLGvkLRv7Kcgow8skXbQvQ/q6+bwZuVsRbcjHuUqPWQcGUeZAsi1J8wbBfjuDCCVynlvwI05NETyaBEWJarnAXy3fU0BuzZFbKccD6izphO9fpfld+B3C4kpL+dOxeem7GKzUlSgL3/YMWO+pbkIIVL+JiCFtvqoINrlGKmRcpjRS6zZKo0JoE5ZtxTLedf/gdBflel/5NG+KVXrDOr8SpaKtsIgR4d0a2INE33beN3PtNDbLdqk+ajytBToOv3Z1FNVyw7+ToA3PIteGHJr7s63z3XCwIsDPZDTVPyO/HuMjzbqLtFVMTCYH23SyLCh+X6wru8KZo3xDtZK22DdG+Kdp3iPad5Vi9g0LONnQMjV945puS/Gm1ItDwwcoYGqT+zmowEOybq2FrTQRDac2tZBJLkTgB6W3iNVsRUFhS1XYxhWODbMZj98DSoujfwz2OTVG/R13tKCOYiYmCVx55LErNznxQ/5WWIBZX1p6YNQ8IpQ+4xTdMDdJP256VIQ09sCdBzfpIKFF4f+QjIUPTaK2Zo769HsD9pwFl3qgI0PZbSMZTVRppw/cPrQA/MdE06J/IeuMeclJk3D9Q/73yym47bz7tXp9UbpRbyyq+2LpZpX9XnjbyBDaXgWNEzJ2P2PJ+q/1jeXHdbsh5cmbud48s5wt9Sj/AxiQftG3wl6mVngVLIIIncLQ2Jf2GpCe1tCFLY1AvvSTG+0utGcxdzHJXj/7UBJ0AEEhvbaCztk2TGYTWRn5rOyHkk6Z7nur5R9FXyveDEMFhMsupVbggjU5px8KEysCJyEG9H/yhDoX/aW/uvz3YT6V0IuXohWFPQ647NR6eKIT41d9+ZYpl47ce+6fZ/3T8yQO3rOe/ajZDb9/4DcyOjPme/vJXXrD4LWTSyHJtoLk2MwOpx8F1pZjbgAOTK3B6zbQJF+xkjxakOZPJ2o5Xb2nksraD+i2N7L1mzFd/ZyJtRn41VU36eDP+qznGibadK2YsVjy5FRDxoXP+DWNEgx3a1w10WJa/9BGeRMJhR54r/MmxbgdYzsl1pWXxzy/jEXk9Bv8inel+RCkllqwrJAnU+m2HIh+82PsPF/fAuNECP6OWmNbzSV90Rk4jOTYQxlMB/eM2zZSPLUe6q0l3vzlVwBn7t3//LRATZMDDjM1Tm2WFQpn5ahNLgnrASLP2agwpnomc5ZOLGaUJSF5vH6/9AL6nyKy2DDpetMMA6/FisfcM3mj1apCtT+Imam4znQzaiWxYRNFIsW0HbLhD+X+Wq6JD0XtWzQforvayoO+oHZtOTEQuZKTsSBbqL+B+GIFkzd4ProXOVqKZBxgOGYxfArfGnU5ZFAf1bum5FEsnMnrP29YFc0idcIDhHCqUc2IOs3zsQd45ac73D6tkVkMVH1bV+lS/QFk0wt0+QvfrE3sMEVpqLgDvRF7vr94j48nWMM8oSgFAE2s2+ga8RzDXyuvGMA8J3K3+xFLB6N2vmf8W9zkx9vcnc67vX2IpPijK+8QqRSQjReguigsroj+J4QRG08mWvR9KcQ6U6erP6zih3BeO9JSdThpuB602+xY5Ks+MmAeUr+ftgwNqbSe1tge1lpVigX+kSYkRSbzMszM7qbX9cbnfyf+839FR42GjnMfRmywChTemTV8Lqwe15PkVrb1/4IA4M6QnGRfk2owcgsyWodKOO+WK0VbxFr5WOi6r+7W5No1ga6+VYKVWpnJwj4xT++VvmEXPE/arBH4lhqri2RizegZmM89Flk5Kwo2jUzCWljK+etObGnHd9YLfqC7fSX7rRrG1FxtZD+xgvihbjWZr3SIeAsrGs7WXNJq8896cx3b/3N+FH2Wt32tgz03etBTtB1xwf6NR5gembYhpyO5Rs1jrge2fN722EqbH+uSGoI8MQxv9WdjIi0PlOP79h1PgoonJ+lGi9d0wgeaUrdgzrP64ut+ZQLxw50zrPd4d58lC75+Ctlj09Pc6OLcZj/dQaDfObQQzO2i3TAUF7TZzlR882OaDebpmJ++2g3fbybvtwbu9b8K9fKAoqRqxmhi3X1p7GEzFa56PaXG/c+Y+aceBfZMS0NsDloVbT07D40NDCBjfttQb6Cxl0BsEfzYbaw/m8fD0pxYFUScD0G4D86ib3oTd1hFip1cb2UbWPcdFPdi3na0Ve0OyDv0YOFMqdVG0bA/W6oZA1kpvAQHBFL9fSZVrvidb45po2JPsI9mNdut7kmkzrbcKbUSu8eaPMC4yHtjwbNn6Fj54Qs++rSbjn80Rnp5Mh/bthuMm2ykQcGc/x47uWyyeragIn8GheAhKFSPd2m2EEys+kWlMtVJwsKHL3ewflQRRhG0RBS+sTnNE9TZIjNxYA4+qXDZu7Xd2a+zN6+UWkmBv2aZhvoELCAZGy3pzWlZv2QYCMj+mEfjVyJXruTo9u621gdZsmn4edmNjlcLm9kJipTpQST1jx3ZnSvU2ItWH9uZ4zXQE9Tp78PWGnUqWbg8Qhu3HWp+VWBtQGDPxPTH6nsJZRK8ygiC9oVsZAwY9lgsFjHsTnfvNHGjXc4EbwBTjwI+DwaWEbgu7kfXKYDpkRVBXBVngCQZOdm4Ux1yTvitFUfS2wHaNxAksLS+SAOv5fsF45Qlel6yTUtAbKpN1a1AZ6dHdlqh3Hkwvfruz28mP79YH8i6U/uRQ7k94oWHBbpY728W4QT1Xln2CwGQ1SLQ+aylOD0aNOqCdXoYcIp6pxR0d5XCh3T7x/BBglO4NSq1lB8UDCXb4Mi54s7YcHorlbno0OyEuCauFPFxAnJ003I5eeyyn0Gd1C2I5khXb0Q2ExVvQY69ncsqpyc6IexEOii5q2Sixt3iIHZUPuhFyj/1l8AjP7ejZj7KzrCGWYy2DHfZe9NGzD64bjR9V6zVlwzW8FFs4dtj6FNcdXSUzqVnQQTnwP0cwezaD7J6e2ZMxu72hSTfIZ+J3AK60mrcL2pNRu1UBwt5RRodNdeArdem/MoTvn/IEDBqFurWY9EGjN2G0XNsnnaqwR6JORc/fEtUPbpgnB4fkzyturfRP/KoYNor4jqpnZPrAKQn94shXz1K+HWk6kxVi8J65SxrGNMEI9bWfXSy7SzUDeDIJKk1Yjhk7RfYIr2RpFFgG3ujObCDT2R183Dcf3rWOudQpovoAVYxxQyxm1gtH/8MkG3XP3OmduqPPB5NCdyRouWQYfGuwLcHFKbb61NeSQ7OpDNd2z9y5/+SdVoEeotA9p69hDigyQOTIRjguqIg/9w5vjVzb3hfWGcttGRc3sdn+ad3JTIrMPegdXX6Teh1E3Kds3cHiAn2ju+pKPKBHdmHsMACNVHiKzqx38rFoOxpaMldnIMU+N/bGcJEDZ8nR9lY7b74xUctAhYUNvA820NXAuMPxdNveaUZ0L8nQEvfucF1ZGMIfkGK7gwdPCshsX6tCsHipBDqUQM8q7afk0VlxA9u7LA3iFbq6RLl1X7VoMpbsyWj9mZ4RRoP9LzvIuJ1d/rqgaje1sga7a/LX2oYkAi500Xo8C6/kWH8nQfd+r90gkWs7Mx0EdQVCcoQXRG7sgKhmR8sujvV30nm7CdTmT8fHbAUl2LVyT5Bmu2Qn397K+0JhMYWxi9cP7pJN2br0AimuGH2mOvRWoaUG7mW8YVge2Y4CdNwueSsAPtRtXQTlXHPFVBddRCpsMmq5xQ5WXH+pt57d3bMaDnphZoETT3PLLDrQ77vkvCga5tBzriWzgE50Jj/g/bS/8lM8otstIZnDp27Isr9mNzKuzxz9FZPCtvFIqe6iu1hWqNsYy4IvSgGLHpkMs4FtwqqW90dMJYssifd7y6JprsRKRasu43WUuGYo6mXUAuaQRqTjjoP9NTLPyU0DyefAqmBbwm8eNEefld6DrJmQ46qvHwXYulAviOft3H9mDveEI/6mKFnvjpBCbtJka035FHZFCqt84h39XWELK4qmuizsR/oU1hLMZ3XmAbu6zpkKjbfCxZnfLbu9egIRccbp45GJW8nG8qIgFy9JnG3Yi6fbBaaI7P0rttTfC2cCVAchtwutfRByez6xnDpWa86yzy19xW9FTEHQwnSyjthHNwWKxYBFhyec7kGrNaYRyOnsq9n1qVlX32z/MP5pXXQ04exMW+wKfEco9S1L1Gfs5AmxD7Pw07PR3lbzD55vezUHr3klXLPyExwmo+M2mxDqTGN0NFOENDi01WTH5gpiJjCG12VjDm3zMzS1T0ZHmmdnMlBXT0egIRo7NNuof0Q+wo4vpKmQ+UqPUr1qfKfZ1rXXIL1nINy/VV+bogDJh53NMzvItxVNqaRYpDt18m+7eknj/o6VlKYlDtFWOm6P3pZZPGhg9JiGovJS0jsqkyZ+h72hOTxehKcbPZcprfdvvgPYMbQrWiHfV+L1Pa4bohewfOpUBCc0y6+hAAORaiS2daVJqoqp1AQ3DvCLZFUUfCIq7tN7VOAMbMB5PzhkR2hxfjj8UWWr0yzr6gXmu2aZNidldc1ioaMy+YMhzH0dc8328joriP5tyRnilD35ugLtYWvPHhAfg8Nwx17+MB6aQl9ntQ53+xRLAjxHxmxH9897Cmd6edCNPm83Oq7P6jhpCZv/Z4JAsyHLqvUruyMo7IjTAS5pAlOQ+yQ3ew+A69fxxRA80BQxaKrEHe6mGNN+u9bCaxOUoFRAE4udFr7CxmXrx66w+JWKQndpKzjIY2JLEL8UcR91M7+SCFBLL8cMOkmv3FQcj3dKoXiQo8p0ViRmcgSQxNJJxO0KvCdZuwa0+4RQE1mxdL9AFjNB6q6FpYOXtQBNJUAaJDz2J2mIFbaVqfVOBOtk5XZj5Vozire47sLxXLwoxJmwOLjwPdHbgVR9NtLG7k7AuH/qvIAvTGj7HqWvAQff9P6Nz9V8UgkD3w8+qWw82o2b6xU/+WBGzrWVyw6pfXT4cJqcJJRRxoPZH3/yYt64OVHu6O1KxxidEJL41QcCvWxteooi7rAGBnXAgNk/aPajuej6FBXuLd/Zg7yZHITQCEmQsfQGZfLwRM5ODm8fgomkQhmuAqgiA3AY2UfPbUvrW/MNvfa83QOknWzdjihZNs7ecbS+yT8dyz2xInt+vwJfT/GEhHiMpOtTSPdgaA0+as0ltTprfkNKZ5B0aaMF7sFGok6ysFvT/A+GbthOSCbqubTGrGVkOvqxjASTcOXMisGwW3QYVvfwugx9UK+MWTs4hHbEU4N72N9WpYjiEreCfzliLx1YJnTG7odVpCuSqRhC4r6bh0E5UHPfOtgYvay8AydxJJUE0M/ISusLECPZVd3sTd9dtAdHDfVG/sfI5EoU3pGPDmNn0o7MrmxMCVJDiIjIVhhZLQ4ic2Q+0Na3/gAQcC4IF3Qn5RJwgJaM8A8CNYDmZX09o7/Z+/PCA91JmLoco3uYyYyU6pDKE6E+UmnvBxAAOYvn5y2vAGZUJy23o40pcy+aZw/37GQKK56tTPv0VlB9ZJEHNIPq+VbzIaPtBcT9emlwo+xNlT4O9gSuNp2n1Umm7eDlmjyqAHtuSXW52MnN7RMN3CM2EHYDw3ienqvvof5qkyLXNsaxG/JVW637FIHfpOVKhe4DE2NnU4u049Io1tJBy019tZAMQDEygY0zCxpZsZlC2nDlDJq4Spr0Qmzi7aHpOhgxt/nDk2jToZKycr1Rc00lGZW9JIFYL1TzrUa33zoeW0ot8ChMoaRnzvBDMv/HG4y//B48J5cVhD2JCaiX1hOKQ9CT7/yJeQYQMlMDId6b+WNg6nZ2Uu3T2VhZYWuiRlrECmIwifdPjew71tBCyOXqUcXPB7fipcen3F9U6csWeaM2rgCjspP36Yx8uxaTdebAYqPbMFGO7d6MAzYqZIbs0exgEY0Aw1w/CCFbL9VEZCdKMxAoQ6GxThbv/fAtYBdmO4EaRVgrA1XzQ2EzbNkP5lwDBJppnzp5q88cGZRY7K/zVfhUMSXM5pnrdeq+7YoieMMk4Y6WDZ1dVvuM6G+8wXsZMJj7mzK8a/evKIdLW9Fbi3OOIPeZs9xN3dl7sSO2NVb1OVvtrcXQjabrG27kYeunJDcj+v9CGv5sNLant4dlmtyKSnr87ZPo1kHS7STp9omu3Bllxxo5nGKk3yS2MZHcmXjuKYv3/nhK7j1qrcZPy4VoX09+x8pi8571YD8ylLCeSjXdgTZyiBeSfGJLRT+P0vKzswNrX57W39ldtYOem1WVXUu867l7CLGTodtXe9fDQAcgRpGQb7AYtgQkYr1Zw4hZzRUS6bx9IcWHLNP7AQ4TWXd99d8kcCtH/Jp+gABWEhtc+mfZr+7bIzsJo3ICybf3gy/6BKEWUm+TT+5pGSf50b2WvgkwL8m4s2FEifYs73/drcErvMP7l0oyYepjLBn0huhsytrRV1TT3jpFbQPePjieEypxe04oYP+kVo5aOS0yJ1cmHPv+topQUYoarsCi9AzonU1c7wc3+0n37SvMfrKNu7F0bdeunkccV5PkvPfl0v+TmISuiSxygVhUdnVFrnqG3OAT9+TjBgy7kgGAvB+mmX64QKiT11dWxhulZwUM0L6SBqxFSRlRyU/NgkUTA3NVx8B3l2lsHHu/1yoCbVTSArp3dC/3hxHoCw5hxokX0H9qLeAAhxb9Ahi0KKKWC7iMB9QOKMihocrpKxYbhf1aFaYGEE1TH9Tue0jeFQuNCNFC1s8ikrMi6yex+IVWnKWZQfilxEAiPSxVfc1AwEztvBRmmTb92rW0ZGTZjXIikYjo/krHOjpzVbZIZzPYvgAAEW65H9y2MIQG/NMO5m5GjyK/YufxiEVUirQ8G9dk3g9Kcu7EMWv5E1hzm/DPxrRrliFDtrc1+Bz43Z9vZ/vuiASQLHz/gEgACdMdBN6E6WOz83ZAf/bnWV7aJe5NaQ0GL32fKDqYdC/BuTTwWklcRMGunhzdDsyL7WG7dYu1l6KaiH6xBI0xxJnlv3uvRj6W12YptpBeZPX26BrLqnU+/WwI2LerAGZnPrgQJTayK2h2X5PVl/5+4/RY+mxXe//wCcm5DZGBWogSsnj79qHWtxc5BkTy2rX8GUBbaSVuS5ZnR0fRng10i3nYt37h9a0YGs3vLr+2+zHRR6fvT9YPCEef1kHDpVYye7fWwn+R+NG/HiaJun0DfEx6wB6UFv9elRoSkh1l74falXI6GYFFfKOOJXPXe9yYT4lsT7J++wbmw+60fc+YzOwoPJG6uLOgzETqIvns9w9IXVw5vNN5en2+p9RSBM5X1ff6u5gqkeL+Zgp6rR6qrE1CY5oDe1V/iSkEJMN2tKDt++3agcg/7o0EE/aXRYdwastzKve8xb6l9b+R98M0ux55dGxO26MdbelIUsO0e6NM+CHBy93L5EC7XGbj2b4h/JmS15H6yTThkdXvmTpv52by5/nHqu0ShxTI0C5Psb8PtgJ9iQ2CV98pRU/FGNEpo5PMi5gEzY/Y6pT+B1Vtz+/SpZ2tXr389rbvjWfUKWF3GaUlcGDpJ6cDsWOj9zIB8QB4MhpvkFzvZ7e807w9bipznwX8yie68rn21YQPc/9YCacUmgCGOom9/SAv0BLOImf0tFktDKTxsSQW7I2TAalWc6HBxu9sSuusdbs2oaLjJZrvSVQFKNF8/5AHIBq2vRylq/AOum8qFyeJ0fHDPiGbl6+WmsY1nr4lql/XYyGv/xC8R4Pbnql6R1DA9s3je7PPgEAcmIaCoyuk03eNuk8MGD2BA08gY/ZHXbAdKpoThC8apejnSlUKei8jyxHpbVkQw1UN6zt2S8GwW2leGsrzJZ750aE42CkoI2HY+88fNqmxgyk6D7KdD/XE8YIOnXThbovGJ5Y+DAi+L9MKuPzOmXIAaBW1zvow/UATsBNuP1HS4fVu/MmYaSKrmpKJ5VD/+KEcD2DybJbbje1jL0EWwJmlc1l4HiTrRub1ydAvYgVcL2ieNz6m1qENdxCmOZT2Z6GaKfnEwEvzx5qWEYAKqXOBk7NHbkeT3J7EhQPrP/PaTlj/6aScSPgntbqfSPgnIb6ja25SNEXbx0Q5riUJ58bzsOhiP0isPjuf55NrsD9NMQZcdnJ4+zlok6R0Gcx43X++BXc7W+n2Axia7fG6MXzt3alkjqug+BY5E5mleMC4ktIwtTB+HbfJDEaPT8nz1kGy2RQygOV5SqFJICyStNt9imGIYmj3x529CoYDTELW7/1ghrawA688DUnP7P0raKCrbw0quyDlPspHEjaaMsqDOfwrmer3ePRXSH+9H2pqP6AWeX88ZcHGRDC+D46vWJYmexzI43Jf2G/3fq/lsmXX2A+glnsIn6yjSAGT6TdamMeDHbxGzwsf3JzjJxVnGS5bafqKSw5hC115UPzRcseILK8YFfbbepztJeyTez+4MyekJIs10r3DLWxSLE8U6Yxb9l6B8itEnmJSAUaXJPOibdT9nmCHFMcWEZvSBROFMO5RHDjXDpkPn/ulO+Avj+cBCRvs3g9YamzI+Yz6bBHOzsL/oPoyAhvASC7KgQcfrI80Ks2dLahocN2f18c467VTzUQRxE/Kl7C5rhjJ1++0Izgsxu+11xjcrlMwRYOj6CFgejxAYYkSdlx95rmrdh0Z8SjE4aLqUVZFRhc4cnPlWXg2Fh963AfIEtnuEHBlLkgCLoTH7Rq2cfRDs6EtdgdBlWdhFlM6LcziktdFFFB9rcUrnnSByswlilVHSOHZNfNvHlx/88l2nUoE7O4fGV1F9f12WmH+4nwOwsbzbT7veTA917Bd+EPDDmLlJaf7dttJnPPjfVA7K03cP7jEza7kNkKbsgV9dmk3I0VK2Ee3b4iLLAHkaiCL2u0SnwFsIVn+LtIUMuYlHgOUxuhb87x/aVQLeKxEfWAvZPXWD6qGzpKS1TibRwOEtFppjpBKUiMcTE0ZF+VwODjNifT3HxYkaXguMsgaOjIKF4eg1y4DWChPQGITXCVhp11prgiq44YmasI+t0Yi8dt3DkOvKGjzEkmsPdUqcVRaxyhQtDbUzySNCi6c7iqB7jF8MOgBe4tUQs3xIKG1LM1rupGd9HxTJFwX3H9idqN7CVWFa9KTk4cHzQY2XlNRGoMDzVXAO5s/yFX4hgqkZeBCW6ld+SneKA0a4K01Efxkae8Rw29OvmDzWIC8L4ZYgOSrNMQCxEjeb7OL+2d094mpYRGQTDH1m46WhosAPc9K83hL4kAfMxx8fyEJWNrAzqG2aPAFqHNbMX9BarlHZP72pz3pgHVF4/gTUQ1MU8gBFnCAJSuKggMs5BsLOMDsONaeWtcW/R9yguOpKKEjc4pwAGoPirXhZb6vINrpoaxkoL1+3cbiozZoUVAku5thS2XaujfilewV1tbGFE/KC9T7oahCIdoEfTaESW673Wslsl0hUmlwBrI3O0Y0Rc3GRGb31R08c9LbfESpAAMDM2Q7dIU05wUIWcDSnBcgLSstgQX80t3TroIOIzVBgNj3Xf3ixqwdAQtYyAoWJKFQIsaA9BTcG9ubQFeD3cS+f2L8CntIWjMGwvvwH3I2H8UOyxDK4z2n7lLLP4DPRuCtwxwgOdreC7fchIcEFRalZXeKE6csXtKHMonC3ev/CJnC0kMtcDIaNGE7XAbuPd3DiP01WLqdPgA69GbUPNqWcQy80tw7hkgIESaKC/rIyaeYVRrBCBFnYz43FoXUYOkdMP1JRxDh0J3Dje2WdfesU6+9SU9VWwqsQYsw7g4DjjRgQZ9eugvHEUnJVrwA54W9asU4wa/cRpyCbMZoJMEyyQJ0Myv5oxWSsE2vdMeEJFuiGSfYB5/1mowUbEuKTVClI2GboAjsiXRnUSpB2Hf3foBL9acIZ2p4Tp3mlX1h9Hx0dGmMxJOgi0cCGsj2V4dgiTpFgoVLO3qC3r9mrQOXt+QUS3dYNFMrHodQ3oaPPy/PwPI8/BmpBvrEYs9YwqyNIaLvc2YHZTnmBA7whmQaoDuvGMYSlQ7FJJdPAOHkoASzdePzqZ81QoIQKgInmCjHp+dqKMqeTdzsvMWVurAsWMUDrXkp1PyeTGxusUvoFvQvMcBtT2Ef3h4al314pXtYQJIIBamPg5EKKOxnEfS7h51LO/wBAs9Lq/2M5nLSKWQQF+NtkBrCqojSIfzTxewQ/p2eQkfZH6FUv38QbALqXUvVMrma5lK3oICYHOIDWNU3wyMypHFVQbMg2swjfuXWPCBeZ1kHH2fjA1NpgQ6cPWtgftMLEIBDZANLtGD79HnATL5Jn+BWsfIZk0qFTXsF0WohGVcEGJEQI4qu5wxWRHM5Vs0R5zfnICJTmIiUiKeJSvleHFF0XUueq69qkcwRdblhngLRk/vlVJH4IKzQX2jslTtgiUkG2cEMFgJ0Is4SEyb5ihndzR+w8Q81hWa7uZYspqDBlQQdJDkI6cIi6OHCpAFHv9g3ia8mvbwajDD215Vo15uEmV6uBgamkDAsIAhLMs6jzTBxA/EIgZDDKwJtkMndkZnERD1k4jDkKujWmwAVa9qGLPfn0LyQiwF27hXx+AATBLy8Vbq7pzaNFGRQCrmKAmYwaVFosfAtaiPMghPUJhQShQW9eiUbRkWvXjGmM0pWSnTrFZK5RUZ0uKT14eYzmWOfTkAeo56YbJr6xhG2RyCoBJCJ07Va9fVChrGvm6BpL+NP4bM+HIegjNDHkImppHSxwKG9K1UNOmFb+bQ/tXbg68ea9fNSbqOFH/1OwcFvX0EXoGQRi3iOKOGmSC3gCLhLkFjU/sScMLd0CJBNK5Jzv8XfYW1PuHGAyZjCPmduzAuSQ0V2zX5H2QwmmAPGkvQF9q6SAlQCesSCOqCMvnno/f6xOJ9y4hk5D+fjQQF2z5ZFUYZ0anlb+gLIVBMGyUScMSY0VUUcIcogeCQwPm9Wk9BkEZCvchzn80rS4VEU0WzH/bjXnqnbaCoz3tp7QcTPn0tGVgOSmNUs/M2Z9y/qxeAEPXDhOihcAaU+UXTwEhKfRdHBS8QL+LkJK9bA13QrefcCujBzi4Clt/cFWiXxeQ4ys+Z89DULjHeMBOW8NfG15w0ygWiv7Y6Dv5VYLrjCceVde2OKulSVJAeHVCWhVtSbeIl55Ox9KCiNPvJJPYuH3isiORQ5oiI/hXSCqae9ja41QjqvoFdvlsdHaXFhg17rmWVFYl+mmJ/LgYb4Zwde0XAGjMj87jVVlMeNNbE/zTkCHSPF9H4YxaaJ+tscYk/CFdKDBXRheSdMK8Ew+ryy2pnoQBc8KgY07k0wEcBz9rzzeKxoUr0HdoEXhkYZfTHOsL39yBt4fjmjky6cSfcUHbVsPFIjr5JLfh22AqW+upJ+K/0NvHj2W9YPD9WZFnu8etWP5aBMzNlVEli1XvxfyEAWRfF/Yavhq2mdC3lHk0eAcc5INcSjZq029CrJYXaTrjFCpgvjRsGvSKBkLyFsOFZdfrDfVj4IIra1TbNdK4cUrgEZx/d7TdNHGkpuCVQJig2DHbGT69RmXJlP7dYkTbToW5+7cwPeoJuh5yneYJQpk/XW+7F7Ed9R5wrcfyglPFdI2ABYFLlCYq2IIdyQMRrbQ3cpUyfRjybQHQRYlThG0IWZ6WOLc9tfG38ulKJdUyQR65aRvbJdAeS2AUdY2G9XxkNq6cclSHh2a6naHaw2C5zG2dABgzoBw2dpxrErgT7dLaf42cuYxKOxD8XguRPXyu8OPqb0CJawjKTIgyUs5GBLsISFTarFWcJiMj+PeN3Pnan1PmxAvdjGVwZKgmbKNaq1agAQA0jQyHHolUuPXZLwcATjKUEF/XszqOT5ApLc3+4ZYML+vWL9e20YCICNqBbxsIQJzmYtr4WKVEQgQBEX0nIlMALGXMZ378N2YEVNB4/efRT12+kLDq30D9b601mSemRkQwAxgrA9CKXS8BpxQkqyWOVLn12ZrBkpY4BhzYF6fkoqu+sdkoLvh+Kb6KxzF8i+odKYO0AURFhkjFXkI2froRs7AP1ztgA0S36xK9P4HzD+B9WANdCyd6RoBmNmMynYB6w0JfdLRQlLV5W7kFT9unmdUx3tXjkO0ZJTSAe+H6rD6IqJMgXjQtk+IOsHUZOxIClydaA0kJDELFZf2vbfGHmrU83fbw5OxGYyCDc8GsAIeAjDQR4ueHNRc8h5ckJKmgwEA0bO0P4UV0JeN7PgZMBC79mCFSwHiku0fJFBiY6uvTIIkFvXXhsFSvgB0l6JLajU5jroKsVM8Yhqpi07YjvSJxiRHDS5l+eft4kWTCt2v5X59LJOUdJQsiQ68uiFXXtlOjlAyD++H+D7suOwTCSSZSk78LxrAfcIuJLIe33cp3hS8EGyqM+ESUSOsNWM9uchiDIh+jOj/uBoJjhE/dM3i2B5aUGeu3Gtxe9uYE9O+OzIQiUo+/PGoBZsa/J6ZboCy7Y9dl+7MqX+7ATM/GTE9RJMB0Xg7dL8nNLoQKvvMb0RiLyjI3Gfze/uKNHYvN/hKM3O4RI4SvPJM+AljRwUTyRjQk+rpf8E/XvZrwwxfyMJE1icCL0/r9fqqd0cBKcGSyL+KNkyswUbclGyTWN08E3b1m9GSsAccS0+GcT+1LyXS9ecHuCT+1d+tJDfK2AH090ZYDdJeQ3JDKgJm59UYZnjQ/6J1HdiwNMrBOWDoLHnm8OGt8pUIeQGTXqsE5lBbA0sMzKD2JD4/sEukF0yxZMTiNS73SukAQeVX3LiYdwaKzhdlwl6GEW+YJky8yGKSmcGosLtIzdYpheIuP/w4dx3WhRZwPtnlkTBPk74H+Zzgam9m/B2VJ3Xw/akI2BEYR+Na+kZ7OZe5dxIxiFV+v6hl57EkRH15ub1AWHEurx9P68lhy5l1mgmcZu58dI5v7sWbY9s0nfJo8ovC6IgfS/b+B4EgWa+IHQC2cYyQQH4tov8Ps2pqbYzlhODTu2J6+cKOHVCYPdkXwmf7EWtsFwM72T+bvya6ID7KyuJ+9AKZB3LCq1ASpgsaIWZPapqggkA/3tMvPf61AuyFgU/L1QaIXyjDlPsLMTpSPm9H7RgUQ1pOAzPojeBrEypbIU9PbFn6IfGc1EkBUZCc1zQ1VdWGgjFC6C9lFRgB8CoS8LCm++VfDeQRyzGG35D1cj0kVXKYJX8Zt6ICmPJ70pwAJPfHM4Vs0dXYMEV4MIQa+3b/Ck4veKceWHUWby5b7elmkds94hY1kqMPmxxq5HX0BJSRI5W88LtH8CbDGJZih5PLFEFVZFpsB5RZ/VxQA/WhTeDHQtuAQnGYvzhEghCB+xCAZeFlicUpbI8PkC2FPLwFzfmGhhAeglrYAA1fy/64xvRiG1Gib5QQI5v4iamMj6PTr/CNsCCTr9vv7+OlIpEo9aMXld4SRSakmzaG0AJo8iynDwg5B7fDzDEFxNRF3rIlqSxQmqR2EeU9uj4yzz+0OYk8S4vES7WPBaMnftRy7Mi4C1s6iuoYiDs/m2CB+dz2Lw/mBAPkOWYkLZcXc9rQUUQb9X+ZkljH4q3yHW8caPkcm60CHsp0T9vpR6PtPrZ2R8juvUJ++bKQvYoGceyIns0EcAV2aMru6Z5XgzhK0WXU8JMnuzwsmmBH8hKMQutyja+90N93gbpxkSpR7HlmAYEDnHWkfaFStJwG4gyGCk40xO315KQTKLeCBWPLK7ooroxUWvi4fZLGZONSnLpbUx+5xW8YLSQECnGJT72nXdsQJYTPdjRDiBwsSD15wO6YsiiAiAUMNpj1DS/WctrrVo8tn0iWRuEgv3qUruU07MfiCB0Bc4isDCe0szeiBazha5sRIvJXxZwilPVILmT5KNfHYJQsiXJ3zOehWOGIFs2Hd7ITyzpSJEnlPp3i3zAxRpDD11EGnG8t4xX9G6YheQhizUHtjejttkCRIYsZzF+se2A/eL53gdLyKCXjWLM2f0lWv3GLgSWuinqwS7OIqkTKT38Dc+mZQlqqfwIelqW7YPJSmqx7FFqiSHxnuxeVJsVy+HOjMkNrbCTrhZEqNi7aJyV4AuaBEtmuzl5m/YWuMWS1ONoEkyvF/F4sb7AUctYzipTWLPCm+KlqAW2U8ruPxxraIVN8GmHVjBe8xu82R/V0J7STo8rJNwGLBBqib0+uZpouZorFfaxIbchTiGNmaMgG+KOKYOnlTob6CovQPHukWgcS7kOWrGQViygFQsZyrIjSEDUYn0dM/CKM/CCQq9Z5/DBiFLEg1cs5BULeMUZaAPSTTt7O1qdwE2Pc0/+7B4gScNinYJ9NvLFDhx6WiqyT2ROMfMs8qwIPAmcguwhjOKlxSOKZokt/Tiwixl7C+QjmcWR8nUy7QJKwagyzEUzrnAhNmOi2AAYpCBLAcj0ckQa2ExYDmLH83etGiEHt6HqmrCwn5zW6l6CW0RucXMnl0oAeasn+0giEEOqsaCHsGTi/EFfAbEuyJHqcbyXZFZYwTqJO3toMdPG0UJYsqvLLJ5jLCI2ERZ0LpND/XA8brwr70CMNfwtatBL3pNfbfNsgJWk9KIIWzYExYwSMgWxWAzMSlV/vL+MnGwNjepyWTAbu4c+NGZH8thVMVjHvedrU/qhnDgvNC2kHsvR9rHKoemyr0kDRhQbD8aDkDx8P7hkO7TDD4gFJPjKCWLBYZrSCWKBcZcLseCg1JCwj7ZYJ2FzdnZeOVoJtyIfXJDxZ++328qOtOei2Q6icaFIRCc+pheBadwT8/F0jkKiiw1JLyFQhZMtFr3dgJAve7+jtkmgW+iLwaZcyM853hY+7Jjz6TgpJ45AEb47A7jbzKvXiNWM4hx8NNAMJhsyhJd2sumbV5+WZCwfVJ8W8p0FvONcuG7paBZMiGAasc6N6V/5s+3TU3GgnrsNKPX4JAaeQFr8d4cHlXVAPt1aIsR3aGScuPHOi2PdMXcVTYX5M5oZt0ycKXEgOUjSODl+p2G7cAWDwcWewnJObZkSpVEkQxbn1Lor35y3iIufk8duXJrzetyPIXf5eljwY9iv+P4BfgyZ2/p84grONSwIELrsWqMyZpXqg5Qihhru91lwDnSp0+eN0n7yNtpwW0Gf0AH6uKug5CXrg3oT5E0iC6TnweiI3d5SxYJ2jCxz6fCAZgNhaFElkKtBPmYpLjbYYUgDThsTCFGYIAfO2cf6ZBMoZx6rMY+ZraYPqk4oSbr6OJCcjbDwMqW5+HYdrgyo3w+r+HbRje5J+1HxNn2nxNdHQAlil5xoPJJpTRPTQagMZoAaNblcQv1NGD59nG+Qlf3Y7YoThBURon95ujqbBqNqNDMa9YnnZUerxwloYQhulBTlqUBN9QpTxaE+cKVUyrccEPihyia9+riIUlKU9fFAg5LxrA/iy/q4ZexxO6Mh352g5IOrpfHcidMnV7ZHG9jBDtjH5jCgeAmrGyBtlaX+9fEgsz7vd6y7LHrRn9r0w60bJfdYn/khJXRMIRP7m8ut+53T5WFmfQYXqoeZs4nU034N5D0A9dlHXuCFVhFfmQm7Iwioz+SjLUxpmkOrpgwPvEfmKqMcZnrD2LyZHOIlJdSoyYxs6ONBZ2VX4vthYdpySYF+8A4kSmG2FCcRx7zzEnq3IVWG5W2A2jxZWs9ZpMratfeDlkcOKmhmx1jhG5zOZfdpUYXuMpmmicJe7D6s6D6sTwoUpyGopehaE0wIEL8CvVwoypVj/Y/Yc2SeKVkH+pwPMom+fR7VzYia8bjfxs5u5GtyiT34pNY8mPJV2xO3YGLWA7lHLLQ9IfMOXWyw0pTt+TTw+cwpavtbXGaVtAgkAlCZaANy+maFOdCkJCwrGs+sUqXnrcoDsEfZRFhbQyL9H8pib7+QP/qGZf3++8Gyj5TkZm2t1rNHjYKMGgeoGYqh9dotzRzs4j/EouC73w8uj9kFVdGKuGzAUTqFRzZ5vrzHvZSLVWHQfyJPTR0sU7YkVqMm23tldz5x7ou2xslyUEmrnydRXJyPLJWoj8RIPgIMaKoK4yf7zfNmqIcbnLhS4kCboqi49k/pKkuQe2sMmrd7+CKKgVM+lfcnU5KdtbnbRgu2RxXR8I1d2ahZ7hwobc5GU2NOEhlq6h6pkm9tL4bvXI2KwR2cPK9VpI2CtaFWkbIqjVrFadsaZH+r8aVM5ZAjr0ZRbmZkJWB1F4AFaM57k2PEIqGzpWZeNwNTD6fQKth5Sj7vggp2sfmetz+GGqXOnaT4Nv54J6j4Nu0b390855+s7WfL+afxtUw74LwWfHGcpw0uA8673zq+LXzz2/68lXZtdjExfATFAqKt2hB4sZbR/1jhi5PizTPU+mEw/VrRsVjf1pqO/mu2tLZW1HZO1kDbsSvY9LKhSrkmmiKlCUV0Ali5hzdkCWtoI0+WeD74EkoqMrK92QpE4gVZqQjl+7TlqnecSVuyiU4p0O22LX0ljdtQMzTfbtlxD3Z99ldaM+6z3jarip7FGdPA3JCd7LzgAhH6BlPrWfwKrvdpojSdsqeodncilFwy7Z6XquT1qrG2fAZOnrCxdbaifps7/QqaRPtUHNEsZ71RgDstWRQiW3xGBYSl1ObdE+20c3d802pCiGQXqY5brVeGoI3xfg3lN12qFUxau1MTlA2NtTs1QVknXk052WBwt3WkoxCo8QK/BPoRd7IGSZTXGgYjecra+6fAZAGZ4UGrsX/fl/BcJWWpcQVX+VNCETWtElRCP4ieDRldPzD0BaWk2X11OXKnCcp2Dzsoyc7aEXa49ycRGDFoyf5ciH4lIcubt3DCPFWpaM+nxQHhc8D5zJAJ6Mojq3HJpzmFdtbmIHv+wxHR7pjKPSoZMPdPrl7JadY+as/X4HCVRjsarYzJjHP8L2wSgDL3CI6U54Ar2xQrdhgrJUUW1/tw7kMQ+Z9YrOFCHC+eqGxwrx0eBFnPauWhfA6ohIy43LzIRJ4BvdVbKBHvfqFGXj5mVTGRzzNjCBPGZAVePT1LozFmqObRHfvOWyzIYJKdta8PEx1R0k8xzTaw/akuIuxq7QMDIGpQFmQza7CZmYlVGk+2g9GnBoi2xpmzo/Fz2pou85kIod2bHCiJ0No3uvQwJD0c2Mhy41FRhKEyxXtQylvSVULXLsfVsq0+1bk0uzlKx7KkzugHs3vl0sT3mN0UeydmlxhTBwtemTKtE01sx1vZGqDtPZKPiEzW+d31mWLoaCO7mKBpOWO/IDKrEZkHvvvICTWBgGbMouHzlB4Aw6ePDleYdUydU/HqRkp6s5K+nBmwfnQmI6B5ytvpASArGRkKArMagZm7XbzVjRpTOE0NQTkLJYlaQy3HQ8SyKk1yozoQM2HxCixzCkqrWi4fqpBpFHQ643cchlx4lR7nkDK08ZQ0DARRGHagMTaLf2cywvDeRCrZZKZDIksa+QLghARttY7HLg0y08e8CpNuM49wLJ2t7UakfSYR4ZOAoCI1Xc5MgdK2EzV0JWt2KRxe3giQk9AFEcXL0IQXLZCOBXPS8wyghBxmGHVKCrOK1jZGDaU+2gsUKtlJ9wOWHXWAOI2B+bM9codoOw6w3rKRHipVJZdVC94dYsEaEkOcqQBmIn1Txfte3n84kGNj6jQPQCEj3k7wMElkeyrjA/aSZi9gYKvZqQflfZVprGrI4/smefLKk0vJTb5Krg+nM3dNoeB0ZhXiAOhv0+jRRKg2RjjK2NGimJi4lZfCYy4OQVBmGmkliKUMJq2N2D70J8TTWe8/IT4F6awqxKgEqaxKC0Ulsv5ZaCaKWrFzoDGB/A5bQ+KhDhDb/RkXqJZcjiTnbKABTtV6gv52f8F6y/1/MHYU79YD+fW6YYhqtguOFcBapx0N9TZBT5cNynxIFa99TfQAYM39Y6YBgTx/7QjqCTVac0nm7w0AIinBqiFtKDoUndA0i0qDUVHi3mG0Krciqk4xfgTqCOnBgiPz2hv3npHepuo5/FmiCkn8jRkRbxAYcJEyc03R/rjlmqqICJAKZYsgVUBL6Y0roCUSqRWMZhpJfDtmb6O5FiO4qLTK+h1g+yobHisaICs7Rqii5X1mrMFmMaLymwX0oFxYmDHRgY2o/D0WI0bRD27z/YfvJtgMLAKixoaxzcCUGLVmyKYbJFN3ADC9gVEoYmakKgZT34IBn5omimx2ZXvk+8HcLPqVqCaRhpMqLpBDrQAIa52w90kBCiidCfWeCEq6tILbLNnwav0h/ez+hLobL7egcAmcg30P4WXgNSjVhUahnhBHGI2285GBXAnteMz4KGvfLjb4Dk5qvv/wwQbcaIaFFZ2QmV9jfd09YkMFovAaGLevrYhQ1Vut1zGZTzoxYvQj9BN5CElTIw8wJFXf+nGerxvbaCKwkZxXnVhsxP511cZxcGk022DCkTqk08o/mrmpAkwh91nRDzmDgZGepZbSGU2rdi3JANa36tsCAWNPRaFeElvJYlJFSez7Bw4PSmKr0s9CZ+Ts16foJBABf0RLSGpW9eyPt6lybAMKfTRGPkqWWzRVCp8/oh7sjazojdxOlhgtCVpBTPyDGfaQgyqxfT2YIptUxmz0YM1dOyqtYPW8NoJPA0leuQOAK9ECitaEjb4lSFn3n4ffP+UXbMXQjry/IT0508FRLC7JfkgrvIdNHr9w7cHvjj4YHRo0YrUsAZ812v3oipyrDiI3M+rUQ5q7hDS59dBa9H1SWEukM+uoXXGcVfo25Yhb5AOgxghTInYlRy7EALgudABKGoSWBqCkQah29FpnET0XlDzmmJlk3CJukxDcgDKgHaOjVxrS7rWQD8rhKm0aHdKrGdBQRVBJe1bQnJUkaR3gNiiNKB3gNii7RusAt0HZK/z+wbkNytoYOsBtUMk/uLNFZIs96vg2SF5tjPyN0pwW4KbRmT+5dzo0r+yygPRmHa4QkkXxaU33uImluR1Ac2YVSMTQNdsdg0ipGawdiDEMqg+0Q84kF6QV3r+G3bKXFhnOTJyRwAK22uAYwD0gshd5W6xbEaYJ+c46ZrW7w+UfPHohNMmKRfeDu6FkR98PcJRJ1VQ0Rd6lAEQp6B+aSgfRIDRF5mqC5LaeyJFY24AvkwatQD0L9gv0LAvFwysjtqvDBclLCJsF+zF6kR+bpRkObsVBhB4gsVoRRE5npX1qBurYNV8dFHylAxj9YHTkGne4N037UdupREoEc8R0OGpEJlPDEkb97EyocCofh+hAdFBJgPp8L8P3CtyIDZ11BG40skgFKmKTwIE5ybixg5/JnY17nTcNZYLXwO7RSJanTASOOylN0R6ZIUkQAM1F568++byUTgQXSKVWZCCyxIJHCUrlcajh/q2IoWlDTq95oaRFK5jP3UFGu5r20gFoA8NN5z9shklfYDY8GbXCRN6qklmhE+WOsvJWLQ+NhrXKdsmK9sgZrhBEb4ib+2wrG2jcD24MkRmt80tkaDWvAaRDJRFaJ1KuyPQD7DazQhDWEeEbnQg5k+ysU/pv06whWptNH7OA3xfjUiKIir7I9x+Oo9Si50FPWTkwArgpjeZSIjZatnKzToTNCDLrhFPAPsk64RSwT7Ia48wnjIpsKvTUpEdkDpzpqSSPoShT21nX0SVAsvo6mGfc8RNilFRiBQOa7oKg5VpsURBElARCjc6/ifbAGzKkNd3ziaDCHAmeuEFE1rQihYcBk0ALJkkHC40tkheEciPK/siK/siZGvjpGBskOXrqJ66c2NacNRUuvI+ZvqxgXmZJhZsAjdgw+X6HAU56wP1DL9VPkC/LxscITowUGfANEtkQ9HrMSV0YNtr605PDWLBD51MbK6CRkLIBctRGuN/5WNuDuuysrNMXBJkxKKPB5JlQPuRB60QuTSjZ+I3iWOM+XHjuznCPgUPL0nWokqnkOOtEQezCPgo4fB6Ol2u9ma/s3TI18zOMReaDnwv5LGyMlWfUtYsyBUpqsq/7QqqGN0SiIYP+pEHrQp+01/B3e6FMIDqn6co29KiDt6pISIis1VWrCzlIJNXqQg6StVBmIGA1F3HkXd/vyDkLSMfrCupKAKiDVctAWMObJ0sMr0b4aCHjl2XTTtTLJIkH5DUtRaQ05d5CyiqJ0bqQsvrWKYp01dXk7bx9/+rbNMu2j+L+6OrV5NDoXUnFsBBpprCEC6TZGlmh/UiQVlCgd5ZfxMWyulifNcEAb/qe6jkXma+1oBDouqgxn+1VQ8frkhopikLNbK6jID1njAYRbIoeJGca4zmRhAWtkCk4y22GLHKM1sH4Cemyi6bJcseAGAGew7hd/PXgupwg5KWwH7OaTe0TRkzKoG/bVGSkq1GeTdvMk0d4b0plEUAF6Tl0D7IySHN2QKei9C4UOrub6xp4PLoPa6LwyslNZBcjZwSZ3yeb/ca6pj+AlsnKCKguhA/2x161jsi/OjfqyjpI0Xs9uMsuzslz/pUKCBb0/ZU3W/EwfDOvhspLhWpYb9VX09f09ZbnX9CvQTjWuiSXcOzbukdDrFG2rw3hQWdhbUgO2h8rMo9WSh9kHjFd32v4ZkJgQGyMt0db+IxZo22yWtvkiB6uHc0vY1hQLuwlpeF4yvCFDFXy6XWd/vPlgMFnS5NzCaQsEQNroVyCWyh9zJUKosDKiDpSkNaZ+bCoiBrvih6DBC4gUi1ZIMwFANnZ9gi944mdTRxMoizcg82Exg33YFP17Mg9Iq9Vd+QepVG2n5JD22sFPYc5dyvJPghHsZOyWufkxNoAVyupzG3Wpr0gEyt5z2o8Z3vsFmEjUIKS2/Utth/rblMV7OC0xTe37mV8IAfrk5wSbsM9IO9ZjedsY0RVstEzJ70LQAUE3g9wXnKZ74eKFC30Yaf/pRsZR5vYD7onv32HZ4W/Ii5L2rJa+2Q/mS6xM+CUzXrVaM7NH4FEfSSljhcU+gXuoNTMi+1skNvauwtwR8YJrESi3ZFab2sN2qKILtvooby1srewbgQOLH3T7ozwWY4xtMGmNtijluaIDJT99ppFWTSeDJyIdUV1Ry7qVjIidUc2KjtI3z8gqyeDDztoC2RqeYdGch50o11p4h6wNjat7Y1eCSwHtyLIT429Z2Wvt4WLZYom+M5q/Gfm4yo4z7rpXmy0xmTOCczsFGZoN5akxBUrmgoCedlZ62v+vNE+L0Vjl6KpCsZzQnZNIShZu1I3aAubIeEdtIVNZGQjUYWhReSAWtJQ/LyDxBMeAirl3D9z8krbBJk1qAezdqdg8mAxhSATDbMxzo7n3nlf9/bIUr4fam8mRA2yKKFuDyRTSbI4C8n/TnlrueMPRvsUntE+iOy9AaEuyBjf2V7Y2y4xIgPtxm5+sfNPiOm2Efe25n4ZiziIJpMCqieiyWwIrUZ79jVPhYws8ywH2JBCz71/nk9ZD8Ty3iS7g4CyN1zmIkU7ZfY5CND0jecdt4o6YVJPubBLUD8Yw8QCKe/xWkzTaG9rJan4c+0lHgSsTKQ5Dc9H9D96KhMwhMF23nBx//l2EGO1H7pZBwFmsp31eDUMJY9aD3onKHna9w8FETxIOja286e+eskbQ1lDzQJ9kUrNXXp/wIIm6yoIES/bB3EvLvjjpVOULZDvBxcqh8rhIFecRE0FBZrADMBykp6HIxSLRMuJzKxDqY/uyllI6zUAUJNLSW++H2qdIezfw5IZeVWOn7obQy60OvXZH3RTijvt2RLQqOCc9txtIfIiw8vgKstSqPVYtsAIKwipMZ/vlCmZs4rW3JO5UKDzUgOjU6+e92wUDQsIOyDPnb/6Nj15c5DbMhDktgebLIP62hgy/SRzBATEJsuKJstK0rGiybKyybKeaIQY7sH8lHK+v7qoo+tS61oDglPSnfXAWWBxIT2IJTCjCIGj7IiEbnCa/FrQnbNESEfiJNNV9HiJJD10AKzRss9wVmlF/bdSBMvzr5dXd+Mh0Tzxzc9s6FykpC8rui1rulcePnmZbZFKcnLWPo0Sog5cJq2F4KBFdE7ci48Mv4FtNPU4VYB5duODrpwTBaYmZ9yufBIGPHCw9vg8aHLTFQRoJSFaTzgNZXdtAivwCVNWYqIIaA20W77/dH434TbYfnkY79lnhmV5jfjsO4/sR3SWksKFTF9sPE/tbIw+C0SkoSPGQ+vgad2fhF07H9Q0KonPfnRMpaIyCNcfijlNPqM7DeNJcKltf6nGl0ZTrkNy/nhqFQGgjeNhKkvzXLr7PaM4TmRPIqmrNgqz+2uFjpCmPNhAuQ08WM+D8WCdD4as00G+9UDDZQJ628NJw3jMXPK9obpYtsldimEUjoWA28mqFe231zPQkolp8gB+yGsYjzsOg0To++H4EzNVDi2XExEeJYfPDZnxZJ8w5DAEouSnmtpjkIGjrHnhmuDWIkXr0ffsXX0x4InjZYR7DPEeFXrscY7CYHvmYSxnH+mMzQ23kQYJ4cO4znfzDZL6xxOBBXLKzvOqTWQ73kMW84TuZ48XJS9zFQPWpeNgF+aBtsuDVOjxRJoPXyYCgZoJSwNjNTlJHmW+/3DOkbrO4JNlOvn5tJ90Yo1kYVCQOdlfwVKVfkq7gLUgIxZHxithDFtyUUXnfhYMJ3s8Pe48JGKvvqwsXwnDdRylH+yzPJ4FtlhkukrxHgEmDhJrB8nOb9PWB6Ihu6RNXDsFlHfYuRfg26IlB9+ugTowSG9u5vUbRyNLkQpel5j9szfedXOp7oOlQ5IUSM+N7nnb4fnQp53uJ7Sda/3gCQ+F8KnmOYowPYcGgffZzdapgPRbVvvAYIX3gF5848kd6dHmLlVTjOSRHVSuZPbniF8zlOGLlL3YRvOyqsNaWpHJfb9MDA1zoIJ9VpjrcVFyEk9tZQvUgznlrhUH99v94Iu2UT/8qpLhoO6go70/+SHub43GUtpoD3S/0+GCemhUD2jDnKUoHdANeGK0b5mkWtOyYezJch5gOQ+ynAdYzlbqkdGlKG6UgYwWFZqy8Ef1uwaaMA96mwMNmMfrN4rj5IOc7OE052ajnWcIRNrhJcVx8sH27gM0ZyaIoAgcmc19B9WavmjbWBGSl0fOFutRBi+NHDhM0JW3qXmMSpwtox04Gdl5GeqCoPwQTL5ybL1c0iDxeVgf5kKXiMZeLG7n4m2wP6yO6I5CXGPUZe8WzOAIjObVVEfLSRj6pkjxPsS5spL3L/T+HsENOGqpV7QtHm1SBZpgOqUOwWjQDOzQPJoX3R6s2nW/Q+6yHtNAaxuL6HMPvXVlPs2H75FummScus1/5rGvhiU8eQ6SURlfAG7w5N5YKMscjzIQPRaO5MK16ECYwrdXoVZBz1sGL1AFghDPaAElvYWlVuBcfG8PMdzj+Cxgrn0SGEe2Uh6eqWltcXKnlZ4fSPBPObfjXA65w0mj5aNtSI/N99yw4drinJ8H23DyCp6I+maSQCQSUlK0ceqa+cgYN1rsLWrohTGw9dNycrpnMF4b7ODprvaY+B6GFEubowXPdZx+VYkd5DyPKKAWIh1Llnunex7QYCb6QIWXDCIiMTXWB1I8B1Gd0R1Huv/MRMtG9+abo3Pwe/NU+0GZM7pHGZijAwHVE3ZqNc8b+iNbLm8YPey4PJDondxwfzgm+4yOxC3jxzDv+3jthcG3GdaE2R61rciiHR01MLqMrwB4KzI8EIIkiA9wnHPukMgy8wZuxxgn+B0f1N5mUoVLrsHczhGtK/kO8ryJH/3TaGqA3yzJjnZhSzryMKK/3TmdOvGtylSBYYPls0LV1sXTHAZJ5MNe2zRNMwY1+guN7urhLcKMKuMjLfruYFJ2zUXP8eS7+CbplP89JkN5P33ju9FwkiZIvBsNf9CbcWSkxGXGlzasfOpjEJvvd6oGFAoiFtxrhuuInTC4vFA4zwhKNSt7ZPMgffAKIy/u8rchWdEjIyhf4GZMxQEGOcx0TTsdiQ71QE7z6KEeKCxGn0V9QdAN65Oextlb300xNjToEWprzBWiRM0Lw9/quXg90GCF1SrjpRTVfjAtK893vbXossCmz8UAiHD0LEOwlr/o4vyjThV99BUFZEq0etim+ZCHRxZwR2LNSNgCXBamYXYXY9xkjefySTwXiWjAjlRjPtaGiKPr0DfEG3VHPyHeqLY6Cm7fceTla20kSwz2b2/00x7l5NUqIyuaOjVGEkb3Ktn3Hy444Fs9WbmuclnHbATnlLFVGLfsvBx1IgfzaId4ZdXRk4kSnZlZXnS43GYZyFKBHiVbB/nKA+2YB5nEQxBZiHUVxUEZSYaLwqbFA82YGQtD1UDNhsqwZShsB3jMg4VYR3CYBxs/D+Ty9pn9K73AIecW7WEHOc1DPL8p3xdlfEJlNjwmpaV0VOCjEkUC4aD3O6TjyQg4oRdzsnBR7zHBQ08RHxLxBT+8Zva22HeZoIJnoWgXGNYiHAV5C2XoRk/02PFYAAR+BJU903lUr0U3yEG+H9zwoKk7BCUuBgnVQ1BZe7wdr1FZ+64hzpA6oXpk1SWzTCwRgLWV7h+YtvzKFM3mgmjIPJiE3htqiJD1iTon+T4xjiMNIa8z9qYtffjMG4ORTejhJZCCPMSraw96skOgqFnGz022RdEp41eFlqg/NzKszT2RJUCRglRQt7cvMKZ3JsoW5bMyee180ErxcMIg22GIhxMGudH3w8KsjTyhVCLAbpyZpOAym423B7oxtzbHb38oG5wMCTFCOS6uBibzfjokGNWZRMA6VnYgyElaRix+CA1vkJgH+1oOcf3GarDfYoTTQaF7CB9kg4DLEG1tN4d43T0kr4t1tjWSeIYgfTU2ODh0g+2UR2+vbHCR/v+TdSWJjus4bF+n6CNYE4f7X6xNgqCV9zdVmZ6jyBLFCUBABIyrAWmW5ZzFJD86REKfBZLtQyHk94WNfcSjFyy4u9uTIXbK/rEJZeGinDyrbA/jBQgykwbhuQ+IXFmtGbrzbktTsG4obtJx36gjEPF89nOzIWMHtKTm+y5qCB9sPr/qI4vKS9cM7MSmsZ8T3XyTvWRn5xlAYBG6kA9hyKJ5pzbPgI0z4OtQqDNg8/QBIKfXI248B/a+CyApU9zQbDuEMR+gIr6qH5TpmYfcv9rSiUPLv+5ltHEQ7I9ESy5zt/VuWa1cwqabUj+cLju0mJldCWf1AtsPikLDyzw7m7AOxZnfB3l0bh4aQCsb24zT7ej+iaf+VvnZbNhqYVD4fZvARs02qEO88dlJXXEC6UyC2ROsXnlXeHQEaDmWfJ/tgVqOo4Nn4okg+uptRoXD+tOKMfDItCQUo4lEH9dh9h28QYdQ5gPo8unmDdRFG8QB95Cp+vfBD2MqyJZG2999sCDP6XuebBaHYOazz0/3RWlfMduwkCOUrsoiX8RM/ylR5lpA0PabFB44W3B81vIv9SnpLY5EOrOzZwuGJv3nSIRHymjCVT9bfpB8UWm6l8o6N1koXAqimd8H2Oj6ybicWuQko4K6pvNG6t3PXjUYIpkzf7b14r+vdR5izH/ic4IWkE/YNK2BXc4B8dajkrB5oIRCc4QZzNQcXP6XKv271zn4n28a/dMNi6yXqIM5pAWqshhmH+DhsKZ/tqN9mZAG+NPbW6diSK1gxgnALh8KOp/ALed95IEWxdXcXzzKd2aNugEHksY3O9rrTyJ6ZXEXDf2H2s3vg7vxrU5uIpJLkJsuTFFqvG/TcUtGxHOawuIAwnwYjR4A5678YAnNcJueU92pN7/nJSOT/aqnyygQnz0NUAwc85dH3c9PLuVknGCjv+k/wnxjPnW9WkgHuaNIL6EN9qRqc/71w4/My64gGh+UPD6nEkdYS4AsPz16JI5O3wv0INP7FDROCC0MEM10VkrU9DSIGWcaMcrnoBp2eLCctW7XCAmuw7p8aWcTmbvAPHxC8Bg/e906xGhwPi2hAO3R1g6yu/ERxPaH/QHnoO5NbeVzskH1UAT6hHRzTjADkrOzEfRQBO4EcigOEWLwT+CZI/5olfGDTrigfouLvCaPLPLNG9AbvCaCEcE5GB4zbqe4WVs9Ju14x+bRT3QJTWfa/ZxOHUHrcj8M+c7BTTr95+n5Uu75ff0HfOMTc8eY0HL5L7YCzSebfU90+7chPvJTUkOc2HJuMDoUdj7okG/uYzSdfJmIk8RHhxDacxTbgcvgaG2GJorTn2Nj4tv0IyXpXo7M3Ma1ta8lVxB3fhy2Ayq1jh/TRDUDEchOWlAWxa7Ds+AY9gGDjfMDaEQ/2GlOK8+KvrNR7nlwMeYOoebMxHUJXRB7cQ7kRz8sxsRPZIhwsvPoNPIqMM05fUwzBag5lzrdhJMrtfkcDNaFgokHkGZmqX+V2SJOzZ/m/W24mbS0QDR3eqLyogQxv8chcH4/xQ/pRjHU4imzcKDofMIlqSS7PLfO/Kp8RouyFSMK0zIoIw5GFgeabYc45iPjBlhBHmQS8Z6HEFHKB2LOraNSBNhElRxJwqPDDMGRJDw6/PiJM23k+HsooB3gD4HgFqlOhhTtGf1Kx8AZCgj8qls1GESQgzWvA3BzrRFYy0/VOTlBDztEjqARiezepzg5eSk07LcUTa5tYTQQ0OauM+wyE8b3do8hXeX8Qw5wYcpYdgCemTH3b4QINPPXxlT1gOfTdjuSOo6HDUUnUM3xm3gCBKo578DqDyByJpb8JK45TgDWDgRUqbyHGdqMjpVl32y/uxT5ypZAUoC97eheCzxzpWWgEX0IUHuf3/Rn+svAf8CKeghYXoimMWocHe97NTPVHERd5iM4C4iPfm00zoJuyRiSC+cQwDxwQ2d3D+UcSPPL5pb1HjgySCKLEYzIJROTW4q6JvD6hGZfxO9Db+jBGqfXKUmOepiAPQJy1EMk9pGMvfTX0DAaAAPhaHWKn6ToHBiK9qUNX83lpreSJTx3BjFYBieQzd/aK6zCzZ4Q5JrdDSa14WhixWDYeLwA0rzbjAE10Iom8CYC5FwnPmDNq4/AK8WHqIqg5iOOlcbTQvzum0HLDZs0kLU/kdH7floeBj+WZoFqgB33p4rOrc4pjiXHgEOhx3Ma9qzQ4znEoR9EtbVOQPHQbABHS1OY5DCZPe+OB00S2kOQ8yk1Z4L3S3eJPp0CwU06rKOpxHOIcz4K5R42xIDAoxXx3tfzsNPRf54uH2kUURSL7Oa1MjLvxejsbq8BsOIwk/U+qItzlhAlEBR9tGIEpT1S9Gw/TGj/UnslWHic72q5Uan5fHQWvy3xv/Pjlpk5h/St09QSv3wUhY/2dDSZLg7h0O9z3MqqvWV83R49HE+WFI6CQ5B9cj+iJZVj19XXzUWmzP3r+oGcwMJ+avPZ86W0xsm/fSjgfBTBgfKo0AoOCMM+WsEBVabfFxAcUFX8aAUHwsJyqDhHcYJ4qRO45vfWHZKrnrBvI+Lm0y8kFLxmstxa1gWiPvTjcLDx7Jce5P18Xw0bgYZes65Af4PZcgo2o2V8sK2yMDaHyOR5UNBVeRpodBTlZUKhDzSdu06KnIa2uL081/GYwNdJZcYTEkp5ed7N3CeEsMDcaVcS0LZIrhpI6X33KpEKhzDnE+2qMUoJhvJnI4cYks55h1npUAXN/T6fXZs3n0pVVwlaPqo31nRWq14dLpkCONRNPopggQDooyjZkaQLfZfammwb8idVLYRQUbQdl61X1BeU6ZlAOMcPtPXlSAPj3K10hTZgTlXr+5y44RllncZT50Scxv3+Ysih4n20TTlCQ2X2Sf1jdLNqV6jlwW+1zxgqMBydekCtgxjk9wFMCc8RA5DtEIt9DEC2Qy3uYzga2HZc5G3ru0A1UNxNCzOIHzfeNnx/f7z2hPwqB2kYpdoXM8n0TkCbkYuaM8Frh2C3Y+NmwhQ0n1ozIed3TnpXx5IMacY2ETxHMs7Yp1SIZ3qGS747Z9/cH0vU4yH2+X2QGDOKNM15ZSpxx63zQwd/yS9E+sho+pCF6SrGM+vjXF0oN5OzDMCdZt4cGBVjBUO5majnYwtzx8PE1lU3L/7ZzgLYujUgCCP/IELHfvguKptEoO+xZMl+n/Nu7x9kDLzgSRTfsQxUWdzE0qFmyzGUuzpEN/SjEh59bNddXH01pFSJJT8G4c5zEYE8V/RDfinuO8vEuXfz5vwc33Ij7PRHMTaWIAyEaTxHQOzQkZ+dW2FO0WxPOHNE+bgWR516nad7zOynvlBHdss3b3A60/0vYbS+1MUFidS9SV8WX9t5weyspXuNstuhiHPp0jSL14M6dOOYQQhziFM+gWuO38DTJbiw816xrmHItpORIMVtuXVAFDr7UjUSLt9c/XRvwBzOi6KWQHTzAQEW530M8IF2BwEwzVS5wk441uXohWvJdzYD1Xy6YxaoZgYUa95i1nVSU8j5GHiPWDo86L3lwBOscAh5PgA0fzp9uUvYy4rUgLX9dbDttRZFOWKdCQz55hg1k0UBZc57wWglscyxb3gMexYSOBPl1HTXnVdbWTeCp7t/qOf8PkifqLHAaHn+3vV/lyooCErZgj6Swe09smrSHHgEYpYPMMzvNYzPEwHzEUXKZUVX9Rv4IO3ugDLr+woHMy5lbnDg0d2Ae0QA8vEJoAB9q2TaOsQrH58YGC1P4JdHfsHhC3ketF4L8ly4eCmATw7zfQh46mFXUHo+xC6zX74Nla+LWXdsQOuohnJ8/ZB+Pcyu15uYkNXP08YSt3w8hcnwp8lxm60iZYngE34w5v0TIpdvR4QxGJknu1CqS4Dg5eNJf/f+xzsP+rvT7OUO+rtDBerjoL87fV4khHmF4exr/ClYgcbueBsAuYVucP8/Jqf6LAeI7khvt+qcax0jxepNdwSMK0uJH0QVKSvW+NB7c6jcfByVZSKajyMWIB76fX57PcjrThIOHOg0N6VACu7e5TlHOOCtpytfl+4vyKYyN95LCCIJyjv7oHvdae0d0YD/RANe0YD3WsMKIEJrQIyUGfVir30/VdZ01WSofgbYM2V0k8dNGCNvon0cps6sUmQqYmiMGtxuqS3cNfr8JcpJWqBzU1YgX/J+lpNp9T2cTANlZgPcMm3WTNQAwxJQdhz5Iufh4ACneVtkr7kLcYKq+jtIUd854FeWtbv7xAZDz8LjOPNpQHYPNo6F9uc7AiEGWQBhbkcpPiwtV1uymrd+zYWtWPXhwysJrrz5PO6A0HK+DyAQXvYobZsQkTwfQ2RGNc0ni/YSCObixJMHHHjk7siYtlVkF67G7x53dyXG3WRsQE8+FWzKMzAjdTZIAJhj3AQOPDMTbEKBaXnQeaTdJrKvdpgKp6mu8Ex82eyL3ZT/Iz1CaQQzGGWEiXkJCPPnHuVtl2c9txBt/DkDgJMZILaNRR9aXo1M/0/GA0LxZwn08odhyBmTC/kJn12ITq62O9rptEHyNDxv43aV1RZAlxuSaxjonl22n8+du/t1odAP/X6cdzMDAiHaWZ4MCITwYnkQEAiB0/IgIBDCzOWpgICgfnnO3a64sZKbaD3PDzYsoGPufZfw2oHRHI7m3L2uQwULm/j3OP8+OYlMSgnByKigTbLnyJMUC8IgX56MCIQJUynsctsa9BM+XyZROCbBGIUzKJc0KjKpY/VnQbHYzbo3YzfvM5klQ505L/zRLAsgy8I8gRReWZ4eje4rM1u985OnnwC406yeBjOifTW7JSDQpbqmdxZBHvs5797nKeF7taJ+GFNBk4QQ0CxPyqoJU3Xv89tWuMGuNDwZ3eHs9xSsGyoN16Qb7x6E78tnFZyCT78J5juGbznrrRtYS855+xxXdk6oYwM4N4DXBuiF5LUBlDsil4r0030xI84fyWkpqzLYEDAgl8PehPnzM8CKLnH4k69IAqgcq7oVSJ8fPRJg+7uxLN0tCdBylXMEkszSEzeSC1Uo0SxjFDkJrrdAPMKkWpaHhFhlh0Ul/FhClflDI2bA+b5GTt5RqDZ+NpMvDDIE0lllybEvRn82VRKE8GAZGRcIYdEyEBcItaMFgOXO5WR9s7Z9nrpCKDLtcISrzPUJ4MoyOtWzf9jmJ05u+bLXmZY4HGw2/UpLwIyUShDmEmSsnx6JbLCI9DhzqvOHTQ9iOwQqS7gFeXH+8n2nXmQ06iqfZkwrg4jakf5oeUO4LiNEw8Zl7UmAUhaKfMioQ4D4BRl1CNB0yMAhINQmlxDpfe+HPD0xwWsU7mbvBQiBfWFqijv1aPM+MYqY+CmM3UZmhj79lGKI3T3ebCuS0eTVUEoQ/vbwMAb/GJGgUPtVwOuIj6aTeVH2omtDGOrJgFkigYsMwcQ1uQdUEmr75OafPGLeN/3KCKAjNuoLLZ8kAyfCxz0MkhP2aQ/0sHV/A0wm+SEOiA9kdBJZMTiuj6F1V4XLC/qaSgo5SMXysBjFX3HRd5ne3Ozj1kYQiDALXen3AayFcZqRKOrzOA9Oaapk8BXM7hy9G5xgQ42JLYdJ49EwHCbNvk5sGX5nIZEoEiKTB9jAGFoW8Totl4xMS0jgMpHbfh+mu6ZdLpCUG+74CXHN+7Ea4Xxu2Es1pLHPCGtXQlsZmYr3Ye7G2V1jD0yIs9wGaiMh8lomqI2EIHJBpWl0I9TJREvHKQ8s3KTTPRPntVi/nZY5HlJkTtw4QmQFZQP5mq8zXzS6QGVW8kW1ZaCwKNRHfh9kKqu2PZLAo7cqNlxz2eRETgpsStYwhFLMMpMiWyZv1QRFthA7LcAp39QVsNcyOwywv4Swc/302snMrjVhs51ELfiSikaLPi3n/OGSy29a340tMTViSW7IUEV8k272zB4jIZ+RzKTIlrn407NkQPzTIvKE9whCpS1bCVAjuUrft/NEpb6H/GG8wAbwi/FCgFPuqiscrmB8IOXC+wncGx7/gVeOAffMbMe9WRzESRydUDtaArUcZ0g7QIAts2YGnQnaOmivCBOmMrMYNNiYHtirHA7d+9Bj/jj/Le8hXRVAzT6pMpy6BCs7nGZikwVYZSFlrEzIJlBKCQK452v5BK1WZZ0POLgbF4Mv4spC/mC2vvTNelfu8lTW8+yn0x5DZncIcH1CmLHMLB3Ip+aM0sH7DZy+9P1ZigDe4n2RvD/Qh2JBX8sitLmx59uzP+4WKB+FZhy5OQn88rey7KbMXJnlIyc+qOuE2scyDWvMeKcMa4xnCiTg6kagnV3bCCd5RXJX/jQ7fUbTMWeXWppMR8fy8up/W6rrTjqsGhEJ8QKrHCNi9S2wyjnRzpl3x6rnsVpJDR5Nv54wClNC9LIsKOmw9/JcT9BcLUQBvw9y2TIdIgsSr5cUdQUjTIGMg7pit/7i3UgS/eqPCIGMErhljysYn6872kF/vrCVRXC9r0VLii26myPnjVbM+rMQZSsrm4wkOmI7Oi7sMmnoKt75On5n6aFyuAgciE+WVYHDYgSDAbArCkzkpAJ738xycmNncZCs2ZsA882mmPXDgDeRF6CAiqwFyhls7Z+saKUFWC6WleUEiSZ3ZutWVhSEYOj3gV67t+B67MuQ9QMZqbwYRfgS7RqXpx4qNJdPC0ro5wx7uhVCleX3wfn2PaA+XU6H8yjEMMtCwoyqTxJeQfwEnrJxguW9YKyzTrbaCVPvEs34cTwwJyNh5CLEIEmEoIf6qQkHmyxBX7IyZiA5G7R1eHgsxAuLTgiElxsTmgHCnD0yMD59wNbrIDbF7Pa3JgmORJK6jcpK1jtpBsCVCSSmWAoMvvoCdmVbf3fIhE6K0LET3ssKH2Ul/ID4QbC3yqe1nMdrhwe135jIOo69zrTGSuYKIY/q+wCWjZrRstB6+sHBj2A3fWUBYU5SFhqLbOv9JkYC2j6hBq0su+0cSrXSAsrI20WXE942w71kOLAMC41nyEp//ZMrP5dbIMtB38GsBdomZX3vp3VmV6D+p21SlgPqXfb7LgcN7B668cvr2jV/O0vKwlqpbJSU3xcGX5jYEWU2BGLLbMrMrhGh0PKa9tNVT4eINWMBdLndT3DqkrwbhxzxwrLB4+id5Ez6FiH8WDbOARbtBYLLDcuDQaPEcjJ9XpYCSY7WLZGdJKjvfxxo1pPJGZDktJ9oba4wSigj7Np5WpVXWizZLZD97xLAkY0E1mYBAbBlaTc5YMsjR8AtkpaVnQogdCSR5gMFxHKCcHSw7CU70cJCkLPs7FQf3USRXlJ02f0hHJDGmwwD62yl0UeiNoTCyrIRHrTZAHq5qTeANe/MA5SWG5sbfmNejfHABklyDa/KSZs9Q78NhWVVGNUstNm+z7mMN0ZGQ79Bii1ETr8vwCMi5Fs2KLGF/cGyD8JX9uNgeXVCrrDJN3BR9sGt5dGwz7klYwCFpjHaR+9dL4AuZ7jUEhvjwR1kFBDay/GzolUeXKKy5W+nazRO5uRQsdt2cSnViXoeTBbdcFBiXMpY4B6T3SkZlO72B0VIT2DTrwgYc86usItP7742Ggnt+mYe2l9lCjuV/iV024RN5wINZhockH9/LUPSqaKtOLS+9uh4lztFZl2VU5mqOkKom2zUMPSWbv6YivBNXwQAY2GcQLuKMQNHGsHJxVDHudSaSuaRArocw2A2NWSXcyp5DoXtyYVKvnMgmFszA9HKJFxZdurpMD2Gtr/vtHVsqg9gjgXLQKJklyMzfbf5fq18ckpNjIEDqAL2jfISUn7JSSCv0H7ISXyaEDL6PpArMAWErE/Fk/XEXrSI9srnRtevEP4rJwU3hc6sAN3CCG6CapNeIWJa41EN1eX3P/7CbDEVFgvloMVUiK8W8Obhm4FuEWopF1UiBw3z3L2EdSQd1jAPlmSXJwqmTPKmUwkR/qb502DFuW7e3YMp4DETpeP4GcxznHUnZyQLAkJ9neqe/8AQkCCj4QIUTQgGloPggMrMctZfpR/F5yumehDPUubLENAR5iChuRxDZYEhQsKccUYakbKIPUBEuARcOY31u8wdLyQ1q5AIQhKvHG7v4e+PrqNIytI4F0yP9boqyhCPMNHx3/x7sCYNUJ61aM7D9OwB2x21KEH+Sk4QgQQzK09VYfkUmB0X41CT1OL9jyPNk4Hx4g6uqEveK52R7vrFomhsGuIfCirLkcIUkg4Z4ACOehkO+A7iDgw9lUjkSO0FHkgnKVPZwv5XklUCFpEoirIvR8eVdhnbIbjAcO3AIwiN5hHMyRm4nKw1U74S9RsiYDGN2le/6R5t3um1oyCxZ8B5kgFVmE6Xg+OAx7scu4lDplzUu5V87W81bCUeBtBfbqLYA4H077q4I6YFABTglUOFu1aa//sok2EyBrPg0F+WQ+cc+stCbLOU/rKQs0RKf1moiS2lv8ygPw9mgpNDMSEs4+EWQOHvMJkFrHJ9VYmf0rtOe0zYsshfrU0os/Em1vqXhxIOIsgb8b6KoNWI5CrvA7vqdOc+g0QGjgYiGTEURgkyfvz+kOTIndlDTfIKIXBZJNtmmoBHUJn+Pv3D9b4G4lWhEydoNWIyR6RajQihlhJgZukcnX0Sksusvx0QTjDkLTJHIdhYAFTuc6Bi/8YqQ55oUjOvhK7f9zlCnAvsaBfJc+EuViA6FRqJhdJXkFFgl8PVJg5ZAFomZryKpt3Ii5CA+UDAZeqsTECWEHAsgtUmPAUEpwK7j0XqVCCSWqROBaK8RepU6L4RyWIHW9sBcK2Tuqplr8ua4BYRnHitmZu/4pH+boyNXOtyUJW8RPniYmw3WmhlwzchkJnB1cnFXneU9j3wyvFLGRjJuXHUpUsrAVmuhgpL+BJFijMFJlQwrp6H5CzD1bL7UoQmWwTqH2TZhUxfhyWg3WEyEvMgPQ+CbcrzQATblIknAceREE4tksUExraA7b9/RHwn/ENh+WT/SHtVA5uklmQxBAWuWP74ptJNMFI82DedUl6fo0khHYnOF5LwC7DLBOOClJz5U3ikQlVmAW65a+cDb1YODol8QpZF8lhYp35rYDc/ihKc2oFbZjuAmN2J27KnjBIE1ebuuRBUm9mjKgIOCwmA9Ih+idAKEgGRhQREfKB9QyRrC0ubNf9LXoJ4U1pOe9WG9P4SqA8wl3knCHP9U5hZNBnCO9GQeU2WwaV0mMtFQX2Jqsjvg7RWFHEWTd1NCalawfMsglcKdYDrk5Q3dawoba2Om0O3qD15slZ+gehggZ7e+9/g85v0A5j2rhmgUvWTgtNxu8x5atMGC6DKwlS5AKoshCpLQZVFu7NsIhglUuj1FK/VA0F36vmi6so+gtqxZAZ+H+QBpU2TJxBgbt9eNjjRWN3WPA9Cc+lX65LmXhOTJkyLiKIHNQDPuEN1HNQsVxKlbwnKqcRgI7WvLYmAFgGCmAWg5XYXD6IMKiwiKCGGWZDg64M7u4/fF/lN8PeUCaGALMew6Q8mYjm/kvdkJ0m3ENMsiViesRb7E54xB5sKRM+PbFn1yCozF+vuI96OxkOSdqGOFmjkziLqwV7gMaFAptVBW5rvXL7ITxNrLIo9h5FUQ4N28wC8fGVUAKCyUOJZAFQmGw8I/oRA5WTItCDR60/LXR0AVyV9SAFSeTYFLZoiK1+JIJTA5ffBwLj4t2hDZWeQaLWhsulD9Cc0wFdPuh6iqA2RORm/ggn7Wdu9f4VCreNr8gDe7lfmUNgiHrrg+fc8GtSwDZgl10yEz/3hQCEsxY4uw/1mG6rUrqJBVxwHUjMFQAujurJcdPo1mZbfs3DfgOW4mtO2eQ2OE1thAjHSohUmUM5atGI5eo3ok2qnUp97pZfNsYd8LZAhlq6CG7rMpP581eQEKjgxwZpiA0K1ZTH0HhlPAVSn5uHs6bohGbkIGnmjNRbjnzouTbjW+GIYet85jvK+UchZIbvKuqeh9YiY5vcBZo/SrO8L51KhB7Uo4z+xoT9nAQDKhPAuaNSzSvE6GGmmiHuV0mQuk1NdxMQajxK8b4OTs0ovVKDMJEQqSzh68Ttmv6+fzHQ5W4FTvqWH5oB7bFDtriBKEfUQpyxQY26Fzt80P0DK3LMQFBWSsi+t+9NsLCgpUJtZAqSck82VaAuJe9IfSgCVwy7rh8jLJAPBoBtzxvNxQMiCaB9ET9SWWuXzsFFWbF/ipCEAHT9t9k8rVbUWm8oiHwme4Yi/fmDt08rQ2XYexQFTjh+7KYohllwETQUn8iHOABaxrxGyclLGtBGUmAmzw8oSGuK1YRMo8Pm6jpfeBdLE0qrJ4ElVphks00bz40AUzBLtsKG2bNKfx2FqDXtER+rNigOmgBY/FICWO0OGttQmU8fJQBDy+4AytLkcz9U7mxB6YTZFDMWDGgiqodbvYUqYyTGEB4wXxdR/DpAMLrpD0xKUEOHIH3rUmqVyp62pndC/ZGxNBWa5V0s6CwSGCk73WwfZMq5/36ilAdlb6TS2oZDQyBOrQoIxJMjXEDFTc1qKypcaZj/68GUb6e2ArqL3DQbDOGnj9vQOdL9E17C4Otvr6NEgt8l70KZoLhtFEif8vst2chwFVHQWf25ZQaRZhTQOAsByMxRm+BaIdr7ruHb9eh/PT+YtkPIt9zHkqjqJj4/ofyp+AAsGBR/ydsVQQCD0+X2ApClh1QKschDBJMwX/UPEJy/JHGk3xY0qPXHMgCV4/6bEug/q3ZWyNLmZF5yY/JrSGCTq9n2guNLh81z9zuPCwVTxNO45qxF0ELzEvMkgVMuRcGMBVrkbBX+bjcZBks5XXy3RDvRA2TbgS/sU9oXh0SQ4FBKkt4xDIUEaGORQSHhXI/8ECgnCcpU4FBJez5ezue8+uGLfPgyAfV+9oL8k93WOOJMuhZ5zZrZDcDkI65gGm9j67FKXOwsvDgFKslkIpI3el/k7kC/yHvX5EfgGwTgmAZ6TEIcsuA/cPkW134NGpoiYZgEN5yTzzhgAOUuDi1FHJixYHMcA1ZbF6xggmFogt9yidYhZvNz9AQ4GNlpByFKosAxecSGQWVx/CFtkoe+Spt31drefn5PGFdOp51tcaDPyBrEo+sNZQISsyohIlFlSQJSKBf5uniCAWdywVft7E7Dcnk+ZwVYXkpv6/Bc+Wel1QpYFkGUhZFkc3Ubevx5COe/P4FaAUI5QMVq8wk8ag4kaxOzP/7B3gtNU0je829Xfz3EE8AhJ2SruP6Z3jnGD8FCe1edWR7B4jpnS4CSJ31Pxgz7PLW4M2j19GuGcvCnMhqbJ0+f5RenQKOiThELvf8LnN3Xn+ogiEZErBZcVWOUWx57PnSgMvkd8evPTJ7+GyuJPnglKcLQ+OBOU2GoNzHI74/6ZbX2y27TV6tMMayg3MWJ5n4D7mpTUt+QmqDCVvar6TIxrclygtWOyeB+9iRJh1ULLjZ92/HWdTU9qairRzu/z7HBhttgBLGxqLn1wKPBMyP2iT7NMJPjgfc5vW5fvvbKqxt+IiFMJTtYHgsenaf+zhUSfzelOnQQl8vl9PjH9dVzpA40EDXXGgdZFfSCTIBTz1ic7TwlDLdIGUnvogxJXgyGQrMF4BHdtcxEmdef7nMPPghYzpGiPYYIU7fpKcLI+RT/KEu5cWNAVBbwPsNLohT5HrzlH+NVHmkar4Ve/zZ/3kNMujU7kDJjj1EewT4XTikZ7iuWsH0EtwbjJ0/ZkLMMg2e8aqT4/dHY4DjUQyd8aV8wYu2gexQ0VTr7WDT2c0mRtWI1Cw3ph3+FGCpXlG3R3KhHKVd1X6i3rA4haC+Tm6tvMvSla8tiMi2U9KIjxvotJe4+Fg+crh65cDOS2wVicTHu4GAwzucb1yc4jJSxYH/t6UWbRx/MQ1AfkVewvWc/EUnGatBTLUaKd9YFYjlKqWR+I5SgZ4fTxG+NaEi0agsmVeQIog01VXANlx80wrd6ubSYV5u7CVolI9bm00BHzQ+Si1FR+H0REpSzOKjSWlThnHc/tF0Grh8dvTo02Ef94/MfVeTI0VMonK8LKhm0s1IkaP5Ku9e67MgYGNlb3X+sYGFwcoFV70gEBHSUQ+n3hbh8aWWYgA5uODE8aP/ig+54nLOgPnlruaW+opawj62BKLLOO5LDYbEFdBUej1cfpTDataJ/GX/PXZaCg8Qsia4FfAtQF+/cTfcQ+JiwSYpF1gC+Z2WQoa+KsG9m4+P7HKuzGuLn6cbgzBgXWJhht+W5akdZfuvJmoOtUCiC/D/CTll83KAmwdfR0gwBbCcnWAQJsHR2agQBbGXxpIJhHWKvdL+jni8MTUeoslxFiV9o2cK8z2zAOhkgzMq4kh8FeNTIZFbWWCsXSPjymJpYyD4iR3UXKPigdSWm3GtADfd3DWRA0oDT5BVa28GbKxURsPyEfdytNNAJq1j+y7jeJstMhGKT0c6wx4SDRYaqUdtbQVv5KjEiEauPwHswPgWnZX79YZAS0VFkpUvBZjU2qhp0QLTYtjp34OOX06lAMrYeu3er1B7h48VXxbKzIZyU0VtlepMOw0MkrOBKexsKSju4MrqdyZVRR8x59JYyW1LAjQwMlM4QOhAbKpLEOhAZKZWkdOVsjDqQ7KX4x12I3de+8jiSzUFomhRArg30rCFzZmoPV6e0UDv8hZciwTwlD3jN72JWM1Dof7FISfE6EBuRFgLNEHdzsYLqJtCCt0blpBT2pTpoQcNg02qoQ/kS66BzPHSz8wGLQka4ELCsKTMrefA3Assc3OJ8nGFLJI6NQWG441chcc2Aq+bbd6ceEquf1vToQdSZd3GIPfGhi//tqrZmv0fa9EwaidMc0IMsxOirCznkTKj7404vT6OoVrRDjk1XGKT9bGGIB9kSi4+3QjcCcnvrrhhBgXPTL58K4eHiEtnLO2sziKRodNBWWR0wGV8VKRjklWF2RmSV9Brij23Mv3HJtRl+XCBYMC/etTvBkU0hZIayshDTr3DAlzG3arcZaxGNswdWZzZlKrWWdCU5TYpkVRzo3Doq4DPG1UMoNWR3YNqQ0SkI/nb14TvWM1VkDWUvjHcoQgUUOBxLPrm/Vecnc60xOIyUU+X2evjhBzxoxRt6j3mUQ1WwDk1lm6rnWMUEJX51ZTmYVozxIKo5Vh6gSvKwAK0sLW6EVk6a5ZJXJIom8AeHKSbYU11LeD8Va692OFkdWXRFitts+s9mUHYmrFjVbROWuAS4t20CbO+FREemsJTcuF4P8YkevzpRNI/twgmVLQkmn/ZDSK3AJSqSyAqmsBEJrrMe8Mz1B/mDj8CwBXpnwrV3GmGSm84fsGuE916dOnAKhr3zw/Oo0rSa298X29VPm6+pIz8sNwvB1PVhlzAGtB6usmZ0zh9pyIlnt0u4zBInfHB8lQ+YWiFPW9dyAOfQCUR9RF1KPV8PdOLBLfeStFEJQtm+8z7PaosT6KMSVGdKjh+L1OPgNyV7RKcnXyOeCWIPDK52Jc+cP0oSiwK4Lm0iIcrwMqmIm6OuvWZfmyJO9QtlGogu67GV/q/Lns989X24NuHrKNC9w8FpfN60Zj1pdE+TlbEvUpNxoMvMACufnadnXwrjobUevYM4oU1drwf3mTdOocIaRn8SPBEA53G8iJTUQyiNde857VJNP5OX5I6KKEAdDfyKqCNmyzotGFeF1VsIV3cGJs8Nx1JWexu5mpP3czL554lmPfOOn7n4ONXgCCMe8OTvBTaK8MhTldPUAD1YeT41ALHcGB+GU0mlAawRXBroZlfhjhcwycesrC01KNDI6zZVKxrpSI54RB2gke/EL/lQahphuE5PNQ5OkQ1kP1GC+iJ9AXz7gynmrz/y6F3VllqX3TOrdxHOKBKE9SokE1gV64q4hAa/XJM6ohw82PSlQy9q+3VKsPxIcrqL9XDdF6+j9rzcODTrMn6JMnjMUVtaluIM0uoAsN0oSbWK7e06XFWUE3oYJJiwZRWSl8PL7IM+sAOeig0ADt5yTyfAmMqe5bxhbgfeR4Q/RUNwQ6bJ8Rv3fD1AvHQclNlhXLRLnHPrVl4MdMcxuX1qblHldUgjLINjTtsAxY23rUyFHCWrT/YCBjC2KxXHFgpiW5OT+CWnZPaQbaSOeY1piy5RGkTStzRaLo3tzre/Hrn2OY2dJXzqJ7pQQZt1JdKeEP2tAlkdehSPNJvhe5AtCV5vavbrHTR8Odozub1boLW92bZUCQKehdtbMNM61znLsbD1V4px1ZyTa3ICph/VlAxB56iZcwRO5pUwc6QZ1BX8+iiAtPIwz8Kmh4y3SZyX3gRJ9qxuVhM3TI6DLOVEMUAK7HKuYqGgNtvyw/oTc684+Iwa+8iN/ic2vBC7rTuqKFk6IsZF46n0Ps8baQsCWP1p+5Mg7V4Dgu2/3hgQDS1EHC412f2fPqRLwrMTBXlwFGpUYnPGDi4kKOZAp6SgMGgB2PsccWst07oYma2PjNt6303fevXpO2o5OVMetzznn0bLP/evmBLCpDWpencfU+2FMG6OCDU5o1ooVwJnTU5Ue8g07qdJWo5InioK7pdJ0C+aPnvFG5ynbrzB/whZFvc5U9goznbtRTtg09jsDBRpwe356hnLTKeHIunPmhxHgBT17DZnjb5cl6Z0S8awbpHcaKGAUmTXQyrmg6bxv/YFgonKvu5vo0w+YJOVR4JUH8YoLnO00arIukhSAyJS1S901YsaSOxVydPdCsauNCWfb7Fgxr0SDv/3D87w/Hmm2vqxjvdE9g+Br99DrJYVTv5V51J0oWmttABDfVQSk9dm6dQCzKyHNehAn7CTOAxGfnqfMrvUf3Zxo6f1ryyuHx/yJxuQyJfZ3yU/Tmh5Uk0NqudYopJWbzwSFgUmjRV1lfE819V6rl6BjhaSydonpoHpAwLMedDFeegcXJSJK4Ke41auV833eNFsZYLIfa2U7hLJKpCe7PD5QJk7H7pEDhXRf6uBv+fuyxVQpEqyhpTxyuMoXsOopRa0BUw4zvntKV1J4KjkoNGIjns1JaBVLo7IzByVY77/NsKqbKBQm5HyXkjuATf65SLhliAe1BSVoWSGWwYbuaPrMa/GYOCgpE7SskXr8IKLZZvO+xk7DtBjKYWz02taaypDrfbF+EypPZInTgypB3Xh0HdHRRO6MKsnvg7gSofpz14hp7+MAiRHTYgcmOW8OSw5In+yWZJuC5Nf31flt9McHJpf26+RvpvnNo020USZpNzqncZAfGSwXPb/zI1j8dEIP7D5RzHoymm6SpWrpZdtmpXmIeA2dXlyN91VLK7V+R8UJtLtA9CvFfx3O4qElP0gSNazrgNNOSTimoaCcK5yR09EfEoCqblMZOaSYrx01skVRT++GUrqm6AHIH3iOVbqb0GM7uCO048cwbwwWjnWzR/zBAmNmzVL9Ttr5A0GcsoJFe/2lpzTLA/lBdBKxCleuuNKBPI7rMhEbgOQYU29ZRwn0sGBxQFFxJV/8AcqDvhziY2FFwDBjPA8kM7ZkKpn4aK3C0k/BB+ed8gFKVplIVEncmRLQrEINTwL4gfZvdeOcE6nbsh5EfAT9KnSTb7GLygXziHs/sW5XppgQm51VBR0JwoNE0E8Ui0rwHIZWvguWofV+AYaWiHcNaHIMhh0Ssa4IpQVMq8sohhmnVZcsAGzdP+iYD5BRs05fXlCAlEphqsw7lVCmkjLDZSkYCma1QFNjHRNzEPWz/eV9kEbtC0FwBDADggxpk+yE/4k/59iWXkKA465QqiDjSx9SZf/0EaYRi2vtFrRQiCirtItTNWS2yKjsMm1t6uBAMAtxkIUQWn9B6uT0dkoYm7YA2UEzCYWRVUBop0Qqq4DQTruWiJXbrCHztggKZLIS+qU4YdprTyXl5Bm9+iJjCngGvLs2h0PbJ6fU7thok0cdFYmzIUVTQbnWOTRflNrK74Obcwm0RGSPUUGC6PprwYlHvkMFPFmlK6WAJyuTkhrw5E+OA7T5TIip6M0/qgJcD2uD9oNyed/NmQtoMWnzFRwJ7WX+VMcrtU4UnYr+qJ9khrCbFgV3XbSfp+8hvVKBS35N8t3zqIQmZ3r5Sikl53l7Ktj49KhQjSGwWAXlZOkFkcfCkCbYx271DlJ+zrofdcNhaUPfD9OM4GgQxgeCo6G9OamjgZDq9wXFWtb+REIylUh6DSnlcB4pDK+ppbzDTQvTl0luhXoBBShL0adjeMCTWX8Cu4JSLjkc9BgzWwkUMXan5xTC1IsSOQiSlfBX9iUS56vQU36fK59/8YHDDycJjgZAOez1uNZq9zDouDpX4WEEOpnMZKqJyHv/68/bbcsQLZPs6re1HbS8qj2liUDQzipr8pu+V3RykqmC4lQJrladt2X9yaQqpGEjh/jLlq3UUJ6VdaKGsgKiXLdvwwnW1sQBXoKnGprvqH6rinqy9qRmDNZUC+CmZByKYogSjqyanX2z29nHrovzp0Aih0wjQFYToKNFQMjCquHazFEOZCSIT1bgk5XoZi18spLeTAufrER6q2ag8Nlat0uWHkebRvL8U36K72fsgLt8iZQjsiP4+H2wr1igSgnk9dn7/Mhk7rphPBYUxwK1l1Wz67R5HtJ63Vgnfb2VWPv0CRUsLDTbkW/N6zNAqMRjs9Es6BzS/rGzODp3K0xXnAwENavWydDlAZX/dPwXS3L32GGXMRDQPB5uHw8YrpYvz0yvtmOsiglmWkkzlRjSKmU5cL3yW5JVZbDlXQOtnH/MtWWwIzxNNGsIn4Dlwe0ig0uy3ZOUFj/kq1Yp+jc6jaPpQr3zxjZtrASus0qPRZ8wE5FroGalvfQdw+v7CWyaEk39voDsLqHgGojlsOxKx0aTt2IzLE5Fp3he63cflDmVKSTNMGKfVvY4djuCQ8owMGywB0Oku2yA1nJ7IoG8umHLMkrcg98OS2A8FoqPnaW2gJj9uxqIwYrQIikKZWUlSFkDtOzxX/2YAC2PfJ1/MO4jDP3IbVGhqOyLB0Xeeyoq7+rhjp6h6huyDJ9niwv++xB08A/VGCYBhPgVcWeKfSjxdxpw5Rg40z2QVWYfRGUQuNL2+ckHsp3+6jeHtrJSelmhrbzNrxDuSxsYelA7r3VlQBGVKgHLCmFlpbCyQlhZCTLWwCznhDPksZUAeTWeaLZu1pw6cm1dncw/wp9oxGbVB9rKSq1lBWKZ27U55DkY6CTY571dXHuFYVcimDUQy3HtbN2rdLQlG6parzfIX7ROsTRJfT5FVoHeAJBXShizWp4Um9iKRHDnTmS/5MEAWGa2RKspBZY1BJZzbncIRL1uaFZ7AV6WD4cdu5Wb2U618WF8v8qnaoJFSNMNleUOkcDWfoOi1b4/vYVi5dzUX7ynTdyJUI15fw3AcvwuHkIGztOaUvRNWQtDGIpTGKJlOUIJPAX/nzKBpaY/fAIYVX9tdqcOqq+q6U0ctNf9a9FraQxYDW1HlBnV0EyJX8AwIgSZ8s68Z1ppVWoMPBc+6zrRxB+WudvSgyg1fG5lZbcIr+L+7FwQ2TbUnM9AZgxSwaNoqZQwViuTwlQ91JZ/lG7wBUpc5zhXk7XV1QgjT1yaWo/NsRNoQcztp0wEVQgSOeS1CD1WAJd5S+umEcasUFoGaGuj3afvUeksk1vmIC1NPLB6kt0pE7fvAzgj1H1WxxbbX4tPZvi7xScXKvHHo7rLiD9WR42ZneUb3tRuLirF4UWBYwV+WQPf3P39nuU7BqQLGqNEiqNEFM1It8aFEtGsPmtA/Dl5KjS1ZuUgHmFzk2d+iXBDXC9+bn33wMU5ecguEcasgDG//y0+R8+b8wwL/rpY0ZSi1oAyB66iQOM5tV4BQ5Gw3oNbP8L3UD9WIpkVkGseQlDbOZ1/RN8+g0sFweLh++pJeafOrQWJKAYUKEhsCkmob4L3MU0Gg8XepnkGhsbys2/c160M1Map/FRIO1dd0sFpcbrnA9UjCqgFaOSnHpRZEFouRwa6GzH8/EiFpYv73Zk0bL7u8X+9tlUT7N5GR8cAFZQ1Mqjxa3jMuKSPNEhNqoFmzvu8+4WUclBi1NWlyMc6pPYr/1ONOdrK9uCff5/zVgtywqNbwABqsz/3gz5tYdgC75wNkg4MG9uk1BXYvMM6ZMLASWIcrmv+OQMIiDB3bm6iQTWylO2DTOSNuNPUAV0go76GCHPe/r5/VSr8mIZQ86nzMju74oJ0g9E8FAUYPD9oVGTGhogzgpw1VI1iAIwtPC15lGDq79PktiE8CHOcZ4FDB7sD8MyhXf0J+LXMJ0GKWSnNrCXFrN33XDrMSsS2evLRRpGlvh+SZO3ZoGGbSswKJeZWgxr4+If8S5CRBcoZVdiELhhRzhao5iuh88M7+r55i5zaAwXOztdk7c0C5VypZ3vK4azM20/sOUtCgPDj90GWlXZ3z6Zv877MvF1SHhkFkt/nOXVGuLJBjjmURf9kbYwqzA5+F2K4B8Sh3rfp7SeajWS9EwV/IhXPj1KKPRM/t73xBPq9z/lz5r4sx9no1ePxaU8xXJYDsrL7n2bSsEYtQMx0mO2Z8GmZ54a4MLcasrNG8PDEujCqNhtkme1hC8GzavYmvxLRhFGh2gLqnKap5Viic3WFceAUROdq+MnG+YvO1RO5Q96z/XynJIJ6exj+oqmwWacgufQRNa+VMYc9bXyzZdUo0GzPBsrIRxuXym4/F3/21wqSDosR8GwAPBsBzxYwz5ihzZ8LXA6TWzG1/z7EAKA1g8Uyew4G18sDxHidL5QLSg/vuQCG9hyMi7qsEK5vAi1Yo94EglUnvK2C23o4aKnbejhJGU3slltK6/TRsr3v6x0NH9wi1qnBKPc+59iyTj3mZikTNUQ2d2XXJiPGR7G5lEPPKvX7H4ee90q7MzOza/twOaJX6vna0JoTx540we9/HBV4wT5mCh1XaMZlx27VpfnHxmEZhkWG7ge9qkagtT3oVX0noV+4AbEoutZQkFs3opct0M5f1AR1vaahfDJLZdRbDnRbjsw5Ekiusctvjlzvk43j8NiNQE97MoywqEqOqKCGj2wPSpVEbM6RmenuRpnoeTSK1dpArz0hjWMKePzYbzESxGOEO9tIKiQj3NnGU7NHOweZ5kYfRZnuJ1J/MjVgTOwbqMYJ3EI2hSBDGwOFIYwd6pOthNs73UYiGYwqyDayUG29iUYGE0YgtY0U6utmiSunbGOUUlQ9zfr04tiz7YeIZvR4tK4i8M3GhnobgI1XtPVJGzR7SUZE1q12AzUIooUzY2adPd1WV+e0Za+qDVrzgV5VIzTPBnpVjbBuG+hVNQqJG4DOi3wEMX13xJ8JPAskcjPpZzqTCREbC0tp9XO/0pFzOcSNSCiBuqiRrMkAdbbRM5+RBPui9irZTRJh5T5rvvGxb85d6Bi/A+tLY2S07CNBiM2HjlbbQRkF3z+LbqKn3+i3vA/S5HJLvQ9gcpmXNZj3puSAiEOrwtpAIcK9/z6dJFKwTfyyhqhUZoJ8s451UC7VPBPbR8bnKAypAXLXJIsPw7+TdQkCzKzUUthABaImhhvIoxtlkW0kx977H4UCbCg0fz+ZHnjDdDsA/uBdRF4lVHX5bh4vxERbRDMxch3dJ2lBJZ7TK7zXqljJhwsNKkzO1kJI+NJNLEqUU/vKDV9Jc49I/5y2FbnDy34fZLTppEGPju4m2MVs9I/JjtX3P14pO1ZJG6C4rXXTS5OF2ZLiff5mzWFlvZ//CErD0LCylAzgX0yGbq33Xc4OjgUCoW1Ah9OoGm3AOn8kQtkxawF2Zs47bue/j+NgZJPWYfbNoNJsTFEZMHStkIar8U/XlRgM2mS8W0jKug6Z8rLiYOz4MYgz0xandvNH9AKGk/czBQvUlIMxQp8toM5fQgXlPaMSM9bIDoW/IoudYEhlf+o8mZw3lmpsDoxtcGzQVDBCqy0UN2OVEiRuodAc9pZ0HZYSzSvsZF8j9yk5dJBSpTWdaRc2HQ2GLh+t4I9QURHoj075IHaplQn8us1uJ06Ym/HQtZmZ7k2cA2oi7O/7ZQ2AZo/NHia8q9m/CVILZESAexmnK2H8iWK8CUpve4F9YYQ229z40TwzIpUVA18c+Ib3Qa3o94Uf1YJ54KFu+7oQTp67k91OUeLAd/CaECquXU9Efeu5/CjsbGDbOBk1eoYEEwcJAdDvg3RDCEk2QJ4/cfN0nOjYT5QbSPUMbLVRmXmO7Dh/n/OWylWpRXHCCKgN1FEa7Y6k/30dMWVcqLz8PsANpfWdSYJhBGPZBAmGzbYG+mDh87QF4JkLdWeRcrCp0SbONzbvIGBfJNK1qZgz7Y/LlUOIDr0cLRVzsnPuc5hvvjqbOJq0V71hF/R+NOwCbaLOX+qQ89Nc9b5dXLZ4mqcKbbBVJwzpTvLQ/lIHgOCfYCS69U0+5DByDTZp/yfOA0on28wskrFvwyaySO8Lm0USm36HVzl26r3Z9BJ8xvWiGoPr9/WypMplnUzgH4MSTHorMWO/kA/JQpjZ47+HzzNx7mxAOdB62J9Mga0HUDuyI6PB0OjzGLDPLR+z0F6zO6eVVQ9jO7qtBLgZO+hsAeBmBFpbtD3kEuUZGdDnsM3tFa1kE1nr8lWvdQVkPCOWSlOsrkOMGg5Hnx5FbY/st7FO5y6nq/lNxlzfx42UwvS5DV0XkzSdtuAAEpFsgYCOH8+wY83buzz7FgEFnaAR3vw+SIZjIgXf+cV9WPwuUJyzh339aGAh+G+40loflKaCFwoaTzAdvc85QysPU+o8W+Kdc+y8g9m1RFTSBtCVxbvCu3Wks7Kd1aK0hGYCW/tcjsNC5ZYjxT04ROUb5JmNBQ6DPLOt7piEoELXupGRt6ZnCTPTISKoOow7/wcpoYntMIrB2Tq4kzweVh4HxgMdzd5tNyHMzMOivJ/VFEgIPjnI90HatsVlFZmInGFas4Q7j/iZvNfZv7G0BcWLpPUQXSy/fj9+i/T1sQfkyl+uDBVmG4LiESNo8QGXL1trkJyj4JQtJI+ojGcry9H04ndGOF+CR3FpUmI5OM/pGWJoSsZzW3kAdvNQdMF9AqlIArOXskwfc0fLfsClNEQ8E1ZWFqzVYwPknLPefFNQVGANFaVeqfwmGviNQOb3Qe7O0X0uOL+oVGkAOtNb9o1JcMqZkVab4JeDvc/bgV4lW20SPc/5wG+x4GrLoUdBXK6CLKNTi+Axf37Hx2SsFfaa9Ig48boTDW4HNZsNdauvfHt2+qQWwsodlgxkyYmDfh/kVo0Irce80ab0vljTGPDnXOlv/GN4AY55YNFHUEeM6IGygOCEe97puh2HxA43mWNEa/5gUbJCd1ag5wPTqzSYRvaNC9plndvaqbJgRH8YOhSUACB4f3UAw+lmpcQ2UkvsNIS63GrYCD7LX5Gl6fc//ogsTRt9/feBt90ujphDMLDtjAObE0bRDMw0y85GYqO+pO11xYEy4PPUOYS6TGCf6Yhb4J+/xMREs6cR8mwbhwQheLbrkCAc6H1hXPl5FKZtt8RCMYOQPRnSWEYctO19hzXFImkBOMQ0LwEhEyXjn5s1lu44YdG2Yb5IYWsbtYVuu9+oLYymoU3C9ov/aDqSwZs+I3yeyULidCSHSW48Vy0fxgv74L6e/kb46dSBtsBCxz4gbNy2gGalTDD6O6JNpL4g+wKMADeDzWUZl/u3bMFeULkjpIPz0y1PUhfjaAU3VwCQjVey0rDZHF4MXQzvkYIw4p9fxwWrWmee+XneIBj7KMESB79W77cL6zvSv+Veyy7o933eOxwYlHS2nX2tFtjqTlKFcHPO7rv6mgLMNhzF7ioSFJC+9HV8DdNHO6UXmnIOsA9pBxSf7SHA8DHc2IWA4NrB2q3oYVffWt34s7LL1AiBto1gIvDTguf7382RdO4wFOqozchS5Wfb3u/nbapdd3AknGQiRx/umFne6nQTQlMSG2YTj8XzsinnqcE5nyPS2bXuLeSbcxnz9I8CQ5hz6n7bSc9psoC+S0+aLZ6V+4lSa/vgJ1kOrNkCAZFmgDHBrML7CGFh6wziGcj3sr8EZZpDGwopZ2NOwgBP4SE6FQ1dVBVOXfQvOj9q11eXcghR0nZQkqbwsx2kWwPx2+rtAtpnyibTx6ckswEtbURPW6GljZkwO3mqdZemoBthPXQz0BJd+b4i3jMCRuwA4ElF8yBjf9/fbBK3k1gIo4qzHWSb2Pr79ZneXV1GwPP7AHaGBPZgFTDmvu1UIoxKFSXfxo7YirtPHxpYBrSQB+kmcr7bqXTTYcIn9ZxHzFF/30/Hd/GeWsOdIQfWuf/aLtRQWJku+6Qecquxp9UAnTZ2m9uBR0cjYEUnXUvFgcaqKDRzFxYw6W/Nn7o8fwscfjp3IKslqMqqPZen1c+OKJthxEobsNN2ekcmdtqInbYDTQZjl5EBuslw+5e5yaqfh/dwH3iBTODZSYjcOldP5EdhufSmI0E/lxHJaAfZptMt8YrNwLQAYNMNkIUH16jpvUHvwqTyHexVewYbgO3ACBNTbQfcs2xayz6ryLhXuzOwzqSORYb+0Pofw6Ji2HGSYc8+BDYY9oy5Yztg2LPTU+qpSmJkHLMAUIfze55+4dOaCUrbHABzttVkxjCm9JrJ1Fzr6l3FB1dKE9ZwvFK1oP0BVqqrZQey7kbR5fdBRrKEVlvxDJMRS0Gn+H36XOlZfJc1XxhMn5Stsmjd8viPbQQPlmXH3BB1Zn1iPoIy4+S7ySFdyxAZwD5BBCXpYHenw1v1e4o8W/QpfM1HYCYmIZfBgdrk/DC40800iA9z4SG0DrxhVTMEBwP1NN8HaTqEKSqZUGkjSgw3uMkMAumMv+dMzR/inAG8/Sf3i4CaJf5RhomOuqD8QHi0CcoPVIM2AcueSa8JsOwZ9bMNOAoy5WDBMF8jGUaodsckjA/hzyaQe3T9PUJa1TAasy6d2ExjWcTkyHMAiGDSfV2YGR4RkhA5E1axBfI8tVNKIoIxtqSJvnuexgNQiPQaRSARWOqD5z90Soji5/VxZNcbfrwejO/7AMbHQ0ROrfGevnOzUMGTpEzzen6x6DiupGsQNdM06xB1nt5c98CqMwVRfFtGJLQJjgUKN5vITdbpiDCENQ1If7H6Wn4kUbhrIhwS4RrLQ4E6UhvNFV3ST+iTSWtupfC7CY8BQVmaktAmVZIWhi9SJWlhfi2Q02FQiek3yc7D09DJiSBjcgTzYO54PqCma5VbSzhBPmWtQrCFaOLFMEI6wWJoFeriY7ppTTcX5R38PcdrKMQK3fofMGTG8UZMNDqmjZDponSxcA061xcw6hgPc1cBo84ZYwQjjvOQ8q/j/DBzgZnVQmK5WvtKlNGo12kKoQZaxC3rEkpD1q6ZXiB6S9kP0+QVse5SVLRusufawvB/lhyyIN/X5hkS7QUsYU6wt9jH6ZsdHsaKqQFB3Zp9B9L1vJc6qtrK/CRarBj5mg6MLgRB8yB7H2L9EaJtgaTO9dcHHahYm/04h0ykRvJjraaiObe8WHV80HqaIpFMoLWBZ5t+JCBRpk1lXvSYxPj7qL/msJBs0nmFzpoJJ+qs7JpexgsJ4hi01Qb8kxE6zZ1KoLVB6HmysvngwzSWQJhRCmwa9hyh1KYLo1udhFDouVnXDIGmHhHu/LYYf1tLk3OJ6WOwPrbbp6i4KOEQVcUnwtoUxwWpDas/QlsJKVM0+yHE+Ul+OyMg1TR5WK3PQsVp0URhcBwbPz2qHYf401UTcnbzRZiCpZtS9EAbNbWGFWPxx3L0ebxIUmov82ToNqpBmyZDtxGubQqGbmPF0kLxORY1babFSR5GVUdf8qSXKg1hi0Bih3fIvfO6aCOzwP0tFty69nwXvevqcNMXKSANnaRs6gAne7RyNyr8oLRFxLQpOpqUR4VCx4FaVxMcaV1UFoSr/Kzhb78G+sBUxyQxXtH0rDpZgOOZiOV37zgsy/94QsbleCaUwDGLvnNmAu8iLMVq+yrciriC+s+miCso0GxacYX26kacwu6eyqGG4nMp8UBJ5yupP2iX1ffHlpmH1PH7Cgd9CwfiUKCm7nRozV6sTKBqMW1j7Zg+OlyWZwbJWiLa+ne1ozErSUSzAVDdAjsJmLwypKFsjs8ffj7DRcvmW8jpWNTtRr43+CHDsvZ+IR3SjofiN7au89o/dC1QO2xOAzMYWCKALWSggyVykA2imm/742hKJzZkXto96JawkKqpLicMpKYSItBmrfSeqGojhNsKVb3pFOCvuexRObbfxhijewEBOCOk2gCp7iwXPO7oK+eJuxawfsyKZXl4PLQLhgCDSGozBBjMRptVgEEktQW0urvzFfNAYZHMPlBz2iyjC+/zTzDy1VdGsoGOABjVmUsDpLoxH0AQdJhuaG4iIPp9kD5UcMAKnudSqFnxdQvYDpwrRsNPEWiqZv7G2IagwnhsGNobiJqoTiNO3ikuZqbIXD/2dRxvq6+bXbi9u/B3HFJtltMfzr1JIJMZsHLvqLhIgJUz68sDK2ekGDBDPz0VJxEgWHl5JfvV/BvPuKPrqzvBDFaYoGqzMgPSqzUXc5kkAVUP2/+rt4E46fnAtyQi1wyF64Avl/cG9WcWlCcWN3GnDvW6LzUdeZ+6b2j9MEKlrbp2jGkd+yHYWFpML70jx513Adlbo9wMOmjWrbmG2jWZss2qdk1gtkF/h86V/FoWVKuMAGqzrF2/ThFDP8cUM3eC4nRA+nAW7Wdh9TDNj77kRpQjm0Zt5z0erK228yheE4xtBjkf9i+B45Q1CpgXp32uU4UkG4YMMrWfrYj/vhwQqN34Qz1TYd4wYeAtm/rNHCN1eu6OkjWrbOZVribA+32hdgHbdT3TTGUkXK6l+L71wZ32Rj9oJJyomOQDHJUVCBRDyPsyB5NRA309lLMXCxnvvbobIUEX8L5IHCI8cWpAmyPF1GBB4KebrxGd4NbCz8CdkDxMFJ4oJR/MUUrvmo3eEN6qjlF02SAD3WZ3KI6ugNgevI+hTf+iEC84XEC2FR+6D94Su+hMoIOr+3OeDiKf2T8f1dKm7ELuoynNJ8i+mT/f1f3SWB7HWRAQ6PbEHeeB03P1nQS7VchBxEtt53K+Kf28ebkIp5+V1xsjexYHycnHSOVF815NBzXNyN+0AoIFmjrWI4W3LODUYZWdlsQDDxH6XMzrBKZ6sIkybFkeRqxqYKPTaG20m1Ib2jwTEWUA51Na1+hnyWDo/a+2AvTdOR2G+SiLAnHk/PT5VUSLL5P1VY1DFSVmgUksAKqXNvb+yB29J+1BXqPbiTz7nLQLemmqvPucgOdmphWdbSx/miN8IPbZHJknCk6bV+apiyFeMLmag4Xqa2W5pmOGeGC4XTzFqHUtymgalKEtcMe9Rgzy0CTpqy4zIqeLB3Pwp5YzRAVocwAiCKw2h2IbjU8O7tu0GTswgQFJWOtuB2iiWcCmvzvlWdA/g6GVVhsXLvFcCRCErd67y+tqtGw4Lvw9LgTPEdgQ4/0aYxRMvI5aB9dEZxbWvpvxkH9/P7P44btNqtqgAnz2IwZN9ef3QYzOyavlAFHvjvlBAMmBjDvkqlr0e3g9fHvmtaitDgy1E0PtT54YQglsyHmVkfMHZxddgqAOwcWU79vlb4yCAu1Pffzk3nFCot8HudidDPDZ4vK+Ovk2Bjc4ODD2OduP/IEAHPvjDE2hp//8jhrgl70vspd1Y/CTE5ekNOzVQobQn25dms/PT8/I3Om++JNVaie42p914+QPpHfpbXhdmrOWm+g0AwNaNd+X+av3c+3oU3ek+t2Ru2uNYODxCZAOGZq81OYwsxjhketgP5w/4OzzpzVnwdn3zky/kLlrJ1/k+8IP/Rbo49n+7KWO26sbt5xUtzuhl/70TcpsYwMy0JJPaVIHaPo7Vf+y1dW1+5sd1+bMypM/93C5XJjQKtbJ6k0piEj1XvrDehMKxk39ZChFlxl2hDmvVSwlTQS03rDpOStNSBj1VQkGl7cTBu1P7SpmmyMpEb9C+Ku0dgHPuafEBoyANnSojp+YofvYTn0b50wxZ8qrY602yDMD6dULCP3nTRFQ4kccSDoQTmC1P4blZvdys1svHQlI+da6BSqe/HmgfeU0ZLLHCYYeq25Im2S/kxdYg73IsjfOyc/syepA/zmbMB//9v2nFYPOL6cW9PsAk1Xnho8HC6wiQQ+nNW9NHakelG65l7T/Yl181jOL+h4g1s9r/HoT0LL4vt1/DFSgE0WSvVbeO2+UubYeLu6ecP1n1dbJaP8+CAfPCXv2kYUHb3PrsJjs/xvp0Tsb430M8P/WYRHjwvu18DyTz+9zTsbIU/T9v/bQQABRmySDbid4mg0lh3g78Aw0T4GPZCJwpg7fB2BJI1AVF2MzYhZgPNDRcMrWI/jtNHKjQL/ll8L5Wd99W5HdWtFx0Vh6Twh1vskJXJmhdmK8PSDUYTp5w98X0vV9bVL/CTLUQRlk4Ix5X7tbBWDxG7m3/M74okO8GSCRwHdiqB3kr04MtY8NJaf4GdV/d2CrVjOIQdPQ2f3uIxmZnN/hkIsmwegd8yO95dSOdtTwqP+XNbxgtudqzM+mmhoY9EfWPnw0pV9xeDbHE4xqC2eAF6919PKkILt9nYSDR8PA0RBti/QXfeB4oOb0+xy7l3wKXrrRbNjJYzsJ4yp+TpqpD2i70bHtBCY7oNSDCXYUx3y04pzsy11CALxId+jg2n0/3c9HjpbHAFoyJneXzJuDokB1zKU5WKG85dRGzlYzrZSGK3u3sK15Qgy9xdbQMuPdDoFuCmd20IdhX/E8GaDrc0K6fYCrz6ma/b6AxhYWCTIcGr288sv6YnazZ4ybc9BHrShnRA1Pg7Bmh2S0sFiUSPlPqxZHF48PH0nz7aMtuyP3US1moyxpHwzrjgkXmGHqrm+7awQ+s6HVCQN2aEX7+N6vCasTyecDKSeu7IO8XZQMu0tkpg/pzEKdCeNIlLWD6JMUbuBP3+yFcChGN6eZFTHe4LtpQ1jz8omQIUqqzJb4zG6mKLljfmC82WY14SI6lY+TnSEvyeEhcGDLjZ9bnqjCocmgYWbQkELpYG7M5LVzVfhE1DB5jM2KGgjN9pCNjhXYyJiAUqeVpgeFQpWTs2ujFV+bE2vUN/IbVu0fOuVpKSjKWNqYp2/wwvgYK8yk2WBBYT1o9CiLvcUwVfTOZ54NnUzIO0kg2/umXwZXAEcxNjqC145zPHE0sCnLA0qdwzI+r2mjvYZcPCsI5wf5876ZrkmTFOG8JS2QQ+W7y5TZ2zg6CJ3nB0VSkVrfPxwL7IzxmYpwTlPnE0AIZlxFz41N9R8a1vfDhotxxkr7gWfMKJ+rcdQncQuRXvmt7y8yrfgUjE8+qIFHKTXGKByjHEzm4W0UwRrc/YLeFnsiyKcEh+Tc+4+EoXc/ylSYlE45eUhrn0BZ1I9INzOcp8owHPtx6yEi3dYjm4GduOfjjjnjjM4k6HNKVL8PsOoqYyeYQHK0g9N6nm4dxMWoY16gaob01SrsVIeufnDnGTullqnxhqIM4SSd85lJJQan8kMN7dOfK37Je9+MpOiodAr1+nTcV+cqhTIcMyvPz5RtdJMxMJjJ5sFea/xE1l3KFtIclLs1G7iZ0nDvc9JYPESJ/WZRWvLFV1aY/EMzF0r3wyOnn7N4GCxUoL1D34UKtFMm2UMxJQzil+cbqXf2mrx+AehANmAiFBfCMQOa/e8mKUzqr/evNv88j1d2/vkaSKJ21y6YyUlNO+oXjv72bEywplhMOC9zxJEByo/zBIOatFNt2gNRnRPAyGShFkHbhp4nD5XoH2jhFbjlGfx+omzrsy+7C4edWGVf68Fo+GXrpj+oFBulrUf18bJuVuWkdklXdj87s9oeqOr4aYv53lXEy2WHbdbfszde8ecc2/5JekEMQjtaWYkOD/ZuJjbAUf5ejlO7cWdoSRYyTEQ4+arsEqHe7wvILnEP+kLPK9vcb0kZh2MagMsLIelEVqfQT3w5A4biIl2b2JNt2T7VWV+VOyEMhLpTPdpXTQ7jgZWIOSdW21fe2O0NYIT/TqwGomHqR1eRyYnAdnC9MdE1563EXYmsDtRXBg7M6iGs6kMeNJhOSWlfCZV7/+Mw9cGU8/ABxGF9TkF8FcvTeyNlyEIaWr6chVtfuRU3+XBl+w2LrASOE1q9IGXizKL5Ugzua1J4rpgNh+0JERhuNAca7WibirSeg21hFWMSUr3TFm6S942RiGtnC4CvLDm8//XVDJNDIEVISed6VO6gwELMWJdchH6X90E09r5I8FgJLrF1BXo4rJH6QqBA1UuHoDRjPqnDjjcqkRB4Uk4kUcoQXHw/UYPaOCWI1vYNRTsGUZbA7Ga7N+xSMlV5bJwvVwZkgRM1/eB7aUsvyG42u7VaRG4esrn5zgPBSRXhG7kldhp5oqfzqxdf+LFsC5J61mxwjiGP/nu9hpxdnU6odNlQlrFLn1o6D7azNcm7RrLRNEXnaoNnh6VZwOzf05+/JJuRnPLS7wP5axSL0Y0gRd+JQBrEUHtgqGMAPAKCAD8ng8mrVJIeMUSC9Rc0KWoxgNAr7BiTJTujho8vnfO1TheI3ydyr81abQRQy0ymkPN8g8AoaWg2lIKIvANhvvdvKFa8j2c4v58Hwd632ny1/nmUzwvfbHYLRoBoZObIkZdyIEmdEq/vAwyPeal9ahJ51kBZejXayq5AqWw9wc6Odd3DOwur/nzw83JUyT/qGwT+dGvRr/++6n/TQTEF3QkunqfApi3egqXIvNQGzT19tXNnh1FVCK/it6pATHXGCHlxrsxEyX3VkglGf+pD+kZrK7mSsNB9l8+2srvzfcqhKnbw6wOiUel9pfYwUzeBqM5ly9hsa+ouvGuoP5G6C868rKfI9A7fq1+w6Mj1QQ+hJKZbhF0umja0aV0k/hCYdgpQ+85VRTncjR/YdH0Da9Q246Rt8jsj+Hy5+IJooaYX16ooM9DTuBathOPGMlUFH5L+ccKiI6XR8D3NXkF+FhaGh8QGlIWYnpPDGt5ryH+it42jYQMakT/roC5BELafqkvQHfdTbhyxM8vqK9geAueFAsh+MtohtR6ycg20QM34fOLbl75N5pudqWwHjtoDRUhoiJ9kZ3IihP2Mu8YEPCx3IcND1vj9/OQ46nBmt+teyDOd0Ze2Kw1xXO5aF2jinWBpLy7jVpLPDpqWQ/KDMu2Z/TxDfuK0PVSnR34n53wi5GcWzg9Stky7LvmxXlqj4eXWc2Xwxg+KgF7YYRRwFsbGFNPJ85LhKNoGnSDl1xlDOwI5iawuxhaC7FxyQqr94JigXrUDQn2Iw5l6s2LvBcGk2R/GyHoWN3rOf+8u9bOg2CYtYwExU6cKtYfsdAxl99VRYTqdSMwLbDYpz5ktCUxSKbpx6cIcbOnwmsAT5SdPCWoMmcu1zkEi5AGP7iPrnJvEsxKXrfVgWPs0/QflB2KcHTnTFu9K+sbzrR4B3Q15pWdSZjlFDxz9ZvEDC+P5BkNZK1+E6l1QDHQHO+G+fgS3mCFFdM7E0JhaDwR1zitLzqEAm2uZoVdoIoThP0wQHN337snq2vsiszh+cz5k2arh3Q8+2dfB0BhQoJeia0rA/2+ifzDhzC2dOgwqLzJxw+pLHccdu639ZH+rc085qCrYErSB5ebvqTYtp0I0SGTfv+FuRcxQNw8dHxLOe4c5wE+z6oEAsP3zgwOBqBUP5EaMjYdo+Mp5P+jhnlyMJPiY0MUejQNZJYhbgxWUIOR7DvUiooIytTvkWtiCjqXb57WbTxSaMU7ktANJ/f53+Dw3KjWu3wf+m5GsdskOJwThBJuTh69btRL4TKfQNBD9sxVcfrIxZdZp/FwGhkZPO9J+MTRuNKkqdVQSB7irPVSoc7kz/JI8G1bkeP4Af3jCSi5pLo9cSmEEG7CwN4bBqEIQVXyaJv8u/XWXane99KXQe0eqDxdkmbhAXbJg7aRQdDA2sosIxfToyyhv1yFJbafZlbL925tNV4B7Jt32AQNj95zIsr+XBHLHWRNySd0g7zxGJJtyoukrSkm6lXmWVcDjRArl3m3lNWRq2JPtAFXTCgC25FSXRl9P5IdvqaDFfCsA1U5xapeDieMZAynqSt7iOPOmBxnJOtdc2XnLBVFaFeZKBOzb+FJjp9mXU+Je5zc533VLkdLlYyt07V4mlgSdDMRku4DKz6k37AIqP2eDuweuOow1hdQ9gNXhpVPD2gXNUWfQwYCnxPZIuRproyklfjWjCJSZpM4h/GR0NHW9UdK3WeymrLhJulh/au31aJJ1wwnHdske14Z5QNCGUGcXNNQSSaA/9LIuhtmzhzEAdKnZxg4xLGaGQZTrhFW7ZK36fFzhl92sunkgmj+7WXugt4ml7/SN1RHDCo87yYNjdLMX6rqEVldhmdhYjK31ZJFjFx4agtvUHqNe6UcX/+ENQsJbaN4CSn21TiPZTXR0tVY0llqSCdsDLN31L00VCGf3rivih687XlFR5bwoVLe5xKfVJY1v+x0EZkzgythK727aIADI4fGXAk3dxdvMM8W1GUEATe2aFOgHryBnrUnbtfASstaEvDvw1EyDlqdHx2+gjau7MuEpEkJdbLZOCLVrHhXdQZGVVA9INDIlsXbj198IDw8E9U9WYDJz5prJJycG2xXJJxJ3OoSpGfMK+jMJmC5EJsOQ0gagiI0HnDquTZMNZeo9u5v/wcVYfHsuH8cRXVOIuvSR3+e8yTgfopmo8g1aJwTB3w51anLkoPY9GXHr/uEcQs81ozFFJEictWu6cywMkNSsyxgK5Cu57Cq5RR1qV5wRhGE7Ss7NxwPffe4e9rlZwFGzb/EaB2DAqTv9PtDLfflTs6j2G4KoXWGYqQCzf380wiXlSaGpA+FEXLtCG8iJ//bET4/4Yf0COiP0u6R+8drtiVcXq9LGa7YvkdfKgZuu7VG+w9LP/YCqhbEVMOt774vnSsehl1l72nAoEFj9PshouhMukFSSL4uUF+Rw7IdAKd35L0DGImYUoams4gQ1u9pPsRCZxUFQokOJmgWAolNz7VWamGknZtoLM+1UyXZNhaAuGKRX2L857fTo3Jk6oJh19ydcC6CnC7Hhmkt7MrYIdazMu1ep+oA5xANEzfSROsbIaraC/Zu/6aBX4TBzcapxj4jm9wFL1tiJSVpGxsD3XRB+k/gzBSCdnqUDM/3+x0bMqlYbo5XCSzvx0m6Z/v9htTsAmzppCaNol9/CuqUlaG61aspHZuWWhQm3QQMcYpYx4hhB14MtyZqcFEvvgyw0WfeP5gEh0eXTOigffKwaoihJ7YZ4gviTTF3Tv6nqBrHJbujtsk5bAQTBzvQShG1nqbDT64uGvmY+BIbeR4chiGBfoBuCCGuplGp4tdF/8MNSFnXhf4llwe8AFoVNcxv9dqsvlqvVvpGB0LNpT268nVavHucL4Xet6fWgSYRIaTc0iVC62m3/YDSRJmhc8YZcTBN0/DYnGcoQRFK/D5KehJ0KONuZIlqIPRZPLDpH3YhpByPjSWLQCnIqY3sIUcfqNlb4U4l6xpz3n6Tq3ruieZdOqu65fC/4v3JvNIkTr4ncBzMpbK3INOahHJyb4I5eVbkLCY4IJ4DQzT8P/aFeQYKb2sF3qkN4QP8aAmCZYDiknEIJ97CKsU6tb+bKDQnFMnJkbe1VpCAnLQKSVIQZDeqx2vaMJEKXOobD1qU4TnP69Qv2TYv6qBYxfO5FtjIcyCvow6540omLdsNxYTwuwBExiMFJOrGLdIb+qDV6AxVr6zTVDyQCaAXCqNmtZgRF7LxBDNqzqOZMSUR7an4TfVjz/REkATjc+8uxSlw/sHD2VTEficxoK4bQRjGAcDQ1kRbIHeVqorc9MNU579Z/gM55Bv8Odq+hLY+Ju1BjL3V10im745SlWLX7A1tC6gFo6JKx1338sH4uR6swxajdUbxmA6j777RiaF3aBlNz8zYE/BFX6/fTM6HeidwMhFWxaJfNUxuC+w2+fkCqf9pvJtlQ3FGE6F5dRxGCMtLvcxQhnNGOI8303MHxUflusxeyenw2/9/VfeyOI4KHu0MJSshnA7+57yrUneI2YK+AZKCzRo5uJqetc3QzUfvYPbuZTpsCkEi39mC6GU1UVfhR5xp2ZMi7jg8ZtyaQHrCEm+XuCYlVpxK1O1qZfK8mb3Gvdib2CrhXO1OXxb3AcgTwvy8kmwsxRCjzRMdVuhZ1+5lG9wwkWldLfzMbjt4cEjc7tKlXKyXhUKTw8FmwFes2FW+YyIECEcGmOXeUIyhd7Z7lCPaBVNBPq1WKQY1a1ptv3vlZzkDtB5YqgKDudI+BfqF9kge/gqAJcLO5M7CAILX7V5YOSeq8KQ38zmCCkQk2/2pUGiSpnTLCpTvobOtyIKgZUiXKwomYXqFC2tCxYjynMjOM4CKnoAND9P7HBWl59jdm2DOQ8GYj0zu3gybCgE5/O9PiuzcbtWAbjCJ3Xn9B4oln1bfz2wAGa5wFOjSFAgupoROfb9PiMCU8LdzLlPDACLhXLn16mu4/SeuIbDo3itrWQ1npSwBndN3z4rxEefp56Hc8zwND595JpngxIwkj/syyneX7kzAm8f+plRKPs0B3iIYEISW5Vt63b7lnhV9NT3CgyLG/LQEwdfz/9Cvr2nOV5WKnXrz90zT8IxmA+nJ85vu01eWlX3H8pLG/nwShuRh8j2veXjiqT/Eq0R8ZYXJQ6BF6glPmClRoNSai24dg4HikGBXZNJ5nQsr4ZgB6XyUo7rkypsMyuxXv9m1KAvDlVTlIC1nfwJ7YB/Dq+Cb/fjdST9StlRpnV6ntB61wanK7GpqtIPFCTxrISP3DnhY/SS1YzT/qDy/8OXm830c1xN0/DGTg8R09d6ADjx/y/Z3ivPBvIJb+PXk34hXIk84fLOTTvGyAgrUyQ0jPY3Snv+XAayYcubLMbAIFK9jzfP1l2YeMa5y+huIXtnbRg9LFdbzz7srF/h5fRLqOTAFOpmHig7WDpGctyzV+vH/qpcRT+Mb4VI8qD5f4n1DPPTDM97gZaO6PJ1b34nxfnbz3XfVE6OqtzPzDOv1+XGuk2iNFFUM5lP3gx9E3B0A5PneqnyAel03S77p6LbNqWjt3pj0+04OuvBWbANK9+qkK8g5Y33qrpWo98Lwp0jc2c7yd3Yn371IklGain+NzWOIzvVytFoq13fIHP9Iuw+ujboD2H/qszcBm9fclcKs95zeTEz+y917NSSWn9OTxHS/0+P3OeIysdHylByRn41O84HjuNqAJJmA2LjyG7xtd/RgPJrSD4gea13FJ61eypZY9MSiKDVLpx/uZ433PVh56UV65t0ot9PH0KLN1Kl7pL4EIRY0bZbDF0DfejtWhzxULzu8mQQI7/mczXDzG6qQudjxS3LbAoJeQYLxq/24W1ijFYLSVzwIH+2Q9ifzjfZ/HxGYiTjoe3eLOKMLRIwQKPz7TfXwTnTg3zq2pwJi/+SZien1b//iFFTr6DBsQtOXmzm0W3Ek/TJjxsdV/AOLW5rJcdmpdrB5mnq2fgsusa9DxWRcVAvjSPkp/Mhh2rAONvPjzXhEpkB2v9O/aq27X6ju4N3bZGN/fZfk31mv//F0i7JjCk3ukFRPkKVPGZu14dLOk9h3qOCa3lHeH2d3aVpvh/XDPZcY18X+POlnJ4//++ckE8i0QxP+n108eRcZKLFIubJ+ee9ataes/wC6wf1A48TJ9pPO34QXNoWyZio/WnMi+XNIhtYWkf4pwC52+TaBfdBKpQZSgpabqYDnf1te69d8GKvB36+hmm/HyzyQpTBJh1/Ho5spB3lJHm/HxK5wyp0t95/cJoHLpOt8QlWF1T/uQARAk/u8GNrgPDRF9EgmOK7ddtFOrVfrH208ZOzF75/oaqy+uQk82jTAdS7evdbOfp36V9yDgHbOYMASWub5uzVpJPFz0qbv+bR2vO/76Te1vjEybKs8QeFuEeFeKksgO0FQdvve1xaEpLD7JtTTr6Jl9nwEO31EcaBYzRTPZYA13mdRfSf8V7gUR0PGoHKTmrHomBRg/rogxckKXd+KsNlaX3R6ohXcQvBymJPGLt3o4/mr3X2G/t5zXM8se0nMs1mRyi6SHuxisxhu5OGtesL8eku/NB7RCDSFfOEpne+HAjMf/T79Si3N2PFa48Xjp+5TAlDZp3hP+w/srwkR+L2WCPrzPJ8QE85+db3j2vr8WIP4Z+HSAQ+L06Y0S8twjSaW/V5KmpgX+/K63lfWb3aAzEVq2bP1+sDf7ZHqAKm++evB8SdsO4MpbVRvH2vw9nWcHPkCWx//PZRmBL49r9QKrU56YpVrtREQDVM96WtFCVKhfAcvc37W8vlPv7zw38x74K1th4JkJsRoE7VapNl7v331gRef5/qaCurl76xy5JgcSuj8KvvERSNzcTJmnPfQptRz7dEJNdmjnakaNQ76/yY2no2MLHf43GKh4a+zPgKT73ozeg2Fw6DxU9TeeWH3b6aJNPPP65R0TlbJ3jLyXepLMdqvplsrk0DzPOsrmt7YU6MarOXaCFvl8J811m+Iv6j7p90qNuGOYmUWceel4+X3Eol+DTPOrVtN3Rypmanbg99FPIJu1kE56V0HgIUg9Ht2iKZtv84x6atb79J0VMs2GqkwGTPMzA2C4avGhz3mM93IvkYO4XKzp3+XyuO7uULzf8ch0pJpajPeB4nckR/FtpZM2iJTBLVh9EK0HzihlvuMRAF40wueOso5NWPTVR9B6qjSBF9Jit7z9sx6rb9R+JUYoDGmyQSR49JqYc8EMNQbnWaPG2PZ7jXKY2f4XL5XDPPtwCbR6WnlqkcZLOYN0NBKp8DG+KMxn/7LaZU3J9qxEMksvGIWyzWiOv6/V9qB3Pv6mxzPhLzdL2xOQjvxlHVCtiWxEBbXFp3xdv5Mqqww4AevvozofV4dQEAJvNtsscuaJQhejYp+Gsb+PYLJWRyKR4MRcdxyGCIj+za8c5qpS7lrfIHDDKa48rJZEx0ho48na1S9ZQrzFMtG+KxeranNf3IkP963bUt/R62PDd1qd+gPDT6uk25PR8NZWWg4EHq7S4cwCwzrlqp+rxzjezAPii/1XRiPls5bUVR1aT928QC7WZ2trdn4HOPb4v0d8ypYT5Pw+krLlq6PJ9SvpN6si0e8ie335tPbtqwqOVp8Vq6w4+Y5hT3+AevEhcvLVb+hoaykM5JdLB6pdWTp8rhQ0HO6PPDw+XDe2jx3g2rOIC48k9OLxpX2sQDf8w/Bl8KDq3/tIx6+OkQLejon9LIWhe7b69+qHku09+uK6FAJCK+ZVUApZlX9aHwFKrSXrqYXndL5IDf3vRGpPq+1sfbPruFl9AEFLXAjwKXXkQ9XPLRX3rM8o5onTIHn0NPbMeJ/Z96GOK/Qd9FqXfUot57p0Tt9+uC4tmOKW1qsDFrnpFp7YQ+l3r3bYkQr6GiDQQ8DcSNbLmog9Po2tvvtE2mhtp5ZGuQnc59nb8yE+JjjW3vfH0xm1PZCM/mpGO9GNjC/R6UVqPTio8Zndnz6XqzjBCRcvS38ArXhkjCykUdN8w018did/AtmZI+qzKNDxA9fqqUjtDsahB4qMDxHwBxoPDZTyepeFk6cG2em6DXXABk+dNNOR/SROYoYMTzC7scKxrpMgemdg5SjtHY9mfUn/sIX4YvehBbnx5lxFy8hnQHZl5zpdd67UOmx6fOi7Gg7x3fax8PGUIq4C3u6YZGe38qYUILKg8XLtKRuwcsTMxyMc47tjqY2Gg/jaU83o8aJiT+z5/eVHHXFKYmjXaXOe9MRoKhEfWm/kfWoqOyjY4IhlI0FRlDePAKXQ+9O1b/rA2VUp2uf7zDe8Acno90WKkRxwN7KbD+39iwfcqg/3Ruea7kAOdfjmD7O+/md9XutQ2auPNU8conCMP/lXff+k7vi3ZOoUavjh+wo3TwdvxQjyVcWqHfxpF3PnHTjNdQG0dbz+XVboyOQdlH0dbyjPvJ+500kBDC28wLNRwqVWeAXW+7UibYzXA2u8O8LZVvunq+HbLgv/6Xlw+uaqjd9Wf2fUM1sJszYtjx0QOsQLPcMJhB9cqFkyi4VGRwWB8pft2163/jseHG5mQB+lXik384P9b6+y6+7jf7viANntAe1q5WyL8ltlYGthNxgMwxSejniAqu/zJjjP/l283zmDxNge4+XOlSg4dQadXiunUnUf8jugdx8JJr6jRwAmR5JqwA6cDoAArVc64EFWE6nV3zTl+aEdiuc9llGj64OitMqZmEaLb0uvxvsQF2efNSvTp/NsZ+KEPH0ehWj5wA/tkh/YkoZ3aqOqli0oE5+BGtK+zMbqNrvnTH6z9Cu5LQeBQfogxfQ/HvZfXAA8wvsn3bXA4PL0iXTq/Dm9fiBdPuLsB7Jo7FHW/JQ1j96ZeFbr83Q9CuBtOtRF+PeVQHPrKduQonUhB9OBEPbe7lacmZ7sZA4lhc7wF30nq3+hlcmfs1EwOFcB8fMaDgA0l1TthDp5vFUmQ6s/5vSReP7U8yEAUbGMloN1vvI3RK+7FmD1foNQawf2ORNiHPkr+iwLSD6mfPeNRzaOPlRhfx6qj4/H79NkPvxZ7yLuXqwHEfiXTAQ+f/SRmUd/d/vn72Swo7ze123xnOp5OX2ynMrCnQ6hjtw5rDVB9eadezsZEXXpD+ZZvvXOe96hyQEBwvp2a92vdrzOKOvTJ1MonmM+Oxkd/iGWb5+BgdrPZXHafwqDl/75/j9Z15EouYoE9+8U/wjCw/0vNpBhoHo2/aoplYRw6SIjHXg/ruPwi9d73E2ANGWH5P8/MGZ9Qyv9R1Fsk8VY/P+ApIn+syeCFUzi8LUJG85F2L4GxJK4a+kSUO79MfMfU6dI62/Wp9p6KbmB6Piu0pGIP2g2I4EA36bybeDUr9snGkaqlbHPv++hsoBqm5NVAKT0X6Ygbq2jY6mwIlbwSclv/Mlb2LNTa1ApEBagf5hSwZd5rqDRfrKTcEsNbk/Ql7ojTz0wC+x1LW/cE7rA1y1cevqH/5t2iNK0Op2Qt/pFT+P1yhWWsqV6UVBRysyK1Lq6j9VOWdR9ynXJoh5ZcBzbXLDeu72fqJcuA2oEH8GtW8puCwBesA/vzuzMF1QK8mFlvOoecBz7qpNK9BI+3/i7RHW3s63rIeUao50uOdthn8qmi06p9ZZ4I/rYAgwTwYxH67sQ7MoQZTcooVMWnfwIoZ46/PlSo+ebHVY6u25J1BEWksOOSJijXzsM+XW65boddZ1uuWNtiZb6/I9hze5QV0eGjkuMlAFOIG2km2krhUiJ9B5ly6dO4EK3uDnl1G+msrCQ3RVJ/oBXpcvpQ/L/ci4vt4BwC5n2fvfB2juXqF33HV5TAhdYQKX5TO/94X0p6YcL43zLcbTYOZn/9wVIsf4pdZ/CMviU/Q4DCTB6xQEtvxso1wfc7t2WVR90u5/S7sy7Oa30vHe7Sfug573bmXDIAG6GRFO6/AtTP/+nfEjwj3TX8Zk4rrujKocQ4HlhhHlcNz3OzaP1+G11bgoG/UHt645U9AAsyLULTkdrAl8XYMEzGofFWcjAXaIYkC9fUHG69dxOGnuliNBq4SmdfL2PuQWfQreAOsQAGH0HrXvgFeR+0aDKscFQjVLo08kjftPxmfysKCN8rYWF1b74CqfR8IE5vvoOwwEw/D2k2qxHf67rTzx30BgaFvDjA7l67jzmRisqoXLxiuOqISOIZUbzeTAYFBp2Xg8FhYYNkKGgUF/3RsEHZvR++buFW8C0WJujMYO+5WHf5AiTQju9IMNIAcMfvNRgsG442jOIuhj3/hlHuxkI9qf2pI3Rs3y5IMKFYxrf0xBpfNqieTFkNSwrQBuQH4TcCJyXv47gpPMeX2fa+TbAicXAwlGwD124/RsFqrtTJ78TZMQ8WFKO8tYbqa8okrth2Ag69AE3Xlo+pnxLrmCZXgffqNjZwxbQCG7cquB1AYTqWBvCPQ4+kqN2SHJwC09zhXo5fAAMmEC0LAcqqtnCAZOAfZYJHuELixmUOKPdlpca3preKcku6wKE9c4a78QbiAfgfGIvLVVGZyBjWLQNlN89k+DeogDvWc33hwVqfrcfidarc4eQFaZ8uJWg8d+1TFPI1J3fIGOCQiAogdPNP4gyRUbPEWJw0TKDAmjcYUaGkIQI2KhUxYb5EsM2zxj9uXqWJ0dEEt7MAh9/66Fl8GXc4Yh4qw6OI0pjdMRxlxt3hsOBh3Agum8RMyZ9XMPa7Pjh46KrecjMQakZuRMYvP4OVP0XpIIHe5TWT4Vg5Vgo+zCxMomVDWGKh4XPoPAZdtgNOGdFUJ7T+KlFYhDOKdn+HPwLpbFFEAOHkByDPTipnfgUnZzGvEwKn2nhM4nXnj69TiUzDKgdRoeHAMt93ibweDX5mEJR9TwR6cJBDu8fnmv3RRg/dmvRfyrKgMO9FX51WaIKok474CZhctPnKAq4O4iBMKyPy5lgWMhLUXg+TWsfMz/gQ+wD6SqskHeu8dMw7HqBpjegchZSPO5vP9buC3rs7X1iuwmd87hGyqmShUnd4e1G82na0zbL5RKBYDltnIXBMKMT9D/UclcdsTn+L8SqwN58CEkOFczfrVPH+gACU6hHHkUaPdPCZDILZTq6NCMaZKOQMYr5kFYkeNSr02OaFkC9N/mlQw0H+fH/+fuJ40i45si0vz9v7Ked3rOxn5ZYs9HknbbIDrI9tsIMvrtyJEuN/7eK83/e/JUGML6OY55EKtXQGtgFJSHbWlA0Zrt3AJBtFIbvu3TmqXW84iSSllxq5Tg5RjQ7tPJpn96ME/Cd+HryPnBbqhMT2n8V7xWpwHgL5QBMmzGTAaJTKP6eVXO8FVjp7FP594KkT7k0YT/PaZ1nDsj36UjFHNzz415D/X3aapuRRSQbGmjZeZGrEyW85MpJTBKarr1NITVtFc0JB6ZyCMVCJP49/t7bPLLtnIo9QZVdlJGRePl4xM0kemc6fDTpips+UedP8uARzPdcYKzhmxYtwDhdHltDD2mpNfpEpsUTGF1d/iLi+e2C5iYK31xj+tDqRw8tJU6iA+bCjrnDdYDdspUAIxZQRV5YkoPcDw9+0cvQGXXVGGRRlyPCqcc1RphVYBHUqOfKYVfL+uA6XPa4LaY2yEIEMaWZy5hL6Co4tfGmNg1WAlxVZaKR2+GKrYV6t+gODqM/79B8B5htK/ZIpm/mFJdP+PrzhetZxpIv10pZSGz9B8VoYSM0umvQfyv/BE4aYGuX85VRnGWJuTK7an8D+BDM+05ppDLVQefxkCHG2fVGRc6loeDewMriOlze9Qv8zNVuowS//P3+Jd90FqSLyVfez6uyYJ0uS59Tbh6DbYPu8CPEOl02Gg9FQvR72VI8hedDn5+2DU7d+XDbO/XxO1wJx+n2tXl/+LpBJtRk1Z8nx+y3jB9CHoNduYV2zk2CXYB3OhisQVRhYQFQl71zK6oyFNm0MJTkKCOiZDlrmR7FdV+zRcWfLOGAF1BFhnArnJPjOiXBmOASlCUscNmOL0fhuRRqi2yi8wkybFmGLaYSLTv/llKJlqEWK4rBbNVWeKLE/wuLyMSGZWNoBUI7C9RAz8MtwMVNVyz9F0XSGrcFodY3n+uGcMCfwMeFNt6a8SxLZ5YNpFODHj304ExiKpYjVYdKAWvVJhyYrHxupbABnAyJo385qLPCPHLOK0p8OJvkWxRGy7r+CrfcP6J/8ZAvMKmrKisc8kX83sLoFKOP17LjbkURYjvuyIFtyp0PR7tfbw3e0cMCTx83eZlhxE3Fa3IGPimJYuF8SuzCcgt1O9FanyawY8gUHmBFcYoxXdxJ1efPp/4E2ht/X+9T52Mfw/2ZkikSkAoqLrovvHHnR+4i3HEnK9gtoeQqlh3MyQ91GzzUJ2OMYaIWnLw8nwFhfe4Fbl2TLCgDIt0CdF++UG5UBT5tVN+knN6I9LUL6Ce9AunY1Li5cFonewKvJ3vogMpjTk7CkJsQUE2GDB00Ok/mO3blJxcc3RYlH4qzJBdUO7jev5sUzSpjmlPYzAcXfA2gg61E58t94niNzVRADpHEqtD7+IGxDw52lZsl44Z3rVROtuymg3P7u9jCHwcf7eUDtfLFsalVoPfT48h4opmtnmtsYzuWGjQZwRw/vs1v1aTT4LkK9rbz128A/rZzb48Skg6nRN0or69iltBBstM6jszkY9zP9sI7DmXPX2QiJzrUM+jVUzJtQkI56/PXt0W9MVXaCqdTdnnkE2R5naPaporRda4fVwhIemL3DcC6KFRDm4hD8QRkuQyB9VMigUIygUJCYfvz150aGs3u0RyNe8FcrV8IHHEBsvCxgsgFdXrrfQhXwfASm3d/gw1R2vziAnIxMXAnbHshu6jSaazo9vQzYP2QIoFl6pJV7gJL5IKR1uCxMG+fIigpoXyK755bnPxGZ00Wrefl5y5O+vIArsIBnB6t9RqccUaMXz0yiUvhfLqyu6cX6HC+0/PVaxAncCQROU7mSahI51FFmUiSaz9I2ZR8vCXAy4O1tLEFB+UJ9DkJ7Uzj34NMhXpvaqej1PA2EicJFJRymARgVyybi72wCpFAFZ1ZijcTIZCST+YEB1wSt875AGM8OdiREsiiTy+am4IV7PTfvtJTZwDnrO8FZ5yKKH9QeD93L+dHxckeRYmbsvj2ljYpg2b7hYHdA/O3nglzKtMJwd18X3InJHMnJHInGJt6WkLIUiBTjynljuHDlkvtMokkoUkoJEsZsib8UDSdVg4vNN7TYBhRVIFJKV0/NK2dZDDUcVidQ0Oh5agR+nJY5AzYlwiCuJp9qqfKFVo9uL+1JQtqbRWPSiDIixLFDxs0b+C12TiSFlAJNo4gyXmQ00vZlKTLSaZOSKn9+KB5gimzcXzpBfJnUt0r6Ng5V65fkBpn26IodfbRBZgOcwLGtnlsO7TzJOTEaYp4qDzJnMNfqpx9NYm26H+KmiPc/mALSDo/5gGCBSsnIwAR9525u1sBzZ7GQaQ01E9jFxCpvgzhfH1BRkNO9wt3vCHYzmEdntzBrTbu89/SUmApPdueM5d+I8KNbupkwoR0YDHxxsPdhaYgRWIeKON1NSzovUrBy0CMe24nF/D0TE7um9muszLqZb4w2jkRaNkyRljHk1yCX1rwJAoe0ygcDxVH2/rpXvlcFcNzsgDnSKnfq+DRVs2kkO1RGq3y+4j4Jmm54blMIk8oq3Ll2MbJcJ70+0b1CWqUkAfFBW4nb1f9a2zzLAdIyhREZmFIYCRqPileiu7M4ypbAuXAjXeltbZcsXRMmZByyu/UDdooZmLYF9Sfo+kMUbcSnYHKTtkWTIa/LcLGnS3wtSVXCE1gTBAoi7SUoldBpM/5nudTfqy61NLjjzrfVl5PVytVlWxJlMk7Sm1giEXKLwHWUY4ii77Js0NBl4uv5lmq7MPTghWZLaf2z14YDqL/Kf9wuF7Sq5RdWTBeAK7FZLKCSkPVYFkGa5IxFQl+z56MK86IAaV8p6pmToOl3aFFiF1yqCee2EoC8DTL3R3w9BH8JPjlhyTgJL6E8wnoRxUVJg2gYYh4IzvU6PzcP/MgNnXYiyQoElwQuuSwoFxIdbILzW8Ttk/WvB4e7B+rE7WY7PVKjDmni3XMgCLsv34tQhGC2sCg+XQ4EkaQnWBJzZoeYxFHu6kKqt71PhkIFamnCFGk3O0O/HvqXpTx6fcemc5+7hOfe2x8D+IGCJi7OvLgweDCy4CVC32aV+Mj4u1AxbD/E16tKjQmjyspkaWTFkUSnIZFHk/wPOXBrlp85akhtTF26pliHfb8uw4nfMLJjBfp0COE6moIWDr5vCkEyj0ykLmqSF8GZPVAXS4wqz1XcyXMe8tIg1dY4QOXZlnO1wWLoZw7E4VLvFI53MsTsLhYl89xgBP2X+/P9bq2EnCrToBm2Gxf5UXAwgjKzJY0MglCKoEhzbeUJ9Rf0xmBIn/KwiBxTbFaUyiPzE+QCuVRsTwqHz1INmRTgWNKoKDKh/C/PN0d2dyf3vN8Jg5eEeyImVumfzifgM2mM50pFKM90ewEyeieCy1QvAdL0m3dbxCc7r8eAAbGin3nqH8eKeFqGRyS7O5lqiMmREgnhh8LvFg0w2HX1VDJk1RsoxVwAd4yIXR4iSqhAi8tMJaIN7fx45EtiV2bbvk5Ujskn3OgUer5yqVSuAAsMYpINPHMAvyUUkFnLurDfSIH1bKryD4yX4PCeHb7J6StS5+dyIS/o0nf2L2+BFgun1qrjFcqrJx8fi3quMUyq1SUyaBqM9OroAPMm8yakAqRqQoiheKkGnt01TqhWzGkm064PyEwrsQp+EQ59C1x1YuXWr/2qFE0FYumItFkHoVUiJJL5ofYTTxBS74/ZMkn3BvSSrv+pMv9XQTBVmhReft2hG4O74l09sT5BW+AJJpn7YNiTBlNWEDVrsJC19wJOF4/V6F77riOSOOZwKNQpDLU9FOyQ0l5Xqm0kjyhSWB7ujAqCgezH6yivi19dwxQuSSXR6IXsthDVyY7aaupkFVuN3kPzfajYAO6W9tdF1P3nXcARk4P8dx8C+4e5wPnTDYREIXJ1dEHvy5iNfZmOGnvrH18/gdnorkZyDLdFRwuCQU7FKNNOmLuWR9GvxYPpkS8Gyjw0ptPtIqUuf33cwv3pC2okzuJEbRf8OhDWNXzNr3JO/VLr7rTODz1uw8OcNuUOY9ErHTIFFyr6Ggc53fThBqswG3yV3JF+aap4C6WSxVMWRczkECh4KOrjvISyxH7laTSzjl0y/uQAFGN6qSit5Imqq/9lFA4bhBsqOodWBGHtZ17PnGdmsxhNyF5hMbpG0s5X2JJHX6D35ocL5FC+LvfrE3GpMyckOSHMnNCKMchvW0b5RcWwwz8VB9eU46RZVIFeDtVy5OK7EQlD3dEiT11qJFxLnMvQkmRwOHy4Rk6kHumojmgZrZUqJRF5lFI5FFI5lFI4lG4eO8kFoVk5orQc+KkVm2P00Q3ralsUhX/tuJ+LMCno6AhA2Zf57lrPyHMRMnmIjZEZD9lzmvjgLb71GB1dOkMQLrkHgM/+d3mvqGHF+AEvSqq43332/J4rxwYcHE3FIg+De5OZwe7X5LohP1QD3HosyoH2Gb6cYKF6hJ3dQCokj6uiKwpaNycjTZ4/juPP9XB/T7cDbBfXLvqJ/XhvhqPGCYRpnrH7pftAl5yF/mkTnJ4E66XvM7XmRxssR/M0+dUpT5Rp/s+uUot744GiiEcl245HTgdFmq/NwODrKAt8+VnlL9E5aCLwiJ1PYSMCUU/R3UmQYR7nNhaKqd8ecppL1XbVGDyGFplBTS646wJSL1xqDlwF6+JxXoo/D8gfpLVoGQ8md3/KXshgW9GIZc8ATiQbbK/xiPMkLA/oaNmZjjAcQ6sxWYDr7jODOhMpff7k/VaL8gWSa6IS8zpbvAPQhstohQG3fNh4PH3p5/F9NC7gd28r5LeKkytxrauDg+0NJ+AzQxdqsjlhhOzXT0hJ3ZwPfpGyySh1oyBq6woNQM8bslEBKlldtKuvJY5ls0i8pArxAptdi8edgUcpdZsUDPmMrEjGp9EqlDBaKjwIiMwOgrm0IA7pNMCVHWyIsQKoYiGsrtquFJHt6MSFt6TsXAw9/F6d1bCTC1K8hw98Wyd4ZFuE0SEyZimBLDFUOJyzekGUavWTb00H2TCSqcKyVW3W8WBakqGdCgWMNB2ILYIKmVTCqEWZT2emqdC1ANX/DjGhjA0upmaxSdIFpz98lPnXqvKcqk1nIYPyyhxtvsrHkba880GS6PlZKKGrdR+/270IHB8PLYQSftKcXD8EqQzwGF6BKHlU7NEar0/XhCoQubAOF9HBZzCvdDW4Lz4mG3g+0lOXU5NUSUzP+wmRr9avb97eSsqwTjnkLOOiKzZotBeAILj4baVGjg7FNwfproWlVyj6LpqRZvsr8EOxH1c8tQkqnZxijHHOBm5eeCx8ZukJTzpO5dkCGXmnns0nppNgza5qSLU1Ni2OHC23WAk2Bu8xVV/fEoTcB6lkZJ+evF8Wvcm0dklekcSdCclB8wBIF4ymUJqAXIQeTJ5n3arWEtY2o4CH6OelOvf5ZHrkYavcxU8t+PWky2PPT5/eZHoib+nUgfrj4uUp2AhX/G3uIURnGZJ2vfmxsJzYO4cVnHqtuFb7RM+FFhT1aTjNwlnrSm/dlMJAG+6eI9Dv5AA2h1uCjBO/CdUwT+bJ/0Igz9LsqBQ+Eu3E+v81y98pNSf7Z5+FMInwjU6BszKLfSZbhHUMwoqXyP3QbQjtnSJT1IH9U9yDnnq+a34KYLVC0LsAa0TLmO8fB55cfYshki1kLpxHCRaSCZaSB3cpyU9v4rFTnUE6UDXeurhK/eZHF4rJ3Anciykw7rwLMEKoklJAoilahrahKC0hUdYwnEbgxw67SbLl9Qjy0J0LGBgVdpc1Ys7XNQB2FuvV8vcCDW9RVgLALRWLjs1D5MrhDsoOmNJ1Um+vZ/jFdmQpZeuU6BH/WxV7omEWDOOCEN4CBWsX/aood2NaqRe0iVHBhg3d4MnGPlHtGN6huNKxSxVOymZVSF1Wkvd0qpHIe2Rfkj56kfo0fk+MgnEXcg1PZQ+QhHrkipRPW4EEe9/ENwR2u5mXqGp1e+5MDjXtqU684qSiRp203tyga6pgKkgj8FtafHTQ1+djqlRA+32mnUo2S6aPBA+EYuJ7MFuD2KnidQtnPpk3MgSbjyhiwNjD8PW0qnT0dSNteshdsZwBd/AC1PCsyyIn79gLWqdtkn0UbcAIr/C/uu3XBpHx7IOvwKW6bjdoILc220Kk6M7tSYwHgruTcqNAyAnzU9i0SBV0gVBuIk4w45NJksgNGEcDiCbroOyZ1jSjMBYzFO2UNpK+VBld9zsjRNPOr8jf2ch4MUsCmkwYm4ShUSmhUtrn0bkHsj4Qy78E0A4F0TG/WUd+zNJQsp0iJlTIZFlITkbnaT4l2e9L/oTNFcj1uicdh+MzE7mz17voWiSa4emERJIZxVG1sXC9rfhQGNUCMiwa1KNzG4aqzDyP90Eg4ZnBLaQAl5lcU17CacB8rn918PPXMZ2VZDfLhbUb+lc1wilzvYWNT5XeaqKnulOg7S5KrGMHj8VGzgktPjFD3p2VPbU5tPhXcDo2gY7tl5sl5FvU7/FioE/ubiKAbbW/VdUk8CuJqcTQbhcn+Fo0IvHJ0x1Tt9rX7BO9tWtybyQzLyQBooUJZdrS0ieyCo522e4BPBMQUoGnSXCyBwWhscDPjpitewoUIn2lhDfN2zijM43k7ibtNeHhdXolJrD9tjxvnowgf2+7wCyheEzeEASjR/kjBlqEukWkukW0gD5ncqvyuM2HpwdfsClWamhW3tOAwjvFio2TqqComPdZ0VEAp5ecDR9vo6whabZ5tJgWlEyFUM4fbDO+m0qOJbN4RFGdsJZ6VeMiNKlFubJqtqtZT5oZ+ViCM/f6a42OUMaMIQc5MhvlWMQZLV+O00byJwK+xM0JRcxSiMkx9Yq//snMKCzVj5C8x1EPdgbW8V5MczKkSZYnV2Q+7S88CIFGiblCMdA1ixYkHg6MaU/XQDZpBSatoAmLSDzOJzKtZw/z/qEjy4r1sHAjFnz8BSHgmb6LfhSiWifNltmesGCUzDOo7C4nuVxLlMk1150h+E7wPadNnZmerewjJlp7CtgZDwOO5nNkkkXEqiRmqyT2r6fXOzcVYwv/ofYxOWASOTST9NH6aFbiC5aIp30tYQPWuGzgHf9kvon8C5Y1QI+bd33BH5WNi8DayJAGInn3XTQCByrQ5E51oVLShtv5dVm4GF/I12JNUmSVcFJx9ohZmBCdJpMMZqWWxOTqlXAKnzyncNfdwXF1HwY/YQStkWlT/7JhyZNcJoCmh9SAdzAG4cwu2m7SZwLJ+XITTHr1KU7qQnEQKHBdbFuevWmHXUT4SIeyi2xpIQTJ3hqTweIJpHeJmLYLbHB6REPjaDfUP4M/5wyL1DD26Wc2D3bP5Phvmn9Ywa5yFQMbYFwwKuaxIJpWkCTLT2ZK2l/x3G0uTKHxtEC8sRzsY4bQA3/Edd2mBbioDdTyEFOPju16C2GthaRvnJgTdRSspI/KYOQ908E31TFBxXPCpKCw5fxwyGVRHpQqWZMu8km842mzSiyLYjlGcqPgaEJ7iberw+Eb+0FmFQep8UPWBZktasO9R2VoF2Q9I+HvXKBsDrzyadJg8jx0DRlEJnrYTf9IKsw3WYeSnO9Aa1M/P0yFpYqxPGe3oDWoVi4+PjYMD+Z+IeUJIbCqucKX14Z3oiL4Drnv+9P4y5suNNr92uAXGE4i7yyXz4zV/pBo9fygQteWbzSnpZF0CKCYSFfqDLz6YQxEx7pzib6PsyckxbK2VB1mAkoQB6okg3rrU2WVv7eczwvGlHLU7zyy7tBluakCn8JBXUUxGLZniRKhUhzxv2a7wfRvuzPA8dCEus5jQ9xLNT6kpsIBLu4QMfkmNv9Bn4xCXFAe10S43zd+AOlkqA+zm6ovoSRF7MlpAWPHOc1dPll22ChEoQ810vVt/w1Tud1Fx78w0UN8Dn1a8ouRrtcjvyoOtHJWi+/aSLOaCj0NDLd/fJD8zRZFj6roRSi6TrbgclrcMJl4PzetCI0pOOVsdnlIM5q7KSNh0XYwrJjeTUN5Z2AxvTmVW6vkN6816av6uCL3sepd1sHX/Q+gm9TiI2H0P6ExX3bqJvAvRb66H21mMLy7DsGyVe/l8ROEAXFSsTwrEuGCqofV5kLQjAZPoiTnIs8OgEfta8ho3BGWvbJrXCpbYX1Bx2sdSVDwtwJckwu2waLUO91x0xQ72Wfx5ok+ufu4n5WSSLwOl/K1Kk1ZItwBbLb+awL0Gt5dpVUs4SbLlSSTa6Q1mQ37zyGDNKLVFonolMoqM1QbxYiCRuSK4CmQ69gmi/yTyaxJ4BEuOenBMb5EsULXKhDlNbpMiaQYj657lX+PuhJplDIh2cBQ7wCItfZSttySZJn1GHhocZ8jvw9BSDKjDBSronpTxWEXfui7ntE8lFQ97E29S9QDC6C7GBG/tJL3JlZ5n4943KucR8Bqdt/k1tCIO07egjIueCBY4DrK/1pwH2HfxPo/9kU7At1tOrbzPdM7nW+JG+Jcf18eRTAdjh9OPJrKSmDL5HvAzpeIvtFybuQv+SxBQ9dvgdVuN2ab1JUpoxOdtiP2Rm8GRWmTFjVf7i+kGOSzaewP53zs35y2kWsInpZyj3kM2gXFM8q+aVWbXAVZlEwnFS2lzwcJQF2IzdS56KrstIbX6Em8YTvz3AdKiUvIqAnb+0/fR92mwASIKvVmciaqiJhOJ/0BC8F5L1mEzlE5B9zUfyzhu2TLUbzEVVHSEQlndzU2wZqS64lHpJZdAFt/SjtdFPsr5/4QXSv3e6t1+GSEys7fKIH1Q7pnnWQL2STL+TvhyF5/LKsn6/ZC1fxWxAkynVJrOBUvVQgi7IJGvIXbjkhr2CpiX44sdbecA/F0UyjoL5+98Y1MfwwpBFl5z3kb3BhDr/h0Pbp92ehIuko6df3eRzLeMb070MI3aoLcWq15q04OchR9W1xqgPtIvqOwYlWDUqSlQrarwdenzqPmOkRhBQKrzdbooyglgaYDHdj1jBdFxYri+8vPUQLQUCZAgtuvvxdObGAu9eChtjUwf1b/ZKgmv0brf70sf+WRAn8PrtluCVzUiSJIldutxdupnFvF5v8B2zVlU+QD/vCw2oWYZrjfLn1Bzhj+VAtyEd7OOKij+lzj9IvWVwE/MwanRNSX4W1iJ22DvLSAap9CcbRSlEmCUM2CUNOWPCdDClRBT1H+Rq5o75X3db+SJY2ifLHvqTdglQUanaYbSU6RMQ3AAqim0Ju5r0dNpCpGXKi/EmWP0nyJ1lGpjwfFZXRP4cyKeRSVHQo+EF5w5WVMXXfDlZyNuhgf0LVzasqXMQ1g1g5FS8C0P0MeUvhk/epl6DWZTMz5EO7EC/pEB1YF5ogWH3E//NazuI7iP+4S/X01jfbWdm/u5n7PCwnxdYQl1xicWgVSvchIfTt2E3LH/Iu2Nd0Wih/TGCQk+SPuZ5ykvyR6nyaEBrYQuM2hXI8LzVYFJHUqFI9E+dCJtF9NuVChhE2h4pCohi7EXw5hVuuqPZ0AnG+lczUOev9tkCBSxZPTE6dr6HSroqbwjeXlaSv6r5Z2bLnE/wzpl6CapMocLaF97Kx8aQ2D0DWbrMllAa7aPlyUlkxJfdQirRwJZNRpuRizQcUDOKO+n6cczlNPXNdgYIkN3MDAAPc8/OjyDswxz+E9EtwdK7xzE9O5fSunwOvdWdngmiJynitzzyQyzibVUHVHPZfo9uREKOkWPjgyxUAQfaDn8/OrUAbiAHHnCyQtn6C7lmIneWJUZ8e1bW4EWRl7uljerVicSGXFRhYH1CjWRwKA6wl2QwKOX9vXR7osDXbGkBVp6u1tiIkAy5A5nQ2l0Fwt+AJw1psRu2hbJKznNNPEWui1fOpkW3AAcB92YT7GdwL8kRCgPVTwfCyNuf00pD9Fm8IVBYe6s5yHkzPm3NmV5O7ypqsOdswy/nqU5H5CK/xvQcql7yLc1t3t2TZuQTrUywN51MECaQIMjJrwvJ8kHHRsezOBzLO5UwYgokH4eUjzrD/8CAgney+wAPKUhC3cnycdnLu8Xb2ZbPLFkoZgO18iByuezTYDzFgtsVO1nMsXLNQ5IO8jhNcZahPU+SQKo4BJUyUSB94LbIBQRlahSnaUyz1SzaSye6RzcqwPyE+J/sIvziFMigBc27fM3VZQ6rAKkt17obglCJQIGdw0eWTi5kWDQsg0a6CdVh543ESh+SxyKZXyCDWCW5d/iaTm1TDNgA221d6XXQu2OZ10bVgLQhBhbLSNB1fkm8DuoD2gQ2IHGbRlGALZM49OjMogXK2QEDoE6+KkispEB04heqj/lGZUnU9ZsDH1pculekzMCVCRoWQLQ0IrUClhmw6QBaMztbZ8+HXii4OD8LggZqtHB46BqzL7nUJ4BwPhB6n+hAMvZNFMuc7FJBL/Zp7byxl8Hi0YMrwlrQfsotiBsJM7oV8BV+maZQtynIIHid4lvpaW6TlyeZWOB7ox6CVK2XcqVt8p3UfAL44pVmSNNyjtp4KwsBbZNMsDDpisq2lQtvIlAjBD4yZUFxqNxWo7Z82R8Bb5ZYqKMx3rmv+RaAPmyzC/Pg9cw1Nz1gd6uumG8iFqm6x3CooD75b3EskEeVbZrcFUFQedibW7uuqf9EeQwUc5tlJMvtrvkPA6nx6lPB0lqPzEf+U+nxXERPdspLIy7FW40aCCOQCqFwuNqNEu5DNHJFFu5CdSZWPDwan8ERKMVs7VOlc729H+Pvz4TM7SZn/BSHb+WICrW4mmd20hC9fUSfg7/KblsZBuzHN9JzitehrUbV1jpmFFsLbe72J3pcLUJmNSG2SFBGE+OqmiSqQSRmixl8MniUbtpR8hxj/tqYXa8AWzjSYo7XUj7e1fAILQxT75IL5Xn9vLQ9JLCN52aGxzJy/XGwrFdpKZmw4op1zbFupREa0sIQVEl21xLQN7EUFCYOBRHZsmFZhfwr7Y3QtxWCgLoaoZjIx5GL5UzqOJ5Ksgqcjl0um/a5tUEVMB2ZyoYQrdzmFKOomvac7QEYXUCIG2WRyktzq8rl0dtFH3iFhwMDZhC4jcXM0PxieOulTRK+v/hDKN5iQZbiW5/lPiM6TcnUDHICuZGM2cgk4tzy3LVQfC3UuWXuICtJ+yusskHCcHF9LpEJ/XbnrFbCF7Fz+XBA2ulkRcAFWAaF4S2FIEKbNxUKpTAARGSTOzA9yF0AHxB7SMd7vqbPYw3V/wB5aeyusHZ5Nc5ARXZGiM37Lr5DSZl/kd1xPEWmmolwOr4Ykr2z2hVw/FAeQM73BmhdK7/6g+gdwflkSZxCtSgCgnNYjAGpQASlWVyiHfTvKpGopVSNAtEddWXOYF9U2JSWD+eL/qZ2F7DIreecTFmFN95FQkg5pQ2cLlSTTReQjirEzgvt1QkYcZt2QHMWuhJrf8w1mz/PyGTSU3LZxittBTZj1vsidpYVU7beDTLcvhd4bu3B7gf8yD0fjcPTcdVc1hbcSa65gq8vVdhX8Vq4cv5Ap//G5hw2EN3FXcXgrOB659UfBlcsWZPGWzJXOOtMf5EoBVIvHvPJkN69DRupi0+mfgVvwDqYeVulIW2QFyjduAa+hUKas/vNUtqj+xe0XDk6nPeca9tHgWL2JYlaHTLWQaytPXIHZe87MzBWQhVwDDWZ1CPTEYplsWsVy0uG1dbSgvE3XO1HAHTqd6xM4dAt4jp/MIFG1o++QLmC87ds7qbOx7M1lsZvOUhgHFanTnogbvmOnI6oaK8iz+HqCK2JFpiD/e0h7FCmptnvqeGiVaAR9d2cOztjdgoNHkp13MEHmKRd1SVFg5ZoAZQrxxS0xuEAtLurD0604dVUYb4aNdDFINMVMrpArxU+1QKosmpdN9ZArIH6aERjHw9H/XOebJ4iS9+KolP+vWnpUCKDrVl7vWX6+57xYAtWlTvqJYacqykQ20SzWggyQtvJwOk8j9ndU2ismW8hguDfDVaxrIzvO168BUwv9vp5HUitkUytkUivkZgeKqBX2U7ubBlexZXf7kO2Ua79XgVlln4LuD7hSFXHoL88qU9nzZUs4ymz0Lt3f18e7SgBnZBRhG0OJk2xvL6VpebjMz0/0MI9k1sP8SqgWvluaW2LjjCf98amCeyLWcZjus+osoVLp+m/53qA/TgsWNNitimEGG7RqXg8Au/fXWjwN1Ny7xX0sPNJN33CE49PJhiCny0hiTTcLAFTTZcrf+MBsnw9/gnPDKl1eLqmbUcjw6FfRMMOyVLWYPF7fhSIHZlPIDaCmbNKD/QmeLqdb7JYfhzNh/S522yJH12mGHTWf9/celvDJqSJTzkC5iZeCAKZsioQTfPl7OPYChBN3tNhp9MZdSdNYGSK7/F4+gx374pBaqDJYbkgaetzQ4grLzUXxGoB90mxaT8/aneRkoF0Bf6L42AWIMC2CClPuv34/RoiapVXrP9iXUcHTp/rMOo/lUkoe47cUXm5IFFQE/dhEN6pcgY4ZtT1h5UYzoFkaNZZqFQsEIFrX49oIVnDG+/6EWGu755jACu2ePpGDshURGsZwlDq7hcBJl7c4n4Lq0YoKKxr47EHC2V3GUzfwxps8Om00NUAS5WX4Tfek6pJbcNIV/mA99tsicEPp/weXjGfewUGxcKON4b0XyzKRvFZIGp1yzU65g56JPjtCdPYWhvKe7WtyWdt2bAt4zmwOkNw/Or6VaPGRX8ipbuBQKOJSVEGRC58LJcYZDnT4mkYhk0YhX92bNArZNAq5x5m6FVYKWJ4kFJjkkMxdyIICcoyom3KXNXgnZ1P6d+ePdIgCDFDkW+6V4+rqZvm4bKNj9pP1xHHttsR6einlxQyaOzUoMkJvO1koeWSa5C5P/v6UH81ZXu9OrWnBpJe+At7xo2L41xxPy6eeOZ6WJmBSUNZvYD1UHRc+kv1Qz295q/cB8v8Y3+RRyFc96QUOeFlFrf+Un5WXTct7q3q6Q/cdEC1ycn/uChTZiMldgaKebtMLzWG4rVzdBQAqrqHQp12WgzZ/96nPjK5smoX96UXp4+iYN8TV6YUT8UEZNBdNtJA7iFB5OLVJVFtvQqAH3FVB3FMglnd0FyD35QmKs205hyP38MAt1ZEorAKWnau+P8FM6/badZKhZlM47CZWIcg3XlpSOG6KmLQOQxbubedbZ0BYIMU4xCTdViEm9qKVOiND5lvYn96kuEFDX2wJOVwicnLK/duHEpch3LtFUB9R8pszTGnrKjqQttpFcgl1O93AoXDrpfgCblt5m00NkDtofLLJGnYL9bjuMFJn7mo2T8VuIkDl8HcsNhGg0q2wH1EdR1lLt6k/GgNMs1zuBgFowSycSozyzxdnxGZMXz+01wPlLel9Rc5C7ne1rYc29rAnxM1Ws7+kUwyZdSH39TOozIFatrVApZCsEob29NndMhhTdUZvHt+bbQivTx6SJHH05mANMTBtfHS18xbHnYl7dt8T6/I6rgdzWHf/blde2zxMmFMCxhttJJya41k9W2l6IXKD596wMjLCEDLKGzkfVm721/3H7mMpg3G/n7zhcAu2+7AIGxke91+w9G62yx0lF6XBZn5N3YOm6rAkGYFrFhCgATPrqAONP1Mm5EGsnATPyQ6o85avy4PW4fAyHuDi3i2eoMKYoPPZ8kkti21lJosMXE53YLgCR6KEO1LZ7svubcc1mkqO6MgQaBWHzbAtM+o1PEHJOL3tmeCRnbGWSZ+QTcyQBzwhqswMrog8hLzSovRIjjDXptSq2ekocRLc/kQReVTzwzdPFOmIg3f/oOmXQembXTMuvAXzngKDRpEJEvIIfEJWkLc3+DMcqcZBKwgtsaHX9x4j14b14UF0ybAQOvQJ7T/B+FgcMh++BPNa3KRVIi2GBQ8FhWg1RbOTXeg2DxD5ZNMr7E9U3Ea7F1EhHu1eRYXYJBd5RPKQKVZjhTdTsuYRlpDREVu75Fqw322MF8ILQO6DJh0DCfiC6sSRNi+iKl7dMocECtnkCHlQCg0fqiMCNhwcBuh3Y7mDdTx6ylZaBGWZSSKDNcFvPHhiiEBkhdLR678vPN1HohKc/pUPcwIG31bCCJhJUW3ytfJbflFhriETZ2ROsaXRwEkmJ1ubEVqkmqrEFmvJp1ogb+CBW+ymHWIzbJ8iP/mhCg5rPstxh01qroP9CVRdCqsk6iRyeTSkomXzJeQpN9y0oJ9yw5kpIoNUL4uDhMkTPtlABJ0fxgTI4ktHAkYTbWjk5dgJkOdPoaLRdDsK1cRwtbkR8mQs6Cyam/AyyXOKh5IXIIuboKNmgIZC7G/4UjaO6RPyRFHwPH3Ez4DKWWHPqEnjd8isTdSFs17Ux6eFDxkUsjkVshgUdt+1gSfqsyoiI0+X0s3DTf9u35+o+LkOC3MahHAioud05BrKV8ac78ZjEChONS0lZlmhwgqPA7L6uc/h63spLw9M56A7yD8rx9Fmy/HBxyhY8E2g41xUrxZyVloGgzzBGfuTXhJTIexP65ncBk47LoTFUMv0sTpDthqGJotwys6RZnTSzqRMTtD25Gn33mzaO5aShz4h9s4s91l0YV985KkGHNr1sK2A08KUJMg4z+IjGJWq1k2G5da3DJq9vsEdoD5uMGyC01Q+esC/H12cBGX77/0FjqPDxmCg4BygFuaeqoBCuTIGOWryzVUlpMI8Q/2n8KDyyhSOLCynnqeFxyQ27mo3U9i4eUcPrOaamU5v4KE+kL8ZSfzZGa6d568JEzI2lkxbSpmpAR2xpMQiUcC/ku97MoXFVAV5Tm52y7EJN5wkK1bd1sg8hXG8L1Vvrt/HObnncBjouT5w+eC0NldR5rIwVnvSBJqrvielvHEu4Lc/UfmY8za9NDkaEbEp9A8lDCh8VmWkY1karVgcVXrZ4bc6cTLDqfJiVGhZHK0Ayi2F1lGVwotnwOn2glpoH1z9ZyV1Y7rlh0uhjV86aSkkS3444TOd4x1h9ejn9dqyfOt+zHATQv7WAXnXhzFyAkCp2aKEcY0OBpoMO0DdVslQFkvKxtfmBTI5l38BaZ3QT0RpHUIF6b2LoZ/DqaBjbVEmLUu+4828BckQ4HJZi7wKh0uzWCIpxBuD4c11sQC08pcF0iogW1SCPWxXRzyZUZ9Xuc9kHy0xltxxy27CJXfc4QKYbCJu+2aOrbAOnhKEPCqW68ZGCG+IuTGjxk1eNzpbf9ihScSUxVNQkM64n0B3NL+WUy4TtnaoFRpuCF6fbL7cqOkW9kcR5XknC5yd1gtswzRgwIxV7wg3LuF2rw8luTtrMPpVP9P28zhc4asgN2xeBGwvuxWWANvL0DNwKTi/htHlJawQTpFpur/6yiHSWmVnk2XPvm2nhTigFhSjs+uiBrALROXAG+pk/gRhOUQG1xe/UKUom5Rht1SJWEILEhy0cs+jUo/C+IvrxnbPQvmOK2Eyam2YLphb4xrlJFSQYaYSoB5X4jEuEcCizb18RC+BE64L6/hPsA/6vVNoTzLAf0qAIBfolKTDPSNTAo/1yKyf+PfLpkkcjekU8kI6q0TSIrdWvrQHixJpWaqBUEGFUjpNJcEpSka2okvCpBe3Rqm0TynZIh+shf33c0tMpFNkUfeo3B/EASba8tjeTXYdDYNiIEuhVC7mVtifQlMqEtyneh/tS9sHuymkkCFIAxApFfZNkNy3PkX54lRcqkIWmL4R5i0uqMiDKOYhKB+sovKZvvJLcLUoWAmGJ6rBSrRQWORTF7IHLiOypoO4gHz+wJNZnYokH8WMCeUDkWQx50KUBUrozX0U1ORiAonysfBDFv/HaaKaLJb2U//wgxN6dk/fwSqEC3Z6io5/LhiMyhf/piPAcnxT/tLZZT1w7X0LvXo24Pmm/h1m2s8pR+XwLOwuj/I8HmWGTdEasOkinNupwI3hKH6H8upQTHj47NP/QqusUn/7D0oNZkv57uMrR7t61CpHu3rOUF5cyDvoRz27P2EEu9wtMATjPgFBkn2ZpwohI3nKAH686KTytRvSUn0iZbWWiry4ooKo51NHh5tfgUw/xUwPBVDlM1nY8YXOk8plV8muV8ycUFA3pxoThK5klVFZY/LFul8V4IUisOT5hLqONIq2otsfLwdtlX2VLO86uQO7O95RFnvqBuQy11H6MTWkmGKhHIqF6Mbwq4zCAbGlcJDs2C/N8zLao4YcrEQM2V1ZCB8dZATWJjjITtEqww3LN/gGw+sjPJ1dCe0gLql30H6D61zPu/midDnj8/6ES3T6lSdgfjzPUcHLDg2Eq/dFDkJyru+5ACgxlzzcRQbZnK/zQ6IBMsLdKKU61sXJUSa+an/FLq97By7S5S4vLdJ7yISzpEksNlWaFd9ZhQu9pJdsriRYGwaItQpqA71MBSCmJGdMHcaFFX+zWwLaqZpeo4KZ3HWbBrwjxXQKBTJvnApMriaDErM3OxbqTzEKjpWKdoMWZgIRd3F2VTkOoYQHdDdpqa57FRJ39jK7V0XhAjkqiZR1vZQB7tp3qZIHtJhqoaQMRDkDErB3ios+lsxwi7OyOB/ZPp39mWMrJ19JGWn4l0EFaAqnbl2/EqIu5ye3R+yjo24pgsQyHhoSSqS9wZt+KDFkoRVyL9yCDyUVdrFE7h8M+FMNigPvDZ9iAFSQsH40U2xDFNjW1VCzQiaGYiaGkip2P60KHudWOSaqsav/+9wL9cKJXCVRQJmVYX/C7jfCqaR/iMNqHFTCmhIHsa/i9ieurzgVtQARfL2Fux/IKymuWY6OqsJr+A778NGZqLSk5l429rK5l/TtFfM/lETfXknlNgW8TUvsn+LwBZn/SvB+iU9PcVl02dKHBAz7r/uAyIjp2kPVdTSgtKYfeAkA0LD/3h6AQPnZVi5Muzsas921QuZPjrY6ONzBwedZdqUfev/fWp4F4fp9jXsHiXRAyyw14j07hO1BEH83eLIRTXoHlZiGYt6Uw2Lx7lEEfc1usL9GBZGtw6jaFWrGXgR9YciimJahAM5g/qZgfT6oIrMfc11O92KxqxZUCXAG1wDkiJh7LrEsl3Inl844RZlKWqBMk4oBc8dQwJIWfHAuSUM1x9K0JESViugcUnggMICywHZT4tKeQZ34/Qe223L0xzi6U4MXkZejkHtx1LCAmuHwqPxGBnAiSdTmOIKcC9oTvA4lf/c+P4gMvmAX5iRzmrKFUkYu7P7hcstr10Ti4fGN/HugmDeiZKbCUhZFYKe0536BJzdRM+SKi8v2Q0WAG2rMScywWzzmJGYoZogoIGaQ6o8wz00SLyBmuPH4OMKK3zpzHBRJKuBkcCHCwXwijtMo4Cvbl/m1Cjtp8ZXDwlTOWMbxYBYE5szsq6qd6pUO53KNpgxGZ5H0F/5GSS+IVtPozVQWc7ldwGo1qq1k1hwv2SIx6BhidQZiY06v1oos6PIg6Q1TLcfT4TgYUMQHzFf4ZWRo2zlTyMiw/3qEgf4WITuOh3KDDoDlz7tuGldmvS0/FndC3V5VbAYRh0cC6a5FjAsHPIkO2ZbKMaerUVdZJ9EkHtjuTRYHz6IuR4nXfS1tFBT2W4Jf7g8TN9mCiUXYSg7RtAT8Xi3wDauZ8pSIjX2hB6tTfpqmoRwiBkybJdxxFsbx4uTt3QS+NPnzqA/c70d6QHX1Y9qrGOrodnet0ZKRd1Qcqtmf3sx3Mobv1psCW6GlN+ND+sfFYLmUBxeqxVsW0znWdgm7WL4WZHs1q5l5cjJ9kmdUz2s2tZAyJ7BQ4+Yz6EFbZ97nc+IswfLU7Nv0Ah1DVtLn9/j1SOha8pUKQcZgvGnVipQrj9lTxWQMJYOq7ka8CzKo+X8ccms89TnObxbvorEtH08mS3DYKvbaUzVRjfUGjVCwtf5DUUe0TjEZQynstpkF9iegAvtNKeio11ZEwxCeo3DdCGdfKWrLi/EupGYoJmuI6lQJT8luKtwJNjALIBA/RRJOK43LSnA4Vb1V9GyPUJgp5p2GL/nLxa8Ium6pGqd6Iu7gJUlahnK1+cJsDW++gdSLJNIdcJLfYaRQKhZKJQCRgkxE4tSUKRT7tkiiqbK1xVNhnMnnb0VdoOLwYSmoXrQbPNalcqztj4TXvYjjMlgAj5tfRbgXBeN1cpYANHj9LCaMF+6DGlr+MMa5USW5pNylciTN/oTNrHFQuerjPsQty7vRiPgoiqigAHCyl/F8mk8gGRGmUlw5Ir2DrsziIkfyYcXA/axrFB7fxZKqNA1k9UAyC6mYemI3dRzf5RZMOkZSbGv7s8oBQJy9ke8WDDva3HrY3jciwR1rMVEiwuTqpChVS32MVVKL66yXgoKuxawM+1N/QlAJtGCfUO/MZN1XeRmFG0887aLLKOW+0uAu7+NhkyogYQjqAVtUcWcFKxohRExw06KX5qlDvdjYAfOCzmt47B81sIw35EswrVkB9vf0QRXXMTxxvui5JdmhYMBUuwppgSyy03eGEG7GX32ZW9HCpwAmWLaGEA7aDr/yund8U48b6Bz7XUj0zTiro5z4WvTTxlRBTT0Vzi5rvqXUGnibkuCy3LPrPoHb3MxOqF8lgq0OeMjrF6wR+V4SbvO3WJtXRXXk6TCYRJ/t+TpnBcZ23Z9pG1lO17CK7ITqNU7/KpBevCmeZLxSiFWloiAiJioI1r+tzkWqoHYwVwhZRoupGUoFVXdxTlWpOCVVoCLYCB5OT8yFqabO9ZP3HG4Jc/kop07hKEAo3GI14bm9KlTNHFILpQrAYnH69/7EIa3p/qw9c08GjyioTiBe4rajTULW7/uMxad6eMsD9z0Ft6iCOtNSEyKr52NS727xXVFI5GRUrKeu6iWZKKBimCrCyMLrxcQK+9MMVXdqGcQWq9LHIOOLS0CB7N65lzPTlVwdLaqVo2nBVKtG85YxZRG9Uu1aPKphnPMm2igoriEYF5ym3x3AGrBBLmBQoXgjV9TQc0Gn3cBpb57kRs1DVNPMPFBONzXRaviDbtAeVaw2mEPkbNAhXcNn99Y4C+D1m3bCEER1dKlGFKGeswAHO/JcXc2uMBlp//VYYxmGORFD9Jx/yhe85wRADzdTbH+CNl9tUR0yBkyVHZk14rHJSfWT6V2K/XGULjUXV5hNoTpeYl+ZtPUWawp9vbmkQ9INvAwGu2mJVQeqIjfmMULJDzhiM3r6q9RpTLOwPwUwR8xwALlSbNGLUKdXDIBvivEcrx1v5/GbnPzLrTUnx8/C8ATwsNTt0gRaqSiqEP6o+L/ACNTvo6QYUZGlxnF43D68KMDhxSScpbIkwHdZ6gI97OpihEmUapPn7GY86MIFtQAsTMDTUI9D5V/DRbi8/zNcxseg7GFnuLsFAtS58hE3bsZslfYxeYsiZ3TeY/gC9LdZyQPFjxMacfjrEK7g0HM63/kUC0BJpw0MFAQXFh5t9tk1qkqmdSgt0VOgG/ywavwggqUeNJs6pGkojssVnegmbiiHpiHhSZ+baMh5C5aj4uGsXLepQSc2fLe0n0iKdNjD2GDiE6QLTRfUaB+7aBOpASnuVKo8HqpXjsYVN6381K9bH0pIFZM2lEPaEK9sIdZQbbzdyjFH/zwR8BuYa2EuecPQeDENg7Rxr6wC7c/19/qIaP9U9gALM+3LPLMAjJdDvCCXVKsMgDWLywbkg0izMsdUuDwYWVJQfhJ6OpeD5U/jSXljZQ2Icb0VIinjbg+U8vZrD+bUF+edl0bkQ2v3R5FSpZygOUKMTRc4HYA+F9MrbHuLzlAzPJRD6YAl6EBVC3PplXD7WEWGmN1NcOHtR9xbP7CuLY8qJItHJDhe1snp1gq1IelEjtKAGS/mS9jm4PfiTfJPTVhYR83iCJwN2tI89V3meVLHNGNDaZGqpCHWLHKxTojxduxiqm1bSnMP3ddmfKlZpDXFl8wlUdqkO0UuqoECUaLZgi9D0p2VVjgEnbpKs2hqgIrvv34PJMpeawWYgOmC3aUtdpyHyuqFq8nhp8ZwtBQGJaRMeT7ILVXaFR9Lli8avgnAl7BxtfknHh2Kpav6NIklkz2Uw9mANTlvE6C4pUW4kfH3DiIhGQSo1uR6T4WevMNLQSX6N2uHRTOLq9UXOWrN7lD6dwlgB2EQPjJ6QlWzBwuIF75MDp2gB/Mr7Jby+I+ZGVZM0sAyvIJh48istz+JPbT5Ar4G+zNAveE88L3IWGBaSJ8wW/uTJRqPt7tHcYIeKF4ieff/cIaaq2C38AQ1AUXpIZXMFjdIMPMQlBUQNyi+D7D0bmVxCQguGsZmSihgcDBffkIVPKsOne4vGhODfM/+FgLkJERddUXrv18YOuuI67wH5bYr+AjI2VUfmeCHbrkE8gbJZNaOKko/76j3yrNpxWHjwpP7KnbS7rJD3xAdtPV16Bsw4A539Yqkiz1WHowfkjbAIYrJJ0tv6VX5uzw8Jk/Yn85oXk7Z2OPZBQELKBzsxmZ8pbvId++cvtaNk+kMCpkIogA/3jVl3wnKJFF4fG84fl8bluq+6DZwidrD13/CcXAfGf93vu5PKLKOPt4tUZEWcy6bT2Chd86w4Xl94LA34cNu4WHfbesxeUh44JO4ds56/I9ua4U3f7DQo3Mo79Yd3OuWWEDM3EN6zDeRkmjN0pXVT4Bht8XS6b7rFmAH+7L2SuR8jzMWeCOLl2BuiFVmD99RT+I4PmQhEddPB+VzvqD/1tw35eRrh/+23UU6gzX5SA73LNAPQ5Q4g0VTC4V7pJMdYBUjQQP1X0u/QmO92SznGUcYjKBzKLwCkCYeYeIhsgnZ1+Q93U+CHy6f+xD4wZwQsXgfyMG/dDE0is3p0DipZmcoh9HhagPoZDnHm2AuvgVTg2skb5hIpAPXY6tiIIXpEPV4Bw7anWaJ2C2h5SlJlvt4JOetxHnFlZOjsJjigAh++4QYDIGOdO+NkTy0DbcHv0VsM4rp3YLiqf6Qj56px0liloT9CQ6oYXfekDtvRNFOFEEsh9QhVuw9M/A+jrqM32fr7e2BQlpOc3iUBSXK9Z2PAt5scSKOax8yzf3R7w+XQ/tP0Cy54kzd0FHpVhnthFKOi5svHE972QaBDgfcdWF9IHVw3BMopWV0bRn1WnjpW+C7+eGvKIMQvIvpHvWnPDXl2rjZRvNlSmOVRpocTN/cV+u8GUSIm/dht3BpWsQM1iUvF04xUH+p/5bSqs9N3qA8KqLqXKWKM4zkOBZj9KHdJwbwWqQqFYqhTIHRkc9bTL9QBmhV91+vh/4Wt1M10iNolb+3L2mPjwRu96NQHZ8gYGUcW0uc0dlTG0Sjr8dzGNS3URmA+TKVVrkzg8sgQHw4+jQEEL/BiCGA+Gi3iahbk58UUDtIjDJDsIjMoYZPyjrN1zMPOsuaEa5zeb0zIqGHkl5H9HeIjeM3NjTH5Jb3MT0mUoS6vedQ3U4/GXv5OrUzUzbsT0idOPqb1dEPec7nr05nRpKuajYIyzMfRDlUDxg/h2DGeunTWaI93eENabU74ylYL/8lQtXzeQCI6NfjJzn+N/Rs3ct4BtiWmpBOY3qpTyHzTiztRebNULKsU6MQ7ufdM+KS6ru0v6c2WqjCT5hw0mqa3+0IkIm6BJF/OefmuDkfePdi7ocyCYw0+UM5/GorbrrcwpIo3K4NhF9Si+pHxWdaIk3KqHZdwI+OKVBetqSZdOiZV2G34JiadvFNOfQc2CwzWD+yGdT644TMPNbN3lAAMxYIg/W7r89kMkxqOEyZGXAYVVafSMb5RZSZOmB/ilVpjDc9Gs3gBpI9FJM9lEkf3izfzfcuANo61TzqEOJ3yutM+Qf/FufSpfZy16oUVb6ZvXyTmIdpc+oQP2B0LQYP80Ms5nnfoPKUmlanTnJPqKDmlCmgfxjiwDj8A+GItLd60uacllOzPfQrwRAUL9Dym0N0bZZUoLYdCgiEeGQwTnvwGKCbduBNuvRMLFEO/8PNJTxk2c8xIYTVtD9vhsCwcVayVq3l1KScEtHDPJ53DKtdgKB+kMOpIintgTKS+0HEJz91NqSrmFqjTJpNZoIoIH24UPDjtD/TwQumclbM+lDm4I63FJsD9dAYowX1bhHvg8hs5zJIl3d0YbYyUabvdyyv333OHz49zngzafa+gEtk3p+ol56PSW3U/BO7iaro7LepP3RTkARFp38eLyW8akFPi6PJ0l90C9irOR0umHDkfRICBWpgU23kToqyAk4Hjs7ivrc9NRF2VZHPhJJt3nesjM7xO1BH3nM9XpaFin1CIUJONyEJFLE240NZREAsT8sSAmLaKFuMS4oE5ASV/p4yq+Cvbs9NJx9z77CuSZ5Dc9c5BLKH8/eGHzNyGHUWQIm5SNvFWKT5Hgr5Hvbfe1uUTaBK2pFYq9L2UYcZt7g3/cn9hi/7FmYuK4vikrdoDIKbh6EsGkvmhyhLxtJyUGrJUlqW3SvTtj+AJ2P2V+DDm4ofZjiZs/KFsvxhhhCWhfBS/a0pdeSPd9AKda9dzXwRkrfKveSB6Szh/A6TA1OIC2Pf64qJOLptxcdGniOXxw25AsP1MQOIFnxZqgkjI2hZPi3Kp2Xf25J8Wrdybgi9oYOSaSQ2awCkqWIqW4Jrmbhhf3oq8faOdF6Z4ITwLkeZFoAQduGT1Ge3ewkQmLcs1sD7oGgb0kEuxUxZDWJMfJQBpbtU7/t77qU7YwHFszdaKP/VL3UOqUbXjRQuSqVlhXh1jWY7kJXR2UqBb/qM3UQWBCVABueJEkAKigiaUrIsGlDL0mj1F/uU/3EEZOX+eP1FUG2ZwaKQ+aGYQKKA+UHFhQOpBO3a8VnUh7k+1kUfkLkeyqJj73vcSrHl5ZKYXW9iZ97hf0BP/LaTGqnpHMqKoyMraWDxSP6UFRb4Ytz3/qTzEnkpByCVyYC8j5vdJssCR165wRdYFC1p4AmKEW0DazQrvWL4CLQAWqu+Y0gVcq2b1dmPc+0inFDB+AKFVsioJ3VwESq+dDTUj1Bx00vUE8HBEEqg1sMIgVWofVIPJUSckSYe2U2gvN0n4HQTKG+LecZ2U39cZyHdb3QsGJsulXVDnRDne9QPjr192W1Bkqro5D/4MUaT3Fj4gURT/QDVq4c4QfiT+gGtd5mNYeirYi8T4vZlzPlgGHQ3uOMhrm6lhMRf0J4iQFki+cfdNaHiVBM+1A/ciPtvdktDryXKqkghqukr6gcJVSM/N4JbKTI1NJwsHb+f+/HBgH1V08TVT9bo5QJPb9ie0L/unhb2tNwW9rS47+V1pMI12J+XRdEKq29EV1bbJsGi/Vb/itG75akzwlbmdNifyq8/uAz2slZpw5XED1WIohQJvxjR4lmtyLip313SP3bzqph35TQljnDzNLX00BuDC+q0Mu4DR0M1vQPJ/uphd3Dscf8PjMeK1uQXCMRqBPsi+uqaBtDldT5whteveal0wDeET864hUps94Rqwi6jmDtH8M58RPCdaBknz2ll0J7j0EXVW259bMUnnZfwdW7S7kFGnGm3+BrGmXZT+m9FGOY0krnAIuMtT0KE1L5KSQIgQtgNPsUYoaWfasyn9BERKdVBsjU4rsPdnOzm8EijtJ5OAS3NWVySoMDKImIF4bBP+Atd7ree7PE9d0NZl9dqhgK0XHyMfp92KZO/xS5Od3ppJKc3zMpc5sPTu3C+VxOZ7KYYXUGW4VS+ZTm+9VaJ91ljvlatynvWgypce2Mh+meLaowAQo6H2DpuYBqHmmAs1SSHUU3YT8pBHvknJfBrCZwm0q339YP37G4JLFWlx+kXJN9YAb2K44FpRNUUD5UUD9UUD1UUD9XcYzVFrpKdzz8s7XSB72vcpbA8uQLaASLhkdPfh0PcgfwvAaglX2BDLFgidyvhvEP2MGQOpKVLgho5rtjMr5bYOvlmlVqJyU5GjJ/Pk0/xe+SftPJfkdjfkhsg/t6/sAwhrUNNd+pA67D/us+kdKgpe6ALqLz2GN2m2GQiM+wrnI6t6giQ7DWJUAWng9i9KrtGadMLikMVsxbDBqlmcKipsqeWNCkCSkWLLEwMsyvsb8dDv5IirnOMSpI17O/Xj+empsZVeIuNI6JUJabqQTZibKqnIwJKVaTsUB3z7+5NzcMWdpESxXKI9Mp0v3N9B7nPvu72gfv1VnkjRSsdN+FSvcu2Eo+f5y20e0fTcid1jmb36/eY93pDlYdEF9MuuVoPs0OcZ+bqqIfaIQXcxrpv6nAv0zSiWlhF2BBJf4+CnVGYTvt68nDwIZqod5gCooKCYpi160NMWIcmSRT2ZR4z4MOrWSD2J0w/Na6FnWpOso/bbnp4AhcuOEv+3vojvXGeLV9SUIULSxXgrum+TJ6Wd6Ane3cPF6bMVpOc1LSAv5KtS8Eh8gRWGU4nWeCqPCkQKUsFWzNq0rli8m9Z+QTn+/lVvwfQYm/v7C72dvltg5IiPQcGyfeUI8WyldXJLjV/T1UB2PpVeRoDSVpdxEmd30pTRTWYetL47CKsGcUq9t/iRwBovz98blpc0TbKcoRoa1OaJeL7qmAIGHEgIHQ5TtAcfr3KtvoTdgfPS/WAgYPV5lmUFsY9hq/AkOZ0fxNuMSFlJjINfnwDEg0ONtWcweUnu6+FLqGBROr3AdrYf7V/wYlRIKQeRofoii2Lo35hHC3XcqDvqunmEmZIBlGZyM+lth7KnJILiWmoplHYnzikFkq5mJwTB+PUGig37/im4UjW33DW4g3Hu0CAdNh/PcYhkcatkQhFN9fHZTvjVQTUAiSrypndTy5HPMlSCmi/J92K4InzDac/rX6XPlw63a6HfRk7bymUUcN8t3S3UPc0OrEe/GWsbBNr1PM+cVZLTT5N4HL8FOA+AIXXJoRb1FTJvST2pt1nv9UQAx8hFYkQ45q710nEU0ehZ1FI7epSPfVEt+LlLLdzoEmmDvu5vv7gITDXv1iTmuG63X/dyz7fLQdTr/+U7toXqdZ2+XiiDHccYId9H3eLYIdqbokKHuhil+VbRZ4E9DepcH8KYpTPs7i4dmwH5RBJXToVUvFPmFjw+cp81nb7iWBSNbNCzZMDOu81zgDDOl/0w2Rzxn7cgZZICGbIGzobFqklcp5gDLv1tdiN5YeuxG747RZ1JxND1EPsgEU7bhPo401Hip4KmRCC5uaHn2JyfLCPUmCi+pW8p9Aqxd9a6yc4R0vRjAgJKUm1WE4VGkfOkavl1zhqIEuXvJioF16LTaHyIeAhtl2mz2Qr3AW0rdVUDduwAjiwmiyilnDQ7QOH3oq5XnAgKyRd1bggllSLLY8SSpjTeCrKhLQuD77swoMikGArFEte4rXAIfcZ//AV2HKf6LwWl/UhdGj4DTJgPufBzwTitDfF63ztUrO1UCyZPqEWiqVisVQklorFUsmAMe9uZjctHoIWx+Vwt8ax0W5TCgdrNQvhbsoBLa1m3K2H5yEF7NbaQwkTy2BElm5VQv/HSSgevrCajEUlNaBiyYcxnD9Ydw5Q53y3eXWAq1VLtAebBUF16y34fC6F7DFzhoLysjhn5qz7VCpQxk1jhXTI9xAqyO81k9X+1L7XBslkhKtmdqiHZi7ewlLtcD1g+uxwLCGdiguK5nCf1eGT7OPesjAq7eW6T+Ct5U7M7KUFC75VfkQhp7DnG3DzaraH/Qlbv2xbrLMlxJ1C/z911MVvsS966CJZk9pxs1M+hY/xQISxJAAziybX8lbrutx9cZYUV0avZXCkbRod5130+q7kQYPeaO96AEXYKAcxeHgEgeaq4HmwzyMYPEwVhhjBvma9L0gsniLKM3OSLJHKZBFXNnyB1zWkajpdyLt/cvfbnDqlsOOlbCCB6MEFJIPd0n2oonkQo1Vjz09+6r/qs7keKrjUL/8E8AD4FuXiJFaI+qjlHiqLr22j6DA9RJ+X+7xokJhMYjfF5Ds5pBCO6s3NOhtcs9IZqp138M4aoFZQwkB1WQc1Yaf91LOHVvytbglMk53WrCQoGyIh9i7PXCiIvVmrQc35c5fllreyAQ//3SrWdBDMndwnuycWytTWavOnJnbT8quywGw97BMB0I6qbvUwPsRSrrbyTjAhznyTiwRQq0dBFunlH8TpveAlc0mpo8LJlaiVDi3z+9YabANTqJ0M1pWk3BQywtfqTGKetfJXnU+Q/GY4qPRr5x/RWKt9kh/y95vwnsxc9FwyjmRCiMpENeUEVOYmFXsYEyDL6XNy/WA3LXAqLadqOVZJhlevD7iGVJKhxPIHu1Xu2NwfqExAu022WGtlbpB7zRCDcSoVPA/NNQxCDzZLYa11PTbmZFEhL8nGRep4UqU8On53hy/F9nBzlgaSoIRYZ+0jip/K0t3V1lOtDeh9HilxMt6Nhpiqcz4TK8xV8zvUkxoZ3bL7r3ZqzfVOcqfWbEKNikQKM4QL1N4Fyp2sdSdfKMqx1SNHpGdUcE9ohLDPzdBQ6/jexQ3PpfRCYAPORfdyyCUTGtRKuVRtUVVEVX9hKVWcDr3fw7dRTz9wjFs2tPPQuJscxLFOWXtrIAtQsi9yH8HtcMmF/i5l+vmWkzuDtaPQi1ApiUwYUY8agBm6h2LgaZum56dgh/e0xU5dSOaijjAlA1T5gaVfqiGE+1N9vVLHVn59mY3o92rOhv0Jwug4pe56h7aojsH7d7HOtQXEoy1Vo5z0MF6XeaMXT2yAgPf2m+wS/gERXjFRqprKljAEUzXsT+hmswbb5MSrNsCanHjVG7wdgynH6vKttmAKLd8kPhXMDsnROahaJhWoqP+zTk4bA/8TpAH7m3vb/t5DW62lC7HPAUhpUjw7cX3VLA+1gZe1mtOhAn0kdeYDJK51p3zUFhx4XbyLvSOTpxqDXVuke1/a44nTqpnzEMRStrQVoWl2PTWKo2ZxdJgdEr7Kboq3u+iIwyT0ukEGKvuJvZUxLWO2aiscU8uohmUjfOGBU5/fSGleirQ1S6RGiWTShX06hnI/RcQSJ61VeXAeDVUHCQdj3NESp8FS6gZq15BRqvQ0OM0miqOAarabWoWt3ByPb6xDuz+4Hw0J6dV0GLWFhmX3FkCG/Sgpnvqwpvbu9wgG9k6s4iFVRrVvBhDmfnrOWywe980hJJKrVrNC7E9gRJCfBYllrq+Os/MZUBI7Gp6iI8e8oRX8V1usyL2KCOEU12BfnAM77Vrn7t+bGAQ05zP3f7OQbCEZdLAfljt0bpimgKWx7J3iTlBt5sKQmgkf9qf6eFO+vycn5HzZHzsPkct8XErXCGqDu9EBpza4Qr3fSL0qRXkAHBJBACnCk+5k82rvT5HjrxA3aLgV+mMltur6w7UhdqajMnFOHHpqDDSZ8qE2BZoMpq1HUmKR2oQ8Tq44X52rU9vKj/AAGOW0WksJB2x2YiTNwmaLCcEJ54XmV0bSlFZQ5nwCHk3qeQHp6dac1MVD7BCvtoYXT/9geXLIT3Q5liDdN6q/XLt1tE4HuNn2GyC9Jzj8H05z/2b4NxhUsz/sTxxUJy9XMDzcUDBTR1K6x2AGl1Htdl6dJXLBQRmFMqoZHhCDpNeQJI7VDujaw819T3yRXdVuzENHWfRq6oXao1tLPM1RFfmpw4LgcrMrr5LloR7eB+YA1J7fPBDWtt+tPErDqjajbIg6c+TXTqvcRAT7E/vo6GKXVOoW7YfZIdasCTNqj2rA3ZA7PEnY2XnqB8aDLJh6mEpJFH/IxNVwkgy0dkucDnpWcwEzrqUHyvQ2r0M9vA7xIvtk7mzJj/tKuoRyCM+oPCPFMh/76+tfagcUGE+x1OmAPQgpF5H2IAmj++5csX5eDC7C7vMO1A7DdkptnBLv/Q44+L6TFxJ5WuvB33DzMRrUHp39RKtDbohM/DCW4d4eVsTSjeiGknqxXegsBVFW4MG0CbUDEr7v43Hv4HDj+Q07R5ENqqRmYqigePieSX8gdsROV1M5VJgp6+SMPsUkbnJr4a60HQRah+HiDIIqmhMhOI/iDXz8dnnwevdilQev2xl6WB7ikHZCaz00D6EEmxNnNy24us1YtkU00Pnp6psgCraFDo/v54JutU/22pKqR5Spnfyt4BmsMY6lPxCIc5FAS4xyXlOhUzT1eZ+xfvVzABE/yfGssN11x3ekz9qLv35KIaUKbgeng0E5vbjoTieeaRpqp9106CGcxli7HHlWF2snBEJ5NIjPKFuuz4crPkdA08DbbVlD2pljYH/CQT3c8cF8FZt4B1PTTiQM//U2d9GLSgLWauzCobDmbbV6D8PDihZ3hk7er9Md23CEXCLCH8LJfT276tU0ItDkelSHlzt2CLcfU7+VAcw+WiINBpxHGpYng+aSeSGi3EPC5R6zzAD4sEow8g/TGgMCQ3IkEZ13gLPoTQK1t8Fc51PIUEfmUMLFuB8USFUdJmSUVFM71EEZMxyTHwWnkwkidkt5pY7QT8PVetpbVjRRyojSodBzehggLtRhFOKRitKdUDBR1aRUHW1rb+4qhdOwuDocDxjjvcgGm95aAkzG/arlwtACcx1y0BfshScWqvzMCNKaX1ot1I89N3AvCMpznk4lzUM1cUQlMUNyldmx5uOCZr70vkxpCJAZpiioo6FkldcXwOmaE8T5zelMkXGRhoOeqNEmQ56DfjwnpNUhP55SKk4T/XjDXs6T3h5H+Mi3CXVMVJGdJOH1wYgOwh+GYkopAU2pjOeg9hpRAhcXtMqFaREzBnts99yIudK+JTp+2Iu1JioASSTIdhk2eJD8cZPaeAPl2LBKE9H22pxOb+AcWQkZkx20iTWmhnRcypY66PzVLs/BkuZwRGLW0p17YgXNwVAHsA8cTK7yKiKHmsl3LAM0QvFxBwuDQfCDqR4qeB0c6AWTs/Pxg4Xo7ATuG5oKXigUS8NiCcQOhumEyjbjte4V0JrN8lDJ6XCaipuoNQ/bgzNMJuegngToK7lSbz+SSzaH+BpOVCd6asaHOunRm6e43BoUoBBNPfcXh3RewHSddVI0eU8e0t+EW6473RNFlrhdjtT5u6xlJahG1+0Mj72ZbktwX8tnfGqcvScHstIvAce+fvEOHlYKp2lf3qQv77eKgB3RdWaQllN2B4V13NN7fqI4pGiKDyvL30NCW7E+CVzFYjl59DoPFNS/62sWdtKCbRaNpj17JzQdq2F65c1CCJlZEepJQQmVctxlgLTEW68UKoH5Fljk+2AKlGRc3lLdsWOv530S32kKhzopnEwTUScsJ0deSoC5H/fERJElnm8ZrD93L8BBVB5OY4xivafqpDIwrf3Puh7gxQ/nLWvSVDMw7E9xgplrZDfAaJo2tKaMpmk3JJBW+YAjXduqgZfRQHbNeLskvTp8zddSZ4OTTG7qcCOJnhuGpMkd6sSRNhVgUIrOtJk/CRc380ydcRa4dAZPxSq2Bqp9Ss5QhpbSXkYqeoTnBBEmHZFg8TrNUjyBrByVmND6S+LvYXFW0tRb2LI69SPiLWyNzcHgzbyreTCgPNttiok363MMYL7K/wyEq+CF4bJz4TDiAKeRC5Po32nTaQZYfJy8LYFGWU5KKVMcW/vx5kR+NzoAKq1bkbTOxR10+PSMBZ+UStM2FxgestyNHZmP6SQL4020E+3VQ5KlnDOFubdmQGyTAAWzLNRJtPhc96n0jpkjoiKZ+CnovTcW6cIF8aWYNsdDXR+INeQHTh9rwAtm8lGHWA4vLYIfrkRYrIX4MjbmFNNtthSa8CJhUF2X/Vtt7RUYHXsEub8kQ48rOTa1Sno0eS2W5RCZHuqylDhMDwldnG5iGqVpLepBjOGAnmdH9Er+xLoA1BtcIhko5J5vbiAt+GUf2sr5OmSZouqow8k0DVGYZMcxpWTZLbcI0Vvn0KIHdmVgpDQUqORURe4QCPUTmGnOyWSvbEOtoMcTnaNzSdZFOKBmAtVOZQuITIHMwfv/lbr5KuxmyY9Jf2IkGG5bZqu8RVUb6lzPm2u0r7C2smp69TuMlcsJ1kUnz3LEHhQPCreHGdyuVY0ABm9O86Xe3ULJZL6H/QnanukN6kJx2jnsEVidPnrROkSW45XCowMb7nuC+2b/9XMhnORiPYRroabInPsIIz6kDoIVLEaalg/TxVqA+4NXXmfEYVnkLyRMC+9P3Mrq/+RkJyHx/2GXrUub1Krb+uFuHZHB4IpgKJKxr/GMIYXJGgI1XfE5DBpQh7zBr0rMuCki6kIcw1lzLRQIRcN1TIx+oeyK9Zt3oa6AjRu6UhMSK/GtjyKbSYu5tMtes0Ue8bosGRcQeQrOTLokdSomOfUvT8EKEWWfTlJFNq//IFBQPJ5ZzEv/h25wczkX5ZNpH3YLZNOybFrrNz2dmHWVQeoo6eYcs87aQl5StJkuIcMKb/olQFzyc+lrQMuNAJtI02qf/EntY4hpLduwH01Qs020YHSItRwlbA2tbMHrEEezkh9a8DqUOHTuMzrcs04q300DSGTR8Z6mOPSUjBbyxUyD7UtvzQrXD9abkY+4PRUd0o8GXpAArtg3rLUswo1zeecNmlvCytt/3xI3DexEwg4G8Xs40/iyRNu37749ANHSoiuElqmIEkimm1kP2gc68WaKh/aRTnw/3OOBtLb1JrVcTBxU02uy7ss5PqYD+cpTP/twh2JA6V0bPFl4FAEPW28XgTVo5nZo5HbYfz0B5WHzYAb3bnQ5g5AV9rPBG98+Sp/cMuej+I2ji1Kd8z9Al3B8xg+qu1Q5jtXjWDWOkggtmB1iKefbFIvLLPMoHp4NgtgXLFnQEIc5weerkhZR3jc60zwaAOc1h+D3JygfStipIXkOdS53L1x6+zo/t3Ua4bDmIqw57y6NLCbxjJjETamVCwD2Jr3kfJXYJ786PXrNrBO7CfV3dGJ8KVSqQ2CgQny/KLP9C05dd8c7vU8v0rhLxp7vz+pcJzRgh28j0UMz9UP7Av2mNMY44Pu66w2QNGUtZJQLNMi8cTiGOzXYzeFXBVC8XK9kP1Kar8lyUMOjB1I801lGhtdaPuEmp+8ecMhiaock4j1QyIvXZKGcpsZF2d03koqbqe40sYyqiX3Lm6212GFls386me6ZijQfirD+oY4m3j5O3/syi5vrLrbF/X5P0MA+2A+eeEKb5CEQgRysUDxaZF6c71ScfV8dGKFobAnYAPFtobSNpHdLiDD5/Q4NVtzDIr+ds3jF38vns//TOdx2PoDqYR8ldAvDsWnU2US9YtOZJPj1mpge+vEQ4jnLl4THUdShrZWXJI+e6yYdijUI9//vI16iQxB3FYMe9tdRIeG70YKkO7gHcOE1V5FvifGl3VTcBO9Ys8+nkVVTLmxsGjmeV0W+tstml3vCo8jjufY+cKJTctA1lKgxI87gMGgLDxcqwFuHWZ40ao1ED83UD41ED81EDy0B7+As/Uvp3fw09y/iOPWedIm39xiK2UtKBahx7BnIEToyyJX6dDO9Q0uV01Ifyp6WKpelIHT7E9dksoIEpodu/9iPWwg0D+P+HgW9DJX+eyDaLcEw33/v5ZFnZ5ZMAG0Piufq7B97LhPnG9zw5k3Yn5BP2fqbf7BMJ9NI87APSj+5x6rcLZ6wrlXZ/LOuVVlvE3y2TaHo0wSfbXueF8HKpSJQYd4/aUY/+HzNVb8/xhFkTraWwnknedr+GfKIJHVbnbjbxUPDtdNM+NCObRfjN+4tYnf1C+lHlqdpgxdvyu/pwdwNDMm1NLEeb1rKU5SF+GkVIDyfwrnUrssUxkC6Z+pkHy2zTugW02OcfQLN0Au/mR3kOf3+jIOpzfstlL/xACFxs3sZrJOgo0Sj8VT+ON/xZFmKYDQOrqXRST+Pji/3AEmLcjAsljFJB7soD/PSIncIMQcJl5HaMMDW83X+UdGQ69BMz9DOtlnxN7mFKqcd9e1gJbC+522CyukiWIEDOb4uPbvDvGzOYWxZ6DuepkB6Oz2cnKfNhRJbBlV4c+p8y/GTJhGeQViz/yozKjPndl/phHAI9nzKUpvEspXMRnEjwWfasgVSpkDKyS8tgWSGiJbzD5odmmW+mzSHJAxShktAyyfle5P+KDJgzrpx8Aaeh0d/JReptdVcONTZfS9QlM2Bs1vihXsR5XUBDZJZ/ujqdZ7h/gV2r8vGNyXG0Vxv/SW2wGbWRNBf28wO0UgY0o4BcnXmXNlRC7lMxMNuck8qrPl2/EYJ8vC0wpQ3i+1pAv2yErVQSuWuYxCHu+Ati8i3fOlH6w+NF5MTjANoqCMpuYUKWZMWHSnCm1Cb5xPXoutS7/nD69qoyqHm25kRVTKNOkH1r9zu47l/LXpyRB0EZO8g05DDDkT/ysonzKeZ8LCRCK+ZCGJ/Yv98MObO8zTb5spd6akkTCpgUyu/6IiWL7taIF+WC0ivwvewaMkDJUafpK6Q1FhoKIF3HBKW9/sXXJ62hjICS80MCS2PN18N+QenVfyayXSx8s/m8luUmjaJmR0auR6amR0aqtO6UNh6XNAsbtlMtnBK0Pz9gA46HVzKKTmfJl7j5DzJCMhEiDcTVbRMhHjL97RZ0NrF79XnY+CQ5G5f5OFZSGGgEGOpQu6m3Tx4vQ+ixb4uv05gfIRaJ6HzpVps4IgUtdGgGSGmh7AyZjQkOXAbuR6auR4afEOztUcNeLjfQ0e4lMUFNHjN3A/7008p7D1u+en0VvpR6o1TwlEqZ2iFmG2k1W2WM61QNhWLtyN5Ep5nNHKkrzhx4Acq3hFDacXTU0A8sP9SW18RGlAi5FuklN7EorBRw+n78RQ4k3DgcwzjtUJXk3kbWgEHazNtQysoqaSaPMjXcAprQyZ/ljtuVhrAxTKnhH/OxtB4a8Qjqftck311qPTKoR3pnaLzNXZ3KbcFu7vYf1IYLdp98BAWhI3b5YM5VOYQEzb8T8gkNHGT+bRD55DC1um3KV/zfaA49rEH/tMZd3ntkBTwnIit0JlV7IMrleuyPpULG3H5n0hfOi02keTQnpVLXdieVixASOrQbNQdRv5/zJzfQpmeDPvpCvx0ZnsmKV+hmGlSjoplQEF04dXc21U7S8SNNPeRYEo3b+L7WAYVyqBiGVQog1xNbn+iDDrr4/ClRtJ5K6BR48iBPnQb/j4NuYRd4DMNnrVmZWhYpQqEshJ7K84rjFuKAv7Mkm7gVUkjydQPjWViFPkMX0x2YbtWonCFPYsAR+1mQe4Y0W3FbrvjzrkFJsBpd1qVHs0+yyYa30uq2llMx0jgxoD8bvDsozr6/psVMt6fJ4f8piuzPno7rBlvTKWEkGzJ7JcdMlQd1GriGHQt4bsfF1yR8pS38T1+jqiMhB94ay722IKoEGw6n+PkehTqp7Rj9oBC3AwPDcrwsjcjuHibRcjJ27x0DMSONynCYO8iVo9Hc5Xd3ir1fdM/nOyz6L4pYlol19B+jwsOfUPu8OmdVmWWNiSa6lw4IzhcW68RW9yqPXQ1gaKSN6yTZgalPbF/rdraqYm9tICC//7qzx88DJrogXTzZgrjk5/6up8Gsq12MxXcCVIsYTaafu9hz5jnoxu4Lt7+H9dmva+buTYPEOVdm4fKIU7/wzqyTao0iM3Y3zDhW748bMT6UFFegmAm+TW52jMdoNXiqYIYnEPDCMP98i3q67lU6EgLxGpTpVXko6uhKPwyPzqZUORhOOVdbr4RYHlNZwBlyEmguRoN8Y7N5A6NGI5biBcB46agN+BO+SV6PV/ynVhUbzd4TgC12/f1axFq17xkGiB7V2P84HDVpIQ+6Xp453IOlQXR4XM4Ra2ktbzO4APl5VBLuix4aqpMNr7i1dCo6FULqEpxZH6IxoK0AqJVHF+BuIkL8uDi6LcbwSmXnRYOckql8GdSYzcTNexPkOp1fD6TK8nv2mGMUFPlum/eM3hDFY0FCOazdVHDJDola1+TJwZBEuernEqbGhXh1FvZBXS7t64PbiCRdEfRrrw64WcyY0MDl2a2A2wwxYznXQ0kwA2nk+Sx1fsmoL/rF80TND7Tx6xDnPJ50iNV7XM7iW/RK7vsD6kDxnh6QBedtNgFOVasJn9vh8Sbul+KDPOoyPNlSe/hglfmiVzZJnNozItoLhy3P6mTyy0RkTcD1wdfYZXdl1hosl0B1sJfV2XqZdjb5m4RN2xr3xPPakB/70YthEb4dztvdzWxM99YhhbRLdEBfrLZVeK9HZdfaN4m02niMWc6S2bdycuNDeFvloYGJK4NFTL87EMCL79A8WhczUlMwx3yG6xtGRvMfBCtQVgdHpz/4PMD+m5/ITcuDclEGVFpsLXs4tj7Mwa6ypNBZ52DNNtM5Az7VGuF42ysQysaZ7ue6LEUeLzTZEqW+YOatEkeWoMjJpkWuyHXKt3KuIU/8eAWOB+aNSGm1Cb7kGO8XYtXpoGP7EY3i6pjJRLX88jPqNHZBE6wdtcsiBqKpTfzQuxPtPScmdAai6U3p243DrU4S8NqOV4p5d9AFAidvgYhIfYrtMPxcDVtGO+n9Q2v+4CiRtB88LaILklbqijU43B4o+uu2XXXOmd9a5U64tuP4cS6tWZzGOFAkIUNYvlb2W9fxz18HxqSavqwwhoyHUJv1NiuzXRoHaJTDiodZRxjbwuthdUkyGLGQjTqrzWoUlkDbzdPs9kE/56cNizmx23G1K5mGofWYDP9UpO/1Or7ElARNOdLn7pkeJPhfgFwp2zF1geA1krF6d6ZVtxaWFs6VrETvhsGbRFZ0tKm2/NU8IqzwBiv5rBJW5xzS5e2tNOn1zErWDRTY+wmnqbNdn+Dz3VdQd7CHm7iCYIUavdERh1aFZggL2YzvUNrIT9v7QaIpk7RxEIPH5cmqMVaD04mKJXCM4jN9HyC1DdBROv0EAqEgqJIxaTAH8WpYdytx6F7j/OV4XKUIh5gn2tL9sQbJGBCcdp3VLLYN1sXbtw6q1k0k0bspvpk9E4o0lqncCjkc1KZdaSB4ME5cwKGmN6hHXqH9t8TocQ9881+/qf6QIMF2W1GdYSFeYdOQ84ndM8cd8uKDhD4/utxRzkluvWDCfSBa0xUQBAok6ZQL0S7tM4N3C2ywOsQgG4sDkDInTzFyMrhdbi8Xa0Tc+fc+PMWnALLvuMfiOVvio0GlgcZYzkwpObkl4/eJBOtw6GrqMsX79O7nYudCu5RHa3sdFDKqEJLRO5uRXgV8uQkI5Vq/8arVC9c+wOc6ECENxNDHOL3v0uRR5x8667JElyfTjkJQ27+8Hqdi6vjmOd/nHxHnXp7WeFYA2+3iuogpIoSYPucHAuD7DrlktkgdgvPqG5RSeNQ7FDlf2RdWaLtKA77v6uoJYQZ739jjS1ZcF5/VL1cTgZCAE+yDK1AcQ0C/oeoEs6R76TKWs53mcmLBZqBW9EZlNJjSjJNSibVNTvbXVgl8ozR6JgiFKok16pKuMu4qHgehvM84N1kewXRQ0zAec8imE1EIiE9QpUVmc4Iogfow26bd+9Tj3ngdA++44gCeDjdg581VP7tNJ1hdjdVa9eEEZUCtgcA0f2HpCdpSbOvkYbMSun5AVU/RA+3sdozRBWlrzSGizteYtQo0xzykcGE1KfFKRVlfGJU9/wPqcjehro9Pf0DXKQcLJfCr8fi+5fg2E+9pVwHY1HT7jO5z0q+LdQja0kzFIgzJdaM9dX0NDDd1a2SuMeSH25RYInzYayEQ0zB6dYXiepKgSZnIwMjVH4cF5wjtgi7WLKjFsDhmdUSlHg3cwlrQ6wK5yhiXNrQPO8cN5R3byF1aQj5dY4isJwcBQzWp9OXW/yi9cPivUMUEIO+unSxBdnDRZG3RACqoNVYqLs03B6ZbOHSctwsy5ydRi4u8V8MFPtQamUjUbF+3XxSUnbF8BcVbin13VmS8FX25aK/W/bLWI09FQhvRamL9JdFNnqMjqhWf+r3kg///Ex38kTKzVi306inK00cpNn71rYk08MQ98NIpoehQp0DTA8qrUW/wkphUjrzb9+ESP+dC710flRp5iuiTXJxImSiof5641BLySTNwxAVxADNg8AZDbUihegNG8k3JyBVwEnuV+mdCIVS7r/XC47vmepL6/01tDJqv1RdlqgKUT8MEj2MJdsqiR6GiB5GEj0MET2MJHoYSwHEFcCwXbNWxkQG7759udKblBZDjA/niAt9rkcLWAtcdhyjNWGFT7E50/u3pO6vxRkqmbRQMT3BOR/U7+TrhirAOp80kxY4isfv3JFLby12VVbWAjXe/klQCJAcE8S/xV1HXr1FgPiScrsSGy4GitMUwUfhjIjQXW/P94/a016W70r39XUFLvrxROwQQTNXeRK8DKElu67SMBYiOinXHDitW7zVRcmle1pTPwE1xCVJmZHO8ljf6ccQ18PYEXVayVvQBlP/eEkI4h3nVV2B8bz40/3leErOOaoHE3nfplekkwJnBNvDf2KBSqfPfKsTLCrPW8CGTQNKOfNjh3jKLL3OtI/x/O4Lcl4H+aYwEoXBYOkgqXfVd/VrFCGL8JwlYM6PCNhUBsX3MMDukHpSULjFW4jvC6RtyTDFXWjTwxBUvXFDWUybFpOIGMZmZYshTomxw/Sknc5sxWO2p6B3LMQjyMA5cf3ILDow5NocgNxZpgT1+HNkqqenAvKCoQvYSyl7O2pZWLpPa2OOjgIaTE4c4nEYO/o1ss5XcJ+t8AiLeGzSiN1KRPKT4sma787tgPFp+iqdM3PX+zAqzlvifncqzsoCHBuhJ27MraBYk90JNV6eBzi+7jsOsjwM8T6MPdpjMJ55t1ETWZFFUDy0q+exvN0Q38A5QvBxj/ucl6msdqR7cDeEE+t1FsbsEJBuT3byvlUEqxTDbpzDBEslsdpwUgT5rVtB+uNpVa9mTlQJxD3Di9vEi9gyVnu+r2ovIKlb5HCJMM+ENQc7owOSQjsyllLcgZ1cSxwuvdxjIv7Z7mBSdux1W+BpFlXEcIIHvIjwGV7DFjNKWMIdcIgk6UH+6RCxwyas936zDbM+U9crMxy24A+whxLZVT+app4exvXgYZInhHP0784N5alawb1cUopED0OomrGRpdN5mxFYT7tlaXhL9TwkUu7amlDcXRxMiSdewRBCXlwBtuZbehOsQSNZC0gCMC6VAxUCcwYwcL4NS3mk0JOlPLpZfIZ5I27WGpIxk7Q2aTDOaZc6ZT8q42TWgJUHIg0ESMmQZPC0xk1k3hg9euJ/OC3t//zCCAdrn6GwszL/D1JvcjZZ+cn9Q0WxlWgkjZviRlZRDC1DyuABG9fyNIaaTOLLKh2P4p4YjjeImW7yRZqbSrF3qisWY6v64p5qHf6BdNGuJxZOR6OKYtFja9qbSb46RLZwWl7by5Edf1HohmYq/SnDJH6MDj0RQQxjgfQEkeKZKSISBC6KAbIhVpXmIUBapA7DSR0wVo7qcFQnYo4GZ73b3VK1Gc9XhffkLxEhZEbsRNEwjMEmuxQ2EZx3FnyMwgc12OQiIXJC5YSGjR9SafJEBp9jStSScV0TFtyIjxADw7DER5gA6c72gGnRfUrHnhTAFhsgT5pUk9OVaLSBvH6xN3xiVyrZAXV7vlw/Cc3LxPgV+CP3L+Ljh0XbybCPyzkbJAKMUAmT0EMWtQtOzNfvx/2Ze5qlY7fRDSEGiChKE7GkdENECCwDWCiZ/o7zMIa0TMaUgcl1OGtExtmMXK7DbsIarKfE/kUs8aZYGKR7ItyecFSjfWIChBsT5MUHMSzceI7jh1nsjBYPIKjqFpqDoa80gQwoiUXMMIyYPVVJOUcvFDvraNbnBSMVMmF5lYMvJPow4wSx8kRODGlImbQTL6diLJUqg5KIyUg7RPgwjFA9k1wz8rYOu0wVRviWvJbz+wjc0rqbzvwQiqPV21Thcd25GOcXWcFzJc0kkCqYTzGXPK9Y507OLuWthhCcKjc3QfKQuK53pz+/hRdvJ5k4SMpnUjwEjXncLIXW/AAan/L5npbADqmub50oDZd7bqOYn0J+zS8CTmsu+ct+3OAZxZyiXpgfMplOi3rOTKYp9ojTFA6DqTnqTmC8UDpmUHVC+afnE3G06r3JfEx38En2pxp8GFBcJ4imzk/liOCuOiep3/DWz+9+7xBQLUM5wQK1btIZiVvOaV0XQPGnBB37p8AUfBFFMflz+uYN7hMNfRCV2MeyS1NcEtOZHnz+TnFinKb647MdHyR3dgxa0TlNPe0IiVuMP7MUMUJ06IXPPKQZxYNpcnS9QGd3u7oL3quUuP3bP0NYP2yY57yqKwDBuQXmsphKbj+ky55iepjOVhDPHXqfsThMQ9M/+B4EWmRAa2ZSpXOyn9u2esd1MljKCTd4voDE8XPCS+fHGhR2cY7nZC7CqY5NdnXqhed6NnR4dryVtx0sEpBGRauNMzXtlPmFa6dlOeWsrf6QOfg3UB3QyTLhU1VwztFAr5Z6tSYHcOrrrsV5NrRGFrjH5ndXGYuqf6pkAyBTOpKnbS6TrS+DdcFly/fPENPAgLRGtWqQke6coc+/OaZbnQgLsKV2sZnRlY7URi7KphHMBSG6os9e85pOrW/elWk/nM30E59mfkZOUSPl2PyMfTSNsOUU3Rphww5FdsMGFMVM0EQFS/v5kELNYgssqhUI1sDxa1TXL51IsyCbKZN82oRsn7LVZwFB3izK6i2c2U1EcshNSQKIvSC752XqKyGbZMXUtySq/4q84Dy9oYLBFNPCdLRHdKJIazrH0JqmALbTeR8wI+0+GTgT7UmgYuTk8dI8GNKafrM1AVafIoOYJfx7SiFADHuqeLJFyKDeHDyo9VPJ9rMgv2kWkeaWEE0quECjtd0hQZZtqngxXbM8OB+vyVq4ARSJqtJu/lW+YlPCwizhslpCNDj3Hu7QRkIHzzG/u/a/wgynKY6KWVrm9P0mX6bjBVr8LF19BRjix9p2LU4/Y52UroHqb7kwMuee1gSljSfXnTBd/5nPZ2WWqdots1AkeZqlyIcnGCAiV55TGkSSmlhhdnM74Y6kcpiLs/V+vDGe+UKS+dOaIdoOBw5vR9X3/M6QYocpM0XpMMn7MCV7ZvI+TNFSzOR9mAJ3zuR9eGq1JO/DFOXWpDNG8yME/XR2f4aMzxkgnKvJAYr+zXtTe16orP4EAvPtlvq5fgoykFhEdRgnfZ/TuR8GW7h81j0nLDmFKoAjT340TDtVjZhlcRYsdZjMD1k2AjvazO29kiAtKfecmBl3kEQpmzvSnbs79yOZDSWceVX7JFjCd9VrxIYud2CiT6fKVE7AiVpRqfC2XwvAuXbRczrAiKM7f2sBGTtq6qi9VeEyuDSvzIhwRcoMCkeV45klO5mhpVm/TL+gYU1u4UxMJ7M3H8jZk9Uj/Ag9rLd89ZdDqT0rWR9m0m16E1Fk3OhYqCnLqus5YhwMIZRBNUazf76/yB4mgN+ix7IPbOqnvesMTEr5Yc8Rc+3YH1pgac5ZiFq7xSURJ5jieJgVaTQisYDRPJ1qXT7EFl6wSy1OD/Ks0vVr5XBWdYz8d7NK7sMtOlQO2crD9TK5ZpPBIR2eU4iB6SQPYXwlCc7CTM6cOUyRqlJwFSiH8686FSiH9kNTcj3p+yE7Pafy88jqqbSMMo4L4l9nVCfTEhIbZwqGj2jrO3dolmaoyo/YQ8mqypjSecpQExxgU1QWpwkxpSnih1mDjT196clz3e/PD60CA3ezjixV5yAZ9E1bYh2IefYf3JWq5Dknw9+t9bpAFthUwmxWwBymqtufo4W3ldCqIwrSiPCzPTFwD1VB8DoVwz+kyJdQPIBIKgg4K5VeETrMipq0mUZYCFt/K1fMGuFhr2P7EF8/0CE/gx//lqo9xxDrdeoNiRQ/L6aXQPlXTlnab8nPgHydIoLeAAG0DPRQ56vr3p5Dup4E6gmKB1WrX/y2NAmNmqKJE4n3kCiugIlP8SrMupkaI1hN0NSoGANXvyz5CnxDTRA5dBXxOTT4+lLxJDhhJsLEat5PzwdGfGZKuLdQ9ZC8P01UParsxWoIH6tQ7A8oArX9Mh+/Zi/vbm9cAqbxBmZEkMUvWZ9nRsA3p0VLePdsH0fTZxK5K05jGBvCF3cy3NyM9ZX36boPHpUW0Iecgp+Cj43xi3Py0mURU5zifvCqgxi69rEk2mzA3mXYEzFNUVJx1YmBdrbCOtZJUgje1dkkl1qMi3Q1lNZLTyZrqrheQ8f5JM/DFPNDcKFGv+Xkg1PPPlbBlSDabgLrk5Nzp63sfDitu1Rv8vCpZhzBALPJYdeAe5hihghKX4yYpJlzP8Rka+U2Gfdg0zA0sCpM0emcJrAqTIXgTlMNKOz87sf2+ha5Cbos+JNTMoRVbLw3IOCGb03cMBnpz4l65wB+ilUK9eBzFVAyTGX9fsxGn01CyHkfYki0FaMOW7rAob45ZEwftKO8+0/ixMz8mLZynson1/rLe/0P70rh5ZJFCPKlqb9/DPmGnOnZ5L1zeFx0Xx7xNqiMNDkbG8RTU9JVoyOjqXhHGwjFzSajiCVbW+Y8bQLvZqME2it9ViJvOEfcqUQeMZGlO69o/Lu50hNzdDsuLbH5s823WFsFLcNsAhtsYI0TDRT5miofN1mea0q0hOMQ/VaXYpokHMTXVTwhY2OA5lzM06Iy09Z9CFGpXCJ7h6dIBo6UzyZB0xZXvawXL6iK4XuKKU3ki2ujh0jrmffX0m8uRohzFEGFLP68wPQqXc4TnniFJiTCSVOkEDM9XykxzvTsL78LIiGadMY+iDGUJCNeoSpalqWORC2s1LxEX9444UwvYjmdZJ459QOm074PpwtURDunKcubtpgRPn0y8LkNsk/py7OjGnxdqjjEIe2RucLg8kwQYPI5A5JuGrL+zQclMutPgWRWtu5SWTuDJyKKmB3ptlNEEbPHTFf4VNU0pspSfR8YRaeIHr6PAfN5P0+H5XR+Gjf96ft+YVbro+Wbo7hBCTFvwIuUEOdKtdQvH6bXqAyGqGrUaQqVaucijyK4v3jKrEaV3BBEpM8ul14H9kE5TRWMA6ednYmaYTEWZ2+evCYLcF2Uy2aH5c0jE4Qr+ircWBu7k1jpDlM2uQozCVadA1/RFCHE7BHdUIZ1ODQuxnwhIXsXyfLeOB+axrZzPki2dfCJuQb8WC6wEqQ+Mp4jjoVz1F89mwgnZ+sRAneSfLtdDxp7059tuKO6+lQp1nNE9arLfdhZXX0Kgj/d+xYLVHzsp6lCWejSHft4DOJU/7O2VNs0cJPoYDe6FZMKYjdEl5LfhL6AzlVvYCfZVzB1UOclux7SZtL+otY3xQNRaTmISWL2yZUn88slD0bjro+ftAta+UkMgQJcnmUEMxE+0Dbv8FJydUmuvlDW7Iq6p3Tx4isf4cEPFjt/wgoScHya7wOg/vU7DUEpnlBiel4TiBVkBkGGkGjuxXkvg6qjDBOlLwkOpnNDXAJM5B1Q42LZrHOKlg5YXafoI2Ynq+sUJ8V0oh3MMwnxvhFvFqStYGFf4vfc+q1o7ndWGpgigZgs9fSJa+ID10R4FGJk++CHkfDqFF4qEHOOgIOjChERtoQlTAZBxOnAfLcpsso54OKTFg6dMc3MEe7UWy4e0uXywA56JeWwPUfooKgm5vhyUC9GMMij0hZtIfBSr6p6SE7GUb5XPK2NJOzTrkcEdNx3HFIqgON3juvUA6Vo5hV1oOemu5WIQjzHmKSqlXyO1jOBCtmPkv6ig9VgitqBEdyjR6UuUzeYQKlHp7AZt8QispnmkBE0mM10bqtPxFymKYKM6bFSbHX7PhyRUBGEkJt+igDiI3fZl5XjUHLDwXEJ/uSmLirkOVDD9vz7qSXQ5EskMwE/+a1RMEkJkaHgFXG2mTmu/MCSQMCsTdFDzEE0hOgh5kg0hGgn5kDESSAN7ErJ5tBLogti8VMVlSEyRxhTCcdFoqi8pv7zepxmFT6j+9kA2/qquseFegNLAylNc/R7TkA1uFIWq6mppCodPkPIBrhwvLIqXmhFvF0Z4El7fc7TsKH+0hRZxBysvzSd+1tEKnOwBtN0N28ddNCBw+0pzMZtuGf8tw/2USZoZicksGnhK3DpeuFzXqAOTehOQ+68ETA34xmswDpHBpHAJSKq45H67FjlrlywzNR8ild8DQvScxykVgwA9OYQGGIQnnf6oFWEktUe6flR0i7/booaVVg5R+zSfrgAGK9xtTtLWxcupTvJAJDoOQe8IuqLNWByaRI9TKQXVGcSUcINHqzhpWoqaolzREVUxA/nyPj1ZRE6ZDn2E7FvzGCMaLF/6EUNMLjZ7yQFOiJztVBc/gJQRviBm9l1HaPHcggiheZipwO7PpJEENrZUNB/MtcpoT0sXjVvjMs3kxgBSTjU70g6FpjtQ5DLOUGX6t5iItLqGigjoajkBNnrnAEBTZ6BOQO0l5Yr5ZZHraTwfjW0xeb5rYm3+nha2tnUC6ak2SR8b0oCTnK+zuv5J69ratI2A+End++k+3DKXkJxDcsGcDnZTEFP0PWU3XOOsINNybdZUX+Xt7AvInEmDvQ5I0JlN5Y2M0A1Kz0N2IB8HsQUnM+1qNqyqOL30h8U34fi7Oe0FER0U073FGjVzQkjS5G23YEl1CigAruMFIYwM55UF73/zihxxdkkZGLK1oA/rzfpAjbwNzdrp4LEFRq8lGBTcg8EEvlNSftxYwbOH/HkzIMK9ZmncyKDlUuWKclzSuLMzmkrqTdjTNM6dOf0D1iFQyyX4AyXoJbjrzLINIcpSginvsDz5CWcdO5NeQlBG/FEgagsK6vonLFfuF3We5gzTaoUfDMQeOk2mQHiU352/8Uw+u+xDTDwCdX7NF6ywsEicFNsEueI31274mQW1HTaCndx5YSe9F2LJ246k0TsqeIcmaCSKJeP8w2zMV4/kzQiI/7XDz+Bv0hKrO+ZHX32/5sdi59zaT4glpsoM09L4xM09pvTVqbbjDyoLPRbWBN8Nyra9FAUGShzv/4HQs7nVBb9YLz9gjjmflEJJVjlcI3S6vrjE2Gx4KbpMMkUMVWjd5IpYoo7YjpPBL6bjL0ZgKbrngs/qqayzR9XkiSAbJgZED67McjYvVRZboInQsmGjatlffXXQt3RWHQV936JvBXW0UO+HgrXLveKACckeJdrODkgJCHFgzBXJITdmDK8Xfk1Fo1ZbvqT+thSfVuwiIreyo+gVyVrjR9x1xel8VwJ4Lv+8pUkNOlpmXyS+CEdN8BpAoTulDe6vuWMGoFYYomYK99a0gz0cImMA7NOa/fXC0sg2EyJ9P4r31nYgAWH3/lXbwPcxLp1BMO1ZE0UMMhf9jPVy/byW+YESddUWeMFUoCFAV3cC7CI6bFzkfScv9hPmU2LhtSS1bRSDImoYi7Us83B+0CVWG7QdnXWiOGks0ZAuDgOzhF2hhTXWA3afJHMZPt5JkwVkUacI0L8uILIb5mSuTRGb5dwcSuUxfQTgOFKZRqopYv/4RwFf0fWMsuKLreL+U4ynhbNKZE7nCOaU6KuOJsrTamljd/DVbHxO81JgUrmrXRFigFortl+vFyB37xOLXC8zP08C8rJmhfNuQJUnnmrXpcqvI33EZGQm3OufXRaLOm2i0Eq0UucFhSbySgNWKhOczrrIhs2JSmdjWmm1kyOEDPDOQpwxOULjPJ6KxOAgx4VV9irXS/KIieTUJB/scDtaf1RKFf4vfblHog+5e5dQ+lI3A7W/icjZdFfuSSSFna9r9WMbb249fDyVGWmThJFTFFHzGUcU8mfZW/KY3CPRBgvL8mIi7gj5gKEpiSsLDjrbnj4KDYoN7l+3tj2k5SQqEOnl0hbeVMxXTeX6ssh1Rvtj8HUtW9TizTfzBfar9U2NzE3O2v2IPEskz9AjDCTNz2QktEzpeufIxC8pGbKK1LM1QVhnTRD4LaeSf1gLH11GqqWxqZgEunEdMaI+xLgV5ficX5dvGlaD4a4WO5qjufkU/JLbyZtfEm0jy97U2cHzTsxPsxNn9/WIt3p85Pn8DSNv1tWrc4Qji1r9KUjUVl1E5wRKvoxGXTQM0M6tczViqTtuIE25E1HnzgVJpJaxW7/NaC+xDV6TghTOinfBsObYsxrTPU7J6qb4H2dKnh8jrilimxiegQ4Zt+Wf83NuNhSr361Qx5mmjF156302hmYFdGkTjoddyqmiWjYioLsjvScBFTtcYkovVQTrxdDmW/McA9nLKkT4CyCiLkHR/VmKcRzb7BtgO9SdiTXUVaSpGsrcwK6F/zAIzSklFJbOIedUkqUEkf9xp6VyXs9nB652jZ4cbJUfA6VlOFN3PqWGbTn+Lvkf3Bsist17kCVr3TVzp6XaxAI6tt3A1lgVUvbJ8dhJRtMjH+f4mf4uIGcC66dvqPrVUmM7unmaSmdCFfdkk5OGYHRklx2zCsm4LxND7RzZYHCNIULCyom3Ic5h0kX4TnB6IaMjyxJkC/YgDhqyT8aQSVcoiGib0+UEhNU+eYJrgw8cdfkbMLvYiqfWVYx04Fzuso7B6eQ2IY86vswYKI81o26bMYqt1T6beyipNjOOLgk3Wny++TcZG29yxc7aROZbCIUUlKKY2d0LUNer882af0GYCXfDaPaN3nboRZ01hTNMhQ/T/f2hBJZVXuo5z0kUAxf6ZOm8TksL+4qsWKkf53ikDhNYGGY9t07De5w+zZNaIxbMXYnjQgPrNjaTtMG0m3YbbIgfZxOMOv/j43Qb26Qu9/KT36OYF4qWc1XrknltJjZ/cfIPY3pfqWDyYSeMAL9VMb9HC2qOrnjBcXfvgjcwtUhyohjrH/vxE28vLUHL080jbCbnWnQ4og4R5D/KoU9nUcCn0IuGbvFBomz61k/UtTwjTe+1yBMSzenwUH1Ze7GIqjBBEE3Yv1EN3GOgCUjTIPjmuTDBeqVQAIVHo9x78dxl/Vk/V3qtsOYrCqROi3yoD4uOS4grah8w/sAkEZMJ59QRZSZxBHTWSwWT2Rs0iTjQRkx2j9zJlNIJsh9SkIVfkrmnPOYp3gdKzafAtkTO6tdR034Ly46mSv0Lg+QRUy7O8GEKOHGCsydpHhwwuAWt0tRVkNFWiZUuvqMPm0ok1Vlq3KoJBUN5tzKUa8VPG35jRq3Y5NoMjhnLDfsZqjDnqUwPxDnSW03BqJMoSmjDXUJDyw05548JB3EAyrwQ/eRPSAJ3FKGgO2XGgMBnx9SL0NKriYvF/e+feIOKcnmlBEYLMlHM6K7TF4Y1yZjh7xUDWZPaAdQwPpMnPDJL/kRT8OPVYKAjTicJoj8O8UrNMr1cYdm1aGp6mPrIwjd0iW4vi+zOeL+AL8vRyD/DM6ORq7Uico06TLfeCOHgb/FIc75VLKhUi8xR6wPVZ7OvzNbWOXpNDU10V7KNLgksR3UHAYZDr6zp72xxSUzeX1w/iZUimH89aQco/pMBovpKVyig1hfYVdVXuirL+MaXYCn9SLPn8hrhB/kWda5XfcaeJ6jbWACLhBFOMBG0dwPqaTLSwym6wyKUrK7r+AWSvnEzNSlHPL1AWi9xCCxPhhPSwwSy/0s+Aaqm+EQSp/SK5k7vAmQbPfa/5TJ8VKmOmc9fuQIAuVul3OjqR/ImD8tGnL69pgeH7ei7cX5v5TRv75+LR7quJ8ok86vnBGpop6jhdfueqGOiCjv4rqEkv8WWXnKfELrXyzaZres3OAEH/ey9oT06JBe4oToYG3PZdvBy7JvVcKtK/RxBmfm0DwcnJlD/Zi5iO4AzDeWyOT4m97bLEf/FtIAPCJ137AD1s3SiKjTZF+m+jI5qlPjPB9WIEAG+3cnCEyndEAsroucJG1vjujSiCIXpYrItnnpgMxlCgz8OWf+5ml5kzq03pBNB5NZ0rNoZa4H+bm+zcFZmppIiVruZ2fq/3KCCIz61KjvxmUzNcs2CHWX2FJO04CuLAKg9ZEClpGRvivkL/erMDyiR/upFL3AEF8vT1t7kwhAy6asj3N67seqL/Wh2NO6VZIycz4pb35TgYggXWLQWl+I+UwSpGvtmF33fux4RrkXtvNM26qox5wSgtrzyrihH4FsKaFIG0gxZwK9ofRVgORb4pxYhUi+leQX3vS6Dhrm+0oAEEngxT0Z+cm5kuFWXskq50cYy/umTFZM3rnwAWbyMXNslhBUqyBNt2aqKnKXv6bXRkLU+XepBcu+JGBhlfq95lDIuJbVaP1nLIXcez7EmZYoI1Zh7aOAiqQnlkmWmWQ+YYUt1f9eBRUIV6l6GVYfXMoQX4XVB5d4MVYBh/GXww8GaMklkH32TMH3srp4sPIYPeLwFJiFI2i5Xz3hKjVz5GQgrRLgBxOHyipw662iYkxwFiTFLGbgJ2geX181EQsqUKTERYTXmyn0xv7Hf7L8lHiihFfpnJzipFjIoTcJ7vlGAWZ5mWKAW1vJLulHhZ3USyJXN3UXGHA3c5DXayK9/BWVxUNWuTKI0lRZ4+eIgzj0SnTkrYyr7Vk+ToGuKcBo0yqqnFXmyx9OLSHzLTpZTIZgO6sAE5VuHycl+HvSDrxYCfo6tXAm+zrvPeKDJ9g0eBNvTWrKBAUvFqmRl9gjFmsFZP5rqbGnZeEhJwuFWCl8LdtIJV1ajeeIq2jpK6xcRRKXJWCUOxmCJjOuV/69+d23OsbiGJmayZJHpz19PgP2dGokK5e3qiAU8BYt3wCUGLPKD/CBKdMrKSIq0H/KKSZ+fRXJlRKZtz3JwxnyXMkYEWw7903vV5SELMZFZFpWlotoa34xE2q5H7Dgfz3+jgDtmUa0l7B1ypLE9iv1z6mL4vE1XV7nqD7RTkC0BVZZNfb3jKlN6laqzrUq6ItWlZED47VnbS6nWQkJMEU4BT/HEnPEqgWkdmU9oIz2VjYG9wN9cqlcOUF+mnTnD0hPcUwsMkgsMUgsv0tBH7eaXi6BSWmWuIsK9NvZwK9a+Peiw1atHM96W374V2C43ATFhVJDyV5jDfFyPh+JMEs1bM7R4v3v9Vj0YqRYNZLPlONM7teVXBCVJUvFeWyw0MQesSpiTBnF7KTHnz/OoaWUwq8A4bDq5TNaTiIR3coA0nLALkZbW7+bVTGLq6xRHx9snDLpnYDOP+3ZzfSKHZjXpdqmq8bWn0EeZtNIe6sMACZyHNu8SsAvcEik9sciHyvNrN7NbnAdzrMu3MmqlEpikFgVEaalbOhFfW8UVUML2Jcw2B2h5lXvfjVA8JBZIxXV0pLuMAF3K4vP+BEUp6egT9pLVSKwhr00c3hRGiblNY2yqqoj+Yw78nBJJATLwm5XBKixsvDyHO2rvlcKJmHBV52/c5Tq9sU/xcuuhIolE+aST3HV0NdrUk1hX24qmnF+H08xt2D0crZsGbkL5BH5ZqRmWKKCOEfGR6rT8NstwVlWJfBhXc+AM0hgTktdrZvFRTGZBuiS7goGP30GxBPHs8QBsZCxYhkFroac8wzdkZZ6VQqhUWhEVemCFdiHJaaJVa2+giKSBK6ebrnzWDq/uUlLTNUwSUUNG0viEgSvai/Pd80STnppEtyvqmVO+ojTstRCu7Om8DxNEQtTQTPkfCSyxtP4dpx1HxMbtNiYWgRNTdj8RdaIJR6JhdBXN5HXxFRNbZ56W1JEMFlgOTnCRcksMjJ5Pex/s0rPb0mfRldci4JhyIf4SvZHxk8rCIWuJgvMSSRijok0YzmLROyb4iZZoJHwW1JXKcjzTOFPKOsSxuwcvVmYzKlYSRiB2rpNr/7x1SWcGu2lVm8XwKuX1DxPwhGCWucUSYPGGShyxPBcNn0XgKTOv+puA9VPJkp9v3IrK1msJodEo1QSD9JqKZUUT1wtHC8qTlefeXx+RIbQvq8IxEPu6hyyRDw41Bl9kEkEwggBCIF4U/7h+TlwWSvKCoMhcfEOW6dgnxenxGoDrob0PYQSWNstQ7ZQ9FGFk6EU9OsHZWGlJU7E1eADTwMGuaG5QZNFbyU/RNBD4np9L0oj1YFwGn2OtdyIbRbOZNmHDXZSzuwY0aoU09UCU62S53TmneZETXC85adrE4hWzjvOurRqa8St26XMpYe9aUMnX8TKG3hL7HZyfTnV/BPnA2WDa7E6n2NzZ9G6yNYZOE673uEGij4xthZ+/6UJSjkk7ojVUg4J2LparF4n3OY4jh9LmQ6slXBCT1HEY+7+EW6iFEuNhMRXHLYcasHlWHr0tKhjwTueDE0MJZydUEMTZTFSd1WnFDQvg0v4SgBaZFlxooTDdyWNczD244rbB26p0gadIQLDJQehp4ZgIl5axY82fJu3CXDRpczc1UMiJUov5eSlcRj0iXTREiHlsCT6qLH+YYY6c2mpogAdZGKPWMkVoYzC1VmafXlmmzIKVy/1kdGe5v8YLyTVXSKPWD2cLwq1DeZC3sdihji1A4GLq6Mee8582kuZKnf2sp+KRD0Dbf0OH+pjrOuEODuWM9MlXwEJTOvPE35qn62EIeWuUmnUdmnoHVj0S7gwAjl0M9aimze60RlM6u1JHlydAaUuUdEzoCSmitPEgFIPc7Qtto7HgCD/rGKg5+dFX1yGnUHWtEQIsZwi4uHPDuTgvN8GESWqNZP1ZNb9mdNSMSHnhYh30b5LjKRMsTEgrim4AstaBXxarPK7RDi1ekcuVILBYJV3WWQoQZDFQULBrPNePdjFoS4OdlFmVSeZ0eqSfB0Fb1MshbGdxeO4m4iQ4RwF+j9x14SELBUvO0f0OCYKev7AJipjLl2lHXMQ7g4xudyvs5r8RQyXls1b7H+Z/S5bIs6gBLKevdRsIddD+jGh6MkL4RAIXCFh0BeHUuZTXzmUR9HhHF2TM/epdrKwBXapUB12q5jm4FOewiAXCrsrsTtgwUcpTxfYhwJcXdsGVbt+997NDsu33Pd41UEEunsiR52AjbcQS+ECJUTR7sRdIFMoMhF6XeWr00zqd2UabZB+Z76xcluqEOHhqsqmg43h5w0w6i6A4/qdJR+tHzE+tNwGJbXgclCQhrywKxkcwp2QNEhZLW6J8WENRJPESsqNNN1QDajqpeU3gKI7/w61QFcesjHGR115yFvoGRuYMzIMQQzhlhm+TI3N6NIrj8J4hzDe5wihr5SIKCh9tdNv97xEvQMvxBKZxAIvREuWBBc6vMbiMyAXJqmwJ0xmtxyftPobNCNP8hr1J+9vCb29Bohfz78aDObVLrFErFHfPLBCKpE1HpiDJ1n+/VJwSsdRecHO6jhLvBFrIKn2bnawdGUlIEYqJgZyU57mjH4w3j5+yrSfPzmwMrNG4/z+R91tuYrCUyPddtApLKzZIifEl+5rCMMETyQiZ8hCGiAh57BOGC5JncRQnwTAoMfp6Fmyos8fUPmG5N0gWdESwcUaJCs699QqIFnREp52DZIVLUHCTlOD97HfpeEgPA8f5Ft5U8jT1NpIAbdEDIHcigyVcb0qK2INFJ9NxjQkiTrgKC06llk//+qSiU1EJU1OS7hLkjG2cah40z3bW7PScR8YXNm+4A3NDzV/dn4/z3g/PW/BMpFbc3ndU4z71MCAbo9rBAUdu5Kj1gBcPMsTVHJurqGI0gACL23wwHyM/zKLB2Xf1g04IIIh/XIQ83C1o0HMg5gX1qDrg0ublR8unx89dCJ0WCPwd/OWVwPS8y4BeFaVT+1Lm7fYP6sPMLx1HVSDMLwlqog1CMNbIs1YI7x5Pc2SzrTzFHWDnpBxd2lsMRzkIPC4IKRUQZKuwRbNmguxOIYlOiqjakKmXYbSb262ZNTumyB3WmJpWs4DUXBQ1BQ+OgVxWS7n/Ksbg2Tdq4HrGnhI6Qy2N6uQ9Y+Xai5vmoiicjg/+Q6VeMyMks3MY+rpiso8KqBRzwldN+CLnd1jl8G2ma+2dRrDdlNi1hkgsOVYU17imlFZu4pfBd9jXoGI2nY950kaVlPiaYZTWLW42uxQEo98U/lDQ/LQum7ZtOCn7JlkgMhNAUBxS8RQG8jzXpr7awb8IZEuiT5JloZQXEQblQSW5+emy/lxFTmfBIgv5eyvGWjAM1y56gEB8bBj5wn75ikzp0xD07MkDldLz3HQep2orp66T57PYALp+pbI2uqe7LSE2CSpXsrFVsAsTbEWeyvuoXcKX2BSzY+NYh2pvyGtY8nIPUfY7Z0YQlNu5GrqAQCebKVJep2pALiWLuBsnUiVLok/IOR7zXGvCVs/o65JJkXxIw/gZHrOkUvGDmpUZ31qVJId4S6OCa5tWaRzvsik2FTvqk5fw5xPsvWaBO5NCaCJXNtEtZRIo1b4fTOeqvTfc8RhlQPQsfEYVOnvmbhWFYEh2ZGK0nRqVx46l1oywVc+gph0J7A2iR6AMu6qFB+joeTDlRiIKcNq7uyqhjDw0SoIzcX1bRKqQcaA7DC1byKqJ4d1Bcxtfi/V5ZARNmkxi8JhTRCWL3FJrEnC8jUlHScJy5cYLFZQP9SYHfdC1EpZYrs5TS9ojjQKa142tdDZRWHG8eSczvoepyF7C/qH3KpQwznRQgQbLYmmBYqifV0LDvx4fsZ8Fw/oWgQ/iDjiHPloKrkgjbir29AizSvqpL9TtA2L1A9JvMIIbTI/tA5Ek2gjXLH6uIF8PHXoVpM3V48LbDznjVBGyXKVvqD7GriAkQvUAlLskpANYCezx0TiiPdhkfdhLel4K/B4O10GgFZm/Xai+TK+3tIXthRoWsQ8ONFDJqGvVe1BiCQMW4QKTC1V0n1t66e0hzNLeJ/S0Zz7n0gazhFk/JKockw6BkpBLM/Oi6kukou1gOlIdlWYx0oSXquztkfms1G4aMtaC6it3+oaTdU1zu8/LBrf63L1X/nVhRBfRIgvCavVye6T9QICvJ3cj4wFi17hHAXmuoqBkuqhJvoCuFD8qkdlg21R3H+RIJ1jzvDLCvSwBpeQ8AqLpQRPH01NEevfXIq1szZB9q+yNuU6ahY9MAuOvWNM6JxCjeFC2+jfXtrmF6X6kjNvTdZmTTIIIo3XLY7xsaLZJ5avbxLRKjaH5QwQeCsJqrVoji5nUHLHMSFdzgURW+WSerIA1PukEPaee08UyCCYrYNvsWV2iJNKxpfq/W4KsWu2xm9pldULE49JHigNAFERSzKHjBALpO2eVoNNJENSopxYCCgfu1iw7fpKl8R4eNrmYxKt/bLKjMZ1vVMmxAsVEQ4v33+iP5JIK1SpnRI92AAuLUrWsb2rOr+pgkPL7v42wF0mN/cCJcRjmrtTkjdQD4wrTvZXUlGfA60qFsJd4ndY+yNDgHhlN+Q7lzq1ly2hBEKImiD2UGKXEhAxdEkHEVuc78L8lMZqhEv8D+cIY+kJ/pMtQEekWlIC1q4k0Qq86ALjg/d6pM4g1ohz9FMgExjDMe3+PjTcrb3Rcnfm8f7qIsNjV1HaXG1bYm6TqHxd98pGvislECDWUt7p5leQP4PCWxi7jRKDS2QI7RuAuPzj024372RDarWbMrErd4ErDZwTIibBDnG8N1u5BWypFk4NEdrSkhNgN/qlpibebnCmqO73B+ut/RMtFfXDOQJjLaWPE5WFo0A7ctncAra2ow2y8tOy1QLK0Uw4DE3jDbGRKmB5FrX0443kp56GlqcjB8hL487ZldU1et5EvafjzwkkOGHT8bflt9pIecoUFN7zFuv9Hggo1ON698tNoMQWUGIPRCaufIXemHiD+V/qEGTVW+L0X2Q2X84BIda8tSfHU7rxnuVRywHBPBalbjOBfOHfX95VSgCoIbjVtHLRB6w4ck7QDEReU3qGYr3Pm/a06fvYCkdtAiTEG+EkQhzzWR8+oOV6Iia3rNjN6oX+CZ/66NGlRBoMeiDoiU9rfctdh3JoTfGCQg/ON57c9CyrtpTLf47Yc7l2N0TUvrUgg15B1crl3RYH3TmKHSr3isbxTHsKeuhN1HDSXN5BX49Ovxtc3en021cUBK48rRFQ9j/WCEgilDBNZVeUD+cI2QQ5RWKIHqWb1vRWGlDLO2iQ6fHb2lwMCU6qLorPln3aO+z1W1Tcedl4BjNIJkGv8vWdo/HClFDbMoNg9P2bxBOoIY7eRxWeBOJLnA5HhGMlmTyFllAJUVksXwOYloLcBz1EbLjSXiwoYfQB6C7Rxm3lrX7Oilv5iVHf4pyzdTZWqEmOWQD1b5EZ7ErJ2NAR0m/P2PNVtTUa41EmK8sqZqYMKw6/cN0dUP/fuLPIezLA4LQM13tgTG4aiQtqrIaRD23u4+npX0HqkrX+k7r0uh/ogDBB8gz1iJc4I84R1CdxRixL2J7JKAT/Q820MLMwUsxuUV9ONs0t6zXXZjQ4PEA+QzK7rqR/KI1YFu0VGWa38D7l3m00rkzGlXWUXBVFy+cs5smBPh8XxDkXoJuVvQ77Ph4i48si81buVQZyLVX8UlRq55fwGHfRaA12U4aWjRxSGVpOyBgL4/rkoDNKweioSZizlkwFy5kgct9NnKi4Hs5RVKZIgByL1R0dhz5hOgBE0vCxPtUySRgjotwklyxUhSRZnFxwdOvtHaT6ShHtjdhbEyDC1hPU5KYtLoll63VF9vKSKfivXIzrns/+KSzqNBAY3rtUNrZgWjJIfbucSHgD+d6cidYVSrHTnJb+gH6q/fACFU4kyRQwQJSEXgl04RwQg2dgh1dVo2WxhSciTNuYCuogStFbYpIcbMbuSRwcEXShWsZkE7P27ikh8dNNF2QfAkuB2O+YZ/dF6NYTtHF/H3d5JV19X+7yaVXsj/R5y+tfP/b1+YF7vc17Ll2RyjjeX5iJKpWdEbbELEQhqh3n3T6kF4VlROFh3OmDCOK6+/1QJFkJDSyOscVLcI4anlDUTXDpnSeZWh53ILmldpJBEA6YIWWEAHbSz7FyxhYzxAYPROLxoTAUz3QDRowyaosYYn8xaaVJk5lpiw1ifzCbtjS17VwQBT3XMASTZQbjkona82dV/bHAbyoNkSbJFh3E/n7QEfSFnlaC2UC1lpDK39xs0o+fk/XtG1+k6UUgkbbymM/RvvtHSZj4x40zHbtj3OkRqAhXuDA9OmpNK2Zcc3iVnAMmiJrhfcYPtrDL9Ehv54KgM2qTDWI7G4T8QtsZITDqTTOnY6/fLkATt7jBDqEYzUjOgbwIDelwp8awhfTa33hdk8jcVsh4f4PjKjb1Ak6mLSKJ/SHqlEUbOR26siO3c0K4h4DTlgQaW1Z2W4srcz7FUM5fgEbk6jPj9J9PrMRTz6I7Kov2zZyvA7Y8TJv9TRBqLc19UEJTt+gkAdmiUNjfgm8nvx42U9FVobzOujNusX+XZ2Rx9S8tJoRrkploItOa63tnD5a+XlRtzmk/4BI5zaKWQ53j/WMi7E8SidnSp0Ud2I1d0lvuzvHSWg1WiJhpUzvNRuWcLf/AaYrQSZZ9jKDCpS3ZXxRadTbLtNQAqk7Kh2C0is6lf21/rOyUu1EHJRINtWqVk9c05MbdyjSdI+kp50ww9eOhFyP9d/kty3yxqSQ33soA3Ey+PZebWuorA6Jam5BQNGp3eaiLduGaL4KXd1TW3iK0304HgW8g+eii/PLUQ02/lpoXsuSzSnlycFFhK5GeVE3POTkjS6GKjA739V1HHgp3usM8EUy7IB61b7mdgnjUFvXDLsDLzk/E8huYJPyZQkx8DI26mCc+5y0CFJzJmeTnylCH/8waHSUtdNLKb/E+7AJYxJYjahdWyt2l6OOxUu4u322KmNSPo9OU2rILNIIquvvmaKh4tORKCRif+Zb0+EdehlxIAbE8nCPi/PmK/JLpmysrH6HJAD7y86861r9nkEm2tFP3AbWeqRp8RZh5i/Zho+zK+SFZ1eB2rImDDOoFXDJ1CT9913ukkBIlxTmKMGTqowWu5Qs52iVqY8gdHU4PE+Tv/AwsamosuemLIWIX1MbYIrbcJSDg+W6w++t3F3HIp7ttxxppGojJ91TNvIJIVBLZebLnVRsCw7mVJruJYd3KfN5lsn9T/UuJVKL4RTrbTvvidBzq6wTWaJd2myw03f1tDZIHokKmfeqHh6A8qrPvLHMfXwDtxj3rKNIriBz1wc5kc771kXXDvSk+Suq1wbEq9B64ZZ6H+HDusu8joOgVCTGozbfGff3Robjlqg5vgbfhE3Ku7s7FvjUFNod4l0dlKmGpZ1yMm3mTy3UXSih9+pH31Ze31+08f4Ao/usPiY3lxJHsKQC9beWybp/e+PJbo4EKGSux6eRN3ALRdKAvu6iMGY3O+VwscOdSnANWKHDHrjDm9xXE9aO4kRBzjgh39RCdGdgrb6XQLA8Cg0JbrEgbMiZVlkTob3FD7Fr+pSvb9BfspHrwKhh/D2H/9ywwKoeqhbQrgrW7ZohtVyDLt3gidmUG7hbPxWnKvf7yfBTs9eIfwZMEwAcFwQW5z8J3k/kEm79KHPYGGrbUjhvjHVvsD+eInZWJVQOvl8jkxTqUqZAXQ/jinKYRRUS1yIMEKj5Rijej3SmCiE2+5p2UEn5ENa9mTOI0Dd4nYZjwg6V7aX6dc0mCiCnSmSs7PxavZShi/TJoAZi4q6RDzRumt2rXnh21YDPDUoaJoCpQXk07vkyiLUfjnJBwAj1EFQIV8K+rDVSkPmVZGRLM1Sx7VPNTaycmQcQWQcSuhO5tJ5u21dgI5N6t332aQEm8RTGywRRRMjE7Mh/87yQEC4AEnr8zc29XMH19mW+1AUPJN+AF8ojUyQ5PPRUpFG5O/Njl10cOG8arC+klEUg9/2oCR3ZupuOOgCFfMihs31U2U11eXin1kAoOwu2kEL+xI8V5Nysib09cVibfrjSdVMBnV+ZDbXFf7BpwKhGwh468rWuyom9rX/fWroukw8ljAQVlCxe4a1TIfVTtkSrsJYqz5Fi6csJ/zl2hczJJYNXNTUBiDoQR4i0P4TKjDgnvGZiPKa2nUh0TYcRGlQVldTglOs5IedTr4FNliVfLTUBSrRptvSqBDeKIJBUAp7wElv/84wVB1vFulE9J2r7FG7GJh/KSS/9xm6SG21TS66Nd0TJett0MKDhIfz9oSTPDHT5eRwB/uiQk+rg+k/aB5CLjlABYbCdqSEjqYHWunzIlfkpi2REC203SpqHQ4Lm5HsNCg+PTTtkKx7VJR/OoLjYGu2ctKHdihHEne6gdNdPlC8q+pN9qcHY17S4NvGPSaduAztAGt7e26Dls2g8bYlFb1BKbwaemSqptxIYj4Ohe8JCdM9XX8PLtxS2H+Xs7OV422X+3KCS2U0jguRq7VvmdqwYqsPM7K+e4Q8Cn4AANR0BzOX+khzaScyerwAbRyGknjqKgwOVpUOeZr1sz34pexXRkxai9QL2kijhnaNACZnnJKlgYWB6NFirFlH++0zW+xQyxG80qMVLslmZVuzM7fX9NFiAYJdLqIdj7tOa0BVFVl6VCMhmg7zfZJLbYJHYbINXV24ZpdsN3uyHKLwNjEpqym6QHGSW2GCU2K9KMBOZEBDjIHvBqu5B/hEuCi2+2ywK5ma55/tWwTyRr02tOxiMn+IaDYIBQV9TzqO7t/umXE+9y6e9GLVwUEpukErtpANvKiSqZ20BJmlnekeL3pIATpnROG08yYbKh2UNZFs/WBpz8EpyIY40nOwJva4qx7wbY+RZnw26bc117NmK4qR5WVGqjeOosl76TacKPXsFKL9pNrtoNplQ66lrjpJZwagCdb/FMnJbC0dskwd+NoPOtFIzThEjPFgHJBhlalgJfnC/pOqYXP7kkXGVEV+TCRs2lfQkvYp84X/5+kQ5a78T1b5R2YKCReWFdgqkD0LjlE9qeehpvK5HHQjE8IdKbLszy/BrkiUnQXT7Q728RSGxke0kbgNL9SY/uIROEjB4FkfPTrk5SRnXpWZ0yaiuavgHL3YkDb5CvWQ3st1ggCaL2tac7EBJbztTd6zuOBC6dVn2s2E/z01aqXl1CqVMoiXziHI0nIFbnBpXIvWDxFgz71gDZvJIiikU+OQShzHTNLvJI7C4JRQ6JLQ6JnRwSp0kjRw6J3cttgisryTmiJz2rQLdB9UwVjM6Rf9YL3LJ/Sq+2ujnRJAY6ox1iodgob3g5S8ev67TDkEplbX6ANp12zUVmQWXmVsMG7R9V3Oo7cmfa1+5t+elkHPkeEj3r63HJ9MFF3+V47AP3KvbCrV5WCoO5u4WJdhcuHid1GBRte99Yejhh08mXdkkfdiufsPLxFtvE7pOdlvLVA8WnbPD2JgCXZIWRq4/5UakYUru8X3CzGsDusqY6o1C5KDrwnkNIeWSxb+eSyAhhX+ymM1IIv737ysGVXOyLO2q/S2RxRxVBxHauiVA6xV2wg2zC7a4mZ3lntabMrv/ejXemaPOca41w/UAtIcCyU+gACClWCLgYUnMeXgAzrpBs6YxQdcWsehR9asr7OWMUTuK0jhoLKG9ngNCgAdiUHoNwOA2VgKLYEIvE7vh2mS5TOb/lyevGXeEYTpMtuStIbPYQVRKLo5A6nZnxud9JNHUUJuHv2EDGI2iyoGqqeJRtInfY4+N+IKAFsTytCO1YsEc29ygLBNUKdzlxR5wj2tfHiJF7w0knMKE0VQbINIrQ9NZZ2iSdMy+NQ8bUhuTQ4GIWJGnj47QW09tUiOoWn4dLeItJYg+AKJJMx1hLU9bAQKLIHtqdnb053ldeRGRcO4AGXwdV9wL3wr95hYTRqFQARShxjhou4rz5QOLRFAsbcDQNSo6QRh4AHqld0K4Xw8E5yufqbSrrJtFlsaKiZb6JtsI8m/bqkOsPPBP1U4y/wdDTaLIgIdVDcgafZg0esRSj3UtoogzJzUGq2NNdnUWq2POt1TswTbTMascukswSwZsZvnwuoPAejRRW9NgmtYRNbh6j3ye+qx5Fqpqns3T+nP4qrCgirPaQ28/5JeJVtYeDDExaS5moiiqWNdkWEEQEBQ3BIwYhFOOO90AnsxOcIgxA1UXqudBeYJIOWhz+KriZnHyklNjXheeUEvg2EgIDlHxnccWyDoGrVDAYen6SvneoAInUowl3WvMdB0dNxhLxYMkeAn/PaaVLZfyYoiCC7Z6xwq9Cb5BCPtsdyfFSq9ysx01WiYt+2BG+FwIDLAJtP93ihilxNCLWcF0csRSWcrg3aCVqKt6bfOtb1A7nCDrq2Pea3DhlwI3NbdOJPATVAcVETYKYWMe4eSYWGnLE9kgHQk/0f5YiQKzTkUjxN4QrAXzxDMZLh3x+A1GpmxC0R0alnveGyy8LHNDoUUWE8ztx3EnGQzlzfpAb8IOlz7GuSNC/5TtcvHk1tMx8fhlm/GqsgilMxCRuQkwU5wijIyKKjXzjm7PylazH1NKxT8NeTBJRC8BxO/djRT8z5W3Wnztukp/vKdNqEtM3yz2HA+o8EpnUv2fJSSB3X7BLxIao7TrYJYJjqN8H2KNWYn+/4OQ9OW2SScIr4j7u6EbnRhJEbMTzUjaCjrPKt7ZZ+22LYmJPsMSef/UtwBKbGRMBX5hKMOP+MSUKJkOI6Tds/D2Tt7Aqp6JVM3Kg1iV3iS8kI58c1+e0qQvYQ0n8mQJJOzG5czKhHcGo0e88CB1wfipgR6zLvN8BiUc1VSSEPkuiolmPY4tjYjujRHTLPQvMet4s9jgUIBq1sZJE2vOjIilqO0PZtZ7m+PhOEkZe5TPm1JRNOAcQSfpYC44+fTsox/2ijUgtwR1iziA2asrDXgSLiFdiz8Huya03hz1iPDf8JJYI2pKnrHLnBKEtsVhS4TRoqMk0kWpiFotQqAcFC7uJxpca3pzq5GQnZWtNpvDuKWk5Iai4lq2zbt9Y94QwT2/clM65KdlEZokE5Ta4ejznJpXXMkDkmRpCG+QPn9pz5srbakQXXKciYNiTCfKSZ1+GrjLAQ81iynYCu8StsFYAh8ucIqhb9UaV5s473IdyZe17Tq4sSTxPGMUsFLDRWSZiZ5tSOqaVd+MKznPlnRBGctcvSh7cMMg0Lnq794tIubI9Mogk8ggFkWYEklNtmGFGqbRqZqeN764YmFHj4qQXic3PwacmMHek8xf0HxdPyuLi57yhK1Bgtye7ISHRX+Yo7L+H+zUCgFkhHbb3dqaI6wdfJZ9gChI7ksKiLQduFcBm03eLVGoK2ghcemkrJfsQJX8uE1KbS0u0FBuYKakU3wo8R85dp/THBTKLXLOJXsmbsNJ2ErXFdtKJmEXi59grSm30p752dC3VddfOLjsNa2idn+m5ykFTqjNLlW0VgjiiiDVmlJVSUDZua/s7R1m2JzGjZXEmZwy8/OTAKdnz3gHL6hqkq+VT9KopsERWcY7sfQy+xEL6U3ztnlNMjmAmiLUkOwgt7TqoFkqIbzFLOLAMHbkFJcIBOLOCSduAdCSJUDhPrf6zucU4d/WTAYQlObXCdAvSnn8m2jF3NAQ/eVIZxXGqCWizOyfiuFdAwMp22Uk+sUWUuZ18AvNKMtIjl7E7LSk5y6nOW2wPupdTnffQIXThUQcLnG26PegXeO+NagfPbUOvpcaXqs96qLnijWRqLTg/k4853SVLAilWxM7g2E+dms5T1X9GW1ViwyOoGK9juk22jPcmEdpR2nEuoPuuFFMK/jMUJO3Zi3yHTmRSBvmGEhaLwail8NTaNFDXzQ6JmEtvUih+YEb+e6ic/eJlL9HxXsSgLQWbwCfRk9GlIkJ++Xdn5UhZkcNw0cMnuocNUglx6KShvlQZKNb9UuYxg9IildiLCV9TvZ6P0EHFmsxsRoyniINhb2LPtyTQ/rKHWy05koLE74+RCcfg1kEgN3nbexp4CyH1o8VwbfXBTy1qib2Zu6tvD3U4CXA90oEr5NpzP73FlaYWePurquABLl6lT6WFLS6IvQsCz9qzShLG73sKtlNRSuxNRqRz0NQEBKhIcgJ5egn4YAmZhM+mVrrrWylko/6lb8IEU2/oHeVu3OSa2KKjcPRGvCXnUkV1zCR5qJPorS0s3gbbtnuyEqw0UxDvJI9yrGA8R5bWTvCE+Cl2cEyUaLpnofDnFrHIaXqDexN/UY9kKtZu95aYnGkJOQU/e6YPDaxITpaBGmXUZbmv7GRS5cUytDaozs+/mvwsZThVkqej1hJlDstj761dfzOH99Zb/Bj01nb4Naq7W+6+TXfflixzdwBGVAiNHZj0S69L5uG0ACzDD1s+vw0XIdcy0IaXeu78/FadH+RGuNOJyGJxkW4nl4huSj3eAOaOpFLrCzWvlDCS5qwYJvYOAasyyhPaUb/RhE1VyGkiZL462QTGY97+Uf3fEsx7vbnxcyOD4w7zQs3fXGudjrkjH7X/7sXCAfmc1isKuqb5k1WBUzwlhsWTDO9dYAWKFWDvSIDOqhrQMlqVqNgB91OEGfLc7gaWM1021kZOb5ZLpRSWNPKaT14dIevgEVwtPkO6pO0+n0Nxe0TsxJZRthM7se8UMqjgWZR6b9JD8Peem9kVDMHU56pcxnVtQq+9YnaD5y1TJYCpGlFee9MI2QQwCc+/7WN/JfcMtH3lhZA/C/P8Hpncs/R/yqWO5xbYIe/2bLCmVLajgGJs3PQnPwebgFERTVfG/Z6km9gXPpN0E1tUHTvpJra45nbSTZzPVNTEMKqoeU4TOHsvFU+Iv67KIdz6RCpxjlAIiJ8pfUp2ocNU2E1WgdUX0AAI73WMnJ9REJQLIIiDcUuNJEAVjPBHDQX4b8Q74QLjmhXWYYYsCQSrec+HeGJ74D66KpiEJ1RjbGVZg31CPrXwI6nreGzC76EKi3Ziezjnmn/IQZa3D1EF/1eZJdgA7fYaOVNJzMikhGTL9tD3H5EJOD/lr4gizhEElTNUXD8di72J76HxvmL/gxrZkgSz83eKjw/uwO2T9hlMOEGzQkQN70NCPJ10FNfIEHLSieiaPNeeSIDBlySzQVCqM3ckd9VpfZ1EqAQvfyLBu+ckrXf6/tQz2G3KzR8Mqpm8bhZbwMPtAG4cSTNnaeUlmqPMojJJHZuM/uBr1UgvveEF4JD3vZ4zVMEgi2ze9CF3YJVu7v8Gy32/bnijOSUGinPEz3/3gASlK4fiNMU+lc+Fd/yChw0pvVlkZaMcshzBGEpt80ZsnwnJZ4C1N2HmOjLA84pYq08+kFFLtzs0BKObYlq238rpTBvYolTqX0PJ2hvBhHB5Nh37MbDmWMxxwd9jEGZld0NlspSoKrZlWMoUHHHaCcxXmaRmDKEo6Wab/SpQiDGLDju2kSOkqIwZwtvmCYJabvZ9TD1mjLKy7FUmvYEpiXtqz1sOpfmePyZvm9HID+U5zr9NLSxydAuRjMdPXm3yxpwts8MJaiLFtCTFfBh4g/Qo8Y+wUS1j/c8d1C1kT5koC+1j9pSJpeI07SdE3aPmbhpbnB9HXH4p0c9xeUAfGRISht5Y8N3kYTUYoG0kN1VFHWPPLMkx7QOMHZZfxY84pulwsQ+hKVFFQmcx55nI+0Q1m0sbFNErZSDZBz4w8+mD2CbsePsE3/xCLmkydBTHUdKL8aHNt0ChSkmJY0oJiI0+Ot/U+WYceeXDOg2BT3mTHDLwUDje4we+bJ9KEoMMJyeJGwF4dO/pKD7H44YkwLYx2/OICKRmTkHbeYOtEwx97/oUse3sjPHAPe7NT97E4wnDqNeE8Q6erFk5OE+HZuWYP9ZbQufPDyLRg5AwsVPYN3JAhz5esE+oiiyM26lonH2I+HqSLD5/IzmfiRjSvlhkKq24sNmp7/Oy9bXQyy8mzIi4PP+qj5NDKeAniCYsUzaR4JkKNmvTpj+2crYu9W1xuq767mcY4ayo0LDTJHW5p90ewZcB5Fi7lpQQHx+gT7+5YS69AVj5TIwRp6Vy3JfGfTdO5Hmb4Iewr2sbcPBEqO6qmhxUE6EClXt7z0DOTM4GuPZp/XHMWRJJjBBGPcmso8xqvICpIwy2cHCY9pi8Eg5NiRuketL5CU0fzLiHiov6syR6beRq2l+2iEWwcNj0quX7OGyqC1o+Zp+naC2kM9R2Xcggy8FANpZlDS3GYp3zjywO56eXwqwDZ2wudX7qm+1oXHoKZmmRPCsFlANcSHAcd14A+KSJacLANHG9bxPMfybiCCvl2ZEYa2/CHFiB0Jn29loCqhR2uGjg6ocOa9aUCuvDhNA1Z5qISZnVgr3J11fmImP4VC7bf4bZbNQzIf36/V6V71XvY/fj9UVM5rTSZ2eroy5aspp3+HlNYS0jNtMEibbCYiLs9OiG6sWXWeV+Xzhf/Bp1qLGLkjusB+8+F86yvTCjC/Nw46zO2SnaCWO9gq3UBXeM/F1K+0rxm/HGM5uRE8Dta9HlYE4rcWlLBoegq4NIijJhr610UOGUy431cKmR5UhECkaaCW1ZAbX3RKXUWAhis4syKcBq1nTBd5TnyvwHMt+K98NYY8gSLOZHEPBFidol5VHp+paTAt6TZNMGMyediK0xtm+nAinxu+HjqowFAAumep2B1EvWWGQgNO3cBfBzU7TTygR3MHUSMoBmAtxXuYozxNQWP8xdDkiLMgVHraCwRqOVVBuqQ7XE3TSKDymHBn6JmoTmFX7amu79yrK1JgoJK4sDK4FTVg6sBCF4JhK736BfSikyADXT6eoRMLwrnzrG5rvue8M3+cSj5n5Huxsx4tPpPmNwz7yImhKZrWzuo6KxKrFX9szT7qjimQ5FbEAqSnbO5jwNWp7Otp+se+B3+t3RkGKtfjWYayYmBCvG8ZREK5bjKSFZv5yoTseXE5VlCr8sMEIWPKtiyIS7I7MogacREbJVOPbMPUBXXakfOO4zE6mG8tyU42oVPOcmcgGrWa/gSa7rWMIZIFuFZoeYIs7RL75vMpHeRDhRSbJo7igSJYFVYvxEiulHsbyq3RJAsLbOvwn9IfGhqWirVbiZkqshCtPcUAnI64vIWKzCkWs1olKg4TbwUPTMnGoFzMMycMJ1JNb+CoSfiZTCKs2oq8PWuvl6d8gr3PynxxrzBpTPGXzd3F18LXYEdRkWVbI1LGTUK+aNbLh237DxC0jKQIqkSwXmvYr7TUOKjKVDzY/4xWRq1TDyq3xwH7k1z2Bnvjyov86fJPeLz3JLFFvtfIxEUEWh6EuadI4mR63fy4IuIXPUYzU3BTetwnfwqdgms5JMzBPnCMSgPRUCL0P8J5IxfF3rfUrBq4NdlfFUB7sq6QbU+tpVLvcs8ojbMkJsCrdYDbJdlRAB2saScOIlbTmqNjeBqcdNvtbUayGLdyQs1I/42W4G3MzxlEVXSZJkIuIwFD8RUfYXDrc0l8AZd05aT9Ti/BWI1GSUxmfxAGvecrG7P0ZUBfV5u/wlvHUS5cSOP787ZIvrSiRBNdx9wmszo8yJv6hOjgH9UNFBq6jGm+M0zbh874KGSZhJFDz/jn3IrZqwQG4pppgXAgLn76kLuLluTdNNcVDPsitQJc8fgI+NxMCB/D89kWlGiW7CKnMgUxfc3MpMj0FljtyvnSf8ziqye6hcZ+fdNdj0B4hNwVputrn9WoO0mm+i0MVgnJ+jBJ8AvmlViADuHI1LBc1g3mlM9Mt8QoupmzXJ7oYsXjG0Iyk4SY9oh8k1bF6ALp4uCUOmCROHhCXThIkow5Jp4rz2vdPkPi3FzZkmxn9JuEE+wXLvEYRxTQ+GJlg1VI02cKsPS4vBG6EEYgu7Wdz8s9a8SMMJpIS1+wki55jKY7DtKcxkoJcYgjZPQjdN7BHWGjJPlJzjH1ioWmvtxzSCkWlJohDMZnG/pu40dlDWWGMJKRPtxWl6iZxBd1XHhchVToSmXoK6Z4qPjzafdpZzFHpJ5uWOgboa6T9HsFcbQEPik4kzwhqg56ZYrrVw6U1RMUwLv+ZNfzUnlRj/iVkP2Vam9GwgkuxhlACmRdw+tNpEIWEN9eDPv5pHrAdvslVPE3z61tpt8q5mmZQGwytNnhi5XTVQAEecazS4801/YNlxkctaA42sJR6WynCbGjp6EdtzSWijmbA0IkTv6h5cO+d3lg68BStB1m7trrdF47nJ8Qe/4S3I6EDavJGGYrWHnL+A5kK/QUS3dbPbWRPb7lgVGYBhWcS7rtsFiFxFj6ztn2LgRzPBHsxNDNkk/e6HmyvwzsXwNxw7S2DYoHlXYd767rCWnuXL6tsofJx9QjHV8xcFkFuJzEY1Z5XA1Fl6utFubncIDXV3rJXbhLo7Vu9CN9SDNqdVPLpr46f1IFSgiu/8CAx9RqXpf20c8TmCiqHlN7W5OD/l5OuRGGVJgemlSl7lfbLMt10DroOxzzwueIekx+5qN4k5zGabzMD+Al/DO03dKQiGE7pvcA5Z4v1t8nMoLcY6ABImLgrrBEhYwhi8qeI2jGLOEPQtubaN4P1zXtcVb02Jgi2yNRnvIHMyIYg6fQBON6GsZesoHGViXbBewdGcOgO8hunUAS9qW/ftaBCKk8I6/ATiO/falX+XUSHwz5LwoFk914gwjxJOzBDniF2UseWEpBg/bWLOOhETuftE7bOT6d56yKtb+BryKikLoxxLOKHyb2iGvd1nzVccNlRWvROrAW3cLrcDMOeWHBN34CW8SDphYq4wkE5kptWiWuxGuKA4YCgpuVCdOwa3lYuPMPJMlvdg1BNjQbT//XIMp4lywkg5Yb2rXyNnqqRgj+woy1omgNqp/KfBYVCVdKOQo8gnDPl3Ai8AtD77dUMS35pns5vajkgyYSKZMJJM1FdgXdJr6yGwPNv//9b1vOeEip+qI+Ktl8/IWGfH0gb3bHL0QlZ4Z3aUiT7COgscmugjrLO0oYldzDpdOvvJp3FIuNACnJQSMX0B0Euv4r/hykq/mcdbMlrZ6fDzVJDJlpioiRu2WLap6NWGDAQTacQ5As8sbSCKzp715FDIbGYiQV0cL8XtOlAS51+992aYvMtU88VyleoMxST9F115gqWfH17k1sill0GkwvqW1mVB9fD0ZclUj1DxEn5FRP/LLXIMs7b+x2HM2Wy3C9ye5PlDNbWcjYD7XJuEeb420r1XIYYufwGr1GuL5Mwb330ARlJUEzZId27ju8/ZnHqJOjHmQuQ5WURUfJjDa1XEo25vIyhVMhaT3Db1/t7f7bXYeDyvxtiFSCOMSYbnX70LaCRMNBI2YttSASxMdYm1EbiIRMX8P8TBBgXSkEAakfFht9bKrzNv0Jknwog2ALszEUbYSGeeiCpsRMQ3PcAGO9YpIgw2C3OtLPPGeiWNduaqFT62tcf+G5G4e6RtuncbknjOW/HBLCBmIpMwkkmcf9XdgBddB3aN3MD0TYOXsA455gZiUOdfvVwYT12QtfpTvRL1UtPxv4leEamEjc5XkzE1GH0aEiOj54ieXTnV0UFSPhsBNkGWvzn5YuyYojwxt5RCI+13YoRcKmfHvSktd4sdo79WD5ljTKQSNggwFxwQ7zQySrTfAeSPaXWUjiQ4G7IsBvDlp+Vhb7IRoSfVHGZk2QalUFSv8Nykn/LcSkSw1E6G3HtjrveU/gE1no5wfhiKiWmFy1tSbTD4JOIJG+TkO00aO1QBu+SRmJN1Z01xelmGfHTglVD+XlS79m7mBD2GIa+4j8UuKsYHA67kiFIG1qw9IHBWKrNkkaBlPVShsHATuKt8v9zjtgFWFI5zID3CRCNw1Af2cd8esY+ytAZrFpr0Q3OoBKawpPUwLKYk5w4mnpSLKORC5DHUvnElCR2Vw+691jMMoMvaVzAY1FMJp4mSoyaCh+7Ol3gJef0mM3PrdW1NwMmzrBx09MnHeIL/36VLJ8upZaHOArDq+XvqbltoHkYJHyoCsEeIPKflJBUZhE1k5JoYJ2yixrPMfmR+ia9h/aRJ++mTtxxq+aG58IUL5ToN3GkcOAG6JtEQUzbwTDTElFE2Ew2hxAzzzDjsXrfMOpJyE8gRsK+fjNAoaxSDKjV4hiZSE7TuhHvoYL3dsevqZaEkm+l1G0HXvV8361G/ZLV0azxfnURZDhOphE168kRLcY6eWi0o5DKUDMM3kE8K7BFJI7LLGwgg1txUBNMmiM1NtAyWgJYoH8U4hDtJ/m5ixBrIpRzKjLBJWSROCZuURVPSaaYsmkfipCya/Sd3uGF40wtjBMGmw2rklnbDXZNJTunaXs0etA+D30po8/PZU8mk9IE5vcAug20IfySE/zf4GvWs//myJI23DGf0j8JvznsVeHnp2SQaxjzLm9oM2enOmak4Z28li+Zkb2VTzZnjOiDjo0qHTWY7nWa9+/oYmXjN6AdU6kQ06IAcVZOsW5mS2nPjWP3GdWdk54qe6KP9n7wR9VvQX1Mw6fekks3XlKSam/uAXOIz5nLiqmwBsKiItcGtNDaDCWGXxz1/ir67C8mfnQw+FXXE0nxH7GZk8IYCL/1FfpQ31d5v7KjE1bTcsCQWJ2RT0mG5eyFQQQkcAu9GfqbGgMyUhJqUUFMSCt6el33YgYg3cEjyCK8Rko2DiE5RQxj5I6Sze0tQ2lHOMofCkugg+P8vpz5Dlp/KM9uiDS0uiXO03iAnwbbpHnFt5++isNIjs35qQ3ELXlJLyR1hTkhxtT5XRgoe2XRi5xKw24QiByYKkNM0oeUqG948gyb8rqIiMxD43kztdxzyrWS1gOnuFhvmsl5U9KO+SryTrCcwSAjXgiyxm3ppK8JNPwb6vDKD/ngTYcQ5gha17juhrrAo2RhKa5mYyhiTsoM/0iufFj2m9R/n1gbFU+K5N11wSzYT6SNMhBKW9BEm3goDfUSVAj4ZJ6fI9bp847/LH45yqeKBoDNi9frMfvJHmAgnbPWXLL9lSGKp3nvYBCt16Y+/purdeDutE/rwlmDla4Du/pnYT96vGy+cxndGjRcNVXfnJMnAF8oZyBzM5IRzgnDkNAmWXHRr8LNLugVfBH7SZ5xUnkU0YStMJsU7gfXxB3Sd0J+YGzxG9c62+cPleP6GA2LN2w1mOHIHC9oC1zBkWa7FIZV+vFZ5IjoVwPp9lzIpsWl37fRCrfWz4S+4NuYtvofCNexawNpxmd6GTjzRPJwj+hydtCJVFxZgT+CRQ8jjxske2Dc3Q4mBBYrY82+CeVpFIF+VDzvCTjxhfo2dk3RZuekm8y4Tps2nHgVy+MbwIH2RtKFU4uw05TSQWeUfJXbHJbMUZBL7skhiDnKjSoxU5jaHvrYvemcxUC1uCUNp2kQ2p/6aZBFrRCpRVZIUMR9bDjeSSdhSnGqHGXXkb/3p4hawnDqjSASWp0VYtCy1cFvasij2B+Bufb0Ry5MN7j6TIPebdECs/GnpwiNvkPgm7OUD36MluIp8SmcDSy2wMVFLNBECo27ZVhsBI5X+JlgmiZhGMId0BcHb4iBIRm1wHZ0r1HdyHdnF7G9yHZmoMQzMLsqzrIChK58xcZVbNtUG0nwonfO0bCosCeQ3OAaUHVjBantOlRW0G/srDMVurISaOfJh44rpqmYCyL5Em6wcJaqr2LQT6ONUW7xA8GumPilV+hxxK9iy4cAhUcr1TgDBkAxZm2EQEUeco4aeizwc2VyqQ94z4LdlUG0iJbYMKuRM+rUMq30R5B2qsk2KRBNLxPnle5FP1O+yrvJRscD4QNti5QBKZm0iJbQfnCMiJbaE406khHgxzGvWxcaypY84mUSoXeKAOU2IlfTr52YFDTk093xzyp5I4FNljK5SV48QiIqk2XgRGU2b4AntGgZSVtWKiNWvYDqoZE2UdrYBIUuvf1J+SV/bRKDvdVvqo4EkbDEzGaKq7H08KAxu+U7zPAfcT29JzN6WBPUoIT6FoBsb0aeSAqZaRwnPBIZxr8y3HsywOC16coD2VIooNy+RPIDcNt/cyLNgIpawvdlRofR2sCRe2CfKj2Rclgn0tm/BXWjLW0b8Nnh4VRoQLAxSVLf117xibSRVzLNNe2rLwnIGieik1Itjs3A0Fdnxd8PE1nc2RqHkOQw9KGOK52fEHDMBdzIsZbJRgD1TWRTWD9dw01LOn6tRITD5/YwIc5PNZZ+90STiqq+X3gJ2rTp9tMa7vHLGunzm4eeMbBpCULlVlggg39Gy8tbeSv7w08x7dhKGmygkzAiKMMk0q1RSTLaeoUbUFp9OwKCqXNBmIX9+cWzfQqa/8EqYs1bvg+azulkwhHrmKKw8LpcfWSPMpO+SMcLETWEG/UDk5JMp0rfiNRCH0gWNjj+7n6Whcvz11Xme2qJcZQKoiRbCcMaFEIaBaPtFCp+TpOIbw08imjgtUKVMws06bWjTUnLqiJjzdkvbdtrQpu3JQMaXBSbnBI9S+g0YIknqiMJSNGaSGfZTFaqAzrSs+5kBJdweIv43U9lJ6R+F3yijxChhhqSrkm4AunVSyXQ+oMf4Zg07Ud2YjXyOegt5MOd4nKR9YdPx//b7xa4ujX3MJHOMiqg4KMz5I/AFlJ1FAglhPUdM11Qny6h/l1S/gXnxXKOPTFyXCCXMC915Hmau1Hh1S3xCqFCepsVlHy+VqDfWXTytV+OKm0sqGaWSyCcMxBFvXdUKBH9ucbk6754KT1+m5oGMLlUWcHKZSCDMmPZud2mFi88zHDlCyEP/xwmebA195PX63oxAmUSYpfVkd2dP6+lWITV7SwQPlITdqhFtFiiIjC3MTcPTJIQsLH5BXWLokzuQUStVpTdjNdXs5KyxqLyANAfu++jfO90ONIq3wJPNyGhDOk5WgQgHoZ/UdYOfwqgdGnYZ6RLyM9bfU1eejivFT87vxnumFf8FUM9bplrCYepNTU2xXX6i2o5JUpM2pyIpw89TV8t4HtzGfiUACvO58NDZfNXMZj1Hhm4JFY+swkCl/FRnO8rGFsguKnZn/H6FP8Yb9BzQYCY0GUqf8rz8d5C3JB4Iearern5FWQ3/152cEfbxP4wjVvPOXwsMlL+ABrERA5XsJd5EjGlmGHkTMaZbXBTOG1HgU9V3bJlTiLSjyGKPLbrfHqx33yTMxdv1tu2yJmGXPW1pI8yoLqHskZo/X82fn6xrcIPVyP9Vx0m/V3NWRJnDKRdb4z0zCbixh3cwwvKuGR1YqEi5EsRRe1hE5zx90S/q7fq/6gTq7frNNJWYopvhsYrEI8GLvZAt75uUcH68XvkO3dKb06W494v4pNdANYzOmZOT6X7YmZ295yC8k2bI3j9Ox4nSD+c0Ada4yWRY9Rytvws1JZ+GN1s2vKVRGuonfMm30Mjn+DA769MvfejFhy69yOKnV37xB0Yjb9KWsCaXxFBn13oDokjYG8kf479HqW3uCqzb8WXfe+d82erHb92NVYHLTFKIapWfYKtTUQPe/9WahJ+wqmBPHQCI1ay+40fcnbbed+cWsDV5DYDt5O1mrvkZIqxZW/yY3A6Gw8qid1YjQ8CPYr9Kv9Ob+FP2x6s1qyGZHTtyOQYUGwefmJ+Vg1s+Lh5tfyUElLcMhl69rT6GcKhq3pjjB6fcNXD5M0kL2sI6Sg9PjbSAs4I90wDOAMYJKcij5iSuUDcpoERvdFoooIoEVAHVnne9qCkgCD6J7oX92X/C6bOVLv4V5CiUjHMs9kQyqYRnMEHAwOhVZybA0NSgDlvi3XZcBe4gqeC8EfEu2shBG5G8Q4MftVAdHBVxqIQDAZP0SZVCJMQbpuDt/hd8ujtzVVD/K6kjyoDcG/mVJqWcKPE+UEf4ndTPxl20aDMvQO15lpxcsEfIAISXk36uvPfUZetHUapTJK04Y63OS/Twzikg0VXgX+0Cg45wvmW8h8R2fp5mSAdAPxVVFC+dXfDAyqdKSoA8wv/V5AVkwg+qmgwTr4j9oISQks5VAq1br1ige3Jq1yrcxJVu8IFDImksB1Mzv/QNe8iPV6izg50dtxv7rv7Y4TELsmJuWHDyQhxdiJNV7lpQRnjwicsF2tLQcgAfbSZsW2GfJIrcBo4+TX2EuTiAQ982tpTRqDkSJ8b3agHsUI3wb2LHLEt9zEUqUVTCcScc8uSCWgnjisepgnVoi7zDVMqu/8XhXJrt64dwugEOqCSpoIWO+9zPCrRP+gOhD3izbEO/Q1dhoi9n4N2RKJx8Jatio/85OYpLo7gXp+G8TRv7X5Fy5CQS7qr90jFwjljKPHet2uC/zdW4BztlmpsRgbr1mWDBKFQOHg/PgFA0YZSPYyNZVYzja3pXcKtQFoH4ObdaToMUItQDkufKj3D/KlMLPJcrrfI996NHMHTpZ025L7SmqmRV/dDJKmnn8g4jLykK/ghVlZw75Jn2Fa+5htsW9bbU1xvqxtrfzSz035EunrEiODeaZnjl3lb1EWthR2VrVJbaSNPVdsC2+U1fyNo5N3x6ZdzBqxzOelsiLkoB0mBVni5xEuyPmlhSQ/gR1n6VuHBEVkHfNHZ1Y9YmGYY3AZP41VuxBM5N4RpYecWTijWkIIk7J0R8gRSfyQQxMBpPytvkp76MNY3dbRrBhvqUNn/eeYtoKm+hlwla2PSxsQqnJnztCChlTvP6OC0koCrNpyoLzokiMGLB47MsoGTeDkJlIaLJTb1fLVqpmH4++5r5oF8NLMnwRRvOzFyOVVtFDcfuyIzQUZGEcst1ns0YmmFuvYAfiVHSb8F5OgbV2TryMZoUgwsqgw9+RIlaZQbW+WEry3wAb0LgidLs5RBEFNFP0S3JnJ6enLLZM4mqOh88T4k56LEE/UqS6IwubU5AbbZ1QUOpU32mvOV8CDoOV975CNZP+6oEzOCEEB9uXSirvR7+E5whZITBGZHKhR/leMpaq4vxG22fsWOLHXU0GkVJ0eFHlQF59WU/pgS/9GkcV/OrjZMsCcvKx/lMg2i7Io++ScA5YwS+taQmahzcIjkrSDM5am0CPbLvyjfuVXZb2qN+Fc/E/HtSj8fM3c308Y2LX8IITs7xAEo3Am1z3J0qFMiR6Csne4/7Nk0bsEakCwWOTm+lB3G3n3JAZz3Xj3fougMUgGRp8CPK/iqrraXPTxzE9OW0T2MI8t4ldbGBhI++IWzvchX5zxijRoGyEZvwhqJTwp0qAxicGIIq2uZolPtIkMJzP/1+CnX5z7yA+4dXdeMj9aKVdl87ki+Rtd5M269990zaftX0MWqH7uPkMsVVyhIJrJ+Hm0rofJpCDS4PU8KB/WAsEF2eOdP9/Oy7OtCSFjr2yoYtewxJQzBKqHhxRRGXJBjhTGn3bMjXJvHUKLCaVkILgdVFG9ItQOAqJ+FnPFj5AoT0ae1ZjLMBKdE/IQAWHytzx2mG4rHy8bXe+VFknLUw6ESBbZOcsUJ8xWTTh++bD7kt9gQcUMRH6Y/nZ+6Ul1Ficfdtcvq1AURHSTL12G1Vn+/b1PrbHZwIeucHAf+qt6ZvMnji0/fiBUrwe8Y0xzd5wxQJbRZ2Sh2flUMl+eesEpi7MjtbgHqT5gpFwbyVtmDEJBQM00ecKZclSNq8zw0vmpdpze3MIUy4UInSkdHSMgt6oeitn1BvNM//5ASQOgqiPqVkAOl00yVSajXJqLZAJtDSwmicAOkDGjT33bZK5rTz16b4ECXg1zbS6ttNflOWZo26LS/vHmSHXBN+Aqe35FGDCyfdM8v9NZeDM/MOWiIQmALnLZr7xr7f6Ro0si05ihsKf0l3G+nU1PdzSom4qcIELRJMk/uycXfPORAgkcu7Tri/n5BvkVurREb/2Evppx6gxujKDulf7qv7NnFfFR/r53m8b3VCyJ5e76N+UgzLSxEPpkk/556Nrjof7LXGe0irtAbTCd5lwSBP8b4MR8j5DZgh2zdNRGdKSI++505Y/JtTpheS7guAxRslAgpVXsrVC46NGLbF1sfqlOKyqL9ey2uM9a++VMwkyOnfjZLQEdDrvSd7qkhWr9QDrlHbmfKSaMGSIUlPfc5MYcnZLtdeD1mV+O5K4dOzjHtFboT4s9oT/k2dpktSdUqqLknVKam6JFWnBzDRCUZ7Zmcl70anQ5dxRafZvtsO3Iwql5CPlaTqlFRd5lRPSdUlqTyCEFP8ma/RGYGhnJXx72VZgGbwdIzDKduqj+8dL2C3r9rnJ7we9UJjNVGPPf3OfdwL+PVlnfXxMoaBuuS7P/5Yquc+eUN1Gi6F5Hcxph2pthAIYK8hmgZ3Ujz4EZT7C+7sk8Zql7yDHX5BOJtF7aVC97ytxi4klZBnnQs9c0NKlrY0WXqcKLJ2OuVT10TpZHJiJzoqJf7wEvlJmSNoeUftjAukv1nCAUW5HiQQvBNj3OGlyOsyavqu7NU9h/70LmnWd+dklOTue2C/7f02Teixqgb09Y26CluQq8ktR7iADrIgZYBRO+9Sj8kpkbCO2Ad3znrugmcHSXPP/wr9PxVYZAJ6s3pFq6pfgQJKnAx/5i5NMWXAZHkNS24ui7Gg65kCx+0QYxqqg1G0zAi39GsYDVqgQ9aTRz4w6s9JLz0gC1N6Mx01IPgsqiYk4tcvJ/ViJ41ejlH+r9ipIQ55V8soL7wUeav97u6jYDsb5XoHMJrXbTeQzet0OpmcBa+pqA4LPBBib4idB7fNaQhiCYFawjOo2ljpsfbqj0/+F0o+JgXTRy/PkOtv0PU37uuk62/Ilhvp+hufnLLhdhnK028BA8vEUIxRLsNzNne1IbHiBYMeQvtAgnrry//g6SHzasoY92T4L1+lGBnPY+BiGZJwgzma2t85IZx4iR7L1QdiPjd7SYywfia2vSFZNaJW7k/tb8yYMm3ckzjQie1pk1HoIY12ZIBqyD5DCnSTWwmecGmf7PztHIRTslyEqjr6P+huP03DMThkElcglRARdSDaMoRN1/0Qg7ofYy8SsUT1is7xXuP66xEAS4rkDTbrz8SoOUKrNs3KgCfanRsRrVH+VKcDbySO4hsTrkmxUnxj5lhK6o1J1+SQoTkWXZOj3aby+NetUwHIeusVvNq7KiKqZXl9gZHA2yjSWW/9E01EZz5YkuxqD1r70ZrBLuH/6iXB8rcyWZnR5uSLAGVBmsADnEDSqheLMe5+1w8NqKEo49jztSIbyuokHBJlhWa/70k5NGQ/DdpPQ/bTMFomQ/5JcEvULdnzshsJ8iJGid6MS0cOPpjREvI0spMeolqsAu4cI3g8RPd6NhACJ4aCQJPAietBm5iBRWXAaJVnfGANe0lvO7hDPgmICbF0KyGhh/Pb4mz89uIt70PxxadUg5k+1yn1c5bCSWy3qT7TDaUpvDXB05tO1qSS6DOS9gTwbwh57dSpqENNmSazYBed8gbOAo8Xb8jJNdN4r7EjisH2pzJFFEnB2XoBWkxTImfWzM7EA77+JgYA+edn/Y+tK0uUVNeR/7WKuwQ82/vfWCPFYPK8rp/KQ5JgjK0xFBI7kl6PgX4Srgrfvp+a5tIpjokQ7mzmsSqoNKZ43OA6fSLWYdOpMfUz7SLNn2RRmLewm4W+fvh01kqTWmm2OzjU6pjXvqE42PC/QaN02qqf/afIlJL9EkSML6KiMyJsyNwzO9T8dAYrOCYwQdY+STJRcnx+M/1AYk5nK+d4YNMO2/HRSzKjst2iIShXS0aC7ksKbF/i1+5ERLvCePPt7sUB5h66aGOl0X/EnV6rnm18gw7gnBBJAuJw6/3pxxQC74RbmDJs/G2+HOfw4ndrT6i3aYdhoiXtiEZ4twsp2ta6sDpFklUkt6g9hUk45rRGm+lL3TiTJMi6zcVCPP37UDN9Tmo3MR612Hnp+3II94taX1RVxmea1tOhoQlwuMEcvaJJqWvc2+SF/YqRyJS/h36PFyMQnBOXRRtoNz8u0aSTwbyjAOZ09GoSTnGRN3PPHx2HzGmkmazjJqroi3twP6DRV9xlaN+INXtsdjLR8j7MjE07QsFzmgO51zyMTUzrvSA/xdZZ99DXBibfcT9GK/tGns9UMoJpH5qq4q1kqs3V6q1iDS37S+vBQJc9sJXhPldstgwH6UtdfvrkxQsqio7WhVW1ZGVPwRKpByHp3Afo/VQ4guMjjKIva7mV3tQlakNQaqmQKQTnv+ymptRIO4P38VB/uZFmqotujcgnk+CvejA7UqtynPZwVgV3x1IZ3cNrqMw4KaGWMBUCsy77UeCY0Do7XN+K05U62GhUe2Xy9x5Sgym1LC5XoykVzBeLhxjkXXY1V2OQd577Q8RQpI5PNq8W+mwjJsjXcRi1We3+muvKQpqsQE7QMxQQ4HUFKhdgMDcc7XPaD2t1Xtie1CKIIqgUJJnANVFVLCpjT1wTs7CLw4UxVgIil4N6K70o0ZcJub7kNuWOdy+ucQh6NC3oswY3kh2HNbjjlzM/CwBh4WNgWxRbvSu3exVJyZz0gJfR4ysJ4szClfvxk3Nckx0elM5gzmrZwVlUTcsQ9cVu6d7BbBAunKEBnsuSeAGlR6kVs5KO90crttYaf+TFyhTeuh2qlharFcpaWqxOZJN1wpx6tVGCLIWu8AVkDe+x7q9zbMvNNddD+JuKGOITx+rYHZkm1uPuZGzHslRi0OQVLysfkE3E/36fWyvA+m+xVRTHl1hILaLF7NNNhK59KeZW7kgJLFbCLOuXIJfAeI55N+No/YSRF5W/C8B72uhu0UUbXdwRZxF8vI7wPYswomXPYiVz7JEoTiaeYBt7hRxrwVeiT8zFEywBkKTbOmc/kvh2uIJkAithvwYYD3WIrWX3Mqq6065cBnqBbqS4+Jm2dpUc7oVomMtzsrN+9wJWaXf89IR7zyrFNgMYJooynGRAlYAdjJht27+biagbGQeEo6m4JLuvfzGDqZ5UQqeVsa2NNnNQ29poA+Q3C2d1MPQjE6QrvLTvi6iQpfsVODcNuyvtvJB2KFOMg2lHqcQZHnOfBlRsININm2SrzX7uC2Umddd7pHyUuuttzPPQMMsKJyMVdVGUyghtB+42E1G73XNQfkIXp7MzuFu/08/f5mPrKR1kgCWCN7smVLfh4WKQ1S5YwLaG2tRQ237YFsxvOy8V5BK5vLd1N9gltmvdJmiNu8MSeyzeyjMIdonfYI/IJTrZKtRYt07+3HE8kEvE/x7pAGKZYxjtmyxF7jxO2n84zuKYHwMcpsZacVB0jmYFe7sqNFCL+tkWTERta6zNRNStlttKRG0rCXJJiMQSqy8OS7KlSdD6tWpph27rp50MnsrqbwDE1Bdyodqa5G44nQO1z7TpM21j1zdWjzbNKd/IK6gW4yTP3PpG58jc7p6BONmOzaa3v6200GBT1IK9HvYHjHCeKrhrTSfTKeUMyPd2CVyImxTbRHyCxN+OAAaAH9NvLbs3w6bb7mrQD6Sw3jaxdmagVPz+B/O8wdRpYtL399zedg5BId7FIN4HqOyEUKb0kK/uoOs+d0yI+GzjCMgmoUL0B4btEWB/EpfsyLXy1sfBtvN8aRqE1jFbBEmFm+LY5B+NM5avgFDPsbcTQMOCD3oxB4XAT1V9SKb0FasBA9Mt3DhU3Me5JLBJyHqY+9MNVN6UmdnfT5DuooRaemorm8Pi3WOE+qk/ZP2RCcNvxGKwoCKkZUvH+xKjwwJFeJd5GCuBF7i3gHg/VmBHaaeTTQ/b5FGGpI5hHycXumNlvaOZXnM8+AGfhG3pjlpQd69F06X7tHqLjvCdBg1/rHtOsshGxEU8UwJTnGbMNRqcitahHsrogB/cQNVhQZFLm0AJNQOUoXzS2Ly2BAYjusd66VAvHeulI7107MkRqdHCB0moRieBkeLooBmxLD5ERxzvchBLaKSlIvI5HXEAsUSpbufBJ7ZWOtRKQSchD++Mn74Vrv4ybdlAN1Hlg47hD5LXZLY1ZaQyKp9HIZzv2Ns6gvMdK5ojON+t5w5OiZR0p91L0SzdtlaCVCLDnftu/HSjjhp8lgeoUykpV0Ec66iTOmopq1wnXOZV3eJx6H1YLR3iJY7V0lngSXBCPPFNahEWbFa8hB8adaxaWnUjQezwNUnF40SPdD+8qydz09s7xkOc1Fjm2cjcVdBC/e+iNn7vpP/kAvOSuOZ1kVWHKZNj6O5JH6rcemtckcIv+e/yBwpYOfR+U4/gmRDCbTCgJWbF0moWOUcAg0wktmXNllvQhDCO+OmZdeKiORkx6e6OC2rWWbRby0Nj1SZ1eehIiaMijmjFngaBmAjq97iWrfsfPbTQuXH3AsYEo0HMs0egT6GY8iAkVswjUQDLq+buxQWd9owWYZ+sEw2e6PSNvyHg37+LAHvv51ysxQXi75H+seARlinijChrkhTBkayFKFkx0UR5sqhXoSiwDb1HKQhao1UmtTM/8WkPWVmnwmLCYh6ILOrLIRc1RI9jEKxFXcjjEIJ56oo6QF6zf6yXIn66MZPopVrhv59AJ6vM3wLA5OO6f3hDGIp8f+O3DYVVRPARnwbG3fwkqbC0QsAKcF289+u01W+1Id3c9wu/LLTRklM70RDtMqhhUKryOofP2D2mzrns5c5l11w2v1E6T8WsHe+h5LuLleMZ70yyieEQkJsi4ohdkoLWSOuyhOiHAcMpHB7cQBs1ZTQpaotwv/GJUzo8ZyDsNVfeHIt8QTJTo088L7MRZHk/fRtcdXSlMCyoPFkYJap0dNGT1U8LI4SYz+aLn/f3HKU03/tpcoqH5zNJJuovCd34/gQ1N9wGg+GwYsaI8iRIojplDFjllV0MKb8S60NmkGM3azkCNSWoPW0MZRffHP7yA6X4HZ8GKXGMAiNrWUWce37tqCh24y22h412UF9+jFU5qW7D8aSxeFRPhX4WcYLX3uYgP3danOPlHc3aqGJSjfJk5klhH9ZRHL8UQPi6gvIPJ4zBuHO4II9n5vyQCyBXHf05//CAipyBePn3jHvLjQc5QftdESIKmM6/TwErsicGxBd0L9CrD4k7/lPV+fh2II9TUWJuoofgCs0xFFmM76cvQA9l/sHd0fktiCOxWTglhW7IRt1OMdlEKUg3vUc8WqabiiJncahluy6VioA7XnBmZC3jb8PR//0A17CmTCtRCipLVby8wFZu7j6EVUoxHQliE0W8E/GpYtCmHACrhNY1Mh7NTETv1wP6mygvkj87FFHZWLFKsc58Rsl+rJTyoUkqiN4V80W8RziRdVtWhyzDVMogK0krUXLs91CnrD5+wAaD+V0O9/qIOIqzB/s6CCI6ltwvByx5Aoo5JUrpz0cycrcME3MWp8bFkQdnP3pyaXfESXwX3VPbIT6vYVaS4lPIF9kMhYbVmig5cU+Dwk1W7qMCUO6iBD6aKX9KYRMomaTpsRuAX8rgIMc9wkFaE0UZCl5N97Ic62O+sZy1FNMdgaVR1b95d5zBrRzM4biv1QK3hjyF3djQCI/ODGcRgUR/OO7ppQFCiWJCiVLQCsoo5IVKPSmmyb3jui9t+OnJRdscN67s4ZG+QkxxiYbqlXAQoIfQoKna2iiL78vwvkIVVKyCgk0Cs2tRHnQSWPjjHjqfnr0IruYK/saW3eAnvgIH4y8BRSm3h2ma3FOIiJ6eiQA9UeHA872LEcyLJfihmwhiq38faPjmQtDu7PNPsL9N6DvXU76f0lvZs/3WC+f++oBeK6puKQcbX97xOj+6sBfE4YiPnxk0sTFqv+Jzvt0VZ/vu69dHzPTvDrDp3dhk4r0d4PmWqxVRfYCvumDcDBkVhThLfbAMzCdR2Nm9qqnneVBuRFNuFyBFi9kQCk3oav1UE9O9tbRmBUbA0MfGC6jYGU5hMTFEqUg1lWqDMegkCoa3fQhsItZJcQhsIsVlS6xs+cbExicfg0KhiKUKO9w232i1v1TpL1X7SyA8MssaHZ8qGjq1lR3ewBFTzQeqnub67YbQ0eulnxsTeH4EO1HupX5aPmFQrVxSpfevpItiFCTNwCW4oa+g2uamK3hMjaNUNioLMDHtn2jFL6x3tmx/Y7AN3bZKh4ixseI6nfdTGCYfGqeP6xrf/tY/lpqaSTkOsMBfU6iiLreYhqFEljsfovsh0rKY4pEFBkuXaI1mRbWTBKmmkA4YtMyR8X47KK4hADZncdwTOIvjDkCzaFUm/ohoMYp2iqmM378TraeMQKtf9COUapzjoaa/IRDLbtT01cqoskelUu5/0G1BlstfeP4mrGXxUMSn8xkSmfaKBEJ2O/4wtfw0oCTurBjYX+riDa136vrR0YOi2wQS7WSCTTzAfVWuKDshdfGV29SrLMN9D1kQZFWkDAOU8cRRg8LRkCfpeb+eRd5qez73+LQWhZi+BJfx/fqzkTcKs6oqlieXmyV/BZi8uFK/1IMObDZ0kQWdd/Wcb23mzizZHeLhoM89Mj/RI8LhjMKYfEUOwIEzoiijGjOSFzRnRGkI2pWgZpDd3Bi2ew9Wn0a7ue57iHZzVb6uNOIf3BQlDiHQrI2RWe2eXyyga49tlBZsRwIyh6L753hVIrO/ViliAMedqRA3Uzx9f/tOsra+tHJPxrwaMlkQELikHShiERsFGdKfe/bh7z30ijff7GU1ACBqoK4/VWxP6pNh5oCCrq/OaACXrzbe8XWyPQey5iflX7QM7WrcNdbAGVuMPi+NhLGlWRW2DOANRX42wDe3+iemw6mtQgDV+//9PeKrok2emhOxiU+F9IyTjP4eX7cOddUihomvLz8siZ6byZuCtBM36J46uEyflBbZC67X1TrgY6rKXU/hbFkrNeDKb4u70ogrL6aYKI248mL+C3Vpee1x1TCmDddF7z3RS+E90ZsdmOqCjfSfGDk/JnZDA11RgQalBS/h0Q6O1s5VG18CVtX/FhFDEFUlmU93UDn2aLaBO9hpamygI59ngbJVNkKBibBAfbUqwwUu0C8yxwMHokB6Q7XT+79HzWqn0uyPgDaifPTNR5dIYSoWXrOlzQVko/Ose5PF19BOzfqKTb+WAiXounIrx9YPpqgWPph1U1tc4ct7fHPXX0T0/jTOLiAWkb9Jq63ZX2qJoRsyrb32D63Qtu9loSibI1UNmSPBqRZzwirQaOQ1DZWrXxxI+mCTsKQ/lPRBuVChdOMohb3xECXKlFPYfwRXJpXGtY3OJw6MWOFdE4erzJG8dtApldIn3V5xxstCNhw6UEd4dYzVTwa1rkjuqL0t3Zqtg3W0rZvf+dDVoDd1nLV8Pki3qH0b/MzX9VcxGem9L6ggNi5vahiBonfdaSm4wU3g5cJWfxLxhC+/p7lOVLaKE/zvpwRjCbiZ5F4Ba/fcNyBlTO5Uo6wZY7OOQo22C8vbkV40+QhkvGkgSq/gMaMAa5XUgM680uTsdar3WPyBvd4DcykYX+mV+91Fx+8nGs7dihnUENsNhxja7M5JLxCVamcM5kvLjT516KXpvOCEyfXIUF4PEz3dmcFOb6lbU/W2P6zVdCOWhwkERDd2Iajx/93il102Zdennv095xvK6zTwg0FCYrInctzv8KfzgQJ5rsyPXOm/TwkBm8vE8Qtq4RroU/zKJUqF8SLaPQ2yo2p3AaVoqqGKaO49ncvTq6+jNMCV9Q+KNtScjIX2z+c9D742C/+giMihOufTM7EkeQ8Sluu7dRKXB7yQYIPIe+dF7TIhWWX3oqxRvsn35DETDdRi7M7kEKVrbdmh6ouDnNec12zakesEjRcTapQgiUjpaU6SEhWIaSq3+0jwnnTtNGVGvTIg80rTBYYIvYjhoVUJDeurDitYcTQyCbyHySe9f4r3mQ7tyiqVoQtaX3XUM73/+ylAF1/lQz0399GqbnfHk9pQJmYqsI90OhTpVlg9cQ4KzxU5oP3I3sJ8RQ+un/7JcYqI1BpfoWN6nRG87gheVwSvO2PU4TZJuc76/KCOaBkEzQMjgacz8DWssuCENgHK5koJ0SOgRx6PXJxXcBG6G2zZPoKxDns5gxAHTlEHKwvmh0bDuMG8woIOlSVtupM3ecusPQ0i2Nxn3CGl6SeI5NRzu+yE6cqhzNP7CZ6HeSTeT/Q8hnVk0A7mBjHPRgEthAEDsmEHJdJBCM2kyyx65ahpgZoQogyCLlyJUgaK99xL5eEvRKXI88Uh9u4ZbPRhvMPIHKuEL7MRDy8HI/6+eqIbPhPJglu+KhY6mCSBDX0d4ydDWRmfI4iLDOusIC3DxNolQ6Ob4g7kaSMYJVkGug66XGcNrlmH10b/n24MBZ3tPqoOzOeRrhkXyRuWEK5178YRd48Y2L1av5lx9WQpWL9NALh2iBQwz8P76Zs+tjwYMqw4q26Aw75efMlobB+ne4RUQuNbhvuaaXz145tiDkIIzLaduQj/YBkbMBKkECnnTUVSwGpgOid0yzTkDKafWSHKSNW7xFESqf4IkQjZ9eW5eE9enELHpsfiW7AOG+kkKRLCioMy3E0pU15j3gEsiPggj5CTMFIsjKNGtweJOiUQ1/NpXi6iwjJub/fNZWbFNNJJktQhu2sJUgcXbLGlwHclsldBGX8RL8PxskGcw3CQagjnMOy0jf0lZOLWO5b9UZI8/vOqJQzNooU2c3AZqHK6LxpewwmoAaSDqrH2mb8pAEbWxwf6EH+F/bIM5n4PUJqee/ucXe5FZMm52Btw02V+mKxXZYB1WjZN2A3mcJgJihNveUXqV2U/dCrfH1nzPbrg8BEMMsSKbMxJxHhY4V/cX7JD5JZxyHRCllMEKSdwExkTpbaGbbMFAK2iaK+A8VjhUEsZHJP1hK26c3vXD7Z/AEFl9ohopfUJslaEkG470Tghd5Wccdbu0mc5jdt6Wv1MtEIqJpAoCL0H/khLfkLSNiXyI+lQ+CsPtXKoBpqJI6KYySIc1n8f3tsKsGhQkf4Cm0wHEXVjP1Ez9CqP434LKXpclMmI+1Rrs/EQpyg6WRBuOnIe1c244D0Cz/nqvAnSmbAlVJLbkXxUNRRJgsu0vkInD5lQURDz75Pun5VRk9nvTbhYrZSSHQIfPB2Dq9QcEiXZIWouknuowoAfjnIkO0Ss834txdRZru0jAaXLk97v03NSvlE0xtENy2dkoHvKG0PtwDu5gqVNri0H8Obk3Lq4Yc4vqBR+j8YoGNa01zSz1Kc5JZpRzcexqDk5q/PTA6ZM9LlwW4a1E794Akz2xzqfgrMeLXDbddH3MYdulRYpZrwfhw4nhYDR3c9Di0SQpT7QCafM+yIy1LpEPJEUYZFOZ5JeInxabU3G9kwWUeb+mp3weeOoVlsiO8zA0wmZndZOM8HiDtRKCYiBIZJzKXeWYhuD39OAaczOG4ERDgrGeF8OyYuKWSjeQ7RTwuxI55j5yYnUk8LVTAZqYR2A6uTapUcvajPmmYxyjgJ9DO38rIm8xKezOYgqivggBozqcosO6aCYEKKQEKKYECJqnjPKrlkLy/TfrY15IPzv2YtXnD6S6n9YYBIkIAqIEMA3u3i/FbsYOEQiiqwLFg3x+AgKrR3/iUOZxrl55MbLEjTQEn1zrh+Nb29t6uFd9epX6iiR1VH3q1S/AphhRFB/GA121XNGIXPU1hsLmSYGB5Baaf3PNFjxAIXaBP9mo7NiNoiCkjAFkfTmFcgbbNtSt0N7DZxK7zkeY+MYHTUJYnnMrKP0AdvJ5W1ujfcQ0dfTedMFtLjp7Q5aBLtQCJaOGzXX6GuI0dyl1AEqUlC8o2JBgJxV6LAsq6dFbN6yalmoZ+ruK3EQRJcnmi2XeBW/aeYiKf8pREUF0YF2FTRykNC4mAqikAqimAqiiAqiLCtGUEHcem/m0RafbrKllynOHoK/zAVRwAVRTf/0bX8sgbGcKV4YtRzgXWlyLEv5NfnyrddW6qXVhKD4xdOXNT+M6Ygutbv/GMsz3UNZC+09PU8gdVPBJ9rs1LLcHoP5pLXUFDs+c4xOSq2lBWqXai0t0HEPZa3NtFsGgubznfx2A72LHpQZId4jGRt9FNr7UrsJdbEct1sohXmcfau6oNNJi56T+SNCgf+7ZVmVLSyL4lmprHAND+p8y7+BJXHvO3qey4iCldpnBTUo7FKUGA1X3r1nUBvcXXw4SjtawQCB+bZSXBnJfOf00Z0TI6G+47hNv7btBj1aMf9D2c8XS4CccjN3UtmIbldXzxOzvm+eX1Qn5XqOm8E89zjJpra3wFpddCz9dnpmCpeSLu1WLGxaw9uKaIPj1f3TnvJxXRdt9u148kbL9vbVIDcnIDm07RVt+knmlSi70vnYVn1B+4DFHio/YgQ0NnY0zai5iLfPbbCg170rSvkiUgm5sBHDnCqnCNgnxmUFQN6yaJ1KMwPUkR8TaFcACy6JeoVtpb4uk9S/7wG/ZbQkfH/r8aaSFrlVI0D5jh0EEO//NvAyhd3kMyRa58NbGKcmomhL6zCdtu81GYfcdpN2p4Fnnon3UG4cPe0533b2FzV5r8lx9nsBNNUWP8EqKT2z3QAu0idXg7XSZnhvW0qB/cF+CcLRn/U6OMPK7b0GcvvE51Az9pqneAzoH/cSIQu24DUO/m3qn67lOu5wOEAriD21XB3D25PLdVtFb8AfDIpsaP2oWtJDkPie97Lj89xsFlBEPTAQYndBSOG3fOhBrqpitqiymWTa1iA7a5fc8pwVsu5UXYBPUlUquGrjqEe4UKX6/4gFQuDN+lA22gvcps0L1C7FzA7v4uAA7VztrUVpKGDQPwSsnSsK1oVy6whB7Auv2fvLLgFzYboaPjsd5xj2vWPKK9tRAUa/1auBDOIvzvPpJlI2MRDbSmujmDYgilBD6bLnnKigFv3qWr9UqEW1htuROYT4FJvUIjD7A0JKX47ujjoeoeHJqVPcBOz9REnnLXQeiiT7XeehdxztIEiOEyUqXNS2AAJRktI3IPFZtRL1JvkFCQmHokMgq7RbG6egYFXhXqyYQ3s0e93tPM3DTJnt7nfBU/CJJ2iDHKmRzTTEMRjvEDNuvoj3Uw6qKqTGJS3gqpSbmnD1QUzcTX6cfAHPf9Z1keL3iDNXGfJZzJqD2vUi4A4dpuB2UGT8qLD2WEueBMiLCaOzqIfP0bGyTtQoMXNSM6Bz6wWxjroabiurd1r5RIoPrW+X+Af96k+CK6PwF6hyMu4keKNhZcfZpEMExLFWOdnkxdYBkRjHwbig/r54ZtUxi98h8C/YgTdxdPpPp8okELoogZWYCVHviIC4HEfqTtcFh48gmnesyY6ieW6YUY6iece+60n0THNHjCS7/1NrpR6i5dqjoEg32WWr7K9K7W1ciekZktI2B2g1dsb+eBnMySd4jswQQWbxJw4qQtT3K08llNQSniCMuW8hUgNFcr0B58Mw4bHeOixuMtCvHHbLfUfp2ZsoNlSeMq76fOxcUEAYg/66f5QG9ogOMlC/1OLlUDlNEmF08fulCYgreM5Y33QuoflCqFxEJQ/Tqf999GONdoJ5QIWopoMoB5G8rkIC+adSsR35aGVFwBY91t0brJkzEUTYThhjdM511vAo+2TeiXJUZWsajRIx3xTOEZyog1igKEdP6zioeQJZzv5xJRrEZJR5O+EdSK7AUpd5F9oBU3GJstHAJRce7h85wSLDOGxIZAb6y9dc+RKXvGfyBV8dBCSfHR0w6VT1h5lgip5SRkoVRydk/CLYlGPyqhK38Sm3mkpcx3x+nH011KwGeVXEgE1WWXeCX0QEj6rcEC7xN/u1Rj93/dpjOj5SOabtI9C11TX90Y373wd0WUSYyUEWYGurLbUk8/twRhHv62BBMEkM/sQDAY4vmin7CBp8meynrA/olCSOqjopfFS57en65B0kGiq4ICLOjCv8hflFsI4/2Yb5RatDjEtiNVoOcYKq32yDfV3NPBFs2qmaOEmVmDe3m0vHA2w/cTIH2zx8FEjShZoPxcf05CDQd5v/IQxfzQoRGHwMvHngsPCP3AJagDKg6VtUMUXEp9hFR2NeXPFdUGQ8osg1OluWRO8dX2BjDN3TQs1VTT8RdSz/UHL8H3hcmAGvIoFIZ/jrp/XFFzU80vHTLQ3E73Pfd4/8EzfCJANhNfNCtmnPkQ6PNKe8v277zYD3+vx4ujASq1geXrvq4LrSYEHQDk9fdDvQNE3t9MDTV/1aJ6dwehiAlAe/u49sTqFChkEpzPU3fGM20KjePxWt6g3DPzMjaDebVPT+1v1FyietqQ2yMIWc1MswqGT9A452efwL+DclWBCB/uSwJJK2H4aBPel8cLlVc7JHoBG/8DB3x12319QenKPl/QBOckEVHvRV9cCJllDknxnMqmJ59RsPcin95LBiVxnx1lb/xT8wpfjBwwaFFa5zPPozMPrj0Wf8rwlN01rT07ixbDBE4I3veyjZ1lyYwr6kRZ0J7PHZmaTtVw3pCrqXcGfVbfa2CI6vxjeMh44zwaLh70n6KWeQbEzVVeSV2M3qDG1MXj57EfSvFqL59C7JzRaFVVwwK9VNwEi1hBa4y6rJDqL8GzOmfkrxCTmJ5dakmxdWdh9Q5fjfR0bhhfXSC1gC3m+U4UGCJzAx8nU6WxVGfZh/ln6Liy4WyuVYIQqUe5RY+vT0jigERmdw8H7NoVsnFWopM0DEW+YMuPdHkZYyR0ZN6oiaL8DvuSFcWU31EjVAHxeejRVvSiJKWnIO1Kot4gYNI2z3TvsTyt+JN1J/Ssr70j2GzE3KSk1m4F2F3gR3SU0rEdZaJV9ELVYq5Iu4ccuALsf2UOYlopH8Dd/2GbSFRBERR6itTN9QwRphulAAlQIJR9RMxjbDxPVIAKrXgyvD6EdFBuk23QUBWfW2Glz/4x6Bqip3/lNVbbdhYpecrrrGqAbBRayXyvyh4Rgw0KKV4RVV8LWUyG9wtaqAASK9q8W6qlBXmUci8vOcQOuqIl1lloyYjahCkE9dQLJS1qfTGygMtJk7h2JFBcBUm6Z0XIgqVWc6I1X12XONHbPMJhOplYz/MDF8Pj57Y5971+hHdoCX9/LaXDzLK2V/6fuZ2KgXpjySCOvhG6I7UcyEOyibtweYKkr4HZLFzHpHcH4K8EfPB3ajFW2bU2+nlQgg4C7nU5Mf8QU8y77XljzdXnQZwRGN9B56gCOWTcALfti8q4gPIn6kO+seqKunCDmkPQn7RXi0ijZb7hE6eAIfsMNlq9W6hFQRYan7SEJotkz3ttPEdY01VVYwReCmZ4ENoJorIsTnpx8e4qFTNCbxdeM1LgNwJ73/oLZkT8U4afiqHKsVVrJFYNDbh6j1iw2ByHtAgisUET/490FlgjHChN/sRVPNFlHRpt7wpDbh9tcgC71B5fdfejDnZznVC9FLX8GNML/e2X749qvnEMRGNQLnzDLXCmqjWi37aqtfrVlYX3MdlJqKSaUtoSg+le4Zd47ELCvda812JfH/vQFfQ/Nr+GMzAa097nQDL1FFFtGjO2KO2sorpBPemy1vYitNxzHQNtS0hF0z3j0yos8tPdIfVKQmQriIFB+/9MEZ7Z5jGi+1e/mgxOlSm6FStMmdmYPDsGap0E6PwmlD7Oh+soGqM/mdHQXUtY57U5gmppuolQmq6mbA7yGaJtWeYk0NNQKaQ7cQoy1md31Pyc2r9cAgckTpZBhU+lN13suuT9qwETp/GX1LJiNzmcxD97wuNqaQS1LYILfWu+kA6avVLnplOf1QZQyiTI/8bUEa3xM9OFSDV9k6QSUWmn0dV3+NQDbjV/dGnOG1EpqcQbkqQon3sN9melZdLWlOJcqYu5QeThBMeE9m6a42OTtxxYLxvff8YDKAqw7uGIlDCel9f3B4F28poPveI54G+PtPUSt7Eqm9X6jLeACqk0x6FrfTK4XzcPzAUlv1rpkzudIihHlhgjXKEFOQGhD9Htowhb1xazBNlNSRFhnsiGqhtL5wBnYUe0+qPp0U9vteADSi1AUkaGryd2tjz0Kyu/xAjkguUJt1RAMy6v3fv6eTFTAhpnTeY6lsZS8Danp7a63608FVeN0a3BKs4qzBLrFSg2JcKayXW7qjasNNQ97TNy9xx4X31WyDNSItarMWbMxKUpb2TjnXqpKoKEBTuU/t+/lENd6Nz5Hf0hQQmlfTRryfQnHMr96Ig7REOni4FMeujborKBJ+58Jl6gGp/kiZCWzCtrBuqJyqwdjjS4BGopp6oobMx2xkQFLlBTXoJXIJu0bmPfTtBwoU0rhLDnW8j/PSrXFSukfU0dlVAfK1AMATL08S7uInnjW6WC6Tri0L9bj0vTLVHhAZ6K3U3TfQHQqYk2r11Ub5FAVVsDPUQDKT7Rn5j6yV9k+wkeg2F2AdR/kYvAQXVzNN1IbkVTWt5vuJTkuz19cQf51aM+0B0KvTOu+VbpqbOtQ268fsQmV7HCWsr6ehoTzgIEWVH556y9QCldQS9YLbGiKJZnnId77uc0Fp1foHyVZNLVEb+mspTJ9JqgiAXI3RgPyrZpeojci/2u6GIPKvmlzjPURhGso4mYOQiH+/INue2k8XAhMUJGLGL7wYKfFGZ6vZ/Wo/FOb9T7VBbZtrVb7WKqBjryalqG1/SboKO6LMKxPAiLauA9lQ1ztHP7dYK22SABLppMOxHhnfZ3IKj0d/aCCau7W2g3Zgzh5t9AQZp9xfhdiK63neD3jvhKlp6A8UvyWUfjUuIztZ/YFvoLTBj6dAKP57UvXpoazOzUuQf6Kas6L2RwtCGeP3kBaEcuDvoW8xBskg5riXzeSZOogFYheLtacnBgnZobNECJ9RsX4TVyCgSILlv9nt6pL8RGnkA1jD9AwMKt8ddXfPJzdIn/Cbu64dHEDVVd21Z1jw9lsAq3Vxvx0YAWKcCCMOy8QsEbVXTuzFXbyfObW3c0xHRyhNdcKDxrrTXAEKVQxAj2/HC8wTGhgoo4q9tvdr/sBJNxLxVJf01976JwIGxHs1yURDCy0xRIC87f2a+LUN8o33wLrvFfhBs0wBlF3FZcSu0Qp/EltWu0Agu3OpOPjXO+eyPx+DuHfNpk23Tkrzd4I8A6Q0r/0urE4zsDnW0hOsrgJXeEXHmKbaB1+vUa0jrYrbtzBDkfYP+/ixAFvlPhzSLsywmi+rdmotky8E++U/c6oVeMbmICx8DfPCa6KOmC/bYrtPZCzE63pQezvdcGYBHV7NPVH75H6yXurkNa8RTRTZDulMszMPly66IHEbNvaHe8/zHANzIX8+gaeX5wFNlILFyadzZa17hMvACq+nuG5uZNBa/dYak4elilsiCBL4vHeHrPNZ/aLBVhUm9/n2DcE0uNofjXFDAe8pvIVVE/knwpL1EU2pM21RToyla4cTJJ4ZceYRZfQ+LZlRNFdNP1H7+dJZNlDMf2zVniHCIC7xK4eyMi1Plox8GK04iXpvqPeNAx47Cn5rQKQs6w5D7d2uWrCspiUv7GsM5DUCLglPHYAK1uEGHi3tVqPyOiBE28GtznyS6SfqeKBYr8MUhBQFH7oPMfJm5osaux6SwmHSUb7NDFjF6yYCwQhYP0Zfm+3hCczAT+I9pOPiE2wb7euBxhxcGRM1ru9ZW+kHBnSHNcagl2X2ijrAC3GbBaNTa91qwEWId71JjJH5K9dScth0qQ4Si64qcnRz1HtLiCtTVbyfaGTbU3s/pYFFB4OlFHU0szIlwphNAT+l8lXFBIHGx43tQw3IQRE5Af5fRS/RwPGzZr/nc6DWESNdK4WQs7PDrSZkEUodjv6BnEIoUCmrYdz10Au6t0QI+tqZ/IXYSGgqjK5+AqA9fA98iKdq4BQxn854RYIGa9YZ35FMSVvwx306ijkFYmJn8XeLZZBFzrbJKSoSRRfyMGZDFzTVoCkAOBzuG1RVw8pryMEa9rkG0BaahagPwWXUwCCTTUcVSIclSe/3vkImFI5MyLM2ii5VexgbIN71sQIZQAZWVzbXMbXx5z1JG99aMsi4cuMHScYHZVxDW6ahMIrX9AKK7VWG/vkCis0NyOJQAsWFTArzN16LsUuP3oMXycjkjtKEQLPHURKnJUWIOeoYfbezT6qKavKKGus4p8J6biRO49ZjZ07xU+h0wEkpyg2lt0Lu3gzikDxz1miQZ2VYA4PGwOxNWu1XpjI8OOxjDRb/1mGVieCCzGTUrDRb43VAY82rtg+hK+acqOMwI8g5Fid2659TuPOcDgBRxYgYr0gTnooesi0JYlNObZRqRWNauRAkMatmrKjzAQPENQE/ASQ6ZqajeD/NDAxLKh1ebfl7DPVqbZFVVPe+quKpqMNgFPJUtDq+pm0cV4y9Z8vIrj5lwSzIm9vHmlBaj5Dn0eXsg2aj2H7UsCh+sHkJj59aa1prsfXE+lSGPYx/aJ4PaAZq4oF/GPHz4tZmMwPfn+21YOI8FvqTMcJZ7xGKBhdUv58yALO+2amIHmN612JSZyprsFCgqAqmQhE3L8Cx8KW1+mkUUCezXAzTHz5ju43V50IzcANHA07Fi3tGU48pc9OLXqw01+xoWo0/ySE+bMnOzgXb75HG0fo19s45uhMZTlfJybpnTYhPk0wkd+Gl7xl0lwVbni0PyFXoD1oq12mROtnf5rJsht2Y/bglimbCMCjMmI22S7mJ/LwBiUm3d1pDzcx0ubctjNNiVmeFVOdd1AkvvZYoyb8kxqBql9uH1smM+LRKmwwdTQcVJ5vw1mmLfk4CAdxeNdMJQnGXJKvjKFm+UG8wezLOMu1FzMQm3Wb3lDxilJjEoAsTypkUXV/VTFrLzsWZtF82F1Jw60OQNQyImelgNResI246RdPRD33hae9oAlK4FbZi9yn9hQLfu/y0La2T5uYIrU7m1mZfO+uNEHifBLVfLGJ1Jzxaa0/2UVpuBlCJXTVYbSIs6/mM/pUYz5XBhF9Me0Izax2NPW/sFuoHOF9qZATG4qgqbvlKHJ9bCALS0D4GI+vb+n0jTdttOem7GARcVl5LQcBpJ2+hI3xXXG2yDZi8ueHLXgjAglB6RJA3eI0hocS5ClYKoC0WMVvLcdKV8CGH7+giLIdW6CSLRiFKikA97jLnlB5+VtTrMFILmiFhckjDXVVCHZ8Kr36+0IlVNcrlExkDjmSseujWYKvIBbaee+KgtDz3JhNm5nRmf6E4mG4NeIXrMttCbx80E0sXLh13XY2jtp+w0qpfkodBQ5LBJQXUBTd3rUhdTF9FUIsP8y7T2zWDODdvQzBVNJeWvAe+y3Aerg47VquXr5MZiyQ00rjg40WFtOxaLSmkZTW48PAft6CilR8NUHZU3vOudgocs0hUUFUox3smWGHvLcjafDN5UbiXI7PGWqmOZEjCjTSaP77ONanpZiGHaCrUb6maauH9lCXWQ5V9vQEjp+48CsKYZuL9VDgmvxI23q03o7bYePd9ZN9pfqmeKJ4t/wCy4197drTW4O4dPHcb0UW+ivd/T9769jSItwxptqw+CFdaJhCTDsu6ts+mo4to1oq6yDzL95YrsF8naGVZQQDz7g8+UVu4ODe0sDYFmqhlSf/1fuHfExS47j229v1dtomx+GWgeQ8KKQwONpNe/PCoxHlcnE4lLaSp6LSA545LGYoy8CLl1rbVBa6/PtU6QIvLCmlRIa0rglIhddWW0K6IXIzf7EFPdnUN2ITorquFwLwkLUZA+VYoApApCalo1gEhte3VbdZTmdGiBmUFZtdqKID+WMHGWwRpRQEP/D2UVG5yQ+csX39yrG8v26aRWuXsoqEdH8mspqBo1BOilJCXW+7e20xLbUf+grdi/NcoYNF9dC/7OnECeLHvfMDrtzvxw7tbt+bPympTK6lM5vRKAWA2jIqe5xJM2aPNSa+dIJEmisHogMQ73F+HQ3P650AK22gOxpk4H48ooEflH5NtqXdY6LPbPaHB1pMVnRy4gVzzq6QiMnFE3cJRmPXi/cTouYsL60acz5yQYMb5BOqBCxOqQjTk7+F7AnqVqaA/qM84FkMksA3iG5+Ti6fcoqK9GIzZlrmbnTreDx4uqiB2xEMZDi8bZDZF4VC0tIzegx4iMYHbimiPL8cjumzbSIuvuQ2VMAavZN13vtFsVzCgeDX/PsWCKsKue9xrHg7Cy0KIwGDNsDUk1or3Wb1NJusVtnAFOMqSBRMQvoc64m6r3kPfDZEkO7e0fgLoxv1PCFZm1g0+pqraVlUbprxAvXvsn54hPcki3dQLhZvvj7wUmEszmUTdi8vlvq/Up8KhyNtSO4metukrpw1qwNfyjCZRW8FpIRN7MyyqAvRz9ofNnEyozjcsdrSo5liom9mpfTetslOm16hwuiwaYmWiqZTduKnr+tXCP1CosJwfc3CzpOaCP8PLy3E4U7XPl46fRMh1C9LUkY8xW5wrQMwzURGoG6ozHODcnkHuKH25GzPYN9t7Hm4qoyzOI0Hq2OFhZ6n3ibcPsehCvnbESVPRWGHjEY68AS2Z46orsFYoTHMa2MKK44SHzeCpeJhYFuOEQlDHrsABy181zcV7JM0T4wHmjw4gY4UwYIqCBFGEk3QHRC7itMhah08KhZHjo6bWG8276rGiOlRUx2VYR+6TM9P1kFNJvdajQQ/pAukG9UOv5dQPfeP7V65V6Zw4DaazZSQn3UZXuOw5HsuWk3prKFr0bnKoKYHuV314Ee/Vg6IqxdPyAlEo6/R2Ir6/Kv+sDMHrZcq1Pe2OgrNvV+SwCPg4IHdIrPQeqlfUvioaq/PUeyJIvt+lcA+hikFmzINeWlp8+9ukjbiQ0+9Q+Fqt1U66UZI8dXCxf/B6SUATWFgZnrQHjqNyZ3C9+mWd8aHwVKRPXBWNdG1T1jG+VEyPqO5jxYTYiJuC9NL3F6iBh7TSOeiUV4PAoteu9TU5RLteAQnDO7AWPcmu5GxKEDbmRnb1z0n8hNsgjr04nfPePdF7O2qHzfMuzoHj+NpBFfDoF5JNRPJ9z8AxtGspPmlkuW7iUFFFWEwJ/KCvwENZnwV/BVbVvL/MF6JFME7/ac4zCwEXx9G9Q2voOGz+JNYyWu5R6PSsfowDvvPWDFtvnc1IJlOfJU1PsayUh5iuIFz9yAYyhAUzuGLJrRQ07p3LVQMD6s1exyEM8NhjCu4KPIalSCZSri93Ej1bXajD9lD1uHMKq9bPVSponWNv+bdDdSUjSHOngELb+Jjc5XkkDgSafw9JFmjxtVhFkAVyZFtEmdPmMk9NexAr7obsrvSCFLbM4up/FxLLfoXNCL73k8a7dKR8KcqxefEsE1Xh7xnV58J2FVNgofnzfuFHg5f1/l985GtgnfmHJPr9fn+zcgX35MYY5Ku9TYPSS41i1cvSe8tt3i8zxSfqOHD/fEr4Gkkrmmks2oNEVDPXxPsJvsB703vdNALaN4QwrGnak1HT6D3vN5Xc6cbdly9VGivfL+/G+6l/hu2vBdUEfqk5efZ+Whhz85jTt5oOoiZo9k4LHCuZrUQQvIf9ksiZrmUQvFV5QAHO6GjF33jiOl9192P0yYnzRD0dAuqdwcD0wtJvT/9myhB8S8imfjWeTyvz325G75fQCUpYxBE+z7hH+kdTisinPW6dNrNIyfx9D4u9XBnXHthIIQo/Ia/2wLNqZrF4RSLoX1VN/0Cg2UXvKPq5orOBsSKYJFRMgA5H7wFetCOh0ExS0Z7JVXr3zdQqnRl8mTy6Py50EHygMME4ydU7H0z6qj0/tfKd2/5KK0AnRJg4i2Te6vJ53s9cC8sPCb9KPveiJKJflYTduMj5zMrlXkrJ7NRqe9Col89w0G7x0WTh0ttlrO3RjtkezuYAt596a7Guexct1vnDOdrinYZ0fheuh8sWAUItzTq/W/zLcg6Wiigb8mgOF+zxgj2MApyLC7qFFuBlXMMb7XB9HC9XACfe/71izvmTvJ81SRq3oo4NqDQDr9MeXARkNnPNtYLksCazBRgNRQz3DMyuSSbeT5xd0x400FdMoRbTMmwuyOhZjKLw0fqIh6ikglaQrzrIHfUe8MULmpyLdbllP3FldZ/yI71BVHHuYJFSbWKJqo04gWa+i4YW9x7uk5h1uzSVTYaauSDeT/WDVFwIVYRMZ3ENLUDzSbTC6t/qF1YquC+G+0e0UjlUC6pSOdTq6WKP3laqp6cBh9JMDNJKIyeGiRUyzHCZ+H6LfZn+UlEe317r/xFv0woqIVqxVivZpHcYMXH4G9c3k5SCeu6w8reZpSIZU/PZmkcNRfV0N65G+EwsvuzA1YrVFHJxJjldM1fKD+tQtFrgr5Z/xVntnueuWbW+A1OF19xEvUTZd07GD2UdgMnblvf7PVfNuJf8eikTCZ1Wbi/DRDjQFWuIqd3Of49OPxaFgU7ALTyFk5M6/GigqhAZFKY0Dhtz1VJdRkIfsCX2kGxuncawRDNVRSNVRYviV+z5s+mVNdNXNHFVNHNVtEJepVbuqg+MX0uh5qkLjF9q5MePER0+kip23kM9yevqyLZBJK/Lhn9lJeWchxvOVfho805LOFcnInnrHtr/anpIVk2vxPznlsnZ1PmfzcZs+/mveOZDgv6zJVvCc/p392jE5XByZ84G58ZXeQOcG38ubkHHQ7IHWzyR3XCJ8e3bJczvRMUC2yu9hzLp0eio/vY5Y060lasvMvw3gk/+2wHodg1pRdvvziuzVE5cNTKtrdty3dvPeIqgD8vFczky6Ua1cm5U5T1aPxHg5+u/x5eYgluuCKGtoniQ+95SmoMcW3O4ARViccClNC2SFif/n/9xDOXbtekcAJYdUHm/r59gXEudO9xq7f2ao1RIstUC9AAzMP3Jgh91qm3AvDeB9ssDUs9Wvexq4RjlfrTKst/3UPEhxP5btZ6taYfOD6d0WraURWwE3Vzu2MBXoSWHYFlzKft66rdNDXslNlFUTNq4YnaOemO89GuE19RR2/EOEpM18z6szZ8oFRW5WTyohUdtYPgVID1dASeHW00t9dMgDu/o41YS4NjM1N8qwn7OgrYKyXxuJvhrWuEMtQ9ImgGYtG5+h9a2cdbwFfmwVmWgrDBAYwCF+15JRuh6tJhsp9bBGeoeOvv2NjFsxKHKtdAivN8WjyIm4UaLcQghYLnvGV26+gqcJeXmyhurdpu5Kd5P+4sGadSJHi/QdOLgUZxs+gnhhtbpdYzg33vdewkMUgQIXRQa8mWrruExoXRKOTj05gvkIPZwkc9U765dnFajE+vStFoFVtRgT8Ul4xMEpu68uKWWXzFsBMHOs17l05is6/Hts7xzjYHcBY3GiUaXTTQcNYnk2Xwl9p/r/kpRRY3U+Y7taVQFNQfKwJrZJFoFvK+p9Dw+0TmttnUqoX3uVRqHYFNfj2SAh+32qkBKvZmF5f2U9V6SWShmNq/b+zU3gENA/fBN+SZBUDH+E98/NMh7kMB+SqkjSr1VfkhSCUFpzX5NS+8iDH3Q4IQ6hYLzdDQ0KBC3zNrfLAPRDs09ZlpDz4/W7KE09PxoJrloQTiGGT7rQ13Q2nPsGkfLVFyaUj8dp9t5Aib5uQuhFbxak0O8n/oHRdXQGERe9aDCtZppAEkPoaZIeHoLTxsZKd7//bCEg2WAiF7o6uhzqf57dPHFSGHFbHqG1pCb2ureEq0ZPjbtb7vUwNbhess/50CtelrlQL20Gvn+klnUFkgj5V9r9kUbKf9aPfcQ8udG/cehL4Fy7yyq8wNlRMq9ewLkjBG2n3gUaCncXovZ5ffaXAHPSB3h3joTpGfNvBQteCnyQW03EdgWrZVwkY4AhmqURnu4B6yrwEvh6pDCZddvVrdk94PfdFsjV9+rBDjcTdrvdvuFNQAqmqkiWqhKvAhrxjYQmfa2HR3ccN01zZt3oqY6VEztvhBoiSBA51OkLO4qcjnn0U88NrT4fY94fc8s9+qKyOePIk70y97UTDLRQH0XZNxFpsKDWq3geKUGI0L4Pdnrk+6VIxDZtxXT4khjk3dlGpDWEv2njCJ4U+Lo5ayLVPM3Ojvq18jbTJKte0EuTIt1CDT5rP87jYfne84Wt5qVWgNrArdn/iFWk8JIYrs7ZX/qDsCfFAcVmCkc3mVm2V/qT3R5bf0ug42ak3dt/+aewrPAXQYT1s2NH1o7XKW2fEKN4nW8cx2ZMwnojP0NmcmjIlPAHUBqHcdQGptq2n2avXHznXsnmADmgng/JQhMwWLqNMUhokZz/NeEAAftiy4GJoXebZB1elGmrGgdPLWSKBjhe3Spz8DoyEE+IsKNdpyNV9m+Ct56t/8ejS4Lvnp8SNI1CcRS9mVEthfKWHOttE5Y+sOFEkNYpiNpaB6iDIlCJRJZQdGCAZY7nH0fsySdqhhZlDls3d57T+kmbUGSUeOkW9fz13uk4/kdD+iZtWnzFn2zq6Uk0pyM+/b7urKxtwKdJUk1b6CzNzDU2EvBFRUvCmoPXM/OUgfZXjOfRQsyCryVeq+CNkB05LLm6lwjricLYLSDoElFgzMoKuRG9wZCB1lpoKt1V8oMVHcXLrfOCIEZK95PHKiDhT2xE+4KsjJzu90cIZnZ71zTaXZit3WSHrt4bAa1Km7hXw2tUGu+iFvnCv3wc6TE/MR6iYP+vHv2wOuPuLABV/2IIXSF7eMISrW/hhgyvV9A+/uDw0t4h1E79eHVkiBXp4fRTUfgHcKEWoRW+ZIY1DZN8swotqvI/APzeuUbUAvJvbm65h0R97zVWFBQYEattPoC7Yw0deVzuT4KSW68dkRDPuEUEFBM9QedjxbfureE5jTPRYO4MsQq2JtTChfhlRpXn52ZDuddr282KIhgmKAMDCKkVCycnFefUAJYEZGF4v3fj66cVHdaTCwUzawbrSsbZWqS99CBfWkanhZ+T4GJ6DVF1j+htXLPFWNpz8ceFYnp+5t7QWjSfjc6rPTTHLvNktnt160qwGPrk+/S2mUw0Jdl9i7IfA+jFKWK2awrmQIfKxgpc3hG9i2uVXuG76cf7s2DIk8hxg9f2TBMGGjj98DyBbBahzXUkIaKBOvH6RqgVDdF4LvouIL+g5yl+WbWiTYKCmSX+C5Tp8qqWnRQxDERyp4XuEOBcHLOuI205dagJUH+MzmdzzekGFRsfFqLWBBQRPtt8b8xoCcSCoVRlsiQGtsMNrNQNLJQNLNQNLFQvB8eH6JVGrQdH4LI14iPOwqte1DeGUUflDeFosAVIm2AMtuAmD7+dCHrIAte8/6Cr6IN4ycbOSne/z1sYNU5l7/dtxipC0YKN99qYKWot1UkCm6FQJCsNE1FG52TZxthoIFJWb8Z28ueQ4RzG3aFBpRWdZ/rNjoXrRXbkNK6dsFI53gru/mnFB7Ew82UFI3c5Uc4yOhUj7FbXY3xZc/NoN64mZQxUAhUVZnI7P+wJzWoq4Z11ZgIW93CBNgytA1Jw9KGHamRjtTyO0Qvt9e8mn5Nr7HIFWQFNOhHmaKiDflR4y4a+VGm02hDWSqxp8ShL+MnkcBtUG/NVr77MTEpH+m7J8/2MBjrHlZTY/3YoGh8XD4jyiVmzL9S0sNaixwUzZWYDRwULhYpbOpz6l2m4NVWN5XE0K3sESHTbT26j+d0c04dIQwPCnO674WxI5QcJZRsiDMng+6XMxQUsM08CmyRcJdL5qbUb0wMr0OWL6kZm9kosl4vB2lUBhnEVPXW1vUr08yLC5raISuMPioquMnyDuHnGhxK7tSonKbhlskg9UZHMW6bUjCyx+etQ2bgzywTUdfCqbQSTeKJXJ7Z3Ot6STP1yGv0K/AIRt9+LbJJCk+XGqQMEq9JPvS6xtWkM20iijZBqt4MqH8/ZapYEUPEAnZZN7oX5yTXzLE2Q1fL4/ZXwJU3EUqwp42XWJvMarstXZt0p0we8X5CxbRrJOJQjua5bPQpZGzyby7CmXSwDrJNMKEpQL7QBybKwzWvCmpMC4OJrr9NZBXxKZfCkDeBRthNJd4RdOU1/PLb/MjlDnhtk1tVyIM/aH01SdV5YYrIUrULpJoEp7+H/AqJTH8f857FzM8sxUVALcknUtfZFJ0d/VhVDvWQMm58X3b/mpkDjOK05DK6Qtx1kFEYbjD4fm2wzFyLpmOpTAxMN1UsND3MJ5E4pQ8ki0WYllJzzK+GJimxwgOFkz3uAPiKLXJon7jtIVsQmCJGMsd0E20yV2W6iTYFiQimDPZdbTOh6upTsbgXKAk3AdOqxx9l6zYeKmr+9D5L8fK8xLSDs2UU4GQ9gduuPxMUuU1ME5n9O/99GHLbXNpj6x6aXE7WsXMBAyDZ+6RklXFFKInZJvrQbb2MUVEl9ggW4X0527dejtXL3JQHUb2HapyafRfmf2qmuwBwCD6Rz2rdQLrwFWLLOnzehHiednJmNgXRKjuiFldjmHnQ67PNn+hYXsOOFPko3v+9Lo4m9q7X89O4mplRcU68Rjk6Hz/aIDnnrrRuS/rpklY8MFlpnxTX1kHEEg1hUoq2AGo0qczDukSLjcW81bL6WlRfYZ+yjOH9nEh+xThTbH19E+pA8000ZODCU0lrHTRFU3ALcLq8J3mYBZO5nMRa7FX13jpII951BbctOhRjqTqWGjQ/kHy2kRBJjOI21TWCi7bIECN9QTNJRVsIBooDmLHGRWW1AIJ/r8iZHwwOLntNwUmRz+CQEfjioy8trnlWctZX0Yc1dHttpqRIrm5cdX8MkpX0tOcCqeYHoyEy/bbsYa1Gt5DBedksS+DWStkSRBWK7oX5lcO3OowmL3gFd7WwwaIJVckuLG4EMX43M1Q0MFT0KY2HOjJVdJW+tQBtvq7OxWAva7GNDnofJSJpsSpC/BN7ZSxgL8Nvwe//nuBFITSgaRvaYn/g98G8w6C0RCbZEbQQz0inwl/jy6rQFroDi2Vv4j2r7/vS/I/lepnoN8Er3cEgPGC28vfT+QmhlId1Bku0BMAaLIm2NVFi067zvCgPKYPeM+Bcq8G55tG+1CJs/YYpl2Dr5sl4P2WoXoJmoSXHUrAkYvi4rHXVAv2cq8gA4H2v44kHG3kzp0VbGShUiWSWQH47N886uYkdJyRZRVOvlhNMl7ioV8HSKrDbFogkrAJbzVFtnjJl2TQJBECaUqvcsxridfOuqKixClPKjK1tpRFYtBALKFvDkL1ngEjm0Z4AcLmZI3VrOu9sESKxrNRWAgNdql8B4msmrNirf+0+BAsTvX416WK8cDmCuDJVFEBETroEp5zgRcKJtn7Dgetonj0RG+xg79zKCGAjqThUfFIY4XHZ4yMA4Bi3AwhK7+75TKPnUkFtNAcxUSaKwB3F3ewoXPUmQZgQX/imFB/bocXgsyj4ta9TaIYHP8fmISTiVQ1lH3Mz6DcBWWxupr6TmsTCAi0R3tNvHr6T7bSZgaJtYjK23bFdUVelSDGSxq/Tf5GRKUOzo6xfOJnH3//9kl6nbPynUBQb0jd/yR4anuhPXL/SAxSrmLIA+9cz24QM7nuRppm1I4guuo2OGPo8TYUvYMPvu/RJzdvMbkGUQpHWyWB0FGveBu7BbJHDsJ+1wbW07WnWcj5SHdsyb2MDbXc036qOCM0ffq/+oPjV/WDiE8wEs1+8n5hB2FaaWyVYu92zmEGAXUD/bicDbGmiriixriBd1DiwRV+BvKND/hs9w4YKPUb9NmZZCJ16RYKPuZncom1a+9sIhT3WJ9OFNdzv0NXmnY/3bCJa9nxcjrQJcTcjRttkXmrbUc1NZXbEmFCThOanncjFZG3JhXmPpF+rRpP98PV97omwgcyIQ/X42hW3APb9i2Od+1Lpv0cTisvNssFp57QjKbbbdmxwZ9rr3L646H/TgjDC+6WRR+E96p2+GE0ya0YkBLlerLT3xu0fb5oMXTxV7dzjfeB+zmXtjciXaMAiC81THDmk23O75uzNJa8gHKibokzgD797nEvRQOKjdhNPZLq4fccl89QzJOrocGt7XJs9Q9o2hGOn76bLvks8BZSaprJwXtwWhR0r23a2fScwo3xK7TbZbN3cNJMuiraCpOxjqx7mpI4rIw+QhJV899lRBIw0z+ec8YnFSwmI4uK998OLTv8A4utWRB1S2TZzcLRDKttmxo33EA2bbQRhKCSQ8I77w1gIKsRfSXc07aXQ4YhQINT4mHrocu+TEkHRZKLLTjIApkUSoYF4U1dFE6plhov3E5b+cTDwVPb/VDE369Nf7ZW1DZWFwcde2VFE8dRLovP+kRQmDuuB5Eg2NccqNVYIojexRTvAaDjji+5a6armmuh0445dskOMxrF3dbJteJNQPOiiXrbyRANK7j4IsffHmAWkQ199Lszf7gxcs5ifff5sasQnzqjdneS4wNVuMCtZLko+8vJ5ua/qlGRAV+95lTJCD6a2eMD314LUQD4m+BuWyeUAUzaAclEtnLsOCSQ8hnOg7YnLp+BCl6BedyASXBdO2mxg4U7YYijRa1rAdr2ELDT1xPspG4ccARgymK1A5F4g9Wpmr8iodI7U6bEj9XWsvk7Wy87fns3vUW6zzpIFEUMswGNKUvipQckg5EhuEBV+/MrLk5CNM/32Uhd1tWdlT6SmrK0qFF200UB20RXcip4f5F2QMcRa62Mv6izuPSu4ZLrAB6/6RUT5mfcsEMe3y5kA9iUBHnNv3cL7g/xXk11GTXKR24C0dEGkN6AiBl2SBLpdIofD3NfZdwAAw3H3TWSCZV6uRXCJiSxaUFvcwsueAfM4SiXxEDS/bu3lSUV1mzJMJrlveds5nFA7UMFsgQm1Hwh0+KUpQMVmf7IUFUvmgNxTMcQNIGS38unPw75zIpTYX+aEgFD+Q4svzCfgpD2YUdxC7v1r8qrdV81Zff9vPoKU8lO0V+GHHZWrbXLN9Eem4vupfEx/kjU6RdhJbzFEaFY6mtd201t00lt0c2L0oLcoGJAFUaHBfc49tL93Znahy7EriAS9f7seHFZh/7BSEFWrgr4DddW1rgJgfX5r3PtDhdVNxN4f0PkV1UfFpy9nCLRrue1rOtgq4zw/DbyuLlcljoDgApcUS4mI4DpzgusbTehKNMSJA4/S7pFktpVPkDH5OLptBQLA+b7u4ZWXGys9E0OZA6yPS3c/TufMylfrD9VWDzoNMSn0h3rrfcp7Yk/p0s1G0oMEI+0deRE1wT4ZyDl32bDXsD2Nlgq7dmvABo3cTTDQn1TaJq8pyX+eTDkqgoe9+Z7otQiqpv7cOQFywx0kG1K6BvNGfUDjVeZlVOoPjMphXADK5oq7Rzq83N1joD+Ty2J4WczCmZUuTCc2LzRE3JXKYJlSb29e9y4PpMPUPym19BJOIL5Gk77V/1iQ/Zl3IAdDm97s0GIiT+14Q9ywzJd101l0pKxKArHdyLhSeHFdH/R6MR2a4so9CJTt8L1/UZYlfwYdvvevzalafjA6Yl00TNExjQl9YVyAsOMwxe1hqob4hBCS+Yhm56AJTeug/XtP9BtCNdf7f1ehcH9STndjW57MCnRDNMdHgrBuuD9Xghyu1O2lks5yEx12IiwvRyZdlq6EYXIo5QWO18ThII+nhvrsvYvfeuoziXM0xShGaPXy0Kl2vjZvUqzLgOL2Lt2khS8Kg5YDTGc370UnE0YvVlTlIUiy/HVhY6Z90lc/EPurcfUC57pfsoyCRo1C7mKYhZ6MeJoeMTmUqAfCFSySCjWZWel7kSYrz/oULPRCdfZO5739piC01CuJbnI2fXNIUmj/Dxir66mqRwAIorgtCETrqu6jl1fE8b1K5fRXzyNAAN2sGr2gP6IteDC2RivLx1mxUyi5RKV+CrMUPYrh3Z6glwR1nGJbNxPbp4h2aWeOxQX0XD4iuOizcYVJ1/aSwMNTtldLoxgo1oUBzM35N7NGL+BzEjBnZlzCPrWRDGYyhsnZzVzxfuIsdM99B2UUZXcEgz92W/Aop6PgQVHSlLtIATzsZszoZbj6AJw2mRV1UBmIty7ui+xzlZe0PivjJ+HctB4kdlCIIufl4Zd8AHYy6IaI9TI4QiujQlbcfq2IMhGDMak+6zrKhdFuN+Z9z+Y8WkIXKCuFGdk599xJQeiuqyf86xc0GCRmuOpsAaKUDvyHVyjSB4H9ZBC96Dx7LEuI6yKPS4nRIi4gTA0ZCjwxgBp2M//3Qh1l7vBepJ8U74xPWpjTb2wDFdlL94RucHd0s9F0uNGKCaNaQqG6jkZMvWzfOUEbwf38ES238KGXzRm90nR/q1wr+da68k5/+8TAklyfhXK4Em1jFFDhdrNp9ALCJsEOBnidz0Nw1iiHssnuRSGVoENSCZaPvlb8Ou0gEQmiMrwL7hqfuEykyXslB24320avCA8qQcCVIwKMjOM6w5KbRyUMMBO6/oxPmwOYPhJ4TMnagmqrM20ORWPdgquE3FGMYZNnSM6+Mq3dgbdegdh4//fDlvFx2v0GRXGB0qzIZWf0L8nGI7E+PXo6RyLJiDbAX55DKOBj9HsH9cWr+vmC1wBtWzf3Qa+Vo/z8iO6ViTZ6BA1zT7iteq8pnd0QGnRqcRh3SlLrFUTsFOZsMvrasp4NIGRsM6O0SR2HshTlKBmFesb4je9P78pFhb0CntHNkdErSraGO3S+Hmrjr5wlZtr4JglxEXtWldjCbpqM9xDxxVEDyVjtcMbHJ/Wf8G7nyzZVa4c8VK7+SaD3cCBIzXvf//3+qYzMptFZrP6KVlup54PpL+CGifNELXJ40VE/Gcde0UhYgdPJlymVlBr+9am8HoCz66777pWtGd8PHv+gIDXsugcNRgpS06O8hzJ6UX8Cft09E55MMLre6FWnfO0WlDVVk4GYlb93GSlf+BSgbHG9Wy/VnDJVI/R06m8Xb5RE9uB7Z1yqkwDDbCuvmUtD1CQQvYIzvAn7C0IGGQGNEmU5icRtuTwoEGB0c2/2SlTG+8FLE3W1QgYM9WF/N4DM0bEpce0foAqxCGUSHJjoR9I//eYWf+Sb03uq1l91o9WkwV/x1/Lz+bbSLDVDZLLdqazfo2JAydX/2hXaDbqAPaF6+OKsvuqRoLJvFNk4rLl9zwJNypaEn5mr0UgWwRvaY2QB6NVuAZkwPgx2bNFWzRHa0WluChwRSYC8irku3k/wTMx10RsRGCI3Rfj83E7bcUpqBFfzpnvprPH7wh7exWNFG8aImXAnQ1c2KfQiRHoKLUD+4mu5pEB5XFe8N0Dhe0vtV+nXByVGwUN44go6CalX/elQVmKDPuHX5JWqqsNOsmmKwgiwkC46jI50j/QpYqox0f8Zm9EbOG96s2PESnml7Xui05U+IY3ee9L26Ydj8mOQD6O7PKmLDMMVB3GoUpDZbhEZRq/z/hDNJPr1hELnl4yM9PvDmWxuzb17eoPmNzDpWT9FwH2im0Y3u0Vv/dOu7w/8sSGA857jgQGy5+5JGWXMC3ZPZOd6tckLNgwJ0hS0p959A/JbFdGmhrxVS70NLlVHAsGKoxq3ccB1oaq4gMJDUynmXpPBL4dkV+o1HfiyrCNbRhmWMiXK4xgF9GyuAYfzWqKsmzvK98I1MR9jrHtLwykK3h1PjNLxj+Ig6cRVTC29qFtz/h7glNqtamx534PcYvEQ4xLNhntQYNywFJHzNxpKGBOtHqY8ryMhm9uUAh3JvSgNvfYsJM0NUkCNukcp61DfA8MXgQlgyoz3E+mIaWuigv5m4djmpzcH8huMPE7QQnp3/jFd2t07GUN93ZjPEc6otVvbmlFnUNv+9rhDtWF3W+X36wzxSPM+qLV0S0jYne0Vy66K7I2elNnwejvtA8Fnk+MMq7roEWDDnkWcV4Alemxc0wOnCJpxDnfN3WaHi/N8w6wddWR8pmwfasVDKiipGZaWat8xp9YNYOs9HccpSpk5UXArSuPV/ifhGr/ZvMryVTBO82B08WD0iKbd4JO4MEzXGIcoXNtksx70ye69QJpzbS+Un27HHNDl5D1t+Eo/xTAtG0cMgRbwat2TpDOeMIViuW+GZFavStIe6oBZdPu9vVO9SVvHkbRpVHoN/9w0hAVmZJzG2u2Hw3fcr9cfMMCoGa53nGb9cRg6KqV6t4vVUa7VrwwKhYi3UD1JeKMRFpAzA64cG2vciepU+PqTtKrNDtE7xE5gtrmuyqdJh1Z277eB3KyUB+a66L1zuFZrHR0oLfATZXNUlLJ5UT9JZ1MZkZ5xQq0cetdPBB/IULqMTlh17/UEieTesKzogwO0Fgv+A8ynNWdAW3JFdwdEEf4xW2+aWQgHicOTfqlJLXpPdMWQsY8agWG/btG66tNjA7zi/aHHBilunpXDHCg1bqlcLlYVHa6UOI9WLr9z1W1HTZupXIIdhJfwHmJKylwYXVwYvVvt9fWJ8x/w8nYxYdT15UwJUXq72bUJYJmkNd/X+opU9n7rJsLofX3TEAy6BOtFxm8Ler2UI6tQ5MLvKd5ZjApcOFOHFyXtdxacSFlwki3b9VGqm+vdTlVPk3a4zVBWOrv0uaxH+9lOFFn/er+ykj3tuwk4ekwZ1p/zfNF7PSWqjIg4hLLHbm6N3o8IcH6LGIs798Q5zPkyOZBB2BzkuUNiM979zVzOZPz52Wfm81dydDhHNYCYf/9/fCSFqfAkYHENLAPW9mZS0qwWIXYz8igd/aDXQwDfTZHQSYbRxZcRhO1crkMg2U4ejICqeJk9D3vR0/hjAMBUGB1UGNVgj+f5wxgcbdv5Gw+5wKa6HRNG+ekbRACoAAR90EUSJU9/vl1HFMYZ9mRYknUpiN5P32pSWEp0wLZ+7eEh5Dd+7N2nWbeMyndg92oQUjGsbAaB7O+T+WeN63U4aTdSv0RHVb7tiXDirQp+0hnRWKhJBxVUJ3vbe8BjB5a9j3ZHkvGU9yb3pI62EiqPnfUBKOzDqv5uBuotU1y8nzBVnNSJ8KBLwMoYfNPWVEFhmcPpXzNuEFAhPob4NHhk+sjmtTx/4/ni/RA5VdyR/MTdFA/vp5jbFWFmgg77oGM17FMMOVbDbmoEOPGaejGbbg+cbkqWcPW+thrIMW5kkiSdX6LEaBeZ2YJ+1wLj08NqbSSLuyI80PBxVCoInYOVpCdRipukc11YGQ3GZcyL0cfkwrB2GqgzliHTJ9otqZPlKuBUe1W1Z2uBbkAMxiMxLGUYkfeewRle94hm2OG8QSuTXvlBP3q3Z2d8xNDQc7gOl1+RyKpxxQlf+H0F7o3YgB81HVh8oqS1siM3hrtwTHbR4eJYhNaYGKMPNG1UXKqzY+x7/OjA4D080iMpa204Dh2BIcLEDsbi7ebUgOtIeAUDAu5j/MQ4aNWpJtMQwsZsRDExfnDvwLfvfNZIksGtIBbC0/Ks9IKsp6jZRHfq72kVEEfonuB9Iiv3qCqwoEpwClQV5YuTv1n+DcYYfBpCrkwi2buZOzpYMdYSvjK1H13theK47iLnjn4R6m28sl5sMbK6js4ePhviygwZiX37hH/Lj9c8kq1XhcP9Qfhp2lWaXCDT+36ivGad8XHV8CMZrxmleeWkjfnJVWW2jB5EGJgV+3QBIshVNYvfWSXMw6wrPagw0hgydc+760E09poz04fQrueDSMghapcfIEvdbmowlGxSij4bfOtvWCVDNxJYBI6KDCNsZl7CT91gsbipXp/oONLdFibN2dFM03W4Cq2v5m/FbhRu/GPbl1QIVevW+mpSX017OZOthft0gHDm9tyq/SoQJFtlXHuDnfDVPF4IqCRWV+bkMI+/Var1gBi8mw+jT6oq82G8nwbWPeMTCxS56lzFONK5S40K1IwXfSYKZCnglhXDeYb4J1dF4W2fVkuT0PVuOqg+2fO+u2iiT9CCaPuzH9cFFqAsM65/L5ImWBF7CrwM5xkmi69EsiCQeTfjxfupcKz7hi9Bg1H8SGMD/vp9olRRJWbDR6iiTIPRZ0o4TWYjhFWjL+AKqd/zD4fnDbmfT0iGpQrqZUrH4ILZpgSXNNhYRHi5T1qfG0ViTUwi6ca4MBglinGaIDSE3Zk0tc8MAXpXAun33FV6yneUzLl2vYPOJnJd7Bi1k/miz3OvobncU0UkfSpbNa3yIkyYwmnaQpkHZNh8LYSvC1KhVkHV+OgqZ2RZTS0YQpIAUX8anei44MEpfouv4vzBmyiF8KCL0Xuk+5pwVsykEXW0/z4tQwZatPvNg/7v0/KXKb5lyYy+j1HbwJEUEAVHqfP0OZ2/ksnHiqYeoJXJc6gHlhNjK9O60T/9P6oTPCBXskJF64bzCLQyiWwEu3AfO0+rwj5xycJ8GHswVGBlDHAUt4rt6KDI7Qs1N26OY6HO5P3fD4xOWO//w0eo/Jc132InrG6u2fdQ0lxp52Qucb8PalsYvYYvOetJZjKVHzLSopw/OKZu6nER2b3sTy16WMvabmV41iHSM7JVmgBhrzEKl7i7MpDkge8Bz3BqKtORBUVlStBCjdEGA2fLqmpRVa0f12pJXZl2oyP4J9GKPLB1AhoPlSPyBe8pu0jAfg55/Afpj2Ou9mcTyb7srq8B2bXu6x5sGP/4R6h50W35dE5WEbGokGYZNK50gc4iE9FfxCfErsxM0YPvAnNxH3cyZrmsu9YckERmTelR95dmktl2opntv2zlJvhj70jSTENDGBpTijZ5BuZHNmUwUFUUbE7dlwh7BJI250Vf9KVMnPF+EsUk5HGWwg85Y9zpFrELREWGJnXUnBlWTI6hvraKcCKIlAEs3HChi4NuAPfoPd0vleGsZTW2mKdaTn0t5anMzNFBcWFOfZBRCEDQEwK3TWbJIVq/LCJITH/xHkHJkqoPG+BE034u65S7s8x9HXDLulIeOdnmeC+9c7dg7St1k8QZ9Hd7HNDa7Dx8Y7GbeL/lFbSF93PXob7Z876bv+A9lHL0eUWFUbc7j0ua9JSsU5wbcG883xv5TYVrayxJhRIZJRDHenzSxT3Igk1krosOFovgmHy4is63bV5dv10o8RPszW2/aiMvouBjyeqNKnqkQ+Np23YNBoschqV8+NoFl/IUp1bKMvZcK/NXDFdWrHcXzqZ/npkBnLHxKM5mYuoUDiWiZNc7BA6zrsvI1Mlh0bcV2U73yRoWacZz56KB9YiCjQxY3YQVfbfxyQ9Xej2XnOLTIqaxe+39KYdovbw7h2c3agvnty3vNjkE34doPsRIuplU+s6slLcxshlbvQ5TGCn3DlK4Ln9Hzdi7S5r7zrSjwl1IodfPHAyg5fgqfhqfvl9yyrL3ZecxbHIXrr+ffspa6kDb3jLvCV8XhG2MrwtCUroeLBS3tGpngyt1i0Eg6nb96hupqKX5n0QubUujPTlQK649aTJvu1gb/UbV0ikVuBL7S0SIfsXwlcx5I67yvq049vpSh5Mx/bhda+XpHiM1z7Yu2gtMkVwfIKNS+Y/kijXPXr+kOlE6xFt4h6Ocp4uJpBxgevkXu813E1L0zfidyQr6Zg/7bj6M99DgQjbih5wUU0CB7Ff1zTWwSVkXIUVQuFBwXKl8ULjFAFxyVgROiTJ5E6a07RhtIs5NUNF3Mtwq51BS6blPGrf4VQyZfToiwTksSu/73BGd70PUH36sKP/MRjaaGNIt92NQ3mHiyQwRPVwDTKfx6AdRPCfB1qBbvm0GsfbgWF+c39RMXmFcTXASmOfcHxpayVImzXY/Dt+dwoHbdzpEmx/rrMOGi0WmZNfqw9+b4dNjwMJB03qZ9BULQGwTDVXS38SekhHHLlHQT+QwrLOCDKTg6tOHaG2arKMnCUXKVXvlwUCR1ua2GDkRzQtxs2Z2sdbRDUydGwp3KPiq5jxECohagn2618XgnazUC2wGiTc+YiG+ZRiZy3yAt74fOz+HvuGxg3Sy/thWKF+g1kefIGX+xkvr+krcaraY+ARJZJaKfjprxrRvxiNuffwdc8vfeIx0jI5jeEdO0bFeBP9EV3Vh1tzfHHU9zB+Yf6IfRg8eS4lv8GWxYs4ED/2wwPZ4ZkAj9h7wyxvfVkZpbVOiZot0XM8Dzqk1C0XwWeH687ESBB9yNYYp6b6vtvIg2RnY7aJwHY+c8D2T0vUj+J4p+95DjDebj+M9BFqxJlM1OsnFtZ+bdTiJ4bPQR8zy3bpeAeubBSvRHwZDNpPE4mNbWZ3F4a7yIZ3rgbnFmAU+P/C5iqq5SmSpfiNCpW0W3RyTPhIAday60CJ2KW5W3j2I/JXGzD2gUN46RGqYl+L9xDFbvZ1sa+UGpAJiHc3ELKz0Db4HvO8y4ZQWGfQBqQifdF6P8aCxleEE8YluyNnLLDjvUXoiZ0XyYW8eZcX8ccncyaCjYh/7t0FRP8KgK7X+sCrQBcxiD4mEsBFSqAE7JpIaD7yn8Ug7jSf32097dWZV4ztjD9KVpIWwQBUnMAZayA03nB4PgljjkYU7ntRdS12xJ0ZqBopYjl+E5eYVJQRo7L0HHEAtjc9xfARadpgLYzxlfFQiOdZEqhhff8qFWJA4RGGw2QnpPeDz688qT2LyT3M/dmwtnlhAJYapKt5PHYMOyl6w/o6HvaVpv6P4vvox0c1o6qIsvhlmmBgP28dXhRr2t5uLn6oJQqsLNN+icSabB940k9VvtMH8G/bMB6goxGEIjOi+L7zxFbqrfftp+xOdbTGQ7tum+y3qJaBEp5k2s7PNu5SdpBpP52w6+Pck6zquB8fH4ZIBqgmTpwp1NEKDU8q/n1OLCoFTYL4MA6WD8yIGNeTZkBNxmGpikGpihAxz7HAE3QRmtHv60olSYufbyu8VtWhz855jnqqxP54vu6hVgzLHM7lBxj1Svmq0PIVberY/IM34bnvxxRlUm9QIw4wT76eJp5t+XghKYRso1Jer4caTe11gYbYMcBjrFYi8x/JrXRX3WH51q3H2plf96lyPwzdasP+GCUxGUMOk/XfOPetbdIgt64jseBaZCKdXHTouCtUOK8x56PGA+MqsZpjAm2riZtuWSFBPI+r+Jo/80IuXen4EJV/J9oNvLlupnXqe8pOX0Ht2XdRJ2a3QDKXgMGXEKlzDx4M8HOTxvJzJN7A9t6jafQxo1GZhWC6Liddt6YxgjNkw41OCmbnd4agN0UMkk3EoXHfDfL/CdhdEID4l2lBNORD8HEUdRZJa9EY8EW2/zcsHWZmHKDnfT3ChVOdFCrNRri3K7uV3WzHQN8QxEZ84TuuqQpr1907ThybX77lWwUB/tdcpFNw8qA3S7rwt73k3bfOCkgfh/edE8D/qrNzcBxwurqt6/UgsS8Uc4hPHbMWDPHo+MX5UIrXjMrHRPtHsODudEbUOBRFltKUSUvEVuw/v6enP7NK4HbEQIa9C/Px0S+E+CPIHAyjfv7Byzf/wfoJ8UilLfFqce+uykuxVW9CqDcWyJZrfDxsXsWYqmbrc0gOb7EFeWVhaU5vDb0lu0igohRommng/cUeZaWIU8tEOJ2pHIR/t+8K9Rjs5EK6Uw9QI14iknPJsBSxV9fZDSqQ44nWiMEQmboj/YVZKKfNMjQLmFe21Vy2nkybeJsBbL3n0KEN39ZEJao4iiFeEN/ZtmV2QZBrF+r0wyTRMQDDKFCGieAbRH1MBttMpA6ZfNvST2wRtTce8ar8g9mLs8Kua0Z/eIaVC4WUlVaikTPow2HdCeTgy1yiVnYiSYVIljtJKsiy+ARVHjYJAX+cGmFV9sAjJaRzR3YLoYTVEshRHKudv+TXuxiVmBVdAJMvlAhxo5qPBoqqtvD3UnHCVP4Bnu5p8bVSKQyusgqpdIufpfFkfFjSfMRZnwKsZ5dwzKJqsjFTWZd8EHcOFNUOeOU5TIkcarlzRf75EIoxTDnf76iT16jefg+mu1j0VUb5hHor3E208M1sMMmhUZx5BMtUEmXHZ9zC/xABPqgpQqBZFADEbeXUolEflz61rKtJMo1pSV9LMqmYWaI+tgAxxC27qGZ9Q5eHmuR37+5iUivjVYRaJUVHxOERE8X6qwGe+h7oPAZ85zJ0xgl4CAm779hVVsO+299RWVMG+9tmOmq2wYMPLHbUqykHkTv/obxBCDmNq3rOh99zMKIB4H+1pBknrRfSgtnG2EXO9i4C70HwRo6IVwjBHxajIOSXtkIiJ8U4pwE/i592PZnItUgeMRYFl7ohRs1C33qItmKQec2aTTZkwNl0DcyiMSsfJcPMRhVR4Wc1vJltzvmtXaIS6kz0u/m8+MnihO7bkeag+Iz2ZISMC+cg4/OkFN+rgmrUdXlkTNepdA6yJGiazeA8l1s+mFxMSirdNEieNOu4v9idwAfaQNe/byxSU+aJkdagcW/Wn7wEPdFIM2O+qaFtv5XFGIqWM3in/fltZxi8WbyN6TbqmJpgYIJhQ5x/kqYajvTXjEkORoCOfSvR3dRB96Fqw+ERpVa0J6lKrVTRCOekqmekKWNUhxon4lJJKsmzB8jQQJaOdGIbnZrMXKFZmloXKA1ZMyKW5owJF3nUH9TsZ9coKkEoMc1MMkEoUBWWC3w8gJhPTbsqu7VEhBfW3F4QTsgV5ZXd9iF9wIFe0UEuZWmKIWmKYWmKIWmIY7jgqwXqjjnsIoTIaZwlfuwGhhii9tLxFcbSLNJXiaE/9sTCy14EDDBsMR5poShxT+o/26JrdRxKpN5pDa6j2VrznVcmbV3FEfIKN3sVTmLJmTYXoWVFtIELohoe9X/ePrCWQYQTNhFPGg8wSo5X7K5r7H08F/US56IiHjaZaMP6aylsks9SBwvDn+FQ/jmSZvfx4gXFC/+To0eF0t/tzzmf1DFfOp6V2q4BImPwMs+lEMIeka1ax3gq0IZbv/YtuGe1OKFVTs7hLJgnc3JPVuERNVDHIJCGmkvUg3pAtTlL/Fw2W/tJgFdcwt8Ro7E8lyMDOwGzUMf6h4huijyiL4VfDBgb5JIZJKAb4JF7Lm4rs3cjjP3EVNoBe76N13UH7sWXZkzO9nXgbOz0sdRlu4z0AZ5qqNw7OA0a3hF8GXGmIkSo+cY1+Lqs1ak3Wxje1SwTbsGg9LBh7j0jkD7RRVoYxYQOu0GcIyCwRoxFFLlW+CM0U/xla8r6nmeB9tMn5t35oqHMazcG/NpEjpSEzedtlSzO9A3PavNLo8KLWTGgmK4G40GjL05Ia6dzS83/fKoXRlq42fYRDtMfTyHn0fpDqa+xE9c661wY7Ub1L1ouDnaiGaXwGOtc74xLYMNxfjTsepGwtFdH2M05QqeswE4IW/gZtT5ykxEOjuNj7K9JRuDtcIPweAasQ/qT6bXSc2LRsL3GhdvKUDUEt4lOS3D/KjDX0DyQi4dEGtNfUDmf33CFodl9NaEaG0UEgK+L+4PpL4TQ3hROoXEZ/vhRio7MHlegIGxkQ9eLImKQ3RKDq6FZcnWrKruEA8kzQ0LG/KE9ZHPbyRkccQ9G1zNrnHSzowR/xS9c6krbICOxW9CMPi2rKddKjS011q6mg7stVqcKGOHS+wb85EXJtdf4pr243bsCk6jDPxOhopSKSTODyZ70/SNGiKqk4wNF+jtz+UwyoxEGxUAzajbxBvuvjiqVBTokRoKbvy068hOIyBKgYajBAKbFc/0fBYUKEQSz9CIvBrFLvX5pYJ8h6dqx30feBbO2fJvVRgw/HgVFWZhu7/aOOelw5qdFKDcCx9kMksb035SnELRRm6p0jtkbr/adTUuMeNjfEu9YzCt67wzw9dZYsMxhN16bquWPUK11xjdsHUjtmtI8V1YEpH33cyzA42e9mGwxOmlljROFQCk3jQgfkm3ABxDUPS+wOPFETnf/Zi3vFKqWz+VSkJ3La0AFbFXMg51Qsk9M+TBUx2ABqdGutTq1ljooB1kRl+VDeXBJ+ckPLfaGsTKJoHg7UiquDSlY1NMS+5eaE8uOzy4mQU9bvVl2UVlZWnVyy7wfP6AIuTKV47WHTVanywSSdqSZG/59mLEC4xDcEL6eaclfxNphOvBKLTpKZJkbfHKzds76/KUmyFT43U9UR+DPDIefjOHMiJWCXqWMK5ctlrYfnbw5ujuMhyTWi2ytzrVthdSqsbpXXpbDMiDEC94SVvR+kYtAkfoznh22HnFfTeYSR6mqIdWQ1ptaHtc+Ao3XJFfAahslEcckPb85ki49hOolBgolhXooxUAZ1mTiYW3NW6rAB8YfVZEywcy3JuC83UWdPZLNGvJ84DKssMks4gB+fuFqH5c8osG8GVSopCW+uAklBG56zcvWaYGKMVFfSC6zW2e4i8X6f2mba7o2WyR42ap/GuC8JtU83zZTeSVr9CshlD188P12HqKbDdegrRfOBFEvH3RjAHvKoHD/5G/ET36hBrg67YKNRrg6HB0ejXB31HqJcvYHGZJpIuRSMcsgPvUc7CozfH/ieAUEPRVjvDAQEfSZEz3cICHqY0tfcHQnAkSBtD/76Y8eOfi/KCXK/1dFZZzdE34SOOD99lRYpucdwXG+g+9QwG8Vg9mXtT//xBrr6yEdyvosu5EcH0YUQEDt4JT60zAlZirM2X7viHirY7rJKR3YQlt09QIE/hgM0g8073kN+sQlON0VG9JNPgyKk322mzKVuRTQyRBKdayhBKAA1Zrcat0U4Jp96fgolgu4eQ7QaHAkGvKE1lE2uuzRZzFvlYZZFTWx6iTHQfIzKCfnY4ij0/5F1JYmSqzhw/07xj2DMfP+LNVIMOKs39VykB4wBTaHQIKPDHB+p2XMdOb2RZAnd9BLniD21EAycPwbTsbXgvsCSsP3aU6RJM2YUyRXregfmSVghlNYUToDe0iCbMP9e74vzd92OpBavbE5WbZBPaC+ugC3nQucN5N/qQTWR73Yly/5G/QhP6KrdgTsUI6Tip/FBASFnRs4aqO3nFL/z/oYuEH0cTns8sxazzewOSaGU/bN4HA+97Ka/6CgtMWWLviulbgRgvIjny012WCAhmSxCzWh480WOziL/wgRJi06nfj1s/IyCTWBY6mHqFwu9ub+5PfKHmE3iHGVo5psWc91pVH/E6bA28pdOg4eC8atheNtQ/GpY4A3Fr4YtzqH4VV/3rBRg4gpjNqZkVIPH6FWtBtV67levGMweFGMT0kKtAibLF67w8CFT6rR4+GpJuIZoA8onWh+/Yuuzljlo6MpBNzsqBQicg1ohTrnoA6WxzFs6GDjgwzBXhyc2U1/7sLgZjR/c8abBYlP9hmNAMmESmAUIs7dHotzr5zH8rLYiRwO7ALcbqE3PoOt3NA7kEUZxAv2Lw0bPyGiN6zGUxm/JfZ+jINKa3yQ35Fd2J7GeI/bOEmtAh1iOIZeUoYI3C0ZiOoU+KIuGURVDsuhG0JNXImep4ScDBERyNtSSZmKVH+Tha6kiYtGDbUQNuBnkQJQ3fkg37pGnkz0zAgSVed9tIqqXOtWYBqbh/ZW3OwGLkIgRlMA5eH1MfiDLqEEo+jnw1JxgwHLYheXB5BAxmGPMjaogfYAE3ZxZXfy4+CyTkDtzSvSx+LZ3RaUEojDdjU6GoUj0RizV9SjOL4lGNRl6mc/8mLnAsVzK4U7qvz4sXMbmCrLBNbZWkIXaIPi8mz2jDyLP+7AekswSNfeP2zS+fqUbFFE5hRLJn38Jp3Zqb09fhUuOn+2F09Ue1Jkb0Xtz3WbS2vnX3DnfzxBEY6dPukR9meyEKSTOUe4BU0HKB4CU7nSuQRC2K7T3SXtq3ueSsO80vW5KcJri1iOx+TLU8e08Cckn0We5Lf3zmjW3R7OQ87VC/7biNAsYd6gDD8qn6SDMRNruaRluAeZKxOQg2Q2ZkGMFXvZyS/L0+bKbjjnNNKWmVz06xiDCQDEa2ZTIQAk0Ai6mteMsnz4pg0w70SeJ+vq0cTdJ1Hfe4wUDHG3tWcF+/A2AfKCaM4G65sFVis6tJ9FnJXRSTvSFckPUFxhREXVDfzUYFh6TEskJpqcl8Q5dZDwlNv6/T7mgQinaPhtYXmBTgUwSfXorFovEOaifYmJ9glf2MdPRwgjIUYYS933abpodvuolGpzU1AwtOpv6wyv8uZHI26dFxTSzAW9SMo1Mdh9qTFwtYdJ4M+lDB5dEU3npQoFpYCm11mlG7tE5bxzEmURQmFyiJ5ME7u5xHEw/MLlETyaJNz+Yx3aExUdfQ2LCoo0yDyR/9TvBzq/33SbqP+pbKj3B0K0+6azRu8z8/GMYCkyLYNq2mZNf3xJswkBS/am1IZcFzSZ3YZ9GTMxF002lVzd4Z+IvEXjqqKXTpHSalk5zaUQtBubSbbaW+/7seGVPKgFzfU3NucjJ6JTfVMIyx17bWTRyotg4mpRWJpfoJJd47F97FjgQpf6sxcDBtHVCdolPid/1FuZFiQN3M/g87+ZBL6DZIfqUF9DEFX3JCziTcPfuTItRYdXhCuKY716UNlk+cT33Zu3r1xdgoFgyrhRb5an/eDNMDtEXKPv6zahZD7jFqRzCpHHhlpE6S2ok/g6zgEakL8evyDnx2PqA08SJJbNQ2XFecV+MXpkeoi9Fr26u0yqotynVtUO1vrrASjd+Kh10v0wsUN6B2QPLomKlGdVuRiEouu4AIW7VzUFxjthRh74W6GaFGKOi6ykoLPASyqI0FC9ritdGgZ6fLzcZXjPDQ19Mn7pwj6X0KRNc9KX0KRNxnCbuX+u5t5rQw+a4Fy64+AIJP+FJjFbAwRSuStUxvqmKrw98jr7sD1gQZsUVqlNl/2BgU+G7dCfn5/51+LC4VLRTpFJHCZqKuz8sYueXBR7oKMZPNv1pFY65D0BLuxhL9U0spFZiLrY/EjgbipKShFAWxUOlZ2fZ8FooNdWXDa/FUlPdnBadFSqVKjj3z0Z9fs9+ngVFcUIOi9PufiJytWRGNZReWNcMXkj/dfWBOGLtas63mdE9x++AZXvtGV5DD/X8mD/MvXCMHfvuJl6sNJoFL1UObV+USV2RVXNU9EUza9mmWjKzTP5wmui3Xpbb8LkYL0hakOsrQZG97brNGd0Olkz/zrWVrEmeUQBdXOp3fgglOoMAMc67z+E+YIcTU4OUe4RQnZ17C8nbN4a+aGytu1PsVIWcEPCgsqgBO/0by6aqvO7c2dyqrrTZ7KIBhGtrT7U9twBgklO3CGEZxBL8uu9CZUHz5EqD2HYZb6T3ch9FspBKLlHBc6WPvkmpwzX/DvrZzLJwjrCYtoXdzojkkP4xUP1jqvRvAE8wa7elxc5e34LCaaWFvautkMQpPZK27+ZCgoq+Ez2s3Mqt7CrzVpwmotjWvk0EWpoopYOrYukjAg38jNOHa5jt94sIpmPgtL7/DLdFzn7rj8I2CvVy7Wdkqj8ndl+CyWCOkb7TA5h55BgOUCSoXKXi6grozMW9eL/7s3J2gtft0dTsobuqggiIn4S1Bbv4KKLsOW5Z288t2VWLvy3Axbaw23V9UGFIi77V0PsGRfqad6Izh850FX0Tb+GC0i946mWNcq9td1pqolrukKvi/PVEBdoidpT7wU2L23cKqh1UMRSjLIvtPW/T6jR1Rd+58OUXYPrnlpypzNmX1Znvwzv44xMeaHqLvgUP3PZD7k5s0LYsQUi/FOG7UKbM9b7O/sgVZENrZ8jmiG8DYVFXVbNuP7riQlZIWNFNYdEJ8ntuWQrVrezbvEkvaXpfM1gI4m+6g75Z1OM0eXyTx0/cTPCJfMy7Tdrwt9+WXFvyopWX+BfOks7kJOFRBsuSnwbPGwIGtzf/jRoaCjgXJczfCDQUI4lLMPK+5fr2Ngp7DE6zIJfFDZqrRnTSVHTTVPRNOr8bYj5HlLF7hrdkPbJJ9mKEeI97LiPEuyAfAa37k1dO/ORppMXankRu3VDFJ/zksbMUI1l835ZiG1AvUQJMgWQEkIzy6jD7to0xkFQMoTGzyE9a1VQ2RjC4Bh7tkXAYD7LdH9eFrevjhSlAMcZ1Pr/zDs0tuciGmSFGMFQUHDxuSnHbBT+kuB0iqcjsj4se3ETnDZFUNJI+D5NUjCdrASt9hCQx4yndJDED+5pKHIAab9+Ol8lbDrcsvEq553zyS1Af+Ce/5Ai08lEq6QobwUrhwjIPMIL0piFR2sDr8RAi6K1iPFm3TnHdyfeiBJgsBTjii924yvnv1OWskHiaPPqskDiC0EMJ0QNkPUPYiFJLJtO4mA/8rOe0L0fS+e/Hus2O1HbViPO/L4lsloae/91qGOMBFL1yX2I1oBFEFdwXx4N5PR6Hwx9ILMeOCHV7lGVBs+Sc5zFMkRvkVuhsKelQ39prQ8UtvMYD1/j1m+dD2xzK+7kSx1CWynrHUWVLcwtv1L1qWD0x4vDQLmsrkLn0USChY8h3oPLqp6H7HvPrt40KsV+87YIS/Qh0sPbiROke+8GB7R5Y0qSfJo8cadKHiTlGWKexIw4XzDhN/bP3UbTgybQHzikeWCb2LxchX3y54a7NX46jhdIuYVHvfzYAp3s+yLsawW5BwpeBSpxx+esbKQ54c+1xH3/l9BtO5X1GVtPDUxRyX4urbHrkllbZ9Ada5ROjZPXw1+x45/d0w39LKLjKFg3tc869G993+cskSoTzjlDjd9yVlSzpkuhby1XUhEUbt9yG5+jFSy2/1AZm4TWX3ojqBJgOy+NOR6GqitWZkdUlAq2MseNR87szIMdtaL3N/L/5rYUQGiaxGOXhfJWhMQB0lJ8TSlZUKcCQVH7a4i0eJBbO4y4F0fMhGoukirs4nIc/Mk44wIU2nDg0CsjQhrkmRmTvFjyquunFl6cURokcufOAdjb/3ijInz5/3ekMaR2F+j9C6OgdGuIpaOkBlYeqANztEuKi3BrlPuPFQEYm7+UaO81pWa8fjqVoFt1MQh8DQemuZVBLya6Crg3xTpRwvZ47U5sDUGVEltCHUCAvkL/pJQv3MIX4COqK7OzrMa7cpRz6GEHdkdPS+amnSbvUvhci9jrMqj4CqpY+vy28xUgWizB2l5IhRqk/qsKGo1LhwJL7Qfb6XtHAXCkrizXIFSOrNGaHSSpGQaLwMEfFUA168c/WslH969dLOJSzUKK0LG46fYvkH99aIYi8hAqCK1iwYRRv7gXGw3BC+CjMDz4386gBqSRCvLbB5Sx384KaPsQlEYuaj7l3QGwjs3PkQ49E7L9PgUeWQVBufC9cf8NdG+qsp3aSg2tUVy+8A518b6pbSxIvQpi8pTs2ftxXzOA3OmAg2nJO8xMn94DhGTu1BwwvlPlyflp+A0Vm0okKXmLtTeR6GKatYCrtsOdslJRTVSyTO0MWxRWbYbU/9oWMQjFm0opBGovT4q4vIMG8/B5ly1HvZtK+BX/RzLdYKutTI5dV50YIU6nh+0EFjEt5QN1GvBbnaHNMlyfy1pg6k5Z0FpeMjaAWxxUjmQc33u5cyirN211hArgA2Tsrx2jfB0N5K3cXAfWfAh2gt1DKD9xAcmE9YrDSN2Aof7w2uF6MhojyKmKQj6rKinpwmMZhvPAKjtcU30FjUXDwuGlzwsmCHG8gL9783M1N5dN3xJXMtBM/52KS3qPK5EP0FedrAl043hTrhPGOtyBVlPujtgMlD4QESe1u6MYBOed9tu328QKHMcxzMd7EYZyhF7HcAmWfi8PUAnqd8Vo0vJkuLJldFkovxwQnRQRVbYO4x5v+Zpc4AH6riRuGJ2uqvpwxrwXWS4H1uq7jK4H1vp4I6UKSQyxEyV+SwDuwOjhR6r0JRlEktB2+vjrFWF/Cm8SLbl82+lI9hPAIVlvwVGpeiZ0nYKjX/wnwccmuawXH2e2fMBjt0lcau1jyhlnFR3iqsjOWeW/TxDUjR5Ba5MR9q2cpU4e1mzqrTv7JTG7nLvhyyQkZv2gLXn3oTTLAHw7OPVliS+wVZ84nKFMJHIBSUUtckAlxtmeBXtam1EvjylwD4/0pjSgv8C0KMd5MHBYOlCdc73acABlgGonxZv0p++BeWn3vkU5OuJsTbnLvMYPVJ0YwVNzVNtlhy7FQWvB1hsfup6Q1yzueViJZBwoCUXyT0m2IxeL0ZDP/0cbWm17++phBC9wJJfVMfJyjv0ERf82A9XJPXB46VPwdpr84Ld8S7wyQZWUABxySeutDMROFsHjfcf3w480ZtMTYviKokM+ynfQu+gUMMRzBc4FpfDfbjbznYeqV04S85/F6OYLuYim78Sgo73eAXnAqdNVHsQvP7LUjaC6yfzbawHIhmtKbb4KnRnlDLN5q8VFzwhvBM/Q7vRNA35z/u7IBo/1KfuwpKQygm+BXH/X5xK8HiS6GyTBGtSCziVdJts07cRN0FubZl3MbbLxgds7tu8EBOnbsKRkZsDSLtNMoQsxL3A/AMM7f5hZYKles9Ls9gK5ld+9rlSaXiR1OS/KtUs2UNS5KimPR9B9CeSAw4gR/Q5BQDxfmGfVlJy1UgumioLfLTYhmDHGFRNP+4sYknUV3EUGK+HZb8rDSw2gui1Ercge9aEE076j2ID2vvLuVpVRO+/AZ/Pa1qUrmOc4tV1to7loXUzkqY1kqUBjVnHHXS+eUySiaLKqbKJoLsmRWMYRmeU/cwB++cUzvp2wa03o7siLZSbsRwMRDZXiQf3EB+eeHDMAqwbkRTzlcqH2A6SIJiLMlWJU/OgcyAsqnT53DaWOidg6n/XbQ2wMEaDHX1k86a5DFc5pSE2+AzJXm6rkPuMWFHCL6pVw/X47v+BBFDkCT46+7OziotxDK0KD22xdN1GvAjI0NU8wsb4Qy/m7O88TUbaHAqqRbzWj2NNP6YCpp5F3STmgViZHaM5YcfNW2VZ3s8uc2xIeY4HqUb2SkAIY+akaOkF86tO1ZKsEtu5TqWwCaesOTkD0bXIuGqlOjq5c/iK7Hav9bZTAr6VtDygPlOirq1StSXwdoxeWOZEKel87mGNgIA+VFMc8m3HXivGi0WwoHYBO+MEx5MepmV7e7mi6gIneZoMedhUwHaGS0xSklbyjxO7cmPEOdBI9ME/AlsH2OzyCOP5pLpnTejQEMWlaBTblCqTF81SzbmsJXJucYMRiYrNYBUJT1vJHQfs/OLV/QKDtgvaM3Sm6XDRggvFDeOLLrh1KTSlbAy65ZKjUkAy3bnjcHc0rJlR4VZ6MLzdKhpZwqzeDf0eAaPIahu/lSC2w2w8ByYWEFcFFZzS7PBp51weVBPiWWRNKkj/be+8FOb+/txv6EEBrdhK1ewGXiSmNdm8YeUsoFIEcDWHA07x7Bc3EDWi8DWmclM2Vc8Lb23c9a/XJwKjATzAw0u8hgMVxFMiiL/j65U6x9dZol3VduA3L6RiI/b+EtvtEb2G6VetIGDtNyjNC/cxqaPmQEy0XumSZaGUGwmUqmWEOiaafX8+hZvhAKiDM32GUl2fZEEU0V3Wu0qpqtqtbBFutqwiyCM+xXbVkn5DURApI+y8/u0mw/tc7v2T1LkJA1XAFztNyCFVJHaQSXgclK8N7v8GlzpP0z9itzVQzsvtVwSrIgqNrQaAxTNVtIDcnAozm21Yi0GGbZGA3hsPrTk2jmRtqQQyVnftgE+ZSJOCpuAX43lfZp/ZuXn+upmpdjtMl+HjHZ2cJ+2u5qqOurFHQtSXm083m1Gm5PL58JKc5Rg1niuFou0RolaGV5DlJ2npPvY6GnmOsiBxUDdnaxySa6ANqlct2QFKpO0pjB8ZO9Ntq+59P0xIClL/QGe1uhoWd+i9E2t/2zIAZb4F5VisNGdMmhayZxj2ZZFOQWEYE9S2Brz/3RRx/KAFucI2gt+n+ifm7pAIhWThXIlKjm6/OhUZj2YnQaUSZUPkcaUedl9aS0S2yOvHTlQTFrMf+HxwM3sjgCLKV4yUxU0lTBS+wQorGoKNIUDe4auG1FSAbWwqWItPXgbnHUkRg8uiVNZ2LwiMD4zeAZndnBo3ub68wOHuY4CRL2eMVaXFSzJJ658rODRnGYwKKi7GRUSb3uB0zscxLn2qRc7u/tJLtt0d6T3WsLaVJQVrgIw8E6ZqNbVnVYVEdJ+PUcd+31gPJcCozSq+4xfA/OBDvOktwCB+WrGYIMVPIbDHb9KpQ9GdgvRqPDqpLcAeR2dJEHlo6l/8ggGi8nqc2qTrMqLGSDSQdo9ewsT6ySi0eM3r7V+SQgpLCSpHGY22L09NO6mMPzZT8tmqw2j3ruoAGO+TcW2SVwFHE3GcWI+mn5GpZ6vdPzo2T4czTo+ekOBvaUUzdAy+IId6GgerPr9IHd5wZZOkWV2SzOUQZZqHCR5XgooehlmQutTL48V/qRw4238xem769bjnX4/kqwE3FbhilovAlKIQ9BnSJ9FZCu/K8eyc1zbn4uC6CeAHYB1DEj36rPzcstrHtiKfTsAYnn7MfRGcbsdw7TSedSaKMjCUup//UhCSgXwUtudJXyZD2W0+AhAZmAvKgdMuZWPqY50e/2Q0CFaStGJ6BidEvELkBFt6nZN4qrBFIg4IWNraivMsyuM/r+yemu6YM3GDxpc9AjjcFIFI2MpQGFaYVryGwdJPUawzJqgH39/C1uSV3PVVAk10xSUeqE//C9PHUfxTuTXeN06i9gxBxBSHH1bhJXnFZ9gFFQkVbMsPEuLmh+fkWF3w9XHiFdJq4YQVyRr2Ln4GDt+eHUidM0PzICiTsiCKdBOuxCAWNaacq5ea5XcILI4ZzihyE/+vz1SILL9v2dhKanwAdyHY9ja9PKGRY+A5xLw7xMY2RWT9kv9eQIJoEYXAwTPXe2aPfAVEzVUd2zyqnqnJERxBU5VYcl9kjCddFkEq88FNYCpi3tILiaV9EJNAWLilz7huBbV8lWj4hMp4infFSqCgSK3PxdZ38NODkmho2rQXEUxsoVRwNA6uogan3TPxg1EKBHV4VeL8rqqFYcJgsA5OVqrwJt3geBP5iWW101YMDQsMX2rDTKTYEwRmd/bfmAzaIpsFJgVGwlJG8CqUfQWVweyDFITiTAzjPxZG/iLJV5TvSzB1f/KFF78GVj41vbXhvMGh4BODCmdDBxeJh7ZIyB5fX+v45ligvkxzYFfITnHMogHuR8WlsrI7FqI1Px/5PEDxYWrwqoeua3GIP+9OC36GzhKNvqGPND5A2KvCJns2IiwwImmC36fx/GV2xy62WguaE4RAlXpy/hhrC87NY3U1PwibHGLXVZegYGu5ndKanGN3n4/I/7gi2toSiV+SnG2M/naSlV17L+P2iJDrn8mCQlD+3g7nTXVTI3aG3S43X9gUOTyzreILgiUv/MK3r+B656h/JyDKYKhhQw0yyxxRX+7AgiYUImmBjzH1/lW0vuuwI+gAv3LRd/OlFUcUyjLiZyhMe0nAhui4IDTcskt8hFYCVgptCS60W+L9FXZInA4P7gbrEYjZ8WWaC3EI92ZQFDEUNM3m367MXrnfgHspjhWNwACadDWQtZoY7dia5hmElizPT3deunuavPIf2WAaTptTbfH86wYFPiHd1PSq35fj98lN/AiFpABiDnYjEqK9hMVVgkR7jikg1VYM/v1dcjO5zD33T99VIUGBoGxTCoIWoKA42nIRSToIqre0yEpppSQxfGZAl2UR9qVdPgvpmKhVjECz5ldc7R+T1LFl6+HsRjubsxs/Sc5U4R6zTbN3Y9G7tqn9aUwDI0cQS7Rc7aWW8Tjemb6TE7SsUM0w6NkB7pRjRT2giWiwBPDhPcnqaRnIgjtKiWtaDOEs4fslTaNmt2STvGicAxxfBOjhLN8a3d+HLqDnFehKDo/5WfLbjfN0C1kAuSmrSrpkNVk6EqU2ZkcdovD9Y7Se/k31PbatcpOCc2VampYNOrmsBcshYyk9y2KoT3CqcXTBYXUzWRKDzmB90+mSo8IocdpYSjESC4yxPKNXEElcTD+RJgDXeBa7D4KU0j+VxEYcbd0UmnccRbWmxNmlsuATrAefEW8bMk0dXImI7HJXXSe1NOYBtcc315AYXlnFtbKboleLLI3c4JvuXm3mcDbG4qLtMGWGBSMPstFifIbuUZTlfnZQ9vD3ezO+n3l5qfieS+23pQXdHe9wVywPP3cQs2A04SYgs0DjAjTE4xAlV9Mz0K4GrSSMHtMJarvscxjAYTXgxUCtqN8k5cmK+kBuyF93M+PvhPKaHzP3z0qzEspgefRzU3jY+PvgP170raA5jDLTwk6b+GqRvGen/ZY86WDa+oH1sE+TCfxQg+i+yZ5QgItKrM/QZKcYdSNGrajhtxmuv9AlbWi2Tb8qtUii2BtFCyhgAEaGZVPOdBnzJ7xSCfxbmxX5d8FiM014/LTqQWRudHE3Vrs6+MBWKmV+7hgS44AEoa6HOenwfJpYLdQXENntQl26Ju6lPLsosEdMOMF2M1hANEGgr4e4uAnuv8jMFvaxj5+qdC20onp7zjRcXnx7K5FS+AJ3t1dQKDl72NixTbcv73nELKEimMjpih4hz1v8vmteDNuL5ZsA8H4zTeTWD21W8fIGWXPYUrV9DuIvTI5NAMh2lUBy204LS48pq51h+wwsvaIMNlcm3ym9piLFa2Pwf+IqxsfzpV3bS+boC5ct183QCLWPbrBljpyLFZBcRFLA9G7EF7b+pQ8nBE+73n/1ETR0Wlv5uICQeluRjG0heanteMXy27D5fyrZYF6WLxKS6/OcGvpfWSeEBjpeiIMG3FUArHcohroZa9Nrf1U3Iyfl6fnxvwYYZOL42D4RQLrEwBSL2GdKD7YniLaM/2uqxao3wjsmOhFOMw18UAj8wyy0Jp2mHujrC/lTHpH9kUPH2Sn8S0gqQIH6a0GFvCyk7ETSbbERQbpdTBVjqHltWEILjIDWqNey2dmMsen82EPJHUIB7a2UWxgw8TThzTKlUXuT07kBftFrsFq83YVvw26tefv36rLHhllYYpa6qIUcqqi/cYHx1sg//qVb2rCX50Y8srCLuG1Y1NHGBE+pXOupl8ZUbl00KExbZg2WlxrcLpypjxTcHc+WCDEmoqqbbjObm3za1NgIUxfWOjGGOjS5bR+mPpKxvxAVauqnAic+lMRnGOOKj1U3x97LS3zEOaaZzVlfDGxv5xw1iF1tW2dQVGixr2w7/+IaW6dCrlEuaMDW05CWU3BMfFx/u1m3rsqdQobbdNuSC3yHm8c1N2hYKxc4qY0mOgJIPhDJ11Am0G7MYRs6ja2OfEibUq9znRth7FAnSZp8UfGm4kRTARqL9BjZ2iy9lLjYi4emcgYwDbomn3H6YbTNnn5khugAKfC+3YhLJvm2FbecKm3zhNoGv8BZVusRs+jAkKAVsCnvzxrBMx+tyo40YRBVEnweLd23CQzWS3fTcXRrFMcjE20u7k76ygQ3FZJ/g/8yYWV5tLTWEdeUSFOSzi9h4mthibpURG2GAv/F/xH8IYtuVrAA1zR9y225H5Endtvj+ZLZ91Dbbk8c6nWj7ttEu201TOeEbWIsYfqZb7VpD/+7Ixj01ja9sM2mlsXez+Nxv5DeZLfE/7tTadg8FQga0tbWD08U4/2Vt79VuzamykDKtYw5EouZaEzyBQz7W/GoWSpdqGwaUINMIO0ywWc8KrrVQZ+PHjBC60+SCmNc1IcY4S7HPp/x+k5GjPqQWMWefE4UuAlt0/PKIuiXqsi6ZLhBl58BVPy3IL9NfT1CFNc4hOOzMGHRGfTwH0X0v56dnFY6PIaoHUmjZQzlECBEWdhV3+tIpXOIMp2guY/Fery8w8kF/nAr8ApNd8pFadli8NDPeT4rzXB55WGjisF31amRu+N7ts0r/nBWxVpXA7inCK17PsB2G9aQb8+VSO6utRrRpVAfYn6C1c3PPpaYkaORqFyNkVhSnPEXg7q0OOLFuY6FAX2jgncn5VD0pd6FH1x6v7OzAlWWlwq+GbswN38ER0ocqDqwPjJtxVZeLcNNXFfMAAMs1RcY4GB6P5wzZYB9N5JTPoLmJvmmY7mcl3UXP1euF0lEE5Oo7HGo4ZUXhE57JwdnelPnKUnDP9MGTVel5tsMnPxyy0QZGRr9E9MYAzOaaGvhgIhpwXNh/YYafF3R0PX727uwBjSPGB8nhHIcWYcrCEQJ6PWXq1C9yHJhRDebtRjgd5Xa8/4iC9sEw/JBTFD57AkxN4eALRDe3qhhtQd1EUA0E0Q0zZPzGfifxwdBWwjyliCxa8+GZWbQAcp2gsSG97/n+7sdGx6a+wNKLTg8waIvMz7iiLJWAbe0JjawBMepRseV9m5yxe9zHp41JmBvKLymeB5z6jEESkPrLry2O6OabLL7O5eBk4GxXM/D+a0HwuJJafaXtyQGXRty/p6Wvt9VuDPULsVNjsXNcsfmcn5Tmc5WEnvckHyQXGV27MWZ73a2WsghoVNpjpWi3BiyFSUmR0TSHtV0Hm3QxQ0J0wyF0RMjUrM99vCH5qJWtOFuj23lS4DR8F+3vHksrRtNl6Wr6+zYIM7GiWRgtEtfLXAjDM+3pI0uzqRZVuWKryVdBnUAq7Z5RaJryYJLyYAtlGCzTYaZ6N0wQOiWnqjhlhQuyJK0zdkXwZ7c1f+gckMtLiap+XBhmutcjKl6bIqkTZTOfZz5KBLiXc9feDpSIF4XR9mlkSLuiCtKnUyv01g+Ui7205VsAkOFWtN45ySI2HRcGhY7t8slBmMZVeQUhwhrbecQM4+FjHmyj4mbVgOF0mP6PFEAkupgkuZiGk/dzXw9DosRRKnAUknOo0QQndzatG3uUpwoqk3eWD/P3hJJyu5zpjhPGxzT9TOuhNXgeaIWHir5J83sKJdLuTKpQoK1BI4VzQ7oMW7nHmEYcu2W+VZY+glNlKZxmfaugsUnka9aWYaDzLXaaDwzoeBYbOsQa2++1STLnK+EMF/L49ovl+EGtQTBNdTBjzr4s7PGOAGw5dTXdBv/cDxHpGqI+ujxlRzOzq9Dyccr1iLDjxVNMSJIXlMXsTcYGXMyROZken59DCpuoMvWCF5HhMf5elCWCZewQSVrvE1puk3iWf8t4LkwLv8qnO97NNFpQZtKJTYGjNSKNSqnXyficuZ3kcNgy0Nrf1ysigS5VRAa1OdMA52x8/MYjGWSahxQjyu8ScZNFa8AuJ4iIuGbyJpzAShqfjpjPckBivfXv4Yb5LJ08ttzTuGYSHtOs8H1XVA4j0b1G281P1SSm4lJ8JEjGxaGK2vbJZpwA4vxWJ5uv8NuC8pp2w86W1ZS6DCcKLyFYQKuclEU2d96pc9dsBhdPSPsYwQBfzVebfAyBokz9AuplpK84RrIG33DsC6TDfO2AvsCPT8en5ZgaZ0rvmezcGhqHjFI8lDC2FnQHxrq4KzU57GrOw2AyWCq3PF4hFmVqE9CpphE7I+XLFRxAGt6juMGCE0/QY8631szrqQs3xOw6wsFY170IdHD1bTm+lmT0qYyITnCuDGjXhzz9pW/NFSY5ztbsCHsFpdozTQiUguCYYPz+N9cc06Ys3cqGr9Lu0re/fUF+gqTL5HkjSmMEQwwye+TZOAQuGl/7BC2AnhvmGeXCFfIEzyIvQ3e4B79RZXtt/UZskdzGTjUwwXqjuAKAjU1QXUriiULjPT4tF+boBRcce6xKGbdMwMAXGfIHFoBY2e9aUXuLnFHvzNJfEfFPyGcZG01a0H8r1PKd5xAb2qaC/sMd5RnwcozLerwPlzcrDYkivqKp1mil7CjmaHdcofXH/+Egs8F2IzIhFmER3sSurGatMROHUtZB5J3tscBH4LlpQdl1AX3lQ/Ebe0nMaJJ08xZlbZ8Y4KpNiuywDUZ/T4A8OOMZ8LWCC6gKjNP3B1uDcmf7wyIFQkKsgIdVxh1Bw+STfJBGER9KitiFEDiJ+3yDmfFGBZGoR5yLV3az8vJv9tth5YS5ozbIiy7GxxZzbuY1tb7ZAGBSXbUPKeP218uTnm51T29wX54gLTzNjVka8pkk2JgxSwV1IZ1ZVK8tivz73gjS1ftirpwJJuYeM1MeUnYCpJp6LHkkheUNaW3lL2lrVAo9UFyosUSoKU1WXY+sUwaa6mMr+wWPXTwaBgHvTfBKzIkVrVgu3yhStabKMWZmdNc3sMSuzs2ZGVDB/ohWYsmmWnNMETNkZwtsETNkMAtWNEHe0DqjaerfGZAgp6yyLMqttrPoiiUoEcpU0G/oMlbDpWW0oVUo0UxBMkF9E1RLTB7X5cFbJfqutf6V1bjXXXq8gqZqRu3zjU7MCKv7KVzVZAGVWGmKTsMlpLooZlFwYfVt78DrPKcL6WZmnIi9xRjTm/FwAj2FttwUFnDgrBsLE733oylCDsNfApM4qlWpWMDZJN0H+82n1qHa9mG/Jal8X8/Rhf3725A08neC4fsc1gNMsMMJgVnpzqy2g2jl1rd1XeQevGRSsDpi6tlvr+K1yBz4x59lDZzL/9ST/xazjtqRNK17SBixIFdpyjsnRGJ4gg121bQLiC6Ocx/ruy/Ez05cUvoEyMa/aD1PSdUaOAEJFGsHKgMe7jtA6OUctzOrk5LMvMIpNYPzOXR3dmTWx94oqdDoZlV8YbpnUajk8Gek2ZqrzXI8dhbIJMCZ1SNPzMlAT8pzSZhDmNOtdcYsDamdg3Sg28f2IU+GvkdEvbqKJ0sevzSzeDz2W1bKr/oDfGxwk0TwNNa4NVRFuYfhHJxmHWbjP20XY6CKslj1NLsJqMdkeWrN13SZasyZimSCKFb0GuG4dWgZaf7rMw2wwdIphOC+oyc8Pt28YVqeutE3v9xb4quAVW52W+4vCsdn2aQBoNNPgzhiHggO/EG79yOcGLhVzm7aXqoARP7OhMtMjGqYkV09+G3meM1aRFznmRQaM2W5fXsTFpJ21hTQ6qRTPy/dRYt5seM7rnAWsPusHQQXOS9xXbu3mwJiNaPjZbOO1Shux3UIjFYTzpoAFHsuMqLPVb2FsuJsMnomf+VEtDhqLLLSr5OXbhC9AZShUrGaa9OIccS44CNaALZxyl8/WkV6tQcDGINILIe1ns4Owtfb1oEfyTUY8I8D8L65wNptWDUSD00Sgs5FocJpPY7Zc45LYSNM6rcovXqJEkOrz0KElSow4SudLLKB4o6MpBPacb4/aACZZi7MHnzC9i7y0LU1pkUOUXbeQalyY4sp8+LZiT30rnLeG6KUkCKwGtETQYMh4CD9kfkxrV+TBmObBmA0g+GkKi9nI13QOvEzI1zSv2djI1zTNwTKTDqPmTuE3JMTMJe4C7PsxdpL4+7Pczv7zcl7YimoAw89m8dbAuiVgcQEgdQpAtVjcYTa7eRrAb6WI3yinmgSg2AlmuxsqOAbPX7/wol3QHDAjL8YwwXBF2Vf1fHxAMsQ5zLbu1dxJ7tfJTLiqnNaaupZ8GoXxvqeTwAZW4zQPRgK784a7fII0jWZWc2Sq7Q9/f0OWzQxvslbZsTUSqC3o4LEEX93aI0qOAiXdzd8ql0O2WlBV3M50mlvdBliXudUs8jrRhdPEIaepfwCdnfl+iu7jDVw3cnaSwxSuAxaKmc4ymz0DGK4S3dOtXLoZPWenuWWCjHOUG4C6lLlWsdQUu5gofUYTjuCL7q27c04GhYZsup7A9OotE5qHanIkyQbXhve/QpvO0IYZVBjoqV/u5ZCadOA0oYDMe7NlIKq7nORkoOqmeTzXYGMNxgynbZ3/ARYvFBtk3/2clSRTzSOZMkvkgCld9zXge4UDzmgeWkHmtZhBfZvd8D7TKyEO10gJOoycMqblmMmH8eZX9zeA1Ir0e37EAbTb64LskY7Gm1t4qCqYkhKwmRRREyolYXabVB1GVqSZZJiGQ4dSCdRTGyqG3vryfvW27gwRBzfHe6N27DQzxg57OYfHO3PvfoP5ySqYXe5DU1fOnr4mFTJjIPIHqB3nePiAyWjKT0xybPTGHxtli20tAjddf5Gtsw9r3lyYw2ONDOTz16+D9OPzptY1wOLclFYVPyViQMZeb+Bpnqa4OEdwFMn4Bzf+Fo64TV1h9xhpMqaJM2aHtH2dOTXTY1I+FkyfIEtw4WEw1pn98ZyQ2fjD5XpPC5eZtbROhOHslnid8MLTG38Nwgtntz4RxBkpgJ2xNgM1lh6WlpWuWgTIWs4G2Dn1EY64ElxkJM/R8YDbEYkGOJGkoG6NmAVaRxbyNN/FBItGkcWwwK4th9N6/8GorEFh1C3TOmWaiTZmRyXZ4kSYF6UmxMkO/f26yInpnP3Kl81+OijWWbZ4BnuHUO4TBBoB8hGlE3AAjxgLsUCUkFoa6wVM02lMqL3DDJDknOtKdaejz1wac4B0YBqpNkHc4RBFlEv7ugOS4TXvIbNsjkTcJLExFYcv+4pUUxFldHmUh5k+yZwxzZwxxZwxh0VoMGfklDRVyERxXJdPKKhK4+j1g9qL9jEMOhyHzbHxfqEQBUQx/LG8tJ+HLS/y8qpqfEX5uCisKO+0cmenOTTmoAFn3o05QOk0zfc7R+Iz8OCO8W5X/QSUSOpHpcF0N8Ggzsgn1HsFzyGVacltcTlLO/emxvqYuICd9J43aHHZEI2UbH4TOzCjHPYnWZDoG3FhBNwnu/G4bt0CsdQcXi4j+QY8ed5HEU7V7sG+kF1ptyuskS1XMsPOd28Y0PMfaVhjatHKsdoHIn+P3c8Mks0rIYM7I5/cP1weM4qRYSDsYQwSDUzOdq8FWeI0n8tpSjvwlUCDpfsBq7UCLuM5LI5GRr6Myy1D3rchNMWRQuylTSpRaEzpGeek/vV6oqJTZDH5ivkx5Asr3E2TZrwvdVonaM8ByEYTjUFB6mSgOGEdPpNYRJNezIEyWtP5queofcx20ldFs/Vc1EUWBoYGq2gmSugzfIi/PQo/HhkP5DgyI5TewaliVow5aHoNm15DptewjAzqDHxgC8SRicxKsh8LDofIrIXI2tClht32BFgMOw7HTw4yCG6Oju5nAlKoCosvWXRPu4dzczhta40NTyw33w13KL8iFMuAiPpsfiDLqgGS3Mvn/ZXI75kwv1SJ/UGlyDkvPJ4m13CEa8rkcnHESdKM5mqSmTEktCTou+QcFvvxdMn4ORncM4NG5uOlD0xCB/D5Yjwvi14ePcwdpck1U9ujI2UiKOl6O1Gf5FxXA8svJXkWMAmI3QvZDWYNAqvQFCObyL6miTTO0eaT3X3FuczNMafiXCYFyZANtpR1L2SQa9gnRz5A5/wDA/mBEFRqAZP5x7ho8iQ5iyutjPne1P7I5kTPHfaaYCN0AOhNg3FnkQjGuWd9PwkVb+3gz3SQiD1syuw4lgqmpTkw5iTI0NwbEXHiiFkazXSzUSZEJlR07PLyQ22ZVlVnCi87rCeDrDfNo/7jmBQ1+jThxZyMbpl6Y07g4csY7d6Jmst0ZG1CgGkGFdj6dqYHKgtP6s9NEZwzyZ/2P4C2KTwYuPfxeoi1n9/kVqYretr1NzuH1NIOlBkRMxQ0NJkaJIfBEqIUHU5yy6lJCMa88xBlikXcD++qq2Qm/icvsPtqDg6mYwqTqcfnrusTA0KGntQZauAlhLT0mZn4DH3bxoj4lM4uHX3a+poJgBI+Zk1ileQUrAvRXQOLl27gGTo5nFbbwJVhxwkISw1/UCQvXK/G7k0UaBJCoQSCGGcJfVEr6hRO02PMKWlljok5Ja3muE3Ilz2v5A+UMHjhI8l7+FqUzEQz3LLSrWnUbEvOjZS39y65PIECqk1aF9PW1NxYVc7Dz5LYnwzbqMjCm3hoMz3BVYVKFsDGKUIMEvtpG21OWVjzDK2y5iZiK/OWkvjxmP6QqYQrAZNgGVG46A1xdfsJPcpVD8pTuGuaDuPMFPRtWVaBCNbARKLnwon+43b7ZVhHpZqb/YpSRHPZZCKNxjRhxlzlh0kRpJof3wALZ8xl/T3cPdlXIziCQqOg09tN9A0s75ULRIV6EvJe+mOf3EpX07k/KT7QFrpLPNM3fttXDJxRhf6jKF1nesyyOoIKB3KCAtey7RxZWWJYAg2VNKb5MeAfX56ZJNCYy2AMEmic+/g9SKAxTf02EcopU3jBjWxvwVCZ2nxOm74AmNDXWzOCA4KFiKN7ukLkOcKaN7PGaUFAXWkbjOO8LgoYTiPe5UP0c/4HaLYJXegEfpUKez4hJ7BRC4voQlNrnCMuLldLmREVx6SwvZjkGW8Olse4oyTRNA/PaapwGM07pAEyTAfm/ZRhcsXnq++98MiGCKJNG8JBphFJAz3yFVD3ZQL5V62sMTCoOAvZvc9W6MEm7dMHB55RwDTc6qNygEN7gYXVom60bIat1GtcZSZyRnnN5Z5Is0vVWwBzvg7kNVB0VjAK5p6f0XNv6TVc3uiXHMrLlsqaoKpe2ulYMyf+TrdAJ12WaAvxpA/MCJvWD9vmXPM+eOOe93OjHp58k6CjKJrXhTZmcDpcaM1K6Ih0HFYSOa0UzLvye92psSB417qPpWpocMGMvRzTc97r9gczh5ymD0x1oUCJd/o0q4K722S2U56KZXtsZQ1Vzixu0AoaoibfpTx7dbH7SDeh6yFPUNYEJyH2klS1h7BXjfak6TTmRi6X+GSlovnX9kHObIZqH0+cTWTxtr2xKb63JeAm/fvcjsBs8shzSp4Bfj8ffRPeIr4MjZnZMuZGHUhKQ2ETxVbxjw9U5v/2vNUg2JTaxMO7kPCEEaycmDr4BOEWK8jylB5JwuB5y7kzsrgNed6J0pJhDy+9S1plVdS/y6OINxo3V5h8GdMMGnPTIbi9BcanxjjbVxkzP6fwLreJ9mBgGDab6vfZhDxtp37Vb63BTjVX/BgdNa+m8axzZ6pxKTdYikoFwfHmjMECPgBBsAh3MmGGnHM3h25jxIUWQ4Gz537BtDuk3os95BZFiTP4Sdq9hl/dptmWkNqWozuRg4aDAc/a7jzBdxsXHYEXUQGFh+rtdgIOGDJcMzkNsptttUFBqJS08nRinLYl1iZs0AwaE/UIL00V8P9VWWKT5DHnvKtK7XTT2OXcWJp2GvLdWHh5BluEfR1b1tV2OGyT2GmaJGRuBBma85YaOfmbUNBR8Ti9mLILWPzoaOO+yeTzLbg2an/x24z9m8hJyOu2MNrw30qAdVY9/1CAxTl8bW/7e9Jqs8MVmGWpnPWBR21bdmw6A7edgVvmlWk85l4/bINH18vaLrveu6SqLfDCZshkf/O0giXjli9HIqtxiGT0mkGJ8Q+x1SUJXoPn8Kr34aqwPNr0nG9bbCDHuOUB6hc4Lge+uDGCbYJ39IhCJAVu7HIUdJRkuknoqE8ulXexlt5y1H2RImOZImMFRQaGebMmQEBPOBlXsldMsuWcH0BON03PsoIuIzXLbR745/l6EVn04tgsfGIH8MdJJBtv3+TyfttAEZMecQdDStZT2HWTUjzJ9/RJbIBzx+ICxYaWN7jEC2VITeGLBUsncFMuQYVlt5wqtB5ULF4OWKzgyyi4YbeRux5gHjYxXQvOJYNzz3shhXnZsl8QsjJ902897CVeT1pZKk2HqNgyQQYz2ZfT5xcZM5bdxuuB2JHjG5H+5bqsb4NWt8yO0TrLaKq2PL1FS76psom4Pi3dT5kcjupPU6H3LYvfBa6MogIWbx8sqKV6KlhWx9Y3zxRnb/PshWtwfArhdvgSXIgJXEnXnbiexunW3F0ACZfZNdaDwkMy4lYvJCaQjtoqp5LU1AV+jCIT+Qwldo6yVPKJfoFlfoz1IKq1nu5hYkTr9MCzLb0FXaWOC4la5SwJHl3e1p8dWAyH7fIGNmYCG8hpNzwmyEJz1Z44qlagawZnb2RocNYMDyDIMcT2lQJFdmwSl+J0929w8IYndkawJLCTOiMSvM72+Vu2ZSnVvlPnXuanWM/kYF7q3HOs4Rz+tHNwIvb7dAQIl5lT1pOBD5mmoAdZz024IRhz3erSY7OHYiyvD/eN5VGGCt6E6wOZlqLkk7NdEQUKkWW2jHPEebr8MvCMva4p8IDiVCMZGxpusv1mG4pn/91E9iU3Gsl+MP9v6LeY+DT0291AWa0VZBZGPa3I58Dgr21sxXr2+gf8cWY00kJoWlDPXMUiidi3etO7QJbRzQb/Jehj8te6FVIAwTRrQWkUg+LNiCMMrUkhFjWf4dx6oGC6HPlZeC5vUtzNTDtWeKUWLJMidEXJul/yUJKkfIUjW3sXQV4r2CqoUqZSnz2zlAuijIIubjdpd42PxrIMSykYSuTF8165OPaXZBsy1ykLcR5f7/VzWcXE3rKcek+9VySZi6frFwXOEMkyE8YqUMWWCR1XobQqesJpAZ5FBh3CUxdqygj8Oe/Dj3P+B5yQxATK3BWlgKpw1Sp3NlV+/XqfvDjGlmCg1Sqipttllw/mF9lToXHo9MY5ZmFVGhLIKVrrHu0DAgXLZ7FXdBXKqQCe2294/seuWlah2Jnylki9tcST0Voq2mZJO8POce9+EHV4f8jFWUiJsyWmigVXkZgK8o2bjbsK0RereCctRF+s8t4mlKo8u2zM1q1WVKtcz53W6WiXkQzB5yom8TPMRI1wHT/qA8WUPbGrINKzRH8RR0nrwZ7hE1xtuYzvyCr6vcp8FIjs2kjG/k5AuAKXOSdWIYBQ6PczsYEgl0+qvOzadGdR60Xg7VK4YSg5tQ9Oj3kfsvDY6XnNzK0l0XyOCB63gEAZsuawcQC7ceP1ft9pffNLRjoG3kuqhoHx0i9gJuSHQzZvtKq0RGffrdmCKyP++v33bxEbkmCUItxAhKE4lbfXaDKcKwJAB8gysLVQ9A0TKK1vrUOiVJezO1ZBpuj56yHd7OhuF4i0juDlQB8z0fp/ROCxGqwCELI+9A5I82jmeF4vi5gIUIXAijwl60GIzgaMlIT3uS2YBf445wiuuirUbEV6TRdvIlSES4GM5BHlbW2UOTy7sJKPuIze4k4DNrhcMny9hA0uqybnKOM+ztSHkH+NyQKVhRRQhLXXS2lV/VDvIi8gg2+vNyUdib7nJ07TgT1VfajnNryLB+eFeHUW64K+6qAPLMLtRPMJt8963++SfyuTX4kIeEgE/rVE8yqLkxcxrfV6w38Z01ox0he+vV6Swq83laZrfb+khl+mWllk0ViCuCRpWOJ7aISg3NoyX8aCHHfRyvEC+1oifYO7XFvc5t7m3jf23tItNpKrbKx5zYcXcbhlUoxzhJzEOT/kvwPG7ntvuPlQySWYq1+ymeTPDNzodoHH9i0pXSY8IHGth4jq62ujK4gz8mUsEqP8GD6FjcTIO7yVWsj6/yV4iFNyCruCA6Akt/uDC81GFgrHKjd3LapowTSB4NbCnieqTiU/rtem1zs4fy3T3oRTRtYKVw5K1+kpFGJig2ja4l57cFAbR3Gs3lFTwYWHXy0AldRaLy2v17bYK7vLRMnrld3lVJv1ApchAVupYXfDAFCAZAWZBSFM613fSkE5ftJIQc8Wp7gb61sahoQV8+4gi3uKhc67OJp3w07r59YoBuOOAonwmLd1P8fm+loezcQOGsa+WTHs/RU5Ss/J9IS8wfb33JydlnLhx8foLg9lWp/d2YKtIVtfOh2SPd+A+NtNu+h0XabAWMS0LOUCHeW/UoWosrXeWC74knKrrgitYCeat6lDybt6ZYUL3aj5Z+yv2dZnbgHVGbirQjwuU18sGFXFub5HqU/3zmtO94dmd7W9VOknrBZwNfEYykzCBlGdC/OAoEE5JacBJEOr3iIDSDlWSeEF9U7Rhz7ZBc+0+nJc7UOsZCZc5uhY9YWCo1I3QXWULl75C15anDHhr+ipMGfKcHpZAa/Acoj+HGWPFL88N86XluITJC5Ifo4AhEtmMYPbgIg4gp/IPBmrsoDkUvJiNAHztKrdmiQ0NzEfiG92V02oyopmy6k+izQZAtQeDQxMINvRFSI6VrWtURuH2dKtQml2vu8edHCKBaNkwl9wkP539/VrWFfILl0fqd283P1EvGtVS4ratGQEylhgygjMt9xFe8Ctty1SAbg+okzVRPy5e/0YgFVECzTjM8zowjsv0Ehm2hpPYYcV11q1s8PdHU651aWbsObhqnIPwu4S4PNFTGmJNyqO6tdMj5pj8f9iGjmUUlmfhU2pFcZvGOpUoysTkFe1iKxMQF6mFQkUBzabagO+TibsyAW5kZWunInAhaELFlFIod/SC85nTMIJke6Hl4BT0vZmney1jbSaEux8z/0h+//M2gGw52n2hAKwMDiXuPtkBYag9MdzS9NSsBirixuYpVJdVBXr3W8X6jrKQYqPUJVCoYLmy9wYC3Us9pZez3JR22ubQ2bXYd1cXunPu19tI8yhnOocyK1Id4Q7eB+PWtqDW0twg69/Zx2Hb4gNV7m7m/PWtljdWmgWlkGjgemirWa1RPB574YkXAqxhFnzURgzPCIgZngWeHL3zWBANPsWwZ9RVdc56Q9v1fUQcrmjRIK/rqAO7lJjq4FvdJlyYwGj6zz3J5d1JgphmVOHdch8tdI/qmSpTLZXmklvCbIx7RwDP+3GtGj1mwhhNUa5TEKxmqJczXZee78YE6Rt3cR37CMmzFiMThbHc74oADEex2nTF2AtmC5jNUZwi1MQSmE/vxVKFgNZ81JVllQPt4sr9t55K4v1Vhtv5ferVGSD7ODj6Ar2jJxnZu1YAezObUlfKZro6FJh0Giil6s+fmqkc2UA2vEYyGenca+Fah5UYGA7m41gtcbZYHkD9U/7VOdccEAo/VouRYFMubK3JXij6XW9ma1zkG3DtYx3uVpIb98e9nRtduU80f8TbBdkiluSCa4/slClwKsE5WHIB6c36Lc/aeYp8wp1uKzGN1pa5rE4R1BcmoM+4b7Hl7Ud2LLX8oPUAjvqfhR63FzdazIwZD7cqHGW0ljx97RPlI8SmGS+x3S/pnrqsZ/sqS2nRls6DULtSK4G35G1pUQBLjmT+XTe3z7BBgnVLmLnu4JLYn4+CvW5gCEkE2IsUmSsZqkmioxl8o7ViHxfbdw79esUAOvtEitGYowvUUsnM6LZaTqVoWaTh/FVs2Oh2MDR8B79HwLPNBmrIUlrte1PipRi72cPWMov9zG3H4uctuFfcfFJsDzTEFp0OIrkIucDbvB1FnVaWYalrPAjY/z2tx7g6ql6Ve0VWTrvRphGR/XNFaFdLCxS252W7lvPFGnjM64m4Vg92d+VJwp6nOayxqsj6+H89QXI1ToXuu9I1GqC9nSE5hSehvtB/mcEs+Oi4csnH+Ee07h6mhL4qkSmGDLO7g6jOLgvPqpIl4QyrGYFS0bOw/7cpsqd2kpCf78FueHQXs4YWT1DW/iRDpQutUmpIadl+vQ0bF21HNnRUbPX+s0Cx4dcJoszzVwXq9M/2K2O9eRjVpYQtPQPB/nq9VvmhfDq5eKErdIU6LaxIK8/nH4hFPtnGQZtGO5iP19vX59Vg3sjmtsF5BbirJYJJxaJMZYJClZnvZIVNF2TTfML52LFryWQPOGjnItBPIqflRDPJMplRozV+2/hva5MNOIXF2jruhKpz6DSQ2xuhXMErb9bUoEOQzH2HnninwqE5SU3lxcIN4Fu2YaCxkOfcqTTdjingDClbpdeB6B9dZtcndTvy8nnKwJCmOjtNoEs0+UPe+RhqD5AuH8CC2R6E6Qiv3caUzgFEcY1QHsKDOFYya25rP8+aZAayIZ9vFqhAg1G/PX4ggZjmfNiAQ1rMTtSlx32xxM90i2P8AGGoXHfpSzsRl++e2IGRTzNUmqru5wrw67dwaxO2EXPgJgUzOC8wBewFOzrKwzI6r/k+Rugsz7fUost8ir+bhUA2d3d1kwntMesGKtvEB/QCz1g5PqDbYAIFSCD3lUuQqEz+OtK3muAd3CZJGMNGDAyswD+eWMzNhPqi8yZNRx3YBLGMntFBWzsFdt8HA2eInDiy7iySTDWIKp9RZYIqbrP8ebEBkeH4x9RLC338W5dKRgwUuM2HdBCcZ95KQrgz1Ax8fZyWxwWGSNtqe4CRKozO6y9DuAGm7K7a6encpTbEzjhhiXdyNwsU1Vj3xyCV4jFkJuZqsgsc1OsIKbOO6rO1xvV2TBcllQAN5QqPOfZitP3GCdPn5PFKrZBvhucj/FXCWgvTaFh8TNYbGuFeewYZ1Bi5MexW+40gVnfRRM3Qgbxl0tlE8UwDLgYue+WR7XsivgIg7gaLVE9DEOi21SQGJwGjzqpMdZdFDDiQ8cT1GWt+QFeAF1ubstzPueDZRei3c72hQvaYZ41kpLY+c3PW3WD2yvOBcvqkQ7B/ZPxGa2qgAEYFnUswMaW4PBlLyJYhkXSSLH9Zq2GlGxStILxSnI5C1DhOuM/qYqOfntGp8qwwy20WHxjOyuDDCOX3jDKd7BaZHdduv68wIpf12gM1PRWPBDUfW4MdMAx2J/PkyZve+eKfIJj3IeHjDANcKT4W2ETh8YaDoAzmBzkF4KBrwEeN8GzCMdTpKmEg5cXyYkd5cxy8CawALjL/JX+E/F8Z03xHpIZAwo5/58J94ks58Qg9m4sMVNoCdg5OBYXqp2DgyTwa9g5ONIndwSMC7KC+yfiO/7wMLmNleCT5cnEeHTBho4BDofRNRaCwwk98csxfCmnUm9LF3FUn/4CcB0cyDRhaja9r3KVF5XJcTcwugLHFVpyBQ57GadcgSPB/uuR2AgPHeauzfCgykixMaxzJVdGyw38NmUk9EaWGsj1ltgvGiFIS3kmmHfTCU+pbZqvP+iOeb1GbNKZZYaNNVlF7TEAu31clJ3+ALNVCBI3b69Tmgk6WVDr4Ip34jACMCDpNlMUGWhVF50I097CSd+geTPWlOXlvLo1ZXnNjJCrxm7JPgY3lrb6NdMdOWzbPw203supqMkOGlKsjvvE3BiiqbgpE+UlYpnE79KLlSCMaZk2UwrP5+Ouj7EW79kk7sFkF+cIq23aTpsVGtk2CgX8eZHn71MYtf/cBiHGD8FjHyiOqoVd+GFpeKWVkX2xARX5feiLP0ujG2Z6Vc/W9BHuWSAgOE1eK8kELxMG7JPfLSznwxS3X+GoGKKO79dUAbfAKJRXPpGmeYE9bRNlH89ff7r0Y3n3WXx7F0Hll1MXemv8EBJliWrHy9t0m/ASailsAHv2JwQOsoxzO0vSmT67WF/ILv7hYIufWyQLCcYKTfF+gHT2TxvLCrpM+8AmiueueTeajIK/JmhHfG+JIiPpKqKL1nFmRpurdpmg0AyrziVtc33bOJpEGET6KRd4Va/srJu0wYKQQVlp5z9UxoOcwwrfJCHhMuPImusHpolKfY/VgDXX+/FRktJjySpVjOyqBXP1j53PSkxLmep7pRoh+FpUixy8gUeIaMJp/85MsLMLtAykjVhQTWREG4wGMomrAU0aYtOm2Uzb6ha++QnDviBREt3DM/hJbXWRA2eZJmMt2mHTIm092lEtYRdMkaJk6FU41iZt6xKWy96uleB4+ekRDVP0q2+CZM2SsRaXmmgmoiBT9sy0GSsChZkiGNC73CWEtRUJxlqgXXa4tb7cNJblEkgxzMzbUG/BIrnyhvehiRkb4iEE2UxdUZbMy5nl7Nby3rUoqUykcVo4rubnWEuSygwja8lHaHqXFawYqSRMB/8XUpSLqLD3gId/hHGhbpVJyqtz+r0Qi8Aw3NPNu60MJmnJUfOKN0pXMwRvhoxFhoy1vMsHQ0b/j1ZQLsBo+wr96qrA5wdmH3Yb+Wujh6K6CDZMPfUCxVFMVOuodBhx3RG1RRm1vCUuySjXhV1g8V5CpyQHWQhQ5YW/oHJZ5r04RyjAKCwwvU7vb920YVHJUhHnOg9PL+yYXwYweBfjQI2DFuFxQfw2c99W9+JK95ewXbmzKd1vU9ddDjktIi+Wja0lY2v1an/Hkrnl0nQLVBgKcG1ueMuV1IGwblcx/XNmx4L3+b3Fus91uv7eH/v/xSEDi9gMpi/6BgC/p8nUgVH/RUFi+3j3/VYMaDntMTAKfGtHvWAmBbhdsWEk/52GT/oNOnBvDPggrZxAF/EMztjybD3aH5l1jddyum8k+mC47ZJcC+n8ywwiC2wYxRT+Z1M9q4sbfP2i3eNc2I7rpsIkS9V2urkojV7tQbt8Uzv7ZJAhSHEgtPugLuo6w+eIb3eWnxLe1v6t96LbKBALvuRbpXp7WK/cQSJbEXqs9PrN5xtEGO3PxqsUWVdZO79yeVnkbYW4li20/WSqdVdXY3x/0s6XGTAWOTHOX/UqaqTubFlugaYkPoNzRu4swe+QBJRB/fT3iRFmMDTvalGwGd8yt8OKhPiCLvjtCpXqbSmL3WKLLjTqBn69RCX4ofio6UuwXSjzIvPHbvSxdUJggnkiMBRwv29CCaOIir76Th+t0qIq61crPMu5tN8bfd8pUY6VpYSM0vkozYKN0sYaF6CplgGNG4AUA+VQRmh9sEOV3XTCV3Jk4Nrqpk/dPTKO1hvQ2hXJ0Fqp+1sKoGge2tG3CUy+WYIbeJR/guOmv8AHGFr38Xq4gZ1PmzB3M1eco/Z3E6gHU8vMTLw2KhvLsVmjQBDu6W42cDTIJshye5fpE70sV8fYtL63o1q7c45amu2uOWqREVXfMUftoQuSjNzWzNFymgZ0GtP4rCDLSMfHupMhErYi6DHvegzJFQPR7mAhGiFN820DnEHGlSiGv8e9BLEyOqsH4ZdmImxD39SiahM6uC2qNqJcSrLZ2AOXYW35q8uBne2NX9nCB/WHhValu7DeWTrBvXqESMPEozZhHoq1Uank/PWbTUY3t2MTe7Kf8l532DHS3YcsoW3v4E4Phn3TY4CJnfW4U96OwUTDbZfgJl7QZBprZ7ZZGS7AN0bujPFXicAalvXlWNjrI5ZIyLNEYjEydjYuJaLWj0XUJmJw2zRzyGJbOO5dOVPnPYs1OK/N+oAmScgLktAH/tvXINj5KiGzw74gzhLh8K24SKhlvIFiEvKFb7OFPAllMJ5t/eTRx89pFe7HqLuBwH8TtpCPNMkYc++EvNqw7eOU+8g0Xc9fP6VAZTlN1U0FviI+Jp0Osvj3AwYTTe/ClHAph+f3jofKZxiMP3DCKql0p31aiqNo55SFfkl8naP9Qe+RbFdcTufn9OJ2AVQn0KSn2d3IknAGtzMmI0D4xtDd55+X7P+ZwQca1w6qC1YjBJ5oiw0jojx6onuMBOMdNA4O5O6Hca3T7BFkUGs/d9Aq7cG93aXUpeZNugiHXNxVtnhFH+tkHzvK+mhDQLbPdgL1fip7XMeNt+8H6Nhq8qIK2oBH/CgA12tTyBu1ihs1dx/usm3qjHPUP8gf5n9HM32ANU1C7aIMRByVwmPU2Nnm7vfLnX8+ByCmW9wW8WVCmqtABpMz9+VegXd2mx5jP8jL2oZ47Yd5WdtKwn76jfTA9RRt2qBedvKyuOfiUHAfFP/z80hkFHFSDyh1pljbz+CKH/cC9nG4jyCfUlJq7kMRkXXUcj8DGsDr2Ap25zV/9raj6vq5yCg+V/oeJBfcJtHYUboMs7b7kwALUeXKwejISu4oGsChbCzSPe8Kn/wi87bkNzREJL9xj9CT5dFRxwuuEhEGuWf3c3eo9O50WXJjvj/u5/4FMSxuossfHIy/27wY+wGBk5jVRM1c8ePmPNwCz4Lb8Z3/VB7az/ZqAVBw27Gxg10dw70ui+1pRWFZZxKlf+Cs0Hmvm1hl7cMfO/kdtrc+1R5Q4s9EYGlnUmveqDycARZOoMAwKSTHSaQXrOp+rDh93TE/ujBJZLYZMHZBJvF2XHtDL23S8YnG2kKTFJQdOH+UcQBdbdto2AXG1LaZsAuNqW2ijdPUOG23+1KgqJ75lnxTGTl68weoq9vB4F0yUFkF2S4DPtEzq2VKNr5YcScSiCEsPLe2baILCuULhd/lxXwolm7gwhDWbhK74QkOKgzXRo1FI95FFSbZpsLYzGN3TaJzlKhJZUfp0yo/hzHTR67QTNbFHapHFYGqLbBXHHUO/Xs5qnapzMmz67vVeJzTvaOBk9GCiuL5/CLvUG6UQ06f0hcvuaZW41RoHqPkHnTsBEVcJBzJMbQNHdikw9iOc+wCJ2B95JN5mbnnUpT9RTR0C/8XTr2H/fDLdMr/oNSYbKL8Lym7oYGeVhAvqccDipXgOAG/x8O6+wyi50txQseQyHaapma/nYH6Z9aZDdd6Nfyt5fRZ5kdlsfbtYjvnKJ2fIu6MDn7NsN413VyRocCm2kGVQZ/COZ4cllHkmtxgxHARysWPRDlV09w+BiwfRKI3Sw/yd52//oQ/3IMqSBDpU94K4HLdxUKrwtbapso4R/NzF9T/GE6m2GLrEwQ6J++tjboLBVbEzJhmvLHmwpNtxFKuaCGvyzdmxyTeHfwX9oPusjhhl/sJIOH561VKEOHpo2fA2px7wSmCpg2c2zbzY5LPRMBeGKX2QMkotmZAlxE5pDcQUVFDY+7PWRzMfe+MDWFdBsicP9+4Kf1951z3GmyEly1pou5HlmTkfQpA3Pv1Cn5RoWS7iuB+H8kHRcb2+1NJawPzftd4XYBfb1NgbEQM4xfRQiI+bU2d+J9zosbhBe5iG/q/EYB3bKMg77LcikEvH+vo8pskcWYdbcDBuTr1fsHkdP52t3CNvbYzXjI5bfN3nKb95adExsH9FWgZ06dv8mKIVSwtJRf6g5t9iyDjJfLvNRYwjjKjWlV1G1wA5u0ApyEh1JjpLzcUi4z90tKyonha0sfShGiDoi5ERO/7W6kMAEw52Vio9JzsdwZIO0CKbkl3pXLNazIsO/OE7Lsf/OHbOBebMUawb+MO1zZ8G7Vs83bstyEQ8FC4i4SIk69xgC233tw4RLMF5/q2I3XL6nmbR4qVHzkUDTxaqmsAF/EWeUVvtEjeXpT+nRQD+S7dTwGoYHSzPjBfVql3tJXtH9ovqGUL45gRa54fYyE02nSGzDswg0PaPciosbnN+LDfofG0jAzDHRPezoeobZP73XuHaYBNYJvrZ4e3P/yUR7G7t09dcJliHoHEywi12UWbUe/8kKBlBMIBBmpdJrXYCCoWZR1HMTUIfMMK9kvZ5AjEftOjORYfMdMekKXTFguT+AUmv4PFATLlh5iS0p98q7A2AkctYt7FLi33GvjAHfvHZ2ITI3ie5HkH5UQMi4CgdmlOJNfYl8Gqbi7Cu8GBsqn3KcRuJtS5KDVwIIJ9kaw3LvPWszmZ70emfHrv9kaeNG0OmMmXdO/VLW6vUivR9ilDqT4CMmbYYd48xLze1XDPEVZTtZCqZMjNarbWpCtJcrf5WjcIL1zUm3r7NhMm4uVx3vIVKN0mzrGG8ME2d0UKt+xOcXdoZb33nMKvWy2cagonVZ46EjB9EEPGfpQ354M+7t8NFGhVqTkSQjSnxO8KlPv56zcAyl0+U0RpdnWF7l+G6ghn4rmWPzX5ZoZY488mVUFHpTFZAM/smt5hd/XluNhlGKQXGAWbbeEPym9k1o0d/Di52Tgh9zRB9AtSCYXSmBIGy7aTWjKq+osBXFNJcfcc+Fi3REGjEmXKi10rZJCzr3YlKZZEDezMLeLpF2w4/xDmbvFORI0DPMJ+wAr5ZCUl7Km/D0byZTThnDh8CQfWIi1wlBhYG3M1aZcE5rkd7V51udEeFekm6eAEApuD5yyf291VIALN7f/wAvYL7o/Etymf5qm+6/KCw009xLSvTH6x6wDpsDgmQZbb7pSBF1/Q9zGobrpE2K7jy4tJq2cbqEp66y1giXVu02HsJLnAQaEJmiQXOVMtxEFycQtkv7DC7X2alT2zxALHxasKMi1dQIrPJSJO9QlYfWbLPxRH/CB3rU9OT4u7Clb317i38LzmhDRtoe4rSPQgGHabzGLXhSAgJU1D8TMVciPLy65291WQNO0ovnxzP3dlsZFz4BFbPwUNShmp9pVSLR0qgIFi45iIa8csvPotCC6qM8FZ9WqbdmKzMOr565fan1znF3jfQMEpnnVOmNfFg8TbaCRymRr17Wd70HObZWWh/vduNqcaIRbbFBk7/HyYRnZlNnI1bZMSnCZqV9XaHIgu4ilLz0O4Q26yiFvgjHofttkj9xocuEqi6BVlUbR9MQfc1YXO+VBfjGQ6R+27bwBSb5Tb+ZmQj34fie2qeYdvrJy1mwVkQ+xKRBPAw/V+b/umE7kpcoPvc/7vG7zsqMNZ7YWuM74ftN5SGecEEoEIskaJa7aLHWwX2XWLsJYxE67JjdKQp7WWH8rgi+d8G/MZt/2hlcCT3e63TXHlLHL4zGx/NER1RQggW7nVewK7aTHVSBK2m/Afyb+TE6+9t4liFQ2dQOBXDLp+kmVma6jYoq7AirGXsfjVLKwahVXzjtSSmMLc0kwJcEL6RlHaKnoWkczv5qBT618LDzJm3xdNMaUao8DFjPvO1PCMG9uxvWUP++2B5qe9lKgiVqa4SraK9cnfSjW/jfKJFLbxft2NDVW4RZLB6P2WVUxFtw0vPnoBmyUbBEYJYDVsFDr8xFaBIGuYI1psyH1unw0IOcTblBe7zW8RUgA+uqkkdkN1S5EJ6IlKkp2MmDeLpTY5oPeTTg3o8K5A1Po2Jchui4qfESy7LZSamhox7MpNxhsllVO9RZV8zvAgfjkuIrX6D1Fp//xTipIVebYzX3Zb3EMd72qQUK/N0oT/39mTeVglKk1mxVDNhTNjQjEi/c9ALLopv4LRehFbHEUBWUEK1qKA6+0VaCW2ywSfI/ZzX5dxJwvuNsHG7uCX3+YFoflWtcNP8ozv7oBQZ50mqaQPihQpMpDTuF4WuM7A1cVldFDg7iDBMB39hmJWV4aUUnIHjj4tUuQUi4gUm6xYioKWCve39CDjRTHOtLwoZadZm44HXNN9DRZXT9vqVZ/kADTBxu5yAHZPmp4J8IHDZANA5sJajPbwaVZae37frpJmYapHQvM3ahsnKQDWeXn7mH79ZYdtmHVAAqtyCBXIktiEsLexWFloY5vBYoPzokjxPaYdAyB6tdPC+IyJMHYnLe7udi92uD3GdBWiKuS5dbSenO5xQ08UymRlv0bk6BtmQ2Zc9wUapnaVNtYN3GaxOEf1Y6VApF1Y5O4U8r05pQzehG5vV4wB3q/eqzQHrFv1BtK73S1bYqhSa2t29vSIZeXytzEb7o2SLp/zXcqInrYIwMQvmacdURcOAIj8oswJHRbIjnqvpUIyjG16jA0yjHPNrYeaQa8uPxqp90z2eI7Gw0u0ySPYImLcqFyPSxzT6oPDNr5erODFwNBZ/evJ4OPS7keco1wibQJwScRpF7KedefwOA8aqhZLJyKEanfqf0zPrmI07qq8dzoDF2yfvKVtsQ6S3N0tCBE26qpB+W/OjGpM7m4XHcqxKy3cec13YMmaJEzWpjrdbWt1UDdtk1acFkZcDMfYndRNZxhuUwZ4jcea44Eo1Gr3JmLnV1/EuSobPAnD6nJ9Qc0LQ4o60ILnSndugwZP/UeRnTlENsIk5HOeVxPyspbWeFQcS/1ObCKP4B7dsqzT928OjN2ZTrzNxbFHsqUEXdWlwejgfd2qaVqAL9+qjBOkE/ksE2Vs0PK4Xqy4Mbc5MGoF2cs2lcY5IvhKSPHZULaqiWOp8h4atwGvjrCnZaVZLjPM8ZDxLU2Sd7DdNQp7Yak35FQcNu/CKZwTZTz3rMl9ygpMOIMyJwGdJdwidGSXdUXB4bPI6WSZ9Aqa1+IcIS0T70Nk5YVdx94utQscwe1OcRb82MN21aCz0OQae7ygRaMEb4+uofDqYMWe2V1tHMhzHcrTYfmWPSy7BtKy9jAKY0iaDRubrPetdE4uJBFY1J26ft1e1Ej72Ca92EAF1y18yFN/Q9yzcDdypYw9EmUuWzQzo2OGyWp6KjEfw2JqgMBpmxbjHBGM5zyrHVQYmBAWXCNv7epUdUwSn+DJvYDtaA/7uUYiuEp6nn7MDtNdsJKOYMk/wT6wmMbJ/ti0wVxO8hzx89vZOGSDDW2mY9IwFvXvTh24vHdajfL1ZrDIkE2OMRguwv9nGfwINrgGsYNjfIiF9kAxLTmxiGvVPtvaBFNzF8yZqqar5W3gsqpSUUpE/f4+tJtPQfLRNnKLVsiwsBoUVsMOjzG1+i0kx9TqH4+LDu3BYlrnw98OgQZzj9Sx2ZY70hIZkhzCorGYLF4U5R95Rkcpympbi/zw2znzG9iP+hgphf14fTBxuMCzk5CMYe+iaDDkVaUBIx4McNaff0XxN7XobfOMTCZ27ctfDkgkucRJfov9zXL5Jb6U+9TUF3vQEjP1Raac5ivsKhaSPWWJOcV5k5eWkhPptaeRlm0Hm5yEtdgGzgnN1yfuQiImqP2BQpaROHRLAr6rbzF9C/R02lIDl47r7HWWMI4a5HwMBZNZJc5RopuEBH+B/ysurxxHi9d0XwOt1SwZe8rwmpZvU4bXfO6z1B2bCBg4dXiypt+eFlQTppeSxTY4CKIKnsMUSAffIreIbDzexN2j8TUtn+b7hWPTdbZF6hAR07+kGDQKErkY21wXe6L0ozRllO/a06xIsoUfEx/cWckycedsDykhGNMQjIkiWjsQAfIITJbROh1dPm1/HJZkKdySRKxUXorD7ql616usTSrr016bCZr8IlQTs/nFM8YVXC68f9LqDEJGAb4maNz3tONwAodxNkkhfpB1kHQuLDZCYtptZos3oIN5b7sPZ//VlAt2NjNOwz8p8gZ+FeMwZmdfLc5mZ0/79bxM5hHvaSk6mUW8TRiyJ0mb9rxDAbYLkRx1gqUDXXXLqydkIThq5CPpwAZwq24gTT0XudODnbbdSGGqoqH1eZD8YWYWjuO8dAp5AxtLE1nE50b77nIw2Dk1WGVqT9HWAAHdpthcNNWEThBI1YXZ9wQ3bnHKYTih/r7oYlsPN93m7AHomRWDsMvwNRwpw75RlcITEfTQil5j7bdu6yoO5xj1zB6zekH0uz7eOWN9ILRlERw0XTNsEA0xrxigjTVtp2G1GLUJHO5lKWxv4cZuiTVBZ7DNVVGZtPgUsywAffhQic2SALjE+wDFlikw9pLQMsvGXqygtU1huVfGfQUGoCEjtouzB5WPlCrC0V+4XFhoUfGNnodfuEX8nIyMXB/yPgvBMgbYK/eypbVA3b5NoLEXqmc53YMGqKZpb4SeLQujVejOuuHEhJgF38FX9ykX47tQJOD8vY/FeJoxI0BmGE9zbuyVca2YUl9n6nVXLfjvTYMVBXzxHIsmoEH3UkC3LNRuLdP/n7xkeiovRracUroXgCHBA0xv7Pss5kdyIUW5T9zJ1tNCADGQZf999sunW7VfgGJoQ3uyWrlxgQrOR8zyxncXQ9JmpNiLIa5ll+tSiMucG3spxLUcBAx67txhTSSygwEjlV8z/uykwAgv3Vj3Xhk9DA5KQ0gYyRPrRWrEnwCs81aWQ3cLU83Q5ueFn1+Q9Uz0y0ssJsiDsc2MscGDUYOc+hKrvNCEHkdUZM2sO/Jggg3BrS8Kw8NRBYJitp0zEUvDTfwGxGeYImMnGwZ+8vglG0Z4Ja1Uo1COC/Q+rfDOd9AHSEak743cLF1h4SXF9DnvPhkKjWky9gL83bDhAS+7vz4wLnI9RuY13tceva1la7sKY3IEzXbX6ydoJ2Xxkwl7LuFHdAhsMQS2LG+WQmBOA91LIbB1d5F1M/YmZ5veBm7cJJRxQaBQEvFoI9hXco1UY6V0F2EkkfvC2Ua7U3GlMjTmFkaL4S9TZ+yVKomZHYmhE2J8NLpLzMi+IXq2i0kX8n9W7rfVV9xHQNs2M8VeLF28L6wafDgJnPO6CPgcjBHB6jg+N2Nwp/Z5I2k1F2291vpmQCBihDcwFK6kHTqipOOZnvTTmhNjBycGvui+d6P1vezy3YiGtUj18gMaSdxaEcxuIEP3/N1SfiZRLWbH2MGOgU44XrVR1L6YW7MzUVuJZ5smnPNRtrgx+vzJKAiHpVDvtTEEsA0s3BRw+6MzoQRxGByaooJ87VfutBToPztQvVCIDccjd4GgKeLV7istsSCtuD6a/XJ+3Hzn/dJ83JbrBAMsx1dQsiD+usQE39ISbteXp1RfBI+D4I9vI/7RxA5RawedvBHCCiI6KR2Dt1VQ0ZJg24v4S5bBJNV6PZcb60gwrbc1Tfb2fiPP5MzY5szYwZmB0TKGBFUmjqjTtpY5oNHieolP57do96KkSBTnE1S/oMWIcQBIVAmUg4lf22YYSTO2STP2Bg2l+tSZ3++w1CQByznxU29tbzDrDnG49kW+RGcN69EeWQq1bTG3JdS2xeceVHXNnLQDZ5aL+aJNgjAjtQmT0ewNCdFFNxclxf5uKv31jqb0mJCd27xK5wgyaY/7XNSyDsJrjOzlNKBWcvfFTbzMnreFE8DG20aCs0DcTJOdy96NDZT8owYwogi2SNEkWgz7S8wXsYMnA4/0Wy1m9W1LyQ0WtMKHKMVQ3sEF4FOplsSVedg787r8/dMscyJtZseULc+LcPLBeHE1zL1+4LEQ6pfpZu/Nue5YmLz826IRGKCAq3NJp1v7VtLYGwawIzZrsXAn/SAKNZkIfG8GvkyisbcCX1sFKZ+HPLpbyOVoKj9gXtIlCqgVJySXsuoPLc45E1bm5h5/70M+xX8CgPOXAa91f8/8IPoLYJe1tjXFn1Qk4rTbEnpttEy3pLYWqU+OO4E22oUYjkRKsRgn+8mggWtO1k6cn4D1gNspZBtnL15/H7vRkWLXB+yyaPKAQquZD3fbyNYAFsFrOL0HoqjJEgjx/3uD/nF5kbRUzBf0mf4wn/apnr7L92BP3+ukSf1d6TRAyj3yrs+JPXdRDsUBblndrdo+wBO6eaLZNDTpfBASldLRcR1ATOOvR7Oyj7VbHJ//NY3oLW3RcjuNt/HdWm6nMSduU1KlqABvKRxn6nNZzO2HEyG5TLNLzYOUwdimqPwArwlNSWQgnZO6lkaCYuIqz9TOmdr8IRJwqMUAA0F1kuJXJCIGZuY3ITN+6z4LUmrJlZXVVlNOiO4KdCNx6n0wR7f7YUMj2/1NBwKhAUKNWQDC2qaNakEjj/PuFQnoMgasRBp/iBSFH1ALQVZqXDB5Cw9y0ubGX79gQjSyFkHGBlrhSMuFuEHlIS0/P8Sn7uLzZFA0/no2JFREm8xGPO+y7E5+uTnpNS5BgJS9mu4V7K448F4Iuyt67Futr6GIiPi8myfklFz5SACbd0NZXGWrWiuJ/4EcTcRZXKqSHvUBE7KSOtNlG78Lnxzuc87s5emwH7ze8mfYX8aQEtgh3EfaKjC8iiPHD+0T/Zq9iYXJ22tC0+RVQC3F53FFaG3H22+/OUWFZDxbv6ao5UtByUcaZQ2uV9cdjl02LEQXea4N0sPcGU95+hcIijBV3TeigAzjwlWNkhHRvHwCuhlGF5TwmvnP97s2lJ1oXiUFdtNN/QKZbfxwT0nnlmsdA1FeFdmNEwY8I0Xv/gzew10vWEly1cbRxgC6vuCTXNol++9bv4W757pnpWsrti4P3EvX1vZCDXBkAtBWu009yeO2/HbRdGzZVCzHvf38U+bGyKzLv/sW4a3+RFlBJCBEOsXMLXRUUoe1rUOctKd1oeAqFlwFZDhl3fJ0ladQpq40jqPh3oUgCsbongQLbnEZnBNarKe975i2wpH31lfSkz6UHbPAYLkef/PUFOM8j1yj97jriiSIkMR5EamL8zx4jVMgCpKBlyT+k7WxNMdHSzfuurIcxDojZLdRGTexuY9UYeK0e0F2XZy1FJzFIqp07J7F8r70yfGwuCx9cSa2e9+MIJ7VbiRWSTIrZxA/IJIsdyrhi7uiN3WfchcfNHJVVZ7h2w3QtdhwUCfvRvH3Ji/88KAO3dOfe3APuEshHYRDahxgSq87meEdw1RQKySa3UmS5LqOp7RNkWO0vrBjl3kfqSGd9zkZ2hXfC3Zw4U0aqGSioUjMRfbW3ydrMAoE/gEPiY7swa7aQiiLq8Pis6SAkpcoTe1oFMIyx78rHTB4U3lH76gLzNpmH9qgReN/21jQGcr2e6YJFX89mXblYNylvxvn1/QS3B07XRn3wuSb4+vB/IhWoTQSkG3EWVDzsy+65/ugDprsu4rCk/aaDWr0r/eGN/2C8be45UditN5ElimH3Tt4k+FL5i/4gHWB4pePX7dWVISVxOT6kael9IGv8ar03vOWl71bbuHYhgvPJSyj/ZsXBQdxtHLGlm/RndF/mezivMUnTz8HNYbpsUuldovz8XkzwKVlOnpDOp8/9/tipr62Ct4XM1VcA3HUr/q9EJQa494hnQ91eVWjgrTVxlQ0XUPz/FyhXUSRI8bD3kn14H09QcCOG00j6XY4erViegZpSIHwqawwVZYzoxbYoUuWUiM9d8nCafkUi6gXoPgmMrQjgKQ9XeoM5JWWIo68FzqfHALIvzh7mIIanBtnFnZcnw7AuLW/ivK4KJ5bh10pJJwnZbvFqpBrHm3ufEa3ulKtykIK5dmMwz3BqBlA1cXZI+eyjg3ttUx5OyevbbC3a/JaR3k7NwYDNU4TNwYxkUTTgApUrKG+fX6AVrlLfUDPLzK7gpkPY6Hh817zDticyjcpiwq/Y0J9ac7aonhRulh5CNhfpyXHO0BCQgdl6o19WyK8lF2vpdkLY1EmGavJm321tM796t5jclBt+LxTg3qXSlpYYl+kcVzsgXgzWqu9YmmvoJsvWRDxUEWW4ziDos4o7eSlVowUHIbnvHUz5eJ/7OxyZ5Pf/TpQACq7ny2l14+P79gT3XOMwue9Gw1SBD6lVSulhlgfz90pauUX3bInRbIRP2lbsCvs3doSZv+UQ4wfcg64vCLIqY2UixPS7OasoJPodVxhvNyo7lQGdYbI4lHr09RL9alpZylzi67PYXEbzBkr/75uwcStzz3nx9ICdjuareMggC/DHzDDOIH7c+f2Goh6TYqallbrMuRTa/KnDqPyM07jJ8UgfsZyqza7UGw4/hYbc7UMfJjqjaaidhufE4HkFASKaAXF3h/Kg8Jj0QcyIh7xU8wXs6i+z8eyR65e5A2LKPUBRI4LLcP1zXttfTtvclswq+orgGgcA4XvwGFuWiaeyHU4nNTEIa8ewVr4jO2W9+9TUUT1MD9SslZ+ehsUFYSEcZvlpoG5LT6RaJrcdPe9VfJ9CvOTjo/HXBRMKvdKrMmYYwQQNKLWmsHlG9tMtYFRac5Xr5yaNpbI1SP/9e9TLgh3+Pi3UWgs/k63QBTXdoOw53/pUTVn++ifzM5WCrS5avMIhOGvMoj6ABOOoODnaHItnB2H35k2luHi54gGQXBzlJi90DRqXx8TuZAl71FUKco65jxUpmJJoHo+zWZWBda5qfwYk/9tFZApg7tdpmzYZmtEblvRqnQC1juF6ASs494wptlWrOuIzs1TXAIiDBy8rwVTnS9nWff8RcxqmP9tvLmaxWNTGbH5H1tXlig7qiP/zypqCWaG/W+sLcWA876ujzq+pAeMAU2hkPkxJkO5WkEJNc/uLn9z8GXMagsv+DLYF78TEtLHEjg0P+rNLZ0o6Bcn1o8AQybyu8OLjWkjSb2K8nlxUgvp/hxuC4xl4dkLg2XZAsKMd9NluLxkrrYZghcHQcG/tmDntLvln6DAZue1Ms81d4uZLaM99exL0vfZla0StnNP56I6niH0BYqH45Uu0mabJWh/GAho3uGTJ6PmZ+huatDjrhM6eTJSWbB/vD/j42Wq6ehX/ztwJ3HS8um5pAKm9E/p5EiKtPP+PZHhq+7wVQeU0yXAASIsmsPWCa87uxfsr93OwJ6Rq212oEG387LWjf5Knw50AG/qNyDsK7JxlfXUUF7oEvPgLjSo5kNdsnvW9wpLttvCCq6Mgvsbmwsk4ruDXJalDAJvzb3J5zDM0uiON4fH0wEpfCZzO5+sSLD/Lhc+SM6vx6U3zN/ebgv7allHortVlD6DhKbweeS/E4WMm/hdsoxkNcEG/M3D8XBk28V5/tz94WM91eQa7LY1eue21ev8Ufx6b7QYMFRw4ZRhtavDPVbkS6ACO/p9fsawKEcCYogO9tsdLLXYCqQCgTnj1c61V+0xsMkoghflhX6grUHi9XfR/8E6n0HtecfOt/DSpAjrdix2iTBxdLQsGHrDCBuqrbgeyH1mDHE/Wj2WXKDOUNLBq/rRvy+ih05Vtlv37RNK4XXg95/ELWLpW0ImZdS2GOi7Z7DcSb3R4k4J3i96YyHHUIjWBcRSd8pp5bvY2OuLO4EDW31RBhoL8PRFTauP+yRqWt1mTwcgfnDejDRNzS+F+hfvWVat+wbWzjZ6SO+PlA/ygMzIavcR+hbWEiKAmP3f1fpqT9CFk6QkHYI3w16sRGd/6ri0tFnbvJvq4eBe4QAaXeWDDZBTdMXVhSONE907+v27tb1+NLqO0XZYWrJqYvrQ2vqckkM7qUOuefSkY7BJEBSA4I2IpEWLIZa2SCxaxrC9pGZlEVsL9cHPdEuhjAcjPOxbHM+XIQKVKX6KGMYpm7eR55iZLSq8E3Pyht1YWuF6rwdjecNRpuDRyG7YrTgKBcOwEB1lcKKe25S1QFRFJcMB0SpUaf3Q5dbny8T+nlWxKkXs3FiB+kpBBQeGXYSjouCG3LsVapD4M8KREoJWn7+AUDpOuE+FpjVq/6j/I3OOvZRnRWr0pNWwFu2QYWE02k/K6ZNymHOM6Ixh+2o0lNQ8Dy2d5lNETecHDF/Djja/fGNEe9jYo22gQMWcsFuvNoWq1IYqJYNLAAAUiy9EHgybXKNjVQ2bXAMmlzaKTjeknlGgbA3la3c6L4ZNrpGUhPZpb4SWhxgJSUTjJdDo4x42t8bg9LTjcAxNTzslQ+Tl9AxKkK9QDqaM3E2HN/egykglszvWMJDUWl3DeSZ4T0IEAuI1Gv24yak1H1p4gyB0qjDjoeweIsgOsD/ew5IK/vxgdOPcmagPE+d6JkwK2fF5+KZUHP9KtKnFyMCOmDIsI4atr5E2RTHkqj+6hF8a3JGS7T2Ih3EHd21BIxh3b1GUy3bUnAIADYvSAfOrLpOdrZXjP4W/LeOUD+IpPm4WuuU9qesOi6pB4RUoEUNg45+Jx13XATv25KMtgcde7GC6JlUePf69OXMsV0fiB+ctxjlgfN5Pk4JsKB90V9rmw1IK1Pribni/PVJvpRFEYV1dMn7e5XCwDQgcKhBpG3uiNMh0cA60tXHq+XiyZgbByhqmQXxnQRKLvLJEOKUHW8O08joZCJsWVvPRMhRO5G2ChmuhQONmms0ZpsyMFzNHf6XMnc+9T8aTHpoIGNYs+WXkHF9tWoxNxsKmxRiKDHW6uTuVFYEy9qi8g2A06weGBosjfpcSBWpm16surB8dp2huz/qwE8sttCCmsYyz0oKYdlqiiEUJZI7TdsAqq+gfMqhc1YoQnVnvHbA+xa4RR/uDvGIx3jbt0psNwVDFV+dD93mAzeWcCMR6vpDFzkS1SFq8YM24Ns5sX/9B6+MfTBmK68Vfd7whi1Us83gv8R6Gv/Eb96JONN8FxQ52fkYTOs7Omfo+9Er52TlbZ/N3gGyr3OIOoGuKPXVt8tOyDDanYgAFBbj9TWQbu175oXydllyTIa9pk2/CmbhF+tCwrEuPrVt1QsNjgBv524Ift5nkej8JDjCjTe1+uL83YYXTrp8pWOG0mTcn9+tp2Ton/TSz3rPopwnWoB7IihLAkPiB3ppheyboNUp8gQSyB1Ijia/ih/m14OMVUGz4QZ3YNqj1XyozAIWbqAESGBSfMPLA6wMw8bOxgU7HxCZjYtPCbyZOaTuHb7JwkH9G0SYDISFwJn2KnarpXB6ixHKYSCtdtHN3OUDeE5BPP5Wf2WBAiDIjVElONrvH5uY0tpYStBr4XFbxJspwmAt4IhlbAW24xLtL1AVNBB+zvhIBdQe2arPUQqs6gkgX30u8ifMa6SiXZH9XOTGn02baRO7SNT+mrLRYwQWorfgHzeDpeMHEOghQGFdXmhDy5R+4wT/elfVwkZyj2Hs0QnJYIUnUIQCr2BVpPA3vzouqklGxz6Kdtj7PAuaDgYgxFaoX7Sxly/KUWs+XQrZgQon1YheUtZGXHw4df+RF0NuyT3HRy7gs61bhuAbPxwUurHQxLdc4a4eJe0rvWYN402W5sMpPoZ6cqrN5G1mZ2mXq7pa5+NkZOxYXiNoWl1evZX+htBP7pBgBygHzTbTce6Z8C8ylFvY7KQ9qjIn5sDO+syybVnvYFfe2Ufy6IOmzGsXvBfMulJWMyXMvZDVAaZmng7NWJlmhBrIsyVaa/Ee1Nmtn3m+wUWgvr9zKlzeXRafjstNxZahMlcpQoTEZ1Px7rPH73NQ5r0tsdazC1W8Lohk6pfsMWduNuvyyrAveDQycbcGF+j0uHD0yW7qZeZqhbNVw6EgCjIb62WxW4hGnqWVLhkxMVv0QbrDGkiZE7X45zg/ujfjr+TKIqp/Tey4K0b8r+04PUEVpHi6aPEoJT96i0JhUV4uB+vWrzAadhiZl/Itz947/hPG+DAtZk8b7MrxkTcLRTWz1LKRpKxm9Is+o3Z8r/Ah85wYqQMe11+Iwea9d61tbFOQxpZd7Q5DgvnewVt2IhVjLk21Ba1gWdiun8BLd5YLrcMnvsjoBf8ugw7UJQVmWbmv/lAVOcXjuu+anW6H0fSYOatOWG8ZJ2BRqQpsZqENyc0pSJVMy7Rqa+eexirvcX79zlq4uvzIimj+FxcCB6HyTqJfKO3ucMj8uPpgMjEOxuu4uc7TKbNfth6DvtYebCPpe1mmCfyM1sNXuWSnKjhZ1npMdsP60cwrvVW/OSkdBWDkCllj77l2xyW67AjfxbNvWCxThHdgOuLgA/zJ33rPpdDQFxuwJdXSiBHb2xxivnaWnBObr4DW5ZpacEbvcLmBL2JbjW3j67Rm/syiKhWZuZ4m69O+5Xw/VG5aJqAzJOErwp9RlZF0b1HLPd7focdyWbDu3c0mjhaCIiG1iXDCNtp2NyGtdilXbLBEpxl50LG07C3ejori99e1GB9mO4HVsMnRzAN51mVqRTvze1IOSJBz77r4bwMTI1+c4JgBwayVQudlCJkq13bbQNiJlJowbNM1F+sdYSmQqaJHuDgF1IXy709m076xhTFAJS5kEtT6lfqLoHW5tk2znOg4LwvX5DhIfLzqQDAlxsifCgAa27ack8YYTRxAc8eLrc+jRXhXp9VLWe7AVfHBh+C4fzOzWd7cM2bOyD/7Kkxvtvl9rEkC5+z2LAMp9FyhQUu/+/6HVfFBbTHSnbWpu3gWD7C+higm2EzBeeYb77lopw1yDFR5sF3WJ3/nlLcP2wpa5bbuBd6McAZHiaH2DCyCDuEmZO/PHy7lot018/raU25tq4jZuBJkSRwGdhL2EpS5EKdOCRJHxbqCTd3XIZ2eJlPhFNJsGY+59n8PUCmuaz06Q/S21lGXPL2QAu+t72lGwn46bSAf3gkGtAvmWS6a/R46n4FpcpZKUgyHPbXxXsG/k+1zRdEC4LKdxRgPHrd4I/e94nMG6YQb1smhr3NSbA5k1VPEkdfqPE6a0yaywY0Un+DZO/u1u0VZgpP9JX6j8TnEbsAwwA27j4x3bT6eQE71fGd8aOLkkh+mJ4rdkPtuxwDll8KbNLeypDbeTk7O6IFODUvc4fIJ71udDpdHVV78b6KPGNwv7ytpDbP2xbD0dH9JkHO8RrcVjqy8YNnIanuc+h5HobWBR0mu0XPn3eQcun32/BzyLJpHoWRCwKugTpFzooiXWwQSfX5OnxdeTMn/ab73R+hBwemwGHQbNTrv9APe1VKSNhFdR/kaOM8a7/3q9jyXK6QD0K8+rvvIaG/9x0OzIs3hs04FXw+QrhWy4YoquTyeG+tjeOpBdRYZhUWR63gwRW1TH4uswbfl4dz+DSVZcUZXASpPpceM69vmdjK+Ym2Ky1Kgy1wgJPJZbZ2zeQV2dBBQfi50j1+KxyDxyLZ5+zwKLrkiDUxU1/BWVpeMsqT6QDsem1gFMrymTvZClxSWE1noWr/FEZz7YuTN40eHybJmcbT3IJVLgojwMTB7DOQ55tCSHeoN/bBRlnYvGIMgvrh1zaGsfO3iO4mY3F+Ak5EOqTRYW/mBOC4tNvOc5OHUy0j+v4pb5M/6KSZrpkin6phZVh667yy5xNrtpM+7QABODHjcr2V7Q+3RLqamXwfdkUE/BaGBuznE09DDRTpQXhuFfQO+R8/DYVDvyHJqW5G3itvW99/7Os4hqxrNe8xGdmx2Fk7emNDPh2mMf1cE2XMxaUB5ExIpWVhxlbS4JzLJKev0GH3vAWhsQaW5r7xWLd52+R0KoxDMKb4gTCQspNoLjEc9gIe648PgcZCsUOwfCjfp3IxcZpo+oo6ZgUrfhtvcKuI6FIyF10XTVkLY0IpIhhSQbxUCqYHv9y2S5C5QpqO5TjKFMyRunOgoO7HwxZ0SUwkhwibi0IYqD60fXbN5j3qGtHNoq3b/ze1W/Yz0cqOpP2GB9F1OPFOAGm3Ios1p4gOrHvmd8A42AOEReCjr7JLyjWlOMnyZ60u4dEpCmFJvG16Es6OA4V7bdaqh0KC0aCLdASeluiIkV29Oks7PSOXWF0GwprrpKfhWUQ44TPC2hQ8TL3Gp/8c/NEWyeBD+FkwcAxaZ+rMjoHTZrOnoy/KnhR4ma73fPLGDbePc/7m6T5bHDIZJZdr1yRQ/3eLDHw8Oe9lZQJSIxD6UtXbAeGEk7ZsszeUvjFx9wWSgnPFFW2pAr3mP6iybiTkbJRvEFy1xO+bmuJ7EQsltMt1GeyfWkjaw86+F4D3dzFc7Y4X4uROzKY2d1mLSpuAkpH03penA29Uyvl1JfUdVkPd1LeXE9LXdvffmhBgunPJ4IwNQXo+NRSSV+8ERFAlhiulQiKlrT/aaS9SgLGM0ipauu6pdTqvq+7hk0GDkYUDmyNCfKlKjJ9spkLi8A5orSMXM9OZXnbeZqOh7fw51k+11P53e5m0KiQ5rSShppVYsLCPCmTqJ7jyOhRqycz7/ezlbg7vzw1pU0sJrK2pXgu8rbmjAiICToq797gV2/C59ElufuJItQdr5oUUyFaObrKkI0H+ZQ7QIxVYQ8qcCBlWKhVMAE9bYst1BMFYupUhrnsnxLBWRAo5arA34iZdxrxasxCMMNahtfn/42sZYOQI3qozOYOFuKolclKDayp8V9Z+6XvvaGaBS7poRnUYgpMPx/P0yo68A1WFQVcDd4C4weiCPupaZGK6zbXDkaLAQ1L6K6sEayoidg2bw5UIU9a74j8r/ev54gTSgmzrsK8WKaoK5Q3PYXwD39Idv5fpMF1Sn9i3nHTsJASZuJLNbisHSAB3DP12gZbGE/LcKCXALD0zxiHcrf23TPgvJXTKySpYducjtU37QJmd0eQeSYYor91VVhnUVUWPcYYNYWFVhIl/aJJQ2uEP6srLG3wVMC+PliYo4A8P0lI77wJBUK4lbgpOxeOWu825d32rx7pLjToRaYkBrUeXfNzXY3lIhi/M+GMgf103/W8Q2jvcfYqRw9LAUJYMXEHiU4NvBtZH2EfheDGnF1URsVBjKVBdI6l57x/uCPkRoE92GR8pt8FzcvOb2HlsY9HUlxsmfl4la4pnfYgmBWKcavFiZ+NSe0kCXPtTRnWfyW293ciM05gwX/Vo7poH/DuftxxK+/74MXh8zSsNATWEwSUkS3IYdRZ/VWY4yG1NxyhQKqdSmL6eSW+G4UVwAcri1z85YD3J5FeUwydj6DiFbPChhXihPtg7Hq77fqegEX2aX+pdfddMFxBMFfRdBd5c6PcJVP6p/4JbyeN6O0AFPOX+kycoAs9l4+c7kl+T+rff/vRv98FelK0EGsBQIj+0nLo6wL1GGyvOhlV+VSd/Hq9ygxcfIzIavHL281yGQapSJ4VaqlVmXwqphmNUVqzg6T85ZKMqhibpVSSQb17nrHTUkGFVrWvbADk+WQa6kggwqMlbuF2jKUFFm8SDUBkET/nrF9bmZV81fkR5TaPhIgX9n7dG2cAMbNFxr3bxOHdiA3bslvWB9keyp4FumavK3HLe2om/GRDBdNpNRU0qtVfBC0ha0hF/XhTLUtVbs66lftLKausG5PsLjviphzEWMGOWXC2fgxaCpqxykvFMwQLsQBqGaR8wasgbiJuw7Hn5E80UJ9ynwJGbnGnGn+9DB6HO7rfJKkP8BrVdsJ4UFFJWzjaP94xloiijRg/eHkns/3bSc7azmGb7HM1fOpSfpLd4+b+YUmKiWIAH+cA6C+vjAsB34KegVcs7ZUDeOd4wtqWLXRFcIfw2irq8JL7/UMYl9+GyrHEZwxGv/9FzaraiYlIg9KXfdBYJR2wkpfPyVpaNjPzyIDeMjFz6KFA7vuOcgPNz/0AdnV3dnB9cHN/UB6mNei1P1TpPYZ/36WOCUdIPOOz4ZYdVrVO1S0U4Os6dIQZak+TEgzTSS3Rs3J4TlKS5SqMvlAiyN+yeGQ4ECzL/O7XtmBmKBx9vxIx0og4YXrWuB9UVt2oLAEHCZfTICNpJZPvD6XxwCViuu0ZOr3e4ajNVHelnd1zgzMq82bIoM9pg81rvbQZFGG16N++Z4Fs7ZZuL0bPga8GVIDgg1lpDXyFLTiCdiSE+p8Mr9Xhij99pRszao0uDU+HwbCsPllUetnVL9YK6bVICK5NFtaDcjBYpqJtwXAXK6A862LEr+CDpDKCAzX9kEqtizPpQUk56nM/n9sRxSpeX+WlKqD72sp1SilTI3xtjSOs429oNTIOW2qksJ8266I0L/Zytolm22oli6/I3rifRC1aQqV783Bsz0UeZXZN0uzlhuTVAF6TZziGV4T3EFOv354B4U0g6ieb9f9KumoiJ+U1fuqJB90dH0eAKHuEkFCcpV3ZJBzsDSbU21wXC3O2vh+eBKnlmY3eIZjXH7CJre5f0oD35PiyPun+GL8nJ54V1pNaXNsaDf6+tq9YLKLtmja1Ke3UdemPn2/ZwFcUZqVkrcb0MnquRdmNS/Oy3M1bFYhLeaNL2QT+eT57EUPs4RLZlUEqOhWcqgRR+F1fklkJJf2ya9GmV7xkNU0frpnXYYCcZN102FLA9xdiTLJ9XQHjkJKRA+FJeniMr/TpqrS7maE0lzSsx/u8Eq2IUQ4GDZ8AYxdUbxNYL0P56F7bh9do5RqllItZeON7aJqsEUpwv+a6KFkp+egFg+fhtiWDgITu1WlO7JK6IckOk5CiodCOKVQQtwldNjVc6lBi1g1SrOpJ1aNYu6QxG/FNHByF+LIQ9bH4KZ5/Zug0yi/4JIi/oyRQqLSbZWVnPDz+dEIeE+9QKeA6o5rgUqjaTaO5/mBzg0GNC8zdOkp9s91qh06olRg8PBNyn0GJlq3wIpUjYKDC9umBaewXaXq6Qh58Pbizg4LdXoA2ZnZpRfRhmNJsjjRw1oRl+veZDqJgmcqHA9JH2dlDFznNYAbS7fQAaVGs5gFF1VrvkLjb2uuU3AFgYYTOEqX8DJbR+kSXqYFeZu4g1l1KKjJ0CwYyTNlEqnW+PZtf7T+DgcN1wJTdbZdLx2MUELzp0FgmpT4mZ+3+8vRJ9gtA3viLJzRnCDcT2RgHu4a3VEM+CLnp8pezma5BFAWuciz49CCKS7eI46sRVcfGlVHy6BpmBUZ/pBgq7XPMbIRLasTAS/9ELSAcYY//+DSsA3W5/NxaYLAL9/at58QuaLFGIvRMHNtvEdZkUTLPv1Kxo5Hncw0ToYELMgu44fbifSr0nAiHCDUBPjaOlAVToAOBGrewC6avjiUlnV9aSinp8HSBB23aXyjO0VdvXdJbtBlgonSU2BJ1hyCoD2LNmDBl7jgs9TjZ46lHXUdqVnFCeRRJPDvm6IMb7GVqJ549ulKGQX1SjRhvOeyw6i/GwqUi+pkB+zlkebWLdw6GQpLt4DsqFSiIA4IFrzhRgMX2DHMtnQkjD33Iu4sZ99s5LeZotRkEAUAii5lX0xJKySfoWzvvzAHnO4f+VvpbpCTmhXRtz5GLWALeU/svgQb600eCNqMgoMnk59wvDhxzr1yc2ez2hEMeambdavi45Vd6S8zMPxtKhQ9bMAMNC81vY/OIqtMRis3pjbgFBTY90GlQZW8eH7w8iK/KCYteI8w4sPCbiSYXXeAplGL8avv78iQe/4XS/j+5m6lf1PuAUX6BnEUQEECfCC/K62mIelExoYwHH1P9tVAi2CHxAeyRAWHhuAlpJKp1atOespo/TPzoqxsDOOoDiv0dOJqMvhLmCB+8TYetwZnq9k2BEOWy6tkKuH194DSbQptwRGyVBqUU8MuQ+ZFCf+BkhfLSPFCxmgD16NGJ2/hIezsZHcnmY8VTA1qGvQIB03IZlNWMKpKco+jxRZHy2l1D0eiRlpT8YtiftC13nWlIek/pKYPoYnWOsfghLWIGoOTwBbamJoE3skHErKKGBTSVVW+uNY4x92coK2l62VzIgpczSILZcx7e1SoKiIsOkV7x7u0J885PGfrnIIqUPIzxBHfxaIr2DPwLvaWREAQX2P6Q4fsqvnGtwmOQSHxikq73vjzyErPqslwyM4rT+kBMKuIFGxSxTFLRRn0CQ4bMmN/KtnAiRJy+V7QP9O95KdWPhCJXosBO2VoRVnQoA41xQpcc33d3SDNptFd+5i0ZkHy4VM4Iy2wBynii0k+3iZAgH5K1aJ2mFkRjiyRYUcgaTKOUb+nAMmmrWhW7dWWzsGQkf2xQTYzglW3cljjaKNFAMtNPuv33OariAoxjUYJhgzMEiu6YPyI64fuNB+0KK67KzLHiikyCigynIwdouITHCUNURSg54qm+hZ8GYqGgh/DWQbY59Qtuo+mTalZJmEBFyWMM7hwKmgoi7kvEmqcvTaWbrLoVjFLR5kshkwvYWMNWY9hZXlAEV/gA5uL4D2Cr01pb+sgT8MC6tDzPj0lZ8XuavaMAhW6P8KyMn1iaS2/OyJm/bSJBUDkx9CGWxonMcmi67MZfzHJtvseeADItvt2okbQq7GVQIZpH28wZaSuMqy+INJcuysv9zEZ8sLtOQ0+LPE34Pl8PGJwtcaZHlcNm7XYiRysYqqN9yj9Tuk9V9pQy/DYFnk26yPHuV5e4/lgkUH5t6+xORMqE0lb7goooMq0FTaHVpYdb6ha4OqG75qpmErb2ddZ3TL7YjE1x7cwKao0WicpHBP7toDDrMIGlIkMQvsDmSH1/vV6n51d99sjhNWu5oZ4oopuHE0iG1oThE91l39H2eTxe1NNNsdFCVM2n2zrakpouYxCmRJac9wmFDZTDm3I9PRXKfeinkrPy7zzELGsEx5O7s4dzsSL3Hq0dG01TeRhRdFbt/z4lkG66GoAZW6WrqZnuasjVkTm/rENwcky5r3/l2Ab4uPi+iad7NNm1Tzs4Z4fP0oAUTCQmyQWiG7N88N5V8YNiceP0PixM0CLnEnydLjiaXup64eybNrImpl/5ZcDs3xrBnst4AO3qI678EPL9tYi8CJYMi7icj3tQmnCY5y9WyLrbtBoxdEDHftLuhLnLj7JWXjIwNLiibqhf5lFrWgnyXOL83GD3TU7txzxWcIILpt/SxhBs4yUCNxhrzTCYeXgz1tdyxqKLASzP5QFYJIz+FlG4G13NwBjV7hiFcIsxXARrgyIumUDhyQYguLN3r97xUCebZzmLtcvcekgetY5UmVVPdTJ7mfwoX4VGVrXfbFQ1u9xmkpJY9bFbCeIc9/zPJwAAP5TK8aLcGUqiahM9k8qb/zKXrbbJw6NDa7VUUyPXchCJDtBkp4JHZnY/VMlFLzX0hFLeLTyQZZYQXyRD7LECuILDIdF1up0C6w7sP0nO6Q/GUWUTACcvW0L/sXkkTW+EAckVNoKDJfP4WkKwDH8smx3LYisLixqbEXwHLkUqkPbyyKLZHlLtllQReWyF9p0LDoMg25Cnp1FCMZ1k62pteW9fyV+wkimrFz7S5L9noLiQKYV25vDcfNvM92v3U0ns7D7cI4nDbVlybSIwlhzf7ML1iqfyASSvaJVQbzk52jSpMZz+LucMnQhmEnnPQKDW795VDn7o7SoJ+eCcrjsSVnki38PPGU2TW9vGm8TwVjLik64U1JhW/baJBVGyooe0LrW2Ao8VjElcfgL2FW+fX4Mw9/iB35kh7PW3l8P35qJTZCTkZRxRVwY1teX5R+ZMMqyHbaQRdxvaafnm4nCOiFFpBfSzpeNm4UkYtdT/EDbgvKiAg7TWLsrcFf8mCm5AgKmAdmJxYiWxy0CPDmPJjgw8rvsz1mofVn+wbiKvuLdRVEIu+5yr0mN5yh3JNX/OxMZfym6YA5QHLzXaeA2Rdm2wbYTjmFaZFeN8M9pdnel04Ej3v6XwQeyFnghA0bZ5d4AWqL8CGCc4v1T1VfBaUU9tmXVpp6w7YTYYIt/7+o3Ilt82fZpbsLcl8kqwFT1/kAhfza3nV23W76Fu5+P7QfD/D3XptHOCievBLsNMUPfmzhQsRXTMtdF2YppmYcjgw+5OLfBkyBY8HhFtCqdsFK3kmAVb2PoH6kvAo7HNTTTP7LHTW/iTLDA2QQQ7mSm9d62+xfwANl2QUMb1SSrKvNFtHvzxn4n4EqbaPXf9ZzAIldfJ5VSCcCrlPKjuxy7ATaRhNum1BaS0Gwbb1O+pxOKZnqoi2t2xxnQvEMVYJW7sfl8sUFiGlswPBqscZ8MXcH8FVE+LSUixdYAo9kRUOCQc+4970MyVfYEIpuEfSBHDDQ1L6Ld4Lo4JWZlPtj7+Sbz7nvgTzkJ0N7jnpW4V61y+iTFeDFL+kUDdKlNGhQYEhtwB67HKN+N4pJKtt70TW0rtnuxo3cFwDw7ynuf5ZcKMvzwnXfx/MqQlxBmZKR+W6mrTmR0qFfIt9rPHS2q7qaseI+ge20Hyfam7rVv3ozSsvBVOqen0rAAaxkGDVNNMPvAe0QKKy4aJBFXsTrsRcX9Is9ZHjYrppHEPpJ8/xJqRZIfEmUIe8sqi+9p/mTpUToC+NZA2KbhdYOUeYWJL8ohbtB8FOVIVpk1J1g9OJtsbp6HhozpTkIGQYcwWUt4RtL196hKyySZh0jsNyE457k3hharBM+B7EQh5zZtImEBg00Od/DEPGCJL6bMeI+sHmLrY6kQozTnQVx63Hss3tVjAKF1Lg9FRr9NOz0Y+jwWTIfZWXevPJVDeywLD+l0TdW7SCc5bkbWpGJ96r0KOaUiS1wL2vgSFWQ9j7rjgaXdd2yCgfwiLhq+DZ8kBfjVfBCLVXpo30jI9hLbciWazKIEA0Y+yXbaaVxhF8UfHBg5py5shiQYTTCniC9sGhncMAZNQPNelJPYjHdi6SWQQG/mhvcoU557/S/cAM/dQ5TvGJYLZ6GFyKED8Th4dpK2/FPvLCMT8z4F8nYqNK9RsaF4BsA7EvUx+jOCJpg+sKaufni4E5qVogT5RfbJguwMDasF4slUra2cMjAFh3+E3WiECBwbV2cihKhkpyeT4iLj3CfkmpVStirNKJMWvEfYu1yKO/njrh63UoWMsIN/RskJ1/9t4Ca8BHDloKDkUbHHGllNnz0Z4Z55c3wPjQQzUwScD926W9SiZnjuh1sMcxyL9qC9yL3NNCkRzU2L3ulu+wOiAB553EjO0a5mKQbKi3VLUoDi0AQ8i3l8JrUoZ3NM7a84sLO0U3eW7Kz/CKFjK+ugONfxegIJXAjm9c81FlyHeI1jw+oIr3EcWDuqXDU/k2yLb0Slz8uxbXXS/rWr4GHepRCQFaH6YoqckoQ4uIdigQ9DXUdjSDxvXaZSgBfAGgsrob3nNV8BXHVs2twNWM2vPh/K9lkg/iVSgN8srvFU6SCukmtxlLtrNZFFDf6Lgp+qmwiCPK6N+xQgN/d2UhrrbFXxOvSDOKqgrqvz4eU+an62Eia+VbFdxMFfkn3w+oKVUiWF3yOQwd+6Qm9LYeQDtuhKa1rJOHRgVFOX1QfpzFWUFRurdf0EZ29KXIXnStooIuQ3alKD7wK322pp7GL1LUiYW82+USNE/cnfHaxGVH3bBoILR7nelvGx8Qa/Rqv/+zWah4YV2TR5metSxYHxHnX2tbmvnYTUlOkElSgkC0iaY+8VRBzNNExxlGqQcggLP3EHAXnJbMf93zFvRn2Ay6gmxqgPcRku+fceEZdRnzsgA86hdy7cJjqHzvLXGHQOnbsCEkkobBrR4dUsFws1L4cKAEdp84WXHPcWINhPbzLL362vHv2eMhEJuUVrJ1fD9EcGHr6GIUZNOr74Nx7xzum0ulbxOpxAO5hH8eEXmB6++eXuK7QJnBdQmfgWlSlwhvhuqjgd4zdN2XePurU064N41yvtLvbgLH6a5e+AeNdcJgxcsNnO/cYAPSuZq9dUB25xHnCP1Od+yMV96zXFJ1rgzl/yLtSHqAuH2RiBfc+kjr7n4qfcVW7c95g5LIwwqjB6vfMqE7gwWghrb5uXASnkLT07Nru6ve8dbbHbl6XhFXBaLBTibNcRd8hr8LKvx/04P/UJ59esjV+BYuFE7ktjeOXQ4VI7t2NB2qFMxNzqbuJVqyTDqC4bA9anbZhsR/HNWiy5yvPNgGLIxaC7Ch6MAPXzIX2m88rKUuUDty84fIJvASC8kYLRwtlaZC7WZMLIWalQXk0mjNww1r0QjsxLtpkPd5gG7IEu/BxMNpBI5b5Qem3GNsQKXr5qYGMUJ8wzqvIFYc08Dnm/R4stIip5ACSt5q0IZj3c1zKkkHGwFouNUn8KVcd9UK7toUagAt+vVFNuXC0UYa5W/k587F0iM8mdK2IqfjSw8O9fP7mR9F/47M0gj3gywlmH+Rxcblp7BZSs8mcU0HSaVj18vexcu507fLY/QefqUmGDlqQd+flFDhJN0Mq/2UzDQawKjJYgEwhy1/a940RHuidP/25ZvSXYR3OJNHqm+K4FJUirk8hrgZOwmoW+Ai/0zXT54OqxlZn94j0aKcbUw9QP5F8Ck2Z1SdoKr1n8nf9xbYPf3QQzNRJqcc4UAgKGXFU5mziqHOrhiZkAjS3G3A3eW6fdFWSu33ToirwwG+pxtPgYDy3SjLW31VYzMhmIZY9eYuGX+LUqMn4CROpJujhJl78xsfBR98BNnRPFoepA9OQ+UazUBF9FKBbVFChvUxYWFU1M1gU3FoGG1vGDqXkVF9orqUgegMC/5Q5l8I0MZHbj298r+HW2e7X5ebZfeSPeTU8nQQe3F9AHNd/65ILcfkZmby15PVMQjn6XHnY/l6p7G7jZ3Tcla5Pd7NEEJLYCGB3FNu2kXNTIzX9RUUv1N+W8Kki1QLZUj/A1C5GierOPSIVRzc/xtrRPdke+V9RFZG5HFaOaeHdzV7IPMcrn8AnTLfvvQ+gDo8GlNAPF/nfz5rKkdl7vT1FRWavqidHCuanq79GkuXn83IKioz84girai0z4/KENQZmd6nruLGRRa/G7sWyktmkwZnFvrfub8h0nY18JTLlxU6Mu3tRLryJRq7pAeAXxhYDGSMi5lPjvz5u3kOdzgZXlyfgDIDEH1txRVc3Daka1WgyRA6OaFaPWpnG1JKgJiHyvHrrNCiXokv99oLtxNkLvnzuyrzaaKmJYU2WtJsqaTX42rTMzYFQyYFSlVccR+G/keeiz6KKLaUuWCHNkYYTktA10IC/we9Kyqta6qywr81nUKsvKfBa1yrIyeUqt6fYTvplpgm+rAukoHaSd4sDOlwXVGmfNUP4jmLtqHff+7Oq4nTgQoJgPJ4GDVU7tSLJjH2xO1aQSFAayU3UV0UWEw5O03PVRKxHA1awUyRmC8bHEq+kBNDHRIJp2X2uH+3K1TKmoOiKUgRYpvU6dLkW7GFiaI85wP4BrqR7BSvYLoaMWOCgSR5Ja2ZgQs+n78ba2OFOXp0QixvpuFwRUO5kTzauxuZxtq9TN6bo9KlurygpOjAMmkq3IulEtBd8UaNJuA77+AAcHdyo5f5ijXevdhZksLIgxMv6Ld784g/20OALthb039EaY9aKw7pjp4HZpQI7LPRRHnJrnPmbz5e0dqwflvqRnx1FSQT5WxfuPgslUi3q5JaTpNnvhGiigo4KMWwZ8+wm93UhSXA7Tv7+jPrvgKiQJqg00zJ0nnc/iZBHDyJh2WmKi2canKCP3olau1dwQvKoGEgSPN4alPfdO8FlX839EbURuLvueheqxtVqpbJFkHA4HMwTWCN8EoKeaffTd7J8kWHpPCpuSbe/mBSKl5dNepXVHMK/m/5ua3zkcxUxd7KGiAHIVnUZkLSQhluQYKJ/lhMs0xvyIn0dxwO38a8niFAVdJZSRYHE9Aa1BfxFhf9JGYmy/qcYV26gCsREoTsdzuaPdAAqTywlo4XCUYW4vbgdBkWHmgSgxx4fd+1BKNFs/LUsGBDeEqIoHjMKmUnXBFsHpaq8dENXxy9Y5GU6OlpsDm+H6qPAlRDlG9fkk+AfBMPtu6dYo3Vq/t1K/Ld2apFuz7G25UQ5RoAR4PONbXLjJltJMBt/xgce9ITbHdqfqAPUMHZ6AwOz+6UIO1DDPVG1AZNRm6wzswcH4pWzXSdyxVPHKFTg9tukoNNEsJ+IUwRyCUlGY9j8IIcQja7PV1Wh1NRs+jTW13gMPFqqRKPaHpOuqIIzCIVVplkFODdFuQozakoCwC0LIxNyq4juJB79kV0G03HmHedEn77/YW9seLWfz0X3qBuGXmXFP47f7YPxrAqhv5b1KdbjZgmqbS8+irm1tazbeAiCDWbXuWdzW2ri3SsVRobMhida0rw5In/jrFiQShs9Zd0n6tPglXqEgZ3OQ98CIO7CV2I9SJ/1HzRKqAdhcTazxHlHZMdq9NlA88RVe9RrRk+YaIA0AbLHbZHHeeE73/g6961IgN06I/tz+twkW5tot6zpXmom74C2f1lw6SpREnU6D7GtnlZL3YPi8zW9z/JFT4NmKKVotZgvpBbSX4YCABjrm4CmN2hTRgTVYL+60BKGGQ533bcv8f97WzoOeDr/mZA9WqF1yVsbR5I006TpCX/8MAEsh126DTrwacvtGpvXDFgfW1E1BGmqv3yLDFYDOGqQWck/MHKQeiQRiO51MBPSU73QlmmfjNWvgrO0WiL19ahZcrxW4IWGM1qsk9gTOyxUw1tEJCqWOqXex/dLbNyh6qCW5j0hNDje5kh4Py2VX02DUDiqoep0f4QvGUDffqgNuVE1IUkPLy33gRoKCUSPVG/Pm1J7FSZX/na/kBI3Kej0fb/BZHFaLkA5CqCmveEeWlVx5DAXaVdkZYO73S6HYllFBcQSyMg39OJzwDg6stPPj73QLZ/ZnQ6UM7lYnO1IvX+3j4XID2qq50DJrkYujduh1bZf1yd5a/PVcoEepMGCDCL+ERwhmVlX1ujo254kUliRwx13de3LB124x2ckFn/x0SiWsfdWvqtWhvIf56i6nNlQuM3vta3w/9Fyodvq2013Hmflu7hRpAyw1CZs148CZjZPV8qhvLjIry31rX7CiBWX1vWcr16MCTOzbxuxK2iB9e19AooGQe5E+giQaxbKL3Hc9o6FkFYh/Qj3r+3YgNWEK+gMO7GReJyiCYA0RKUYEHUpft4ACAcd0QG/AtWAc9mLJztod4gr+jeyIRaEo2arZP2qAePGV7V0N+g2sZJvlA0pZk8GVYemvS2YwvOgSyu/Rl3eRbNJOI6/jGV/vQuRY6Q7Tp0DzMVtHHel8lGGMcOXbqg2H1DgKi68BAtb3BM1EoAccXErgqvRXpB9UF2+uA8xN9dJkdGreZuKo4UEr6Joz4ssng/0V3gBW+YL6rbA1CfaqFwABqo3X3hWZ7crMC5FbKKGuihBD9HV1WKSNig8/Pk9dBHtJgo3JwVN1b7gUd7GZMTIW1oVeoqIS/ChUDOqhF9LB6xqzMp9sv+Rg+cjqFOo6WD6yXofUaAiFmvlSL0khNPf6BnmQ8DCdYfAuzoc98R07svRSuq5NuTBUvxY87mb4A1y/Xa2MDKuZNHYtxtE5sP2eBxJLRTQ3SrJND2IqksqP61UjNtzzgSxgpRmlClnWZUyJnfXaOzBLkvGUI3WK3s3egQHuyTpsvI3BpWQxGCQb+C59i+amjoHMdaKang5ndZc7ZBKWNGwmDWRcRy06tPQ0epRGUMYPv0Scz3G17TUmx9QyD1PTlRxzZkZcjeKMBCd12O04Fvxjrgne2M0lr80AhrqadKMORcScz1uHImLmH4wKD9gKh2OuQxEx8w7V2PzSZxPUYBuxu2jdP2pFsOCl/X258iBzzLZRB3CbzZWUCrj7QoR//CEDNU1kaNPJLA6NqIUBlvZa7o2zeGS7UZextXFZ4oF6Q05Lyj/ro6DeiBVpiYPe2+U4kuLQ3qfMt7teUlg5w7JoEEAhTGZhia634T5ywY3D1wApY2zi9SoFRAGZcKPCgdBvrTDk6VfxZiS2LJ80/QXno9lg2yn5NnI27HvnZKQVAUxGypfF5nzWF1Gy6+9CjRMONlA/FfW3qok43pZ0jjptIXHPH8KgST+uSDDCDMYtLJGCbzBfzpgFQh/kC+5wROjLlgwd4R63GwTbUwTBc/TqTLd8YJAD4CpLLnIB1eltOYzxghsuN6H6FnUhFKdyskNFfMzVHbMAKB9z75BInKl0tk2eXr8OBFuQa5BLg0m21TQZdTZ11d+2fbNV6RuO5sG7rFmQROl0TzqWpt2H8EUEMpbb/UbUcD9OwOXXaudjSk9iEactrihqgnFLwipxAiShWc7JqTyDGrVIc4ea1puQHd7lj6nn6eyXAy8PUreiRLQvguTS7A4e/OQYiJqkBOL+0sC0QPTzLk4Aq5PYDnNpZEJJoPv394u/rZ7BcJMpCguWfithk7JsWrrNJOc148dBctuytj0HSko7H6JRTzf1Rp2TnbT1NgXvmLZjJvyMzGJiPr0wNPCjTOM2JvOJdULZNOXMvFEv8waNSHgqg9MKMyxiVNhTTbxRSbxRTbxR5yJpuMrVwc9ujl/CZcReEIh/jqAdiDN3rptu91tzm9VW4jTJ/Yfqlbk1Ktk26nVTTRle01bD3JqulvZzt08IBiHFejfYjWRShUe7pun9uIAoHqGbkiI5+dZkD5euaz6T8rC39kOg/Mst/URrxN3M6Jn0JwJJ6zwiQiOqZZ57wfyocYCwfLByEykvS9vLLNrWLLbWwz462hbiDiP6WoGhomETWKgwZg4j1DuvQWrhzTkqdH1DwhWOhumEkPd0zIrILLoK7noAexBV1Oat2cmeqsaXrEM899XEG5XEGxUVUJWjWhdrQXBqgxkmrE7hHjZxZhfxuwoYWafP2D++3t30bA8Zip9U58jXxQzxuiwhF4uf1PXcJgb+Tf6SVEOp5007k8jC8WpGEi0N1Q5V/tXuJhNxROrDxwkXDKTIQloqx5FJQ7hm+xpofabiiKTonD+i1+pLFzUxgrT1fU6dsG+UiAKZuNr4zaDALfzK1MDM3lGDbRujZ4NusZ6kwhYjGccF3gIOqzmGzAnkGNRCNcn3r6cLkr+Uq5braE/6PZTFsPq4/DB15UwJX4MXDypKVvN3VPJwiPCKsbUi1Tr4QtARW2KLcD3Zu+8p7KvwAXsg46d653yPaN6aqCFobjm92m1KQ0q0yGuebwXVUBvwHE+AROIELILhe46CM/gl0pYVw2fz21nIgX/D+Too0Hi9KwtZm8pIaYyG3/DVInjHXBzv0f6A7DolzeKKjgQIgmG4T5JnvbqQ0ntU2UsPjeywy5gDh0fWccTbMk7/auLfSQD6DcdlJ6FqptoIv+sX2MrARjhj5b+Y9H4vsSw9jc67ZRcjJs55/CnqZ1Rb4cKi7TUZm34b/Daklm/cevf+FrosAC7Hadpj6XlYllWL0svkHG8LJcO1PoJuA7PO0LLg28hNzXQvb1NmgFwvCZ7ttLj0cw/zm6ZC8kntZUp6dVbrMx4UfVPiYf68qUO++yuUoCDQuPruJkjRNB6BGUlfqypKl/mF0sOpEnUwHp8/ed/hFqi4ShsKfvTyd3PjEfmKkLnBSzS+TLNRSbNRnYBfNxmjqsvRv03tk2PSG1QlMWfUvZGocJ5/0pPWtZMVUNsWUqjoal9pzpAgFHycZTO4k16X1870L+EKVT6l2tPIWpRB4OUrsHuZhiNoIr8wJbjpn8/Pyci3he19JXThPT1CiDFtFYM+gCoJDN+JGDThUd20vMzLUUW6Uc2wUUW64RhGNKUuoK8VdJrY310Mej0Emzq5/T1CfU5FyDIt8lMvuiInu9i22IxMJL+GopiVrBt1e92AcMPBucLb+JX6D6oWNT6jWV5fTl9bX8hWbdKKebrZQMeXoX0xvL+dq8lFNszGWTdIDuu2VNoSVKbhqDu1VLn0g/uW83IotjMA2NNWNLGew4njz0lEh1k3Kjk2jpyGJ9N7QsvRv/mUKON9h3gi71UghsO7OF1ZcX2zbFSybNR9qdbIslHNslHFslFNAlKDZSO3xe1tbkf0K4WKgyc7ol+pEtutHmwbicNyobEKoLkJRekA6EqJjfA4er3ufb/lcDFzopXShaXLVLjikLOg7vtIWl4m507SrABt0zm+ZyX6SfXn5XYIhg3PEFBA2cgLLyRPMikUY4+uNV63nIbbsJENnqgtoLWdWmLaiC2L97lsmg+V8q1qeu/1TKYLcHzWg82ar3FK+3nAacoQlubCXLcgw6BWrrzFfT/n+RabWqi5a+ttp7Vkd3mqSuuatgfUMvW6qQ5F2LYIOz/hLmI6j9z6I9fszZ1jUc/3hOnr1zcyxQoW3b+mkt1koaPqwHXDH2YCmFAjsvKzh0HboaovQVeMcT+WZyDeuLJ401twTCOHFAG92fwm6hAlY8KNijzz0E+0NwkxbdKNStKN6pBBPQh5CS8UevLf5QWD5hpn8aGMd5mVopJr41Ht1wUS9ht2p7pgpo1Kpo1qpo16SHZYXcfpbWIA3Fwgb1Pl3pHcpGFKRZnh+CEpVCWOk5rt5pO0XPRCGyluaSWyHloAp90H5bI68o2MkfQL5VhsHnoNzYBQQQRiApt9uIXS7UuOw/c0v2DnSir3a144zaE9fqSqBokuHmmL+HRGkczCUUGz4XBOgA+iOCidVagbnMCZH16nKhKNxLDkY43POBnWVWQ5ApCZZyXXSc1SbrjEA8p4V0idixk6Y398vIjPzBoUU2IkrCchG9sFOt+GbxY4+T6r/CjgrXaZp1f/pNvvWCgdYu2PERxHWHszfNRg28BUsw5x0l1oH9IARfRWSQ7ht82c8R6BoUEujILY43R8haHmY//cIW41aCGUhn1QE2GqUNVudFNKDsYRv9DdIDGUrpw5FusUaJgKR8WRrrO5CViuHZbxqscho4M4Fz88xj6Ce07gBN/GBwxU6DC0p7ue/eMtBgtzFXdGktpePwm5+J6bwnUIIXA0KThY0XPbZ+DaMKCI2MbXEPeryUdtKuJ6cQeR/IpCaXYqHL3Fud3gfiVLrT2P9itJsWQswSTat4n71bF7OGplpa5jNqD2IK9sS/jUJFAI7KVgPnHO5DlKGS5k8pILYVYE2pozAxspN9pzb1PARi//T0l+qZi2wYtg1PMq+1tQaG8keAlMjQpWYt+Io4Eny8fXIg8nn6xgRUiHHLBmIRzfOd0sbHjgddA+A6xke+Wf0koyOT80rY+xl4+tfgi4oh4HNRdLPlOyJUUHPzy8JXGNvykWVlMKRhxtvEb1q1aUmBCHTmy0WTxgiEk9jgauan7TVvnyrroViNaYLdfea+TeGMrmimh95poqWJO5nuO/qWymjyYbV2+8j6wiZOE303I0km60IN2YbEk3vIihMCIuK/X+nCvrUXWKxjveZ6ahJQ+Vi6/M+3sW7WjyLEQLR7R71AmebybdaEA3BRcNl/T4QSQojveed6/InpZvXe4VFXHxO1m7mjM4Wrjtsx/DfQUvVJPW/hqRW7jTL9lG8OzT6Vu4EKY/6uQIDX9TKGzvfhizDpW4yrzdyH7uSAu2ENzAlTZT9EUdb3T23c8tTtsztaKGFzzNrabUi2iCufV+dd8u08QUoUJplrfRYcUHj1/NqTvPzlqIwmcDah0J1r4jePA5MChTH83+yEDRv3893EvKQMbeOHcloBBjbNwX8JO5k3jz7aennAqsntBVASgYH0w+kWnNxBjt2f9UZnuWts/tubo5V+9+vjVX1/kEhhuKmXdl0BIdGDoDpyMtomZSiCjXniL6GBaAFCrzXBbtRsd9PpwGV+QQvn2sq5OEbyk7M3iAOZ0U6moFCA0XgwD1snMmQUQvYg2VK2/SA+Io9ZamUjxxNDgusmNa8G1gKp57FikjhfJvH6OKgenmCsGRYPTZ4Ba3a5M89cJ+WZ4Ez8b4TyQCqHTVbuI86g9XL5YCU6tZxRuIv7wN/aJ9WsGI9keZenVj2csAJsyxuepP8CLnR9iSmPDkRdVZYYSA5Gqm2Wik2Yj0sU/Yrolr49Yra3BZBy2bdqFMlflkX3eWmFSt5M0XdZmv0r5cvSMZQmszdR8Wi9B5cZS765QBpwKfl6UiCumi+5Z5pYEBhLJ38fPxc6/9Ux79VZQyAvx0jyFi3s26YYS8/m6RtIkUr8ex7Sj79vdh0IpUOA5yv6ewl68kAdNcHE+OsAVlIa98M4lH1OLDNupsjihGl5rcuxn4nQfKzTWTnAUN+F9WzsC/iQ7XJBb4p5nWIoqC/V2MejoEoiQaR2Hy0yqjuQ1+CdleUWYJ7zhuF2CON1M+BKarffRyFD9xJ8Pdh7vO20JVAN+nsup1E3VGZPFxAt8PMjWyFpAF2EJVPw9wV3x2eVIC5ab7+rOz9qScOYzl1+s23+zs8nwFvr6V+2FyTk9l65DKIQoFXsHby8OFbLEFro1w7dKvALKPAGLfZx0+y/NiP3zt5S+wCyfUvGclWu8xUwG+rKubNtJuBEEx95lnXZG26r+7GaCvxvWcCcb8oKT1KezqtwBKYylk82GuzevkLiETo/zfBy6l/Vx5cPjl37k12aJd627+YBF8FGiLVPAv4ouolybqjHC0LnbkU4g2yAL/btkjEH+7+kT8XH88BKxHET80n4Lumraj0cUmzw064gJ5G5GcZj14cqin0WpOlygKXpPd9GJAg8KFjz1uoVVgeo9WWRClmZOkVRZEaZcKtIKTYArpF0eVLc0tkx24N9ofbT7KE5BidH4cFnmJBVmt7POnWnGGY5tSZsCYon2kIl6p2hXYq6rNKVmorgwZafwfQVRZV1pkHG1W9ojfN4nc0CPLskqSw1YtS7GpRrEd4dXhVnEBl0D6Fp7ioacEM8FsUxFxLqBMa74Mg60AnW0bpDZ1dl9ITyQB/n3IYiMEPL7qQ3iRcZnNn6DkyJ50T9De+Y6WUZFBmjOlunBz7YQ5fDjTcGcCdvqYyL/4rZ8Q7X7nNL22dJneUQUrkgV8RmXvPCcQYhoaioMki5Im8TeLDzfybAA4/Vg4pJd2myV/idjrpiDFRbqNv/+EVSvkb7RoRti4I72bduSBqFh45w1u4nvekUBtr6EtmwkYU+Vtozw4+zLvkyF76/Ssym19Kxoznm9hPvEENuGGIg6AW1pyCRciBqcocpDJGrzHXvBUrzsNFlfZMt1ZwBLQMdtfQdGBQZIHM8JvnFLT9wpZVvNr+x1DluWnKH7JlGVcomR50KgN7qa2ocjN8XZO1loh+60X8NydF92Hclz2fWbGjJR3DqpJ8W/sp5O1RDuACkBEgEF3OFxm57EyWFHYSxh74IebSDrSH2Q/2MicGJVkefVU7V62gUDOEX/1Hg2JXDLPF/M3zDfGeGMzF0fY7dnLgGxf27892hCy6tg7N2CIgqdjN7qGU6uzDtdof53YAqKPCIzfiEQYa3y8XqGlEaZ4EqiAy60AEypyXPEYINvIz9FM/xWack5YqqzAlLVm4sKMuS6REoxJxadZcrXyCc8D3Bll6yX8NjPHDA+l4tCszzZA40OsugWhuNCOv5Z8ILtyDZhLpLHIqiT5Gh2VnuSckoZhMo6GIgsBAqUpelIUjm4x9oBVIh6jaxpEbXM5+4bapnLiA/w5jnH3GibLK5ruKq/GMr/iekwepeaXauqAOw16w9buOaQ3jP/cxDm+9zcNOlQwV9il+6rdWYWKc+9m/E/221WQW4ouk9ZWorCaWTcaWTfev/caFKFj584EoUddwpeVyXe07AJVYvpKOSqcS64BchJO6Yq5Dz61tfYGOPz7171AqKuZl6M1pnZdwFQLKw2zykI+mDdyZw1wVyn0cLdkqOvy56TRJVfOkYLRvD23CbbmrnKOT6cEcj0LEsfHL8odRQ6x6ZnhI1f6Uj1fHveYH5zdd4EvztQ7KixG2Zx41yi9H10WddHgiX+UOdfAdzx3u8/i6N55schuzDXAsgIBL0XfN4dkuXfAZ7Rme6yl2ubSWWD1e1ulKS909brdWeX0PaVfiExrqEYpXwJYvto3HQs+F3w4li9pTr1/j7i+LMLa0fq6o31oKJpuJEpCfkL+9LHfGXC4C2jzW6Ujk0brJBHBwuGCxeA9298prelbd5sl6pqZN95NgAPq2BfCKAbvz5SDQtMpOhS4T8VtQBLgQA/A0YIck6bsPeneH2Nnbo3WHyDPpWvPAsBi/TD1vPs3hsIECO8RZmq3ydVlcjnVtPUC/mMlzgUb6eCNlA/+pBPHwbfYENIEHAoaFtUbbd1SqwMM37r1pI5aE8/U9rILhvJyurGIoD4+i36+f4tbEJSlLVo4eAJnoDKpbVd9jJuuQQXTtBjvEbtZ70Pp5e42BANomfPy07VWuIEpYfBtAma/mS0oUxbSI1b3PQsF8loZ96yRfFpmF4+mJOi9dK9JXH9Havx90lw7dYJuZ2Gn+9A0Gq2n+9AV6amFiMY1StK1j5bCvI7IZrqRGYGDm0mWWqc92r2x975+MI6QyhGz8ojTbujKQXgOlXyR14OJw4pZYFH52e6QAWLYzKPROiGGLXK9Pjqh+DXm4IIsoI6OX+xsmj9+uGDfTwSlPOMcXplqsiwjI/HukH1yudk260xPHl9coSOwmLz1ui775PDaCEPAbFyeIIYgu80LQsFat+jpU9N3Nqh2+Y+lGXwflymy2riQ+piVQ71vZWqcYBUbxkBfAl/RFO13zkI6PVpKfSJcKA84qmlbIrDqYzN7RiOfRhMzR7TkBvG+prIAVUzW4S+ars++Sxrgwi7fz+7crrIagjkv8tn7XgRFpjtGFkwaGEjLp47Yx3VHM1jYjx1fGDNtHd6BRDD2nFRqXk1BabzUY02T0ToYo1pE9Pjxzq96OJ/sx1DdkkJSztZtmPSMihjnXxmrHc58/UxEphG8P3JiAnrVzKbxHsFnOARBbEMhL1eseZsY8jK9RwufbW6Sfd1bAVi0bjYFs7iKOZdfjRXkuMpeT4fFRTxjVC9ZVxsoKNNcc7RF1n722GbYgNewU7/vFRRI9aMZZD1W53i0wX3CLPrv0fm7+dBQj+cNdoxaPtKnN4ZdB2vKJw8JZPuwA30w8DUsbIZiXmb+aKPOL0J/Dirmd+zTMi/8/KDPD538se9I4KQ2bGGhxIhk6arfXG+qiaYPaMCQBuUc7Q2SI70/+PUZQDQhx3sEgBo1+CeLGJVyIRZQ547c1Ys8jk1sNVFIB6thODQ2SAjVhoXbICHU+3IekbS6pG0yFextVWonkum0+Yp8tbm64XuUEXo6SHuvHzCYMuFbMGlc7xzYNLQ7VGQzKnCvILypitoAlLRdH+oYell/o5TDIwoy6TmrpdP5J+LJqLW519rg7jwsjEYGubThjYmczJtyDka59zR3ZkLEXg/KayNw5C05QdhWxA27EJF3VdFCJtQ25r0i1V9RfhFM0a/OBD4Np/+/4lr3uDF6JHKZBDNa2sfZsxeqYVwyaQy9yPFehZZbnE2tYNG45MEsMhDN2nIQoBF0r7ImdjN9RhsAFZp1M1o0Uy0jgzwDM9X6UKT15SY5bNuPDeqyK2naSEOGD6PX88OlFidwlBRhenKaeAyoKisRaDxIbxUb/Oy63h7CQQ/huPss/IP8lMDt2Us/zm/Rd/Air/vq2oDurpVVFds0hI9Wo5gxZgfwsE3LnfloSM+P42oCAE8XKnLdXRypTfH35uDlTLEiz8y9ZgaD92h/hCOW1va+MNMlSPEeWVI5rEFL8GX3yjta9kw6BQ3KfFsyIVIi7xxUsVAhtjmpbgV1BT/xKynYU8uFyZqTQnpFYTkgiL3JTNAXtmnf3yR34ds03IT0vbeDHpbcIJdWWEXdQLO3nshZz87UexOUmBlfZ2k073/BXWVd+35WfmLv3JPojOVSibn1Kudtca+bljITNVBkQYtvt027BlFsKmlwMTnB42dQ90J1wTbb7QTMwusynGTnbdMYj6DOuCUfO7+YiIOA0AnYtzuavokpuyPBjc/9Ukjbcr7r+Ajnoml2pyE3RXNovEccSVtnYNjVHSNdM4lUrgRCtdXgbhZZSQOPW5ufc5iqw6lZWKdJTimlVLVpy2LSKXiBflNOQVdwa1NOwekdZMopOG2MT3gEtSunxnLK3ZAwKg7hhlKXfbGHaKaAklPk3dYJnhQzRjCpY992rc4sGfap5NUqZ7JCRTtdLXGlv0ai3yNpW8UtllCAIqSIwt2cU1aGJ8tNths/mKjgbiBmQOArWpRrvNvUje7z959Zuhh4nk5AmYDorrtU06w6MkKwVCNt7Nr6oMpQhtHKTa+5PDcHZN8bclR3/4AVJm2qeVeAbKppj2V4jjAPHIueoB2Sh00uMqXlZwFYPO6IheQp3x0e2jDfX06iaSQh6DIEi665SuwxFNJuWpdied1mboxGtozmHK6G8oemryGIQhQPIYouLV+D2Gsqq/vOK8za9dzbITJ9C4y2b0UQ1b03qSXzMdpy5GqhWtfb4k6zWldbtutWAZmH7HXetHSR7xKxK57dA9qC94zhO3zriwQp+m89vrbKdy2x40HEq0W/qu553IIFGcQaTAxpC8ALVXbpmS64nIHdVu1fGTAbousiig7WDjzFXoLII8mn1HsPTk7Xz2uRSZKT0/wdUZCEm5TBPasxJjytxAZ7Qzr+hoO4q31dl6DwjlauamnKSxLnOaBeflukcB2k+oaoMEUfsB1ROp2WW/ONPKApp+wVPQ3YeclXVlt9T3PvwYrB2Sw6CPyDHo1lZXXRXWD2i0Y+jGbijba6htY2G6hIIn2U5rICiWuI9B9l85prhO75APwWiCEKrFrdZoQAaewMf1hpVkVerj8+CyO3ZTkXCWr41I5bLWSH2aCriBwpYSCqK+BJSJUH1mClxGoqZP2q8vwcCmRG6fB8rflh1WtrfmsMzn5gfyi5gMq1RNKho9w60Jp6iqdbcjWOu2Pf2psoDRbRJX+fzAmKoC7fHZ74G8Qkv2tb67bAVl0GUAQnBgbV0be1frYtWVXityiTIYHt3J/eOJtsVy2UU2j9MVMVS/J8AyA1qaNxpbsIwpT3r4cJKVtizq5JJR3gUFqj5+iT3mWLFGMnWC3EGMoVD3AFrFP+xwJYVlQW8raaiTZa8mPgAZ6Vh9H3ZRNyHVBAvnPxXpjMf6OZkfL8zMpX+ee3OvcuyKIrthc3rT2RZQQtBAZr29aCsh6/DJ+z2CIOpIISNc0UFW3LM7gNOdwoPun4UUU9qWLfxAazbjFzNrBG1sbJltHMltF2ok1MIgbEzDNM6A+AW5znTtAjuO0j3Chd11QcvaaxlASq1RRUqBh9HU28q3teDu/qvlaGNU2w0YIsI7/rftY3uzxwtPmeFK8JLP9Mz0Ifw7Y6vAnj13tukGYo5a4qfrnr7Q420esex3y5zqIBGW/agMhohUZv3oy2UTdZ+eULlNFNZTIEh96yhZ49ONp2IAZWFeNi0MdusRMGKSM/wAQoLvLnqFBEysgHJztSVKmEHDRVsma0bQ/hTmfddOVS5JRa69nUHrdKfAXBO3rbm7FQu7u/nnQCxm9LsS1gvJlP2hYw3vlXDRQacsWQ3/K6SXca/wqUAP51ne9bk260D7AS9BmXL0qRcNFnvPYzQ2TBPeGXQlGU9zdnYqiFynbJ5LG8LqWaUzG2YIUu2/M2IXPe2ZQd1v31gG2oFssu0f0zXRn72La8NoqjNPNstD3hhiVZFU2xLRpM5cLtVb4cP4dFKnETBKJM60UY16+zf1PAbQu4TQG3ba5tCbhtc20vTYl5r9ufSCtjFeVmYezk/RaOtlIP3PYTLwZztkNce/NLKrf6QeVDwwrPTqRwWfVekpS774mfFPQmBo1mUo1GBg3FD+nnLAKPlVEY2d+WZRulUbYgYa/mg6oNbdt3uA9oo6m9MIIqRoxTSQfGhz56ZYMsduo/Bo6CT20s8+UzELodMjo0ycyJ0c6jCWsrLaKl+Fr7Xte4gDOnDf62IFVo50HhsNL+4UG6cgkFFa4rpDGvyUXP36PUVKTNdKWliiojPHXZ72PRFkDKIG/g0C3Q5FiZPaCAknH7gAPKvDrtMBv5lNuS4tcKcq7a65VCzlzm3McV4XrovIO7RCfiydHxlnDkSTyWqSDTeLUdxV1Yklz7jXD5ps94j36KZjAyY2b+R1A9k2W8RxBpxyINtUaM5X3lZtI7B5GmVuVpXwO9pkXkWC9Tvr5nZ4vKUeSemJ14BdzgGTDOjnfxQ7bCZpaMFll9Od9M6/E2sUKUSnKOjBjL8YoNbrpO17u5ckrZljq9JacFhisR1Z9JnyjAX1fO6bAdpP1jgd+A46HBeOxcPJSH586qAZJzZUusyjwk8aL3wYk96rWFELZ17b0FTVlkTBUxuih4KJ59/q69qPGWn4pU7dCLdu6KYO2TZtKOBgKnLPGoVZQEJvNCe4+TAXIck49Q+8ug/8Y8Gu3k79TLFqN/QbypYR40wC7O5dBLZ9bT9+h8sTGsctaUp7HI39mO8PCBG/jYGgLvHTG0zzTkFT8pVOyc1LEZBDyOch0C4c3C0Y6A8KbyaEdAePNfvRKbTo9jJesICH/shEkSDSgn98IGtJPJaEL6p/YvhFBJ+IH8/2UPTnibRaQ5kRnyHmz8m06pQt76czf1w/3KYJODcKcI+Q7yxazLRMEpbkyGc52TQkpcJAO13dTPKEHFr2WhdQ5H157GczS6lowHtliXQrAOvAyuZM/6NP1RglZ/EmPctbsdVKPQmgdXmS339+zB67v4tvoDV1IXYiSOvlXUg4we6VDCXBVWwnpPPLokURlLpK+v1b7gB3ei+3tKxXOK+07Sp1uxO2oL5/x6m9xngDOa6EQyEyAc6k0JKg8M8/fM5WtyGkiJh+XTHyFvQgtlXwKlVSGz+lO/vBEFlEAKAzNP5j2p3RIY779ym1LdFyz+HsQZVh8JKevmzugPiOA9J1k9oAjbFJVNeInHFzW73haPFJO7ujk++oOBeVxfSVxNmqZncaC04DrIAK45St/REdDrPSH5BqRjp798Wjh28mh2wcYD0MqeNn94lI2WQ7yAMeyiXDBk4p3Tq3fPRias9C1PUQM3hxM6EYYqZvfvT+eQd08ISK1uco0eTBoYv+7xG4WTr/nhAzQ170y5WPROTo0RXujvJr8SzI2pEOXNsw/DYzW40IyQOIRRXA6cs7QkhgcUxa+1pMExJ+VDk3J6TSEiKnqanJCXjq0/UFb6M/2Gr/QKRyNuCJLjsq3WxgkoDvJ4mCBqlI97QMnTEthxq0314NLI153zu8bWV9cCqXIZDp8w1ff52l/vv/onFEEXUTQz7PsgJ/tt8FCvn+RJsoUWD+nCPmsF5TmcddtTCIiNLgKtaKn8NMsjQcRGN8/J25QpA1R6oSxcjS5+h5Uqf2skPPHRnqtpSRwhQwOnBs/P3N55xsNXPn7wYYdN1wv3SIki4v+QtXbzZIDwqVlz088cWWbSdDNt9Ad5rPIPZZBICRKBdOD16gPY5Hfz+JSH3dR87uXRuEq8vk3tYyZfUDxSM89COlmXWzOO5t+l+h6JcbMP5f0VE1RkXHGUIMkjnS05XOzLR257YOT/B7jRzanRC4Ab71+/GypPPkKCL7iU38Eq/8xU7RJxlEBYsWxCuezFzkqUWanOrIWqXf0i3C6jm3YAvf+q7JoHmUld3aQfvTCfqxf5Z3tSauRut+9ZKCrUTQfUSfXjuB4wWSY36CXLPnBiTnigt7fz0tjj5mFjNpe5SZltbVdmnNLxQu3eJqWCe7WYdaJcqza5K5m74j0CTZvqy0SqdtopUb4zjbDeNJzdnYP7opts423hfC2WcEgsEW1avvG8Iwizy26uoUfcq9MFlbmHSAI7wAzET3rqYOjfcjYINbJj/bYkn8ZwjcrcBKcSJMrB4i5Dux7txx6ZBMaqv/+CSsAXeD4LnOUmujg24ig1DCF9SjLj4Z4er8mODr8w3YXdaQ49BBkmox1z4NWQN+pdk4cr0Nkx8BwJqZAsbx8eQlFbvRe4tzC7uoE0Hej+8WG5zXtGxbKeX4vZSjco3QvKnDxr3+34/ReKUD1LcO9nwevaJYvjaODxy7OYXsNuu68X5XUd9YAuScH6J99qeYDTaejMZFiOXeDSjhzD0Nm/lJ/GNGzu+WW7m5sDvd1NUPj3QNbTXdxVUG50sSaMqutEswbGCZMvlo6V/jj8+hS+zPHoHm5dFmzlaOvanulHW9e6Tdy6PvvQ+cmaBy76CRCrYbkdi0LBaOKWe7H8qg82XBvF6PEy62KvyLLo5szoNTnjp9xwwWhUDPCIWGX6Z7upLciH3qvFWQXh1dJ2V1Ac0vWbER53OZt3hT+8g/uN/K5ebVmJUsNUXNGUHVXubRBdgiuWoZpVQfvynuiepb/QtHbEOvdatH7AyandkgVeu1kyeoW70AkY0QL1xulGtNYE2IzKJ18ZqQku8ox3+HKPatfTEboD6QywR3TXfnuPNm8/3QLbwNwb76qmbVBtW1VS7kahRDfVvw9pF4h0zucmqbWq4gTSg7uoVDwyzUObgPjucmGsOaxUP9FEvOd5LGlqmRP2bUFpOzqNkCrhW2YBqusRzFJiwSA7hJzhwHZVFotjWPphFNvP1ivKdg0XZkr490683+0cR9XyqcriMp/H2wSRZUj4Bkz+Rhy4VlTvCMHEHhjWT3cG0JFcxWC+iWZSqy6+g+kpDvWjapFUMTJYCCRci0INnETgPt9yegUAHbecfpOUVl3eglfSfDPzCfrq1dmkpfH7T39/xLe6eTZ6KL4YsPmoEmYP2gxMRAvPuuCB6yY86RE6KtjgPPEXPHDdZGe9ZqG46vItCVv8+9ReYfFR7TyVRcrfBt61TG00tr0q4FTFhf8icAJ/MKfhBvwxZrT9wb3S4Ko2waoMripKQbQiIZDgHJOwL92bq8T6V92Eeyluz9JeXHidPpFq6VI3Z64tsprCXb77YMyIWSupUcmP2E2g0StqIm+l8wFAvxwdek+AKvBue5aoEa/E+1oaRso5PralM5zrWToPvYnieX+m3pB0cR3Dw42m2aHW4DK8ZSgTBasYQ+HZ3Wejp83uwcbIlpbTyH9HVAZfEoDpbnd6B++J9DIhfbppMMoAY92Rn1lOIGnzcQRjq9nYCuqMgrsvN7FMiNNDdibDTaMpD3UyE2j0VvZ3/tAwVNGIWXSBfUsNCMRuwozewNR8HKj4ILW5gJqlArDb8g9wWxA/xiZnXXdZm97qBYe+78GPq5kIj98ld39K5dcWPKM3lDXpZs/ojWVN3iZ/UpY16c2GaTjmsKmceyGYlsf6pst+JPPk67j6yFBvPBVekXW9TSjJ1UX9AFKZgtRZOX8aCppwwPpKBzenbl8IG3VTX/RGgdVsRzQgDrvI5OMIEWM5zfuYH/9SA4K5ixtjk5Gym7QiCLFT/q1LCAKvjtGYg1e4E4OraHjICTPsQXd1c5J7y82luURGTytO7qI12TmVB+xbj/JXmsiu4bLY2ftybIW0yaVk2YV6mlryDH+8rXK/AOSprFTYs92w9N4Q3upBcXGFMlx570IQ8TAKECngx8TSfrflwV3UdKu9LfbUxlFbWvQWm20NTl17TFnU4LGR8fdh8Yuf0+y/6cyiQ+nmyugtQcSvLaZ4ZCWbyfuLu4fCbaofyrIE75m3bwkyjBZ/9T34Avs2YRVo/y6/JlJv6bN7TQCXVZ/85Pb0tfOlImKJ8q6qDhM1rJTPH7z/0F5MT9AbeArfv365Mz5IA/C9Ocs4fgYlb3MefqFe7TzDDiy78Q0VYKUEH/GMTmdgt2zqcgaaU6OHRMMHtjwONTD3JrE5RRPS4rrXYO/PTx222lCuLUo3caA2fTHdoqqnqCp+OiIzwRNqlbgnBsOR2oLNwCX04gQMb7f06sAXXgjtewR6cCUdwU9836ZADatLlDCwtFzxPE45fIr7XpF9Zqrngnkg1rsCbO87HWWyZ4GevIklQa/sqmlZO3OOu9k63ibQ//2m/dQ7IydjXr3ezuVkMDXwM5gNb/QHcmDfWWpGA/bNoqyjOnbvdh12VpzSNUi1CFL+//5HFhOd/l7jUaaLsNuR15Pvt2RcJztGAS1Gq5KmYV7DOTRnxc7e7TIM3DAGzLZd75SvQTdSwjMAlGfvYMwS5qiQckVZ0CIZ7CY/7b2LVtIkcTU8/dlN0WacicrFjxYnlBwrkZ2C2RQZnaQZ7+09wUb/OMUPB2IoRxgEFSI6euj2i/w1BZb7+CKigsiY57gQZKPvpFt4dbkGu8NmHT7z6v38PdpsUQ5vY2w56DFUU6gHbgP3mpPmU4lEJ34J78kBAczdpNsl2ydypvhEpEffhZYmQ9zL3Ya/VqZ6mig10gYuhe6k367ba9MXl5rjSR18QbRsUNMhWmnbEJ6rXaSW7XveruUZ8xEeItHU1eXSD2evhVjfHDmbXUGagWFz6L5DdGvpTq5UojBQN9LJK2PrZyrEKJvz/ttTOAkKFc/nxDouaLC/9p38JN22VT+cqXbB9URjlN2lgQP+2qx5HN3DL4Rc9LqLXbhlgMDMebfFUtHUGe/6ogujOyA2WNuk36D4gN8zUABOQUj3j6yMJErfeWb3NePvlnsBJ4FrxDZS4AeXkqQO07reX27nYLe6kmofmZrn/HpoZIruQ71GBE/OY3Dh3fIFfaCkQBcAOY4Q04od6N/gmNgwXlsInH3dPBU9GDMKDu7NWYtn6tP/feLKaVfmXS2KBhCEcgTP5B3jtBQ+Y1BN2hPssW+Dx7jCjT0s7QaQGEoqXyvFv8wpWqrlIlYGd38TZXS4hpy4XiLx5BOwQ/nuOI2dYBWzbvaMPsCu22+8chAO/z7G37bREWBo3tsEeHkfz70V4OW9WzkfHbzrr3jyXHrnYuCuuilPe/JmZHXQO4lDioVNc+UlMHnGguSmIOUOoOMeJBpSlAZy0rsjBJUtxbDpQiD1R68ZSPV6f5k+B7BIccNG9ZPYf2+tv/ci7Ammy+iDlE/vgT8e3IQyneBkf1egxxi1VOTqn+Tc6+bJ6CMtIRHOrTTNzbetL22sBSiFs1hq3g+5ppdRGBW9osHfb3I0HC5HcbVqjowwQzpaLBUGqJH6mO4neZ66l34fJHl632EizwSt5e/yzSEQG63fvTce4FcCZHc5PQQBncqdtkZZJryTZccArNCe0cYd/paCWkTKiC4j+ETLx4Ajg0kfrnOC1BbDlB+GKcZuXwAKa2L3T/dlfV039djMcKGGhz1FyaPQw285MY7PvvioQYk67D4chzZD678E+h+jgayny/7nQT/TsEk26CE050YfCAQqraPPtF5eUXafTG8I9x7U0DPcGitUe51wy90EGn1SHRv2+ITpiAGzG3k+VGWdvRraBnciazIzARkCdsqhPp3s96CCiUK3GdJZ16PNUp09SDFI1NwnsO8/rqI1P+Q3cUr6ioRlR+hu2dc3AX9//zr5A8W4+iz3yWCwV43QhtqzrxFhJWAm05NmZ50/1GWdNU6t5ylkMR1KCvqMfKi38lm5Wc1yb/Ml3sd82dUW/wRDvdC7ZXV6Dme9d0AoTlpQp/knBOqieDVnRZ90FU7bV6TPEMtzuB7AjEXnJ/ke6jX6WUG4Rz0Xf7nEEHovypBP6R8lZMI0U8SgNqIKp22qSRjGtCdxCoZhKo8o24OpOe0+nSwkKRLxdP1f0NRMQIPhw+WRYWQyjT77T6JvwQhopjIWKeqKCHzievsK5+CgWsLNRA9G6TnVtyhINL162atM0yVlnoz3CO4MwTsqqAK6eFQrIeLviR4j1EB+//ptJhVYF07roNFwAYCIFsauP51V+p6RKo2kNoJZP4l2fSYGXm7uUwBCbJ/JG+fcXvDljMMI6yh76uDXBKzoU4qcBc2JOiS1SJ93z0l34bse70qTu3DapzjlLnQ+fo/4YG5f017kGalb+V7WmmaGtcqs8rVPpKjFXyewoCxWnzam5kYxhcopF0eDLVvBr0g9eHhh84XqupWcuXFlhHYGL+tsUQ+CyBw3cr+RxDWGaxQuFNMzkXqfwK4Mbd9Roh5MimJoit+4rs+9ituYfYaR/cw+e+ocDff2pwZj4RhftHPiHf+DLNCHvXtKEhbKHCX1vBmyO/k1aLwnOPUS73VpF2a26AuMhe/fxy2gB9dOuB9WXDx2snSUBotzBa9iWmAPGo0Ln1oZQXp1Xa6FV9XI3lWzVGIL1cgiv6gvS6BF9+Gy1bHoPlzlEenFe0xVZtnaW4XhGaUC1gcy3wExJlX2ZTGzyvmMnQCMZmAREt1MQn0xdL4svFYaPNZ/GD1ZVpKzYJ3KWUkJXk7pINrD5BsdavXlOgIuYmxPs0UjTJ8rwteFnXK/WVayR3HYEoz1iK4s1pbsVyuI5YDlf9a3crLZpGyFBWni303GhcZfrumy6E9cmcVtPXSlU1E15ajN3uDyStdAOU0lxAr9ZObc6AtlT/qyPFyJ1RilKmybxWRdhjsB08WQegx5v09kP+9XTUSR2Z8OfCFfV/0aHGILtiDDwRB721wp2Y4oAAPC/HerXY+hmT3uBSl/ZQHtvkioYDwCP7VF2qJIWxZpC945+Z7Ta/MlpdrgferLG/5KeWYM/WKQVtQUG7V4nb82mF4SfoqLsV2Ea9hJ2JfgGgGnMF5hCa8REZ2SDkq4ftf6yc5M3pqwxcTIBbvktU6hRK3FwbO8W/mVpe1CtTHNc18L5PbX7lq0xNan5cdzRyrEuxNtUq2KW6kj+f/9wWsxTcRSuWHU8dAYDaYNARuWZNm6+0pSd8bpUxcmfj3+KiW9DkPD110te3M4o1QXm1DHs5uzpAcaM+W3I7RvU4Ej5LO5nS97HFgJo5VmJ/xPZe8rOXKmdBE6OKJURXpU5C+L/H75wRe4aoJezPf5cXxFAjh83NufZmfkSesvMW6Zfaw1vek8MJPGewQpcbsruo1u3o4Oug2XkwFoul8c1wQfgs00PeR8IrsbXkVleq3+w9Adv9e/DyC8Muu4m2+jk2/j/VvcAq+iSnaA00aYPqnZzuAYjA2ZWqNvCDLh5tv/UFb3DXf6I/f5JJdxj4p1n7ejdbYt4LasM+uifSuKsK0f7qQ4VAdYzvttNRUMSqVwwxYz3nvCQdZw3+1LBLGYZawSEKUUFGzmkB3CoBwa3w0zz6wafdOxaKqOvrPwpJHCTLYRY0Xte34/XDnkUuumuegbNbuOstpnQ4Ur5ftn3m5eYuG1Kby28Re7a0DtWtxI8tqiICVHgDhE2FFF2sugf8DUm30DE1utAjzQO+S8g/KmMgmKSYSjW1bqpg9xW8LtjICJhEtYxC1eYKSGl+3tkfbXtmjag7EMCWLEOJWXuCTpt/19G4SD3UQaPYg0MFiWmntSidl9fjljelBq5E6467rZahs0h/3mGufcWkE87uw1VgZ6T3bnJ4riSdKeB9mpgsGUxTKxfd9JuNh9+5/3YlU8UVqsT5gDYLX6PNZHWVGwu9pB3wnmkGl2iH8RYJ+xp26+UhAzSJLzi9kcU7x7WwZsxr+2Y+9b8S/TfXRQ/URpUD4Eu4tKsu6mSW8jhxHxLW73tp7Pe5Oq5g41nYimnuib2VzXr7QP0CZaBHtnJpZ4FwV6FY1GYhZw0+OhpOVVDB/rP/SG5P7qYs4oix58cwh0Umm8LcviXWQaPd5WMFXRaXTTifSTX3so9mhckaQNLYcjgybQJfn4yCK/BtZJ7mxj4dezeNmxJ/C9VavfQA6l5/XkH3BAdXFtxBEmwnnuOQjjCuf4EMLwCHnKLOhjZNEpYOS2L3kSfniJTXnFfQbU2WNBdsgR1U3S0Q+KJlclr+6AhY7/BODKoLFFZSeBys10PczLMNHEe/SVA2Tj7VHDWBG9EDfna0MgKntd6aR77OaQ7ochP5NxvC0xZbf4lAtI72vRWivPocV07MM7yOuSe6qS7aXlNiRC6855edp9FHSsY33vkJO3m7mjn84YSCQfbzahVEs/jsRGVlTqjjsTV0/qZy1/gM9ZgJRRwIx3hBOH7RugTN+KM8QW0umw0xTbglg6imE+cK2JVyDCiriBZdKhHXYctjog6lUW31w/e1OuZt7Dbwh+KBmEsSL/WNDl4i4P3cPH0ozsGv04aiF2jffAYwwMaKxdL/tUdjX73icUvtSsXzMZ1S/eOeG0z3QsBPMIsTg5T+dFdh4ijY8Bd4dGmXOd+kFatoKWh2UE+zHFBHOQi0tGJBOHs40bzedjuwslaaYSSFjkvF+E5WFQ89geOcrzOvN8qMn7IUVUN51GhHP+LsXXgLerClJbh3w4x0Lt8PPJMxm1nGEBy4//0PA+di8exsaOvYtnj080U8mC54I26BkXb0aZB2ABITiBerjxBnFV3FSpQ6Fm4oO3hcqNGT3eppZ5E8o4IFhcUQtuIu9mrPjnLJUjcu49wOChPHuU8tqWjekUxSVaaA8Fm2hkoyV33dBIXShjLHDdqfwVVCSnLAxEpltWX6FeOR4mnqlAZ9bDSr2Rz0a9mWFw5XuUC+39O92ChTZcWnpEBA1TR/L9bdJmtvxa8MQrCLiSxPD6TsdTfkjY1oG/b+gN42h+leBcDcvu1fEkDKU+VUbGeCDShtk43omRu5pwHO+SI0JncFurrN83zGUxHix+JaI8BcpnWeeeMXiN/DgatuoBqYvDVt07FKBUkbNMZg6gbznXtzPAtvE2Tvlbx4MUIEMnB0rHh/mLdxgIEMSZTc/KDDCnW6FC5AguAAdO3nMyaVWggIN007fZg9f4Vs1D3jQZmseCkm2YMWSAdUPLBoRlVaIYaL4h0o13V2mchN2d7wiEa+QKr6AxwGCT4RNlsNrwsOIxHthtRaW3iah4T13+HCnO4mJfRLfisLY9QLdh2q+FwHbQP1wIJJhOzFMwHqC5huk3xoMqBZFRfwmSUexepY9iT+NVHka91fC+MFEt7ZZYyU1BCukGE3Cc56FMfH3g39TffXJb6+3Oy8n+znF3Dkiz9y/HeG+CqN4mf3r6F4dT4cfDfLBhapPxMB9sPMW9Uj6YmbxGuLMSGbTOPat//Qy1lrSrnWxHroVyb8EJvPxBk2vn7ftdlhkSEZ/xmP0LuR4so7VVdyCOY4CPPaNgA/nx2r3n+O6b+8L2O2wmKHHXXg/ij8+5U2xzlW2vu61Vdnd3VoISXcYM1n6Ub8UCVwUwERYfftO7ZwGpKNoviMwi3L6iz0P8G3HEKXAnNsjVHpmwG6QbDrCdBVDokCCOI0Z47RyDdXpcxXEgt34UeRPfo1QQLu3LKPQmDrN7jMKyXuG8dRPS1/U564OolEz8AO/wUZfeJHcjhSxr5kOYsrhjqyouKUFxqVGLI3a1uBPwOFY7oeqGJl5lPUet7cKrlq/i4gp2jhszev/5dS0yX34ULl1AbM1RKG/nKBZlJUWZszGQXjNK1QWpn7/qjFdMAU7R0Z04Wh/l7N3GESO7hUcH7+k0hTDy/276cQd57hASopDI8W3woCXWwxiT+ppG8wMARya1eWsHSdHev8MtmKuludtNIyo36IhFklMmLQ3i0N7tgzvWRRGX/ptmgRIqI0wxSc9giY6h686rHAV4D0kxIJWHuDYKisfNdSvsAV78nnHvgJ3AVWLfI2CqVa93/FZkLszEeDUCD2VqSVu3KGSqlTMY2TRxGkPezEkfxVt4GZwCwwtyUJd5pdXHhBhg4DDbdSR1Z/2+d0V+UxiGaJMT25APk9NxgEVKXovMPUoEyLlLbHKJWaYVAD60eKYeIoZhlKQSqvgQRFOU6H047NOfe2ViIAfgQOd8DWxFzYFMjiaGKA/MixGBdDmH6gl0cnbUGkawK2DcrGIk60bOwUuxRNYNcbBX5j8pNpSAwwvdHGU/fLrvAEH0mvA/ZV6SJuyWrNFllk1lc2S3x3r/VNY+RyVb7sTP8iq80Sfn7v3X5rnaFya8hk1+nDRD/o+sK0uQVdeR/3cVbwnp2d7/xtpSDKZOfxVFkuAEY02hCHzz+PEfroTbv4Vh2d3le4Zl92fQ2m/C//4ZcXYdHp7IxqrAAv4kyFQbqpw3rOs/zs8KCpnfe3tQHRMWxjFJtUGrP11oe49GfBco5iBHZefYKA6RKjvHhplDRmXn2Cj2lupv/klcFWrX6UHuUjSkd5ZE6NlMtXw//MYDYDKq6InqGjyDjVZFi/NQKSW2+gdu/JdrK+vPOOX04ZCO1zULAJ4jyDneHKlpzVS1LhqYYrMNyKt8GjQwv5RW5iPypPXtwQyu1eNmx5g9rtgF8JpgID3bHaoT6l/REaay73c0H9l0dff4drfyyWACX/qozzKc+VBETjCZx35PBBTHRn2/rEE7gXdvoiXvaIkolPwcZtsYFXy9U3wpE36Vu28qpQSHhfDuVsVlu28Wu8Xu2ZZ3AWI7zFpydwFrYifihxakN5a/2srwCFweHcHG8SEjoada+c4NykIMP5C7pYFux8AgxJRuZgFh+6i0Ymui63mIVSN4fyFrIzw50R32biseS0gDeQ+SB+LuaBlW4v7YOFYhFveDIE62LReTMqCkPlztvFv9C7CAjHXKAnV+zqc1P/Cd+xKhfD/M1DHqn77CrVfIstbgMOGLCsTTMj3QqIsDW29P3CZ8W/69kYD3U7yCardav8X7bIexAtkx3NAxKql771j9TpC6d5i0ZFRS996nHC8jw86almwr6BxiJxWxFQ1IfSPMgHy6fxwJ07eMoaxs4cH6W1xDHGwRODkCSqn+vVGhqFwkClFAUHNfduVGNWtP+S5wpD2kvw5Ow/sm2XOtB+0jIVmhUJt8HPevfxTZOEa1oaxZcRMKAIibeBMFMRiE5ArLZnnSYfKNAciFqw2F5E9DVaU7KPBmDuMzB+APxZnWAp73Zp810bmEl+HNNinGYLPkaH7HQMehFagDgDiCjeMPq8PTZOEEb08PtnPQdhAbYzDzc4xGgOJozhWGzihmoO02aADcQx8W9r9PVzDBckP0G4MBssk3RktureK+YrYRD3Nb5LLgxWPsw9vh2KqhgXcYNjwk6tcUTSVy7fNS3rnMuKHZIjXA7bceREGuNXZwIeh88c3NMcjNMcTnEVu0Bs1Lf8tqvTUwF9orizhNHMm15geceHuBeqJK8rrkfgwEm0tMDZCOUb4wkDxhL5/6zP1Xg/VPRkFM4Pfoy/tEqW3zSgy+wjnneT0h+pdJEqWa1d+8T6PlbDvwKs/lajrf+HBfjkbDpUxt7NE9daIr7lnOxOboNRg6ci1sD2Q0wH15VyIPKaKwXGXeCzY++opA5VTHRaMBp3X/CtJ4qFI/DcICiclPF5l6oNdyDZ6Eb5dXbrqX8+ckJLm+15vX81MnbyUV5tS0AmDEaDYObWmY/vELguXqUmBeTkAO0ehHpU1Fw2s4mZM3l8poi2/X8tBZCxvNAVlbaLrRwkmhh6mwoXS9tQ63GtyzajQBSC6Ye89WpvzCe3IQShnm7xht/wWKYv651BbdwTyHx0kfQyetKKcY1BXgMn7F4zxczfd+Yit3b+E92J5/p3JKOjJpYPgXizGCu5fADd98/E+sIImKCOBL44fJeTzewbyDdr7aAVGe3CF63UHNzDp7FLbCUv6svTI6WsSGGTtGB1ev5Vq+0rRMPXRbgJ7wQ8HND6eh6DfmRLl7uFeVqlfX93j9GziiKGNPAM94/kYn0+EQv3PsSjhZEMAzn7CZhutCbq7+l6xy0tSY9WIgMpKLHJ2+PMO3bF4SMyZ0fCGD2jAJ6/0cr4j5Qu6WfsH2HvCyqWpdkwUIe472cD736ptb+WJ1rwEB2M1JFZTEm7s217nzjkLLgsZIBrfRzV53kkr1/pWsz6ZS4TBdx+hZQopPVK049Qt6uk4+sIK7lvcdo5zTgqzKx+tYqLP8ZS6N0VX+MsRg9DRhQ0V0ZeRa+xyRMDS1V9aSZjConTiNKn3S3t9XsHIFb461GAcocJUmus83ffduZ5NMZsu409HBZjy6DVJPwkr5yzvhBK+NYKAK0C0QOMjNMczWMTq7m4d5QUYwBONR93cUxF1UXmA2VMRtwNjqXSuaztOPmC+Ak2Q94y7R4FXWcaybQQvRhfuNziCcwSFYn7ynNmRUkf2Z2Rl5XyO3INe+P2Pg3bSh6ku42b/EN1Y9jEP4U4RC3FSPv3t8s5Zu6fQtBR2HdI4bb99TVk7H+yd4JBYqT5/FgXo5Z+orEtj5AuyMDPvn7mwW1/kAfpun2O8IOALm7xgd2cIlhvnaQYEjPO4ESZWLLWAijL/+lRuVdTm3BfhuOg7QsynDqmt3nvJmuuZDRo7R34w9upm2nf1ofq4/oNX7AdrvRnfMH/Qc6XiZ6Wd0hsWK3vPWpDofDxjZn3WCoOZLkr8+GnRs5BjWz7tbGPlwdD7QUvfqDozQ4u/WHlBVDhNtZNt7wcbwLojnyaDEVj4qFSNqAXTxmk4+q98BMmoERcYLaAeQiffv77MQMSQxjXD5Qct7hgzD98sA1juaB5ZQjcP78NUY9lgjz4XL+dcVrrivzDsqAQfDMwukjWW+hvNf5r+3mNdmNnLtQsO3WcgzP0cSSOeV5RmPAUrvwh276P+l/w/Psf0NSDtsO9cwt0NBVyxaeRFPrcFesftd34PMH7qtt5PW4BWZRwbd7g79CxljYmy0dzrUm+fwLW0ahfekDZsKVJO6MjwpdS4jf/oBI8VXeAeduAZDhwP1bArTPD5oOx6jv0tyuin6DnoqDMshWnDx4+bYrARDB559k1MxBpBH9xZ6KIAlNqe894bWnPqK7RsNcewt+qhOPo8BM92Yu0k6rOTyo7kVasLA3jGYQBxeTAYCI6syVCiU3sD2JfRYYRg2SyNbxIx6AnnzEJXcW0ncQ7YH565LRGNqTZi+c8k/fw+exW9y/AeddCWesWDP3/MqB3g6RFFbs43jiye5MQzdd3F3xBbCSJMyDFSxXGlZxBWba1CdlW7NjS0uBrFoKzEXLa34Zco2j+AgwZxwSBnIjBAjVKzEh+30yPwGbOG74dLvFUtAYn1JJ/PiP/TUIJhgJBd/x3sDWq27z/M8XyXR5JANzcqMQbVZPi0GUN2s765pnTpvDyQquQhtCE5zES9Th/vyxHAMl8UGpb/uhm8gu/npz4WEcwxSSZ266EtNW6r5gzKszEuDsOlDBoFVQywpswE4OqZN1ITy1/379XBnRpK+75r7UwQILVedEj2iHzsz/xB6oPBeuhs7xgQQ8fcWSUAArb0Rh3CAfjCT1dzpIllk0wvG/s7MGMdEJiOeMJYjh/9B2pEuxXBIHIrOmcvpBrQEeUfJAH28XaBGGlYXGhPkI1WYj4Kwls+SlPPWqx7UtRyzvj15iwVuxBs/3vDRaCA2v064+zCed6jS6tormXjMBAyU8Drv9+d80qSsmCzF8rqAKOAi01/BvJ0OvabwHNMYR1B3FMve1gKyOEXAKuZNcW7+Op+y7cnsoE4XSGNNdESbxeNXoeQx5runnVPX4doEV1dzButXCwC8rwfwV1mQMxnH/RApjmkUaaM3Ox1tTUESZ98fqt4R8Sxmnqt5yN3FSYZPt7jHvdk/zmp7AxPMZ0KsQdv7GnsbqAmw6RlGlCxWI6di3iQDzNMa1zGnxm3zOGFA5R7NBqAFv1G/yZuhF99pusnky3zjIgBaXXeB6Q8vRrlkNbZeW+hBLU5dG4qZ+EkRA1P0+O51X/Qf2i7Kf9UXppHf//71sNBlprmdaaj9W++CoPESnyTiOkVQZfBXGvc3mWKaDuUme8SGNThGEnbkZLAHECCNXIZM4nJ3pQ+ktlE81u04YmYGXYVwynENkRHJYza9xphpuZwmAjXzU5cfEzz0EtsrqXyWp3DyZ7LyZWKPMZEXsKw2x/DYHNObUrUg1cZxSo1qZSj2eGfrWueDJENF9BMqk6JjmKJjkKJjuHNqLKEPLRU3Vq664XChBE3J5fjAiGvmk5Z5pGJVAZzrCO5UzydLdQogmdYhuq4XprD5OMYiUmM55bhK/2AWEQ4Iu94nPJ/lp7IykRhLRHKS9swiHzOAjEVA2SJwI/fVPyIn6TKWozkNRb57kE9BmIYRK/JPLQMOJlRcbngXC3TLCdiVbpeJ9fYCc5kIEKfvjsEawJ8V5TeBdI7dlZa+/A6Z9n4mJuZJbFZW4wS4YdvknkQ00HsAD7pBpCkUizN44ECEyy+b+N9cqpu6D8OcGimuimv6p5Bj6hG9D3S7zydrH25Z/f2cal59fNaexv6d7rryyvtRf85crMOn7fzggnTKMD/HQPu/VF5P+/3xDUNMB6cYfv4J1RB92NqADvGXout/BA2HlUxTBfm79PAQNZty3TDtxiARxzBR+VhCaixbzjULJ9R7nSYUNe+M8e+NfuaWC5vPng7k3qY7hTCRIJhss1k2TUBDFaXH2e4g7iT0YTYz/meWACfwo6ZZWs4rLnT32a/XPFYn2Y88jDa3kCaoj7Cp6hvMsNZfFjSXTJlfjaVCc9mN+c1lW7PAqDEePnhtVo+WrQ+esPhf2Erb7OUs+v4W+RqQJuzCWwq1LKKNeqMELhj7XTbR7kXkkFzWLCMCKXFOQayj8bHAGohflrOGCy3+aotSgLjsOaHjp5o+Xol082iMxcgqKDu4SiiyWraRcR7MQadRNwyUQqUKZFB1ZxtUrYa4NUqh3OYwt8bYOcOWXPKpb6jHC6xISsPOjLxX+4xg84TLe/A+bYdnG2KPJtdslIfXC1eoMn0P9KgADBFOHHkCkfIKpLvLuwKwSU7R8C1/uLHNZOC2sd5KBpq84wZZKAXLOC1ozkSv4vQhMKuqtxTkIlbQMKnauIg7iEaRD+5gMyu4nRXciY8vFoOJLYaFVsYcgdPPx77rGyeIYu499q4GlJ9BCyt3mAqsVIoljO1C1wZQniv6nSzpT6jh9shL2w6bIgbKX+By1G6ZG4rrvpFAjFJcfQclqiO3qv6Yz9k2WBseejMBU0ngh1Z9zUktvbU2Tjo3eW3WuNwoMdAoUeqQ2rZ0GI0VCLqtDHCParCMzraXmw1tyuFuixHdFnhALliF0ccDau97AJRoSYG66X4JgT2gBS6z34GlcOmClLrDFByh5IOhONjaaFouH3TqzjdjFoVJABFFGMEfyF7We6Dv0/zW5qH5+crUUS6JlFKAAIlyZnez3aTNYGrbhu3JoTqA2BOqZOrh+4Ipyd4ytitYoNqo4pEubEwe5rEYO1unHOpSnWgE1TLsz1mNo9JP34XVh6AmKtFkjizRFsDQ5B9jC2C4nfDcAhhuewlBwZHG3rQ0I0r4mYhZDiw3KPRVhZk1sxPF+Oo4ImkPnHWAKd0PUvhV3zt/4lz1EphuY5CAY5huY5CAY+y3hJ0/+Tb2hQ/Ra4Cdt5afNRtpUrfTfvuAUMq6DFkSyqs4qNkyYNse405DuJXjXjMJhi3qvQczjserGjqz3VRKZMu2zB5lbodhiHcLAzluAGMw9RPfWFAq/uPwnB9kJRR+Tig+hF1ihjlARHkhR0oHVH3juG50BNc4toWBb8yZdH6/P7XCk+3KVTS5HVY4GNyUBeGUFp9GJNE4gumTg/QsWqk/HTJ/+EzHqSQPpjMSAqA4jxdsigje8/mXQGR5PcDQAZxRLgyoSu5euuWMUUSxEJCwyav4VmQOQJOhLiAiradMIYFxnBokDccwMcc4yYUSHfUuFzSoyDVb9ZOtykV6BJkd/DQfHY3LNu2kqRF6SDhNuwAt5vFH54weVbBsq6qxJw3lsUE7hBgeQwyP0PFm8bi7mGg5zqeG/kAuM6ZiGaf/UbmtapETb8aZrX+X0/IjvdN6t15Tx3btDBRMrOc0wdKm9vk2aX/Ou3MDgexxaAb2jaZkx8g0vtLiHXDVYhz+YeeCaTjGoYgnDSngI+0DfvnxWclWlUMM2rWOnzx/8G3g1to0HnSM3C8Uf3Vwz/Sew5O9bzElpB6j2qGPFozELldK1Xscx1xn/XjY8BfxQkhVqnbdUJdjDkTBhsk17hbBBsex2yHL7yeFelBBtbSOpNWVMRczqf0TigGP4Fd/8NKTIA5XMUr9K6bMF9xp94C4xedcD2f/hjTxMWyEyfDHgdTy/eufR3El4WJLZLQ/DQYKxMSz4X4p02yMc1D0P81v3yrJ/SSlT8L/HmKOSonj2AwdJgqPE4VHEPljs0nmDc3WLvS5e4/nmGRV4iNOIekdVZOpdwrdXffvz3uyw17RA+kAp5IuZEe00lzBi/tIgO9WposEAihAJpQiqojJVoJ74PZXDkfhFseC/Mb8/d7rz/xG0IZU4BZiL1McIRzwYZSdwcOSvo9e3tiVv+V3OHhqJhYjXeIQENQoQVRJafNZhIAMtb9K/Nv9QOvSD7LL8/caNhM4bzQjDOf2ezZBwOE2CoTnDpnj84FrKI0+yYqmp1ThSt7dvKXSir173iAOb2n1edG3LHXWRiLq4auAwGfKz6rtQNdmyUgOeONTDa2r8tk2TwcEZPfvO2tWDBRbIWs3TWM3fxAGK2ahQZ/F/KmKxT6Oad6lu1VxES1mq1N+4p7Ns4zG7O4q3oUYh6Z0J2Drfvm8E69EEXSrrf2yvbZed4Ke2AZJg5K2u3C042F7f7RV0zwb84dle0tfJwL5dPB4m1KSGl/xfUOW6P71ZKSu5R2UhzfgK7BPDEDD+aOmXiLHC6CKVoTNVfU1TSGfNX/zQ51y/+NMmP4BCMoCVANFclZQ5k9m4IdefsKkQ9CZn4vRtW0+x/f6ISy7f/2jMyyzVzfr1x2/H68vnGBRJfLn88GTvH895UHku0Qq1DAm8Z3n4hQ/6xi9vHgLLf3x46iX36zF5eue1bjzGfxieDjL92wXzkBHv8G3UXK96h404rHoljTJ3o1ucyFS9qgXTY/tF23zRVNasZfxh2o9Id8GsUMxfVqfASZ7BqFGx/kQ0s7fm/on3rLIUvgHncbfuP2DDvRFBD1YIKJb4ed4PlHAcpp8Y/7SmB0tzYvBxesLCigNv6PxlB8XWrU4TbBvNNc2VnqmKmNV9MwU+/f5YEXmFlt4suX3UTyf5fdVrKUorFtVZyDQklkRrz8CHilkIy101+IPwGiyoXkaKDoZ989i+1cKb6w5QWZQb2DyKMidJZUtlXRciJKnWDaibPtfFmNpqgZKF/cA3y+ogjkVHVvcIxGFzB3ntxSNzVI53PrxcWfBOq7WzVrQS6m+tUgc8TwefoWYtoqKe/F2Va2JpKtxOVrSJfifpawpxyo+KRyZbyQBh9MEHxMFDieQ7lTFih6lTK7YIZeOU9uOFdqxoqpXU2useLUH9KCbReUnWGril/OF+eX9vvNRqWu+xWr4jC3eW9u20jUVbMmKLJnpP2ZhWDaLgu+7Cy1V01DKGambyP7M1+cVC0nCcPbnqPMn9KodfRSlvRFA3+Znfv7MGdVpP6kARz9lF2MrV17TwaIGcXfzXtSRaPTfi5yH5gNXS3Q9xP9+uqiQHmsudnZB8IlA/uH8rTXMYseKALIZhB1sT53k35hvlSsUt5wiEYldaE1QzazIwotlo9zQOcHhajXNyFNO9I9vqi1DSSTGdQLU8CrXy374LIt31I4SumK7IKkV2iKtSRCsF45peUokWKOJ2e7HUaiQRwEKWdvzq7ykRccLy2HTtHYzmhkwGa19SFFOzajzy7z+MVvbRC7uPEesQBrMGYMfPDFjqeOIdA2urfXPJ2tUtKNrF+6AF03i68VRjFqdG7Vm0dJ2fJMhaGCW5Aoyn+4p1GgizpSiTPyzcJvewgwEvdrLNrTjmyWnygbwZZpnY1bywyuOWhBau/vV0I+237uj+iudN8D3JAk28mEorTCDYAMrg19wEFAflchOy2rQEYnjoRjnPc7nLXixqmcSOrg8CyqI6B1q1orWhSlwY2yBklYvJ1hvhVTZ67e/kUQcz3vkFa2iQjZdTZiVFbJpbo/JRkEnFyAdbhGQ6OzGaR0GETdwBMPZP6x3UzLgd00HUG1WWxGwbHi4JQLciK1lnFoyDZ1wYa5n/dzCqjCsJm+4AG4zeDfyyUVr2Ee2eIJ+w9KGVBZt228GCDiK8+laikzAMSsScsp8BAo84xxb4gr44VQ5K7b2v04oBZMtWpHdLHkh26pKIindJlRFZZ/JeT2rKaNqYug1o9FmanezgkdsGt05a+cwux9d37yb7X3tfDExjLazcxqvax1fPhMocdy1ZPtHoAo5LZHHoKCaRa/Xb9jcETBVJ1WqXm6xWdfSOX1sQCrgaEVLFUChC48TexCN3h2Odqi7KtRhJqe+fcgH0IP5PJCKJrD5dAiCeQN3zBOqzsWpN94uoHqnOVsSy5XuhLvCZ0VSUU1udLef6ieVf9dbAhiPBeLbLOMTLINua4WZnuO8y8yvGUen691rljs6a9Z0n5URWX3rEwsPofEiFeLrrSQg9Y7bA8zFQtmtSR5LwdcHsQkhR+Yv8Abvdwrd4O3nBum+Ip46CEzEW6zIZC3+hDf7ATHXb4qvbJ5EPR2F/tBdar93U0vVswAwatNvRMn1oFerfFGlaJouZuLZmaLrlxRdD/9Xssf7A+VDWDRNvhHKaTzl8Z7KgW3voWtbr+Vc3EXXtu53VCZpihtA4EUraSOv0DQcsyEkUyMLWoSmEQyTLN4qRxDTOptNCCXOp0XP7572zSwUQMBt/wZFUu5xphSdDT2HR92VALsOy3veA2DOHrNbkzlzteheCOZMjTuhlJYRmla8Gt4rLv4VV7n/JY5LnTjpxQbnoMjrOhj94sDhayHGMVz3biUkUblf9G2PN2s7z+D7lDlEIxRp463bi6jBL0/To/Mi04BFnObtmFFMwi2pnhAN0MlpRMcMGo5cr0y9cnclxYXUK8JX/+/b6jtBxnH3iyqZjRQ86WKh+h5XwQ0xG5fxZh+ldZDaqt9gZEzY5caHQjHP4WEBO7+UCqwTYjRaP2AiP+Xzw6fkFF8Dm+Y068ZsBM1P031QK0b1UvL4OsuFxuln8trgKzDe97NfUijH/kNqzUt5nWjTm+7emA30vbM5udWQ8vvNL3nU3Ah11DudVCZ5JtuolnG/lPOYkGyGmFcSbavXHbrCcYQtBF3H5pCkAbE/3Yg2g4YDN83hYJTQMbGcdG0gHH5CoJlfel9IxyCywfj8cK1RR+9iiqKtd9n1SUAyuT1DpUCKC/cQxN+iFpdw32zvgW3OAUdmcHNNwya5aOOPNu/Ie/myljVF70Pvzg279wFNvt0Or9rmgrU9mxWDGW43G7EzYirDDTmC/yXgXY3cmIndCPnZDq953um+ItEl0SqRxMt/Ee7N9pZUZNGD3IStTioWNNuhzrSh6Tkm+riVRUZ1cpqicUI6x6ra4StSqdGpQ3DsDSNm/nvkZ6xeRO9/57H7MwMaFoz6/JJ7BAP3bvvTWc55qW0xb0xz+MxOKMf9ZW4NK53roqFMvYCDcZqWaAb7bIEn9r6YrTQ9LiibEv8d7FVSr3e0jc3u8hcg9plEdXM4tAa7YPnybLtDsI4K2DAhCFrWpom97xHot1hsMLpeKJ3J7qCULbXTpBwzGTiw4V+GipXyTgN24e63xCU5xFV5zAroZ7UNh+O6K7S++yuyFB+OZzBbtori5G8Px2ibF7QbrydVsJrZRXaP97Amxe1z85BeClyZXLK6xuY3DRsmMeaPNZrfxybEcXg1+hsuWr1md4AV/XC4ge0k2Sei1ahO5VQza8DsOdED0oEHlK1cT3lpaDkxs8bshHWZsjXr4me7bZFVgu7VuLME1p3CQX7mbOXfKw2uYpLzS8/0WlHhmEYuSSlbhCdYButQ3RFRn3zdbNz61Ovm5CMapKe0gzIt/sExRc82Tzv8DTYOj1wK6u93sOZSoRu7OGMc33eaLndhzQ695nssl9Ef9cJ+IiKPLd5uG6sOAUXpwscj/FBOwyr/jPy9h3MgNl19ceouP4+l1+stHEQmzu4gtBOZOLvjy77LH/w+6FKmeuVu0JC1i1VMXM98aN/vrMkarKBGVWKRbQTFToYNJkDi/XBcEemL/Dm2Zh3izMuivqjbC3GC5sk4TDgmNBDcHf4Zp3+LwRDwe9PqfJiaJxBq07lFlZ+6rRmZU+5fPYJohscN9xJPzkhBFKLT528UzmSz8GbV78gwtgLLbZ3WbeU5rmOj1eX3A1r7Hku37Mda/3DgNYjjMFnHHOSbV9Axp9TmPXw0gSlaDRK0P4nEQe7jaUKMSeLpGeb2wWTnIDB9jvJOzsyGaUjmyOxCoF0lcdFzuResOXJXGQZMp13YT3H//rwnlzYTELi4pbWsTpoi82vMUb8UNrX/ctnnGUEMEwetjx8wknpe6TGw2d9J5xdrgENgDsdfo0GfSEXbQPHO72sy+Tyk9lgO765z86Px7tpAjaYba0s7EnByHW2BNPbvgLbKCa1d0PI+LZc2wbvxaUSP9kpcXi3Lp4Am5u4RzrwICzTepFEBzKS8c6gANsq7HAtg/UP3l7NLspvsxYlr+J7288egp7Pw8nZjQFhGWPQfHdbhZOFg5Wt4sRuD4pVKSHzTXeBTjoOEAu+D98QJxUGsr7sHG+iQDXEXMeU0YHgOmrAR0A9nn4fM2Hi/CBgI69Vkw9bD0SERFIcJlciXYb4ToBucOw5U2A3X7yxtGeQxFmetC1ljcay2eWOhT1/Y+Apqdsto2B4M26KRjv41b8OvYOdMXu/S9GZM3TGjyIip9F6rTMbF9xWl1AGOazPG/JBl/krNMy05TKWOgGu8uQdCqWlhv0k4YRNPQs/YUJmvxJ6KUEzmzdrvc+jVcXg2qJmieuAGGbDE1kRSPs2uMQdzheNZE7JJTVN6zHG+8gP6mTRSk1Vvp2sjHM/prkbsimxcEfRzfOASWPwjoa3rk0xymmDibmmMD/gLSU+tNHOhengXE3yJjte0GYKtLUsg/L4/QluTlKCaEZPR13xIY0ZfJsKYU9GXGT7uLkZfZiOZU9GX20EnxIqnARdS4vuJuBWdDPe45W+gLkZHW8ZI2dwom2OdnV74ZiWtCifCLzGbQZH+/wAOZka9W5klFnia+vLnUcB0Gu9psogpK2e6jbtFj3A6tptUt9R8mKbt4+eU+2JMqXzutP2ZDRSNhpbUQ5d4OqyaGXOXtx7i1ZqSKykUI1sSCLovNzhQ7iF+qlhVr2vsHx0+IPxguSx3DwGepqK4W5oOLqCFs5jTwUwidxcKoEpclY76w34TLeOvuIKHBNpeXVsFIFMwA21bhgi/U1M7h2vzM1nv6obq8R2exgWT9H9OyytVTflRPxifOZiMnY6GJ2ijlK/ZNaRFxC07ATKboqFiWTwe08NDqV5p5oy7BzNCDOGFLINmT8pWs/yO8wOTsI3pbN5EdUxkjzV5fci1bTGznji42hXDYZWd8w2Fc97B1ySS3o1xwYsb83OZOmcGzUYOZn1Lv3Ox3PHwxnPRkZnjnZ+OjBlYZlQo0pGZ5X2RSJ7xnsQCkmea3HQG+0YQ6szyZkMEY8ky4SRJZGRLeOXjXXHXb8dGbaUgMT1VQ/794Cf90SaLz+UmDJZv534nRT1wmu9Qc3U/RcCoLOHevXr2+YI40LbRrUcyZzaL9a0M4YGuq72LSRdtni+sb6IsbB6JxuesqlEszDmMRHo4yJhH65tN5jxfihMMr6UQ8R/BhNf+QNK6ZuK8SVaOaVaOuX5fcaXg5c6gxCKac/2+TQTRucwzLB+A+7hsoVY+MkHGSULszoU7V9O15RXVpxesEw/qsrLpedAx+n3f/PvZ4Bc0Baiodvd0H0MHzHweM9h18hVYv7eLLZ7YQeHIu1+suR0KQKZtgrZgZnLwHh+u7cvmbUE6ZZq3Iwm0w5UfPyZfdnKFvImEGS3uBPFcT3ct3a0kHzGZJ3Ldwtvexzs+2OUCJZBudsR7IJ+6LR2pOGzsY4sr7rLRXWg113NCEcsPMaPK+U0u352C2l+7eHhJfwGNzSrKkfbPq1tfzEq8GvnqHKSThCsTiRFrupO1wrK54n23Br/luyfshrk3ZrBxYC40HzWYPFoQMdvcCw/HNdCj6/lU6G8+80NSmhji3CkExZkEti/HQwtyYPO1QSxQqES1kdQR8wfux+AULPL/s3nQrdtz0ayt8fZ86XbLUtcsOAHO4sJhkwb4q2zTZugegdSXdTWv4WBsTb5yNoNr6jbbvi6A6o3mWsAHvOcJWr73g3djmmCtdwxQR3xHT+cT2A7I1uITj3Af+vV3+49qe7Q75FIoz44q3tOUHHNlMaz9GCGgSmVO6NqYvV8OqhYYpO5fv0NkkJrLAJFFBqm51jsKYBqVqmILgYyky7L3CRd750nnXHJWC5H6UqOOsNOv6LzQ6zw/b2zKhgli0skBLFVtA/2Dd4MERXebQ+Vdykjvw56c50jSwNfBQcLPaW2WuZhdDI6P56RsZRitS3p34WXTkwVbSJevPdAEOffvfeEPxwebUEzY0RNwbVXHewN0guUTwHaZoGNuuBs/k7IPtNTV9Q943FQZdyu7u1JVXZiMDQibu4BXhVz3TB+XVi7iRFzedmsrt7htt7ZyiyYqmZtciNNELnOTC9GV9Lsr6aVEzM8leldFP+kcRE88PhYQ+CXmd/0jAQTK1fPODknPP1b+3uo3IlZVTN8xg6sjf66jOFJ1mA+GwGobuszjneGVbdOSmbhj6sWue3MNCQHeeFcED0hLgy95aKyNmc5jbrIgzmAwqEgbxD9Khqjd66ALjRPsHPS/XmfVk4G4etfDyw9yB8uFahQly+9NIFC86U43oHitrLR1Dd/Hzllre7bJ6DtNDDI3GX2nuUUmYDHWBDhtzu+vCcHpvJCLXhsJRTNd1V7SL5vKmVJKLjSR/JXFk3hsg6O15dsD75gVRf5IxTkFZcqJuwU2QR2A9uhpUg3V3rdNWnB1BHG1kcWF5A/T3Bxzk8x3huQK9QUnVD2nEt37jxkJPVuSk3DaDzBfTjN2zJ2w31IdxTM5GIwdL8AFoW3J5nmtiQVt8DiJ7xV1LT99i3sRg7Tfq57qDtHq77USz1rl8rK19m2Pi/HPtv3aGYx1NUoA6GEyjPi8f/2K9FtPezNu6xIePIWaqjqh2KAvnC4cEWXTyAA2TeEx/cwcom2qWN5dftRZ22yatSE7kD0ipdTPeoyJKnq1exBKBD91xPjiNlv78P44zQbSDjce3i9nq1hgXzS+AykwtZfFIcgoSAU1BPTyQmblmAfEiPN4fT8kRpzHocr5aR74cRwkG39qW7lbuUbXrvvduQSbmOPGK3mE3tc61pfiV40wh07CFGTRqrEZ8ORgvXqdAiSCk4DfNGxw7vOUonAlXvM48Qi15eKp2dhOY2Q19b8e5eXmWxfEHUDMHXaQHJfOgqYD99C5jFOhuqf2txvaJ2lvkfwjmrDDAj5/5uge2owd0NEHeyGmDpjkw2r4nrA/zBQe8wAmJQLapIIP6kO+KzU4C3EdpxpPQwr3dTaBeeXewXfI4nX8G2XITK5xtxjsHActh9rMd2Z45nZw+Ew3Ts2g7sjcj+m25ung8DnuvktQ4Xyq43hS4v0NNS78LKd8wJBXtrBvEVzlY9Ekk57bNEnHPCCfmtG3M7kHBcjPsxr5+M5kqXARtmPejnkGtXuFVU3WTuwRJyKv/OXBnkFtmVe3BQsGD9xlPxxKpagKs7JZoklklYrg97A3RzLHetQPXUgNJ9mKUwl8PK4XHYLsj83cEcj+qNl5RXcbnvZr5Jjf1lGor0eNzxM6C2W1vpTmyXbnVpT86mgammd5JT9APUgXNDQxMFzHZYdx2eMfAF/HjpYZxntfQqeiyWM9pF/j43CUJqqOohc4f8q7Q0gnSlAkJ8S0JOUUNuPYeBzC6k3NMY9g9We9r31U165VAbf3cqrzQG2lSfhB3J0z6Duc0gJhR6smK69iFVcBVjbI/BzzsEEq+Dle6HRgzK7/oiUXIiNlvAL9YUrs8AnWXxV417wv8xytDDKw6/fTyiB/Y/3SPVPCAf0NDnrvp/GaDXeL3R0x5rhe9x4Z3+EmnzQteOu1VKTLFkcvf4/dbSIc6l/95fH7p0Fp/VAyvn89OADs75n8Y9jwvFQJi12Jy4i23L/C5PcTlg+BUr4xBpfrA0q9OMKDLVsYHuRZgmwcZ3mYCITpdw/sVuyZGGDxACsQ/zQDpIqIjnMf8IX+VLJ1u6FjgbLDmN6pS3qgaBe7f90ByFaxu6F+9h+7xJYbeO+u9NKF+91M3fiyECOUc9hSQ0vtQMQrL9N1rF/jDWyeJUnXIQeWPHZ3rxrz++7SS3kJAZ6k+4GD73eZjWP9WDBwRZ0SwVoOJ/XM74EeSc4zd+KDZX/5h0KV2WU6yWm/zw/P5yHAei1TL6wfqROXiERiVyxdrkaU5NqSWHSHDPj6vXcqfaRB3FQmBsGjKJhgHLIwEBoz7NuvIN1KoQ3yVxDkbzV3T6qHrN/09Jt8pYZ/MAutmj0FKRTdoMFqAF8C6lQvk3HcLY5zenLAYMmp+UNhDwrNe8zyM09j5bYtdIKISQagk2WGxUXKzWWqjtRezl/0VjzKWS7zg9xdiy/EiJRoPqXYi0TMspj6iraZ8KPW762IabRM+bg5JIlIdWgaCKjz7vn2mBPp0IWHHBTKmikeRS9lkZdjmanjbgGNoCRUm+D7IXQ2y85tNy6abwFhc7MonwtUA27MwBu0euMUP/6JAHjcv54nBHis37Mtmdy90aCclQouwfgrfssKpZclyGlspVcuOzEyWaJqZHbBxVAESI2tLNloCmehOqIJMchHI+ajwmev6DI7xyI8cv1h51gEmS23fK9CfbBlopAVBTdMEpnYhZdBKChRAyyhloJ8KaF3RfnFisyuYMRxKFbwUnzl0j8IP7Y3C6ILeow4yEOAkxv6i25JpDbsKp/LHPxAL/gl84f2zqDRELvFQLQ/dghz5GuHCmCbq9iolHyRhZ3R2eS4TiDcd6TBAB8An3BIs/kEh6eUNNDdblhcXZFZQc5RcLi/mHSJSoWydBu7ux2SvaX2Z0DZ4NVstArbjP9Sci8TZpT+yR1VPQjxypPIdhnztwqtVXB9ODe0Srb9FvfPAcoT+xm21MoZaiJEBKn3r3Qc24EM9Sq2OYUI+1VscwrR9ctKjSs4OXJFK3aiysDdkljQBE16fGA2QrSnFeH57zPL+mBXcEOHSsQWIlJdxQatDL5gw0MZgGa7t6wDwLOFqpSa7yq2RciAmAYY66b6wKUosEzMsQqq7yuJOeRgrwCw4Va54xhdje727yQZCEHa17i+GpQTlikq7tb+zrx/ON0nVwPbMvBzJHjcKQh2Lz6qvEWKjmWKjgWKjo+c/D7Q1gp4gtXl6vpxSi/PigVQpbrkOtAsXqODzoFfOe+d23znlm/P1ju3/LKQr2NZN2EVoJevk8hxt41Forkk0DagXvfYd6LJY7aOgc1qLgO0DTDxKvuNiE6tWTsWWDvu+k7ZCuCukn4qmObeYX8wKe2PTlsh1dkqxzOXuUWjxhrv2DMCh7/p+JSIXPcSp+2kHRNRx0b/5laes2Z/oHMb4EBbJu1g08t6YVhFVvHDt1aZVVym8ViVWcVlGo8VaQcsAOqAWJHSS5emjHfUydTQNareFfDpDE/tSAe466NRUXFfhZ3gT1Av2+IrtYW1VlPrMg3HqoAg3r+fBbPuxFspiwwtk/aGFVP+qWYtoOrqdmlgRftFwbHbu5IYmt8BMFXZR6Qplik6Vs28ojEBFX5O7J8+IhPhQiIPAk2W5MLWpldtQN6qaddWUHFTpG9tuaX1/brGl6zaylZoNrfHRgYUY+zxfWzjU3GheMjd+3EUoxPMfKyrYjlvUiukSRAjRxKi5Q/iMrIPo8zoHoc4QXxYNX7fmN5eagXIg6CQ9acxjn16fWytq4L84edIaaLL/s3NDi3AI7p7SJ7HB37ijMgCef2W/Yqo7D7O4ckydH9jDX2s1SuQ2vmamP1kkdLPLGKMeasbABe06EXy0LkYVyXiFny/Jr+lUHhGvW8LSKpV3RVA+2eKjVU1j2wRKymBqzkhV50QNLN+eTvgJ5V8eGxhxaozi9+6QWQF/glq9GO79i9ilb+NsPdgDwFFs58IzGJrc4/Kc3RyLdG4Km1cfXOQnMDL8/buGnw8cyAq0+NJKg+uCD+UYKbfkJU1PvH7Fs5lcz/ypjrir/vDsNU2XxYzboHfT4YvqHy5Fr8FFFnG+9e/LguLqmsFswkEiUfv36kOIsGqvDivzJUuqkxfLLIc9MqoLBicMJC3uDNMe156VZjmLOndlToHEkoFFPjnXuxVDxcvpRZTPQK1i1cAofWxqWnQcg4Et/yRo3ynHewGP7G+7qWDLmzxrOWtvove8hcw2ZrDt8ZAram+drfo+DabwqZALYhIHM23H33fmhy/M3VMguT3+nU/WEA36KxWUOlTU52YVqhMmDAwKEysZhPX0sQt60e3nnbGcFvxaJJokYwFqzmWI5XHauWN4whs/J0kpqxARvy6Pgyq1Pd7j1ARfyxe5gmm/OW4B7bDIvSrZYpRUKLCSsv6PBau/qb8uFt0x5oqdAscHsFOgukqTj29VhilxGQV+5nDY7VMzJkZi607RnMGG9LkV14CrKFittqbc9kYZT4x4qBWE5ax/7LX0o0oabGKKOaVzmrdw+okpdMz5TLvQvndwnLQ3g3ttOzulV/h/+UUDYqSr+Vp2U/r/AWbbW39GgBLvDqKbdW6h6uBKOL+fV9o3/VrjakjtKC1yac5DLBbDXx1mmYAvQftizz7orNsXyerJFtN89dcdMU6+b/vvHONjdas2b41WrN7tiXMxqIyrYFGBc2x0aqg5ChJWJfCmjL9bjk6aX/KZITlrvZE49OvEJzmPgxNe1uotjReP8VMg1sJYEBPxKpV93PkNgUGYtOKmXpW0HjgIh7mQuiw7Wd8pTb5ej9FqdXoJLQ3BzaHaQvXtm7rel/rnH//mNZGBcxlpphFmIxipAP2hu125dU2Ofc4adFTLRR1R07P7QSrHQ7ZpMHtcMg2XC0tg6jPvOwpWzXQ46YmOZAbmbacCq7x17c1E+4G//++Stb3rsDUTqNFcDlxYtQJOd/VbWI62smW+UBWJ41i4D09dztqY90Aqh9ek/Ko8+mPJLGHXQOxTX3I25Gh+PDDM6/enckhu8cKvo+Xb+qkVGx8HHuIQVtlVnKEL8t7ro6clFi5UEL5HdfUomCRVypvD0rmyxrdKyjtc4r19z3kHF+tNV+H8ZJRHW2AK5zNv+qfpQohF80ikCiwvufqgIUvU3bcrXwZn84txSzuB0rnDUClDWAqaCyeJs8clVbJ9BSZpMKF/NxJDXx3Le+CwEfl1/oPfdmjvrrF5ImHvwO0ntA+5Ye0/GOL0VDMkteQ0u3N10Xt32pREO08iv7fg7Y167RmQh53qsqY+rajrb7+zISzOu1u7x5753SwDexd08FGsHdNB4dUnaD8ZVqVFfipdMVMF7SC3yOTEc0p8p5GTX1GidWJ1WCIegXWQFC34PHBiO3edTDy/ax6wQBFTB2p5IzfdB+IrGKff1U8W4XUyXQ41icQClo3kCMWh8WNMjHjDY5p9B5M7rGC3COv63imE8i4ui1nnzASEpqbOXmqhRvqGFxVHGyjf/qoSzGYVYN/RhnlQUO2+p9CRexhXasfTh4nzoLaI4fqqA6rcnejNEr4/X0hEXaqIneIxd39tl0g9JCZGmgaX+pwAuW2q9KigVhm80i9hhySQ7FOwMe9+Db0d0V7FSajbXlPI6bWXtC5fHhZKDvenqrD3UqfyEg3pO3cUJwtPPyK7wAQHytsp/ImPU16F1r5wKkQ5msjH1V/b2XTg3BKs6drfL3M3+fxh8VVUXUvukPDBmyARnFZw/5u0UvotprjB1U99TJE9zTPw1dglP2FGFLaaIndg3RgS/X1QraPNZyeC24PDGR5T95Xt2GfXf5kXvqAEKrTOKPwpLY9I/vD1e+6+Hr4yY1s0TIkOcPSMT2LRuGvtMsyKgdpgzeUVRxelaKHPSfVMPvyqMwjhfJHj8oGQ86BNmkHBPuPci1BCNKKplbXCloPN7yuUflM6xvT+d64GyWgpFKksZcotPyOU4yDlaRhEwdMX+nq67lbaa3i7/Kew2/5l5LdYw0v7wPC43qbSYPqUKSzB32Z2WPRAEseBP31onxAav5GIn4oEFNdw+ZsoKdsmeJjwfecz8No8Px+QhlVnsKTrwORs7VQTipurmGHeIwff2ufj81qxVuH558ZAqYdBtSBDPAvCdTPPZzAIvO6h/rWgVp5iFCkJPI+u779Q77ZobXhyyw1U9TFH+YAbUxOYecjwxHEzxieQUSMMF4eaOszOr2zCXaZ5WJB2cpFRzB61/l+yUSf7YcxVxocy0Qdd4vzyeHaWOi/NWAmFWms0A716DjsCWSVMiqnty3SSF/AmKKNJlvlEEgX76LWYDhmqo8VyZMc2OcYpjqGA8Mg7cCDt9GOiCVffOMB764K12Y4bTIAFlFJpS6Ufk9/38m5d94MBxnHYyZkz+phZBRACvwEl8oGtDj0K4PnOZ1RxaSbkBmzd9wtrglvwaRCyzJNyBppympTP1dspVcSTQ8GoGyg6q855bKwNtfW8060eSK/X0e32JZo/nSLXeWAkp9VfAOJmS1wv6fliKc5U5iYjHdrsnI2zQU5VTkT08fdVWD41FBQ2Yn62t3vwTt7PKYzXvPHYU/Or7p/7O9Y09YtWEByZthPWDOZSNUTRl1DU2jE50nd9/SHFvhP6BaNOjGPf3ajZxq4xiUHVJQ2byTtWKEjIPzqmrRwkayUZ0ICkCmPD4T2gaHwOCqzS7pRc5PRWDXwAk7YZW6PuwW38XMrKz1cs32smb5UUJ/wJ4J7RDwjYzDtYVqMNdtXKAMca3enPEeos+zfk6fntDf5x5qsMpsyZNGvPu7lJPOe5u6PEOZl8o81U3Ys9LuYkSVofim5cNfWxbFbcaPTbpkKZE3Ktazp6G6SrWq5fenuGg/vBz6AV76Jj7Nz4XHorQm2PvNzoBn4wVPn+OL90VS4TLv2Axo49niigaZqzf5OkXmQuKpvYzpsR/Whmbkd2RQKAdeXRp+DN9WW6vqduIop4SEOWqZ71ZL0ZMcnXitn5hfjWI9N+UWzsq0g/MBdHZ9aQcAk8JIaYDMn2DNWaFsXVGliLwg07sLoezxBoLFMOLkiUAkCDeu2311sNZt2C+bgHgHzJoXM13zvPeLHZFgxLmUDbGWgecou8Yt+6RirTWcA50JzhFz3BcE8sRZCJCC0Qz2zt056/sf1IR1z5TB+f1zN+JSjFw9i99Lr6GxuLb3rXQbliCMI4ELyab4DIOFy5rtSsmgp+wt841sLD2QTHdkeRFwmJ4hDOFSnNCeatn8Wj/4N6o4YeTgJk5zPSLGs+irx4vlYL/aYROUHIo671g9tsd+wOfY6v5pIuWrd7sbU9HIRbEFfc7id9+ArIxjg7XdRmvUePf09jNjsHiFfle0AnAVJSGywGhVAlmk31koMiDFzbNJeIvgOoBIuWT6k8mvlvXT71K8hTrHANJH+pgBZiwlHU9etpYSjlXwX+D5qqkIAi5OqQq8AV1lhXw/rgUe4PFlWGrQdTrJ9mFIkvLDVR8T3y9Ina9GoWUTjbqERajujlLwoBqGoISISlKWki5K3hvKZBjwnJ0s6iVz7pi5uMxVBTV78RnWTe5iMXs6JJwVIyV1+eA2aPms5LbAaR919dUDPqtylLETj+r7xyDveVw5nTqXR+K19kaF2gTd8mezjbnHMDtUWVFzolqIYbAmA+PjbkV5+X2l3Er+uZVD+YrbXPCELirNRk12mjcyTmIvX00Mu+0/Oqpv01oI49Fq2gItkVvdSngxoQvgFicWXZjqJ1WWty+bzd4S2WEJzcjDLGkqlnAlyxuU+xLVYQFsuoC3QrjywQ0MmSOwhWQfBSTxY+DTXSHpyp2mt6rOJwIDf8UgZri0vwYs0+MvdWmuRBn+t8Y5K4U2Bwuo4WskURKTo886/ymUdkNTfYzxkHsMbXvoPvZRucBkD/l93sKtuiRdkLKIczRFyNxgPm+BjAdAphCmx/a83AnoI0tUGd6MVAeNj+L7LYMeVKGhju4ktHO9hMFZTZqozP2Hmj0Xmj3ukhw1AY6Q8/7LIxEf9nSdxUD8xlNGTWzZV62SVr1sPByFQ/4gpc+qcd2VOg/PFWYn6Y5n6YwX1B6bC/rRX7F/l8rPegZBbXssONVhApE7ZUFpZYgGh3MZ4imFso12mAVn7ByITMTLVAi+qivuQrF3LrBx3C3fZnHprZ4ymiKrsjvyDuT1IdSx1iUI+1HuAGhVYYtg2YbtQFsi50SSKFtsEVoMqwv+1mdwwvPbu4Sidp9yVxahtb3pXFtmUVK/ICVYVTzatrUG6a0MW+mdVst7QiSlcSjJl4DvvypgLLtMvCJI40YtYQpjeEg0P/z1+V5bjpVvcemfcuF2k3eDEV0tBFiQ+5YXeNaYEUzCs3aBBWHauVrB+4BY5BxpEJDk9t633Jp+VYbJF/+v1YC3NTCBrJ0q+iV89GJaBB5iyAvHs+SWPhqWzbeOxgW9UDgFdPYoC34803A8tLp+GwMoDmukRBFA2o8Tag/7Bdty2B3DOev8nJHeLOa2uL6Tf7AV9g1J4aokPMheMvomcOXMV+S1bqT05b72QggKkvAC4fFotCvC1cZQfD+6KkFYqp+4kteKTn4sgBARdO5Mg5/dOkfRDfHVG+/HtcsVsL47SZi/IP3DXnOcLs46p4xxq5NNyWdt2dnZ648cZnZ5oBCVNWDTp4y2DhGxtG6K9IFEqfleCEM338Zua6I7+wfexrXv4pzFqEiZmuda7BX2sB1HismBk4E7jdRyXgD/3D5/C2vSYtqmqoAWxTPKxAs+NuxjGoLTJvbBQnCSpYbVjva0fVbJ7FFjVi6N+kWKrsVQzAXyLzd/jG2Bzt/EI1GeLvtEH61oHXndEsXx7w//Pc59f+Z77QJS1W60ZC79JgjtT8eenDgL5viYJWcn/gWEd72KJ0tSId1fWJrpTuUcpq1N+rFLffViHtPAChhm79dMPuPIt1Hm32GnvOlGE8Ri0MSGn6FIeDtmsltlC1oFJe05gRjPriJNIq7rVQ+5HEKGgP91PJeIN82CTuGodpwZJBpInfV7Hqd+uOfVuiRNjnESSBju5fw/IQdScM7Pj1lw2xCcehx+nUaRwaqANr6BRsUtNWcdG8TTmm45ta3wtH6spU1YwgeSCYSKXu4vJpu1KRJCBZKbJbGbrtP0Zc8JpZnLf/8H2rogcBd44QJWo2agI+PAqDOAAsRXbndObML6GVIQHSjDIebOLFu31iRxYtKLcbDlJhhImVGvVybyjLiKYnElp18n2aeW7kR857vlmPttUIHeLc9VR2hmaqzZ4qChFJV5u872DqKZYtGCB92Nw/k6FT2bfuFuFwLI0dgWEZUskHvABnMQtteoEvjsEmhynS4P247UFAIy23+GZyJ4mlWdU+AgdTpL+WF0FYJjXQ38WE3syHYX9hsfm57BL9zWIRDoJt88R31Fp4ziAPQu983wwG9nz/QqnJzn9nz5oJpstGk+srck6oqsHI3vzJCOwMNrOzizwZcwH1ebPcdB12Dp93k0EN9VPLT0nUb/1AeIwkCNbRL/nvGkP6IfEDvqPORlxe/RoEsprOqN4BMV/bBwnO4m62ok7eqFrMxsEckT9dSUfsFbdv34Mh9U901CgOUI5fGTA/szy/gMmeLuHfTOxv8WPGVsE4/OsYJZS7Kfk5zbPxv4hlXj/Du9Biu5u/LyLyU+zlNzQkCAw08DsXwF8pX/VzNL5MDflBNfoeLzy8bWOMclCbfAdB0lmz/kITbklrxGzYP+8Ei/AD7d5P/YPfdNbXCF3CxhGaZCltoqAGyRyuMf4xmZ7+rYP9uU6YHP6NlXH/gGotgPsQ0j73c5OQbqXOzOW9fWa7F/lCKtvX/vxvrtL4Jfhlyj3dt49wV+DEy8v2nzbchGTJ7yRtFGGZvPBN9+Qxgff/DMyXFQei/gdZaASWD58f9FEsb0+7V+vHwwZEsqluOR4P++c0GZf/4F+Kz4jsUXqysT/HlLnIC1k+Ouancbg/AhR3OZ72NA8sDby/6OQjy1ea7zv5DFKV7V0t0wWfM7kuzY8ODRH70B1sxsw/smmQhF9XS8SOXLl3ASf2U5HbfB7WFm7oFfBSh4spWyDivcP/dHb/B/7x97oe1ZPp0R4KBgj1vru5SOMKvv8n+BDhXiL7Qc8OV+mzwfOuHFo3fehcJomTBxSMa7lcZEnWOW+9CEeEYhII6PgjmkayQtcePk2L0JotuoDlaw06t/+6Sx8n5Vz3UJixUeFQ9ufZ7Ur79ryT9iNc2n6RdkIDLfbOe4uqCje9cXPZM9vmmOMiuK/tYU22uu6AAxoNrvxiILDprVZMdjd4qC3f0YmDflM6Ecalg2qs9/xBcHsMdxnsn8pQfYwHFzI1DLWapYRVERYyFxtU2nsAvHMbR6QHS2muIX3ySzuShXt3bfdV/bqmqMyS5bqNyVMbpuMP7Wjdv7t3pMBigBiFfnx11D8Qzf+di1qF+ATt1bt2IO+Z5W88vaH0sAD5212PG49tTrZuCMCQPRHm4qnMJu1RBMZniIHb2NU0B62TeKxC5We91sfA6mSE68outyllg/snt0NW8wdwICLj3YxzbtTRcFR7ga7h+VXWOjbmqZlLHaiqYX9P5A5PXqCzR6vXWypyO7x+Na32D3uBiPzCq+ouUFtQ2zsmEV10+kuUqycKPCen36U3ojS3nVgD8z+sUsarUefVvogU7oJUbGgFJuqQlYU+fJHIx3vHLyZvdmgF4A9jLlvyXzGH+1Z1yefoq1yMnzUvFvvi7rgeT80dwiBPipI8XZId3gEKeWit4g0Feaf3iVhB/e+Z3N31wQYHPZ4x30b5weRf84obTB81GMd0cWbYdNSgOu47hGtx7HP6A6ZDV3yQDeJZeOkSEvs8cMDsOPuKj43gR3bdCC7kPxCecUNGhNR40cKB5Oa6+LumyOefgWT817kgVD85dh/yDnsYqNV8i0Yyqr0gWL4LusDSNtl8caun5BXu6B8b3alZLjfseb75qaKZrfk1d2hO7d85xaTsQRNQjGuf6UCPsIAMH3FjiXpPLYJeu7Wl9CxgcrOncUbK2FXaEts7S6fA7h+bT83cCuaV6iLokxumjxiM1jscurfALjDkgnesbgwmXZy0Yab0mMX0PJtE3bsyJDj5tlmRoM/5s9+uw7fQNv0KM6nAS8Kcu+ukomaa22Xd1VAgs7De/8A8pPHCtB7Zf5xA5Cyq01Z/WF2ybWjlZ7WoAiZI35nf2ZXhZjmVmbsboGJ9BVhczWwTjGWFNdoZ0UQvg1d2mDyWOrsVcqubs7FoPjgV3ybgN/YwfWhOV6J4Ngq+cdWitUJ9CvOVXWhtoyya6hVKc2/a87COe33ZRG2iuugUiZwm89jV/SKbXNq3K356biQhyuyjrq5hIrOo4YaV0R1bxHI46X8PPtizigb2NSmcg/wHQRgY6tBLLbod4sTMHYBsLFVp4xdCcT392Krck/zHt5qVVB3bX96yGdF4cMn7VhfI0xW3WzXfKs0GBR11ruFyJCUJuDE4R1yvFWR9t/V8VYlQdWu/V05e7OVZipJQpnnYYYo9mTKO5gftafz8dmJrlk8fFQ4vRZ9yfcyyTtw0mhk/+9D1xKfEq+h9jxR026Td+wKnvttioC7Rd9LaPm7Nel71bcaTMB9t+hXYhfysuq5g9baXbDegJDeOFsNFyurFR9dOixyVbEgRRB2fQvT5HjneM2gG72UVUVacqdE7V9fSzqkE+WTP4qUsy7/SIRiN5bg+H98+I596uIjWp7w5La5G374sD4p0fvVk/vMoRTQDLlX7dgf+QhiV7cyITWbF14wp8VjC3euR2qmD/J23L+eSfDlrfWGXLj1AJIqEefwuwXAhhoYV45QVSUkQIuFMnelA2DKjk3Kjh140sk9Wgn2csPaDtYOzCxnyWoCNoo0IRaEw527Eh3aFpFHbOWb/1ObNnphDOYl7nabSGM3NIndvz/vgTgDrY7oUtV4JoExS3XtxhCs2ZI1SDMbibOz99B8zEgQMcObx6NnaRuuuRvQGbs5JGsU0txmCrm78tkFHpo/N2NY6zHdAyjdJrLGAY0gkcDFJ7iD7tffJOjYpuzYTRHY58qKwNq7C1WrgAPecJ/ScxCLbuzikOWwjfLntV9CZtmBbnSPzMSxsbj1ydsJ+YTrgj5WRxzve8kQrDkoAxizuR1kZ8JtNWXzcojVB+Plbw5TGsin7PRjQlgKcbdMuXBlyKDR/V+g6tmvKa51Pnrbstb56B3Jta5Hb/PKvJfIWrLMxaStMr+4UHfGo/O+ePFp//AAY3EaTpRBxqROQazvOot3u6m6sSO3kGPtHn2u26bAmkk42RxfYlA0MF6w2pux48/yFHrT+XSHNXIXn8abIIywglDD6apYOnHLbLnaLJyz3VdLM9XdiPxDv41aOZVjFVQ4tsbnaa4s2anHkl0Q28SDuyHt/FvvtZ4cq41Yy1LWFi09vC4tJAUOcbORQePsNHWTnrKeUG98WVb/xLUtyyUj6C5shp6R4ai96La0SWWZVHm3zRdo+ZcRR7hNHbLR32mGXeQr7l6epLU/2o/iQH7f5sBv3CS/t6F48bq4Jqr8xXdz827aVjVSoIb3HDs62obUE1zlRDTbK7BwqJq/qRxv0e+NdNw14QqkABae/T3Tw1liD6MdLqEOx9rREvqWnJ+WUFvrcLNzCW3z7aqv/aWhi0oq1QzGu1flDii7uogJe93CN0rWeputYvcfZmhR1vSuy3ij3+/rME4/K2f9CgpyBiQ2NDKqFlMi5YQLuUzVobpy/1bvYUbIYNId+swPis/gewu/VH/o7FGmH2v4DpEV5E5Fk7e7Z0gH3NBGNPFRntcdlSvcrfIDzPK5qL3yV3y+AJe/Oz2FfEp1pw/QH9cvsbHoyW4stDJK1dcvEahpkD5FOo7BRMtf0T79BOnJ5KXb761yXSGVGT92V0hlOOkG78b9seyfROY6nCfhtBf9WzNv7J6vqxPAPz4KhygoLE6tfbMCkrrNu7F754D77xHw7d5flDK59MidTZr5J890xPThMdGCdcc8PbXlRew24LjtPoQuBT+KKB3bAEzpHuBBDg7SFq0P3VLbyT5QvDnWXj9UoTXULgSKeCKPbXz1RRVBd+UyfithEp9Kbp+fGmKHwqrTWvxls9lnhGT0FP81LUGftvd8INM/A4KX201ru1PwcnfX1/pkfdAJ3t0XqtfbLCw7mDbSsXNKZQcELFNC7b0tiXxP6SXP4zGAsdoi3Yg9sZocwTsXuHED5flGsD5OxPyyRXmRsKvd9xdnI+mlLboM6djcHV52NieBTWDfmgRONPb9B39fxhZmWzXalQ2rKjExNuv7nVPX9V2E/jLn0J1dtG++f+hRvn890nR1txP4qLu6ASc0N/giHz91vgTqdhqENZjdZ3daK5Nt7C5r1W3AhqxVF3zw7iqfuChTDo9lGAC8OKj58E9+AstHdM6+s8EBMLHEHgiiplrN+g/GqlsjZg++dcML/EgvWF8hUHG7xe3QwbIUHbCW/X0d9880Gxs0G2oAJGnV3UswcP0Rau6IvfAE75Qco+OpaOEv+Kh4V5zGjV6zgJrGBxD/dY/zuLLFXY15HVItRRAZFXJMnHG38Pa7M38PUDBrxRgocZ6hNNthJsC0GXercLqpr3UwNvKXfoPRy2j1k5QZMlTx7BZPRkM1bEwHm7Xu83y70JcW4D2VHqP9nVdllMB0WPTBcpof0iTul1pBZiM+2TqmA3w1Xxsvq/LDOb3RNXJbNhBunEB1aUijsIvFjeT3KFKD8PqhSZep3YdrCb4uXM2TJS2gxdDIy73fMxsAqgjBfqMgOJ/mYNgj84DqwZoMIdw4SwnN8bqEfpxatlyDecDnBA/lAYczkkN5wNE9xZJ1bYgMtdT+VWZnJ/Z5pTHSzO6glHiOzgALnGqS6b2M/6lCUxMjFUftR434I2HgGxt/0vwQzu1Ik+fPemvO+osUhVZ60EyLkQNMwHu8pwoFaLFgxOPtvJ/esfmddxlORVdzhwpZZvHYyMyMaKimdDZxp1v+UAWpYFWcUfYCNPoe4bNskJ1Z7rRCOuM1aIwfTcRwhWrs+UnB7AwilMSR52eujQ2ujeYuxdU5A11WGgwhTKSxB0Uvt1vId9Jt5PzZ73sEjwx7KOMQPDLsmcKrGyJbGCM1K1TPjGwGBiwgRj96Re5TRVlmJvC9DpHwFDC8KAcG9dY9aboY/2yTWWw2ee9XmRS/xja/xuaKvKc8splaT3s69TN/0B+Z3zfVmKo9YcqCZYETfYP2mck+ZJKmA6pJPMa0VZlF4/Qlv6Qa83zUTHqfPN/ysfuLUuNEEBdIUXfvfvH4zGgr8Oc5gTurTNPo7ZFDfJ099yOOMAKEgLDAXNyHy9tpoxmUGjlfTDOyJzwOl8Ww4Ibahw/IZPCktacW6A5CjbfegFTDTJ6EN5pVo0DD5ca6X52MSvsazBofBAl7FbbpNTboNZ5dRgrsb0dJAWB6m2Ej5kgslWoanJUtIJzTd8ViIVS5u9iC5XJ70Ra/xjY0e6Nvwixh95ahziEEnhJepoTYKPQ1NZ+Mkhll5/s22Xi3yTH2BDP93eNfA6VLdexG+i/PIZM0GX1O2zC2vBzljWtlLVnnuB4qX8rx6qQTKpf3r18hqlzu6YgveDYwjxzfzckAZzqKniAQbfrejRpAAKuKcCGIav6xXRNN2mLXDEJfHqU5OvRKznf1ZDD5yT+MrcwYSCXwwLi5QgpaDXMZqY1oT6fi5MVMpzKCVAM3wtH0XP0DbZm/xpd1zUdvDrVjic8wxBSPxVlDF/b8SvC7q8xMdk8rNi9QDhn/pepDVJ/8FBmNPSTezFArqeK+60pKTz842iSTGu+8Lu0w8HC1slECpYZAFOKweTcRZAZNz59fd+Jwsqxl2os9VdaaNq1TNa35lvW0X+KnKCxxtZi0NPyVLRh7uqw1RX8o8cLCRkwZEy3+kVF983GxuLVc3Fo/0NGXKBzkexJEqP8BQf5w5oukGJZjAlWKbc2CtOs2zcYGqUZVB3tpf1t7NyaDae4llrlNcHu3NNjjPZy1yynOBeUwuecVE2r707yZVbjRsZmWWrZqCyqXckprgbF3bwGfx8/l7TkIEjKDxg4MfY7Ulg+cGksR9F3hsu5oAdbBopTZNPbKBuT4RLUGHiCgPtiX7w6PnAT0+4EUFkUud5CGfCjWd3Q2YklzUL8ai3GOdnaQamTOZnyO6gnj2W6uSS8zmH12fU8hArVsHfTrQlaNwI1gz6+xQiX/J+Cj+I32gMiq0bRQUUJY7BRO6JpTY7OvcK9895VVBK+G1n212dzdgrsgyS96/0OJLZ+T43JecaHypbxikkOv8+4Iq14W0N2L0rTbDBl3V/vvaXSQvmOr07ii0G+V8Ua39Ukddk4I5+HWgLt4fk/llfkLNyzulQ1HIvFWSWpNs3uh13CbYWMvAuSXc4ArM4vFdHv5Sv36+zjXi/ppTJmFPrbZMu4WcZuK2zaaF1mkTXB1UC/lv1isY+39LEFM1i7DKdbiSG3WFgVVtrk+7i6uuK8KvlD+EnRbonzvVSRoc5nBdQP6OyWqnUD8V8NFCduL/CJ8bDmjuGjDLDK814a4Blk20uOp5dVzF0gPm5DQ5Qezrzyel0vHYYvFr2WDFpRYuBtvaGnErkEWCh4ULVb2KoVDN0xwZftxtQ4XOQhcqqspuYXvzAemWug+3ibb2AudXuv1q1LeRa/E9dOJlt42TztzivUPu/K9KV7wNpRwuijE66b/uX/vEPjgD+y72Xl8h6Tk02bn8d31joIS6jY1yt2FXj61bML/2QJTJD+newPHZJy4bSV3ad/ca/Qyp9VW+eioc8SEGXtDH2ybdGPvf/qNR/ycb7jOUYnpo9fGc+ot2eA47C8lzgm/60sTIOWznYsLXbuC62/vQjqqynfpCdgsU5ACce/uAF8JiY32scBJovaslrRN12IAix07WPfxE3Sed6P5SXmaXwHIh9lptxuZWmODSGOoMsTMTjWOrfy6vuKH3XgLDLsQjcY2QccWjcYd24TBxV7kkU5R180GuE04LcHCjfndYNK4E1sFtoMsknuMiSw2jcYmjcY2jcYmjUaPhi+4juQKSK3oBGa66vBC7j2+8a76WrZuTM8iq1sr/xRb2DJ+D/YQ0Oy+X1/TZhBmIo69FYSZiGNHi9/LfLhGo+Y9C+Fw0PXHCPFGaEzhbOTxzULaeILBKQSSds4PJMUevnpDV2JvZwI3oYSm39h7ni/yv8EKvqBxJ4pwuCDKASwH0rwxTvBtCFwe5baD5/jjIMwf78H6g1uMHR7k4iDXG4RmqI3k3pqh8+2iM2i2jr1J1LvjDorpMaQaw01SiAs9by6skEloFpCPrfmyUdLutmsnGJbJEvfOeGtah1zU+e+EaayqmcjIALL3W6MZc5l6Y2/GXE8cjuReAdnGjYXLU+fzpPcBK5HlvzqoVl9hIwXBcCWtfmDL0FIwGrOzamZqlORVWH6w6urFOIOOl0vG+3CZM0XGFkXGdqV5iyJjJ9tHB7t6yQ8gmCsccWxN7nGLGn/EMRD6JAR/WgkSVbc40mMo7ev6BBILlMNdkwIP5dhkHZos82jsoMjA77ApPIX6OaKWWOrQUkqLj+A4z3Eym+haCLGweqyZSQu5g/6OR2rFNBp3CxVZF+n/e/TajeCD41lx0lBJYaMNXk849M40i09wP/qzBFCWbCuZpryz2uFKEARjhHb7khcDF5/exUSnCUR28mLUfOhvF/DfFkJZSHYeJ+6ReyqPPngflubOu2W9/kkuTRBwZQrKhyQH9m84gj5q5TKH9z4dNAhWR/l1eAbWfj3McR5nBU8GFpY4SLHq7NkQH3xjjjUYLl6zR9Bk5I/w+34y0LrXkugcFqpDI7WBIHRHYWfm7jiwAkuGcwpQ4HBi9WSWKxhpvq1iB1Tz28wQ+5Bqfh/bwjMrH6UjS7iA1QLQjfOsiu0taI44QMc0Byi2LtnMGomf/x4VGz6/53jvOR1LU8ruw+qX2S1CGzXehyI81T+IvEM2R5H+jMow+cXBJ7W/3FoMdeLYveQHjd9AuuVvEUFYj6ij8ZweJ7GGx2bvCGt4bEtPxmdmzpfi2xb9xX0JUBPU/z/wEERrp2NWaLPGl96V4LuYV2Of1K+UDUPH53omIX9wTRaHvEWHibtjV+OA82l4mqf6GDrw8J3BhpBjrMU5XCYclIU8FW6Bu5vPoWE4+x3FCOZBSMKRSjtvw3zN2A9JH3cxnh+iLibN6KDfvWqeTZicsEg1TUi4QoIi3SPB6f/7vTN+Y5RgFv7xnAxE8xpi9Fc55X7sUaIl+e5Z3pP5WHUtFxCOVTcyoiJyAk/F0OP8wGcsUSHGikdEFxX89rFj+CKwXMfN6tFumQlBAdQ3e9X9eUU7H1+TXgrWwhf3tsXr1vedhgsrB3V+FN8UUIUesjBQyLm8Evf5obLgjtHYyvSQIBGAWl/fAkuCujgsZ1hm0e1oPinYne6p/BjI7vT6UM+P7E7HlOoH3KSqQkNXCGdWw0NHSfju2X9EgT7t1KBVuIfQOt31+0+OiGrE93Pi6jcfeP9kvA8qWrVquveSmBWLR0RnLL/mH4Q+rvvXs7drFry3poMERWS8B2NRE5dRFfwXKZLzeV4DSC0BlRDyWDRI0Nxj1cO7BV0MdXjH1mR59S36Z72JmJihapb5MsD3d8yecdh6aoav1mbOGlX3q57B/PcU80NRd37ZnBx//fPm4B0LED4J7+7eyanS3wjgyhyTq9xd+WB/1jVAC4BIL/1ir5/TTfef8olNKCt9JHivlMIRV8VgF/axvMTdyuVDmdLAmfIrfG1Zhrs+N1cHqF/HEUbO4KGLdvQUTi1l/Q6ZNM5P5u2IRuOIxSN2IaelNgJGw24Sk2TLke58bKHOISNS0JcgxWM0ZZla/Py2Bra/r8rhEru9xJ7ySR4DkNBNqHE/zqKGYCyFKl3HLBrnBxf4YRhQPW5i+gx5aC4N512Ui/DxcAk/vBt6WoXwwzvY7l1pD4T72IvWWQxqFCc/5oi4W8n5E9qmPW90rtzhcXwL+1wViypbp4D1yZxzsfVV2qQgUCvDnyMNdsT8WqKX57ucd1ThVDzhalKKRwoY4pHPWhOSmYPw615ITXjM43EKUoWlCxQIOllLvJCk5BSv3KVCgojrXAd6RiUbusrHbAx3C4bL0gMHqtFNhGi1Z3rpBNyWWgTP45W/UGi8zIlxCnTl1Iuafar0PnFErXy5rA51CnQqT7G1KtSpPM7tn6jT58QpqQTjCtkJQo1ciALIVECY0/P/BshRJGd9ksx0CCALEpZHaX3Aq5Fc8HBnOh+fzUdBoWvpTi7g6xWsQVbvvTf3eN757jsPSo2jgkpspdWV8okC1Lt/+S2v0Vkd/kpf7lBYQAccea2xxRdOM+duDX5NnFh363yKIGUzYXWPbJ+sZ1Y1nMAhocYpnz3A6tnTYxpIyd9yJufoWB+LUxBGyKUCicURp0al3MzdoeD9TL4vtn2RysSPHP6RU5PDdpp22P1rsVW554P0CO52nH++k61P61bJBNin1TIOgD1R81suV/O9AvoNuvIht4b87h+QnerriK6N/16tNA4fPIGXSCiiHGl9xxY9m3CbLet2SgLLFEhkWvlY4eMUZCLVfx87oBx/DL9YeO1N/A92bZm0+AbfiP3OAffGLtUpmU981J+w6WKjXqDEiR127QoXI2UDeyHfwiPnCmVYPuPlmXAqX/33Bp/2deI3G2J6yeYiWcySHuv6A8xxzeGUA7ZVtklPvh7CIQ4yYx/JXrRTQRF1ik0f4OTVckTIoh4jmk5NyyFX6VRwUx9/ClFjqaaMA4Tzqb93BVgzF/PvFm+aSn6xlauTMZUIgYqAfPeA5Id6xW1YQMMITgUc5ZhR41TANEVZXxCfV7tKFb1flbP9NFQP/foC4R1/3zXwildHbxUGnQ86f/yncRtu5jEnxuQLV23dahLsWogc/a8flZpTKxMtJLiaHFP1mCqWhVrfmLi2VpvMStTGkZhI7ErkZERghuXg6kev3QI0cQrKIoL6e8Cn1/PU7E0u/+o1NP8EQPx+Fmy9ezhme+QV1Q69adlzmyR7r6UfV7YtIpdGFPA/vDsyFpQANAnRqWm6BG/shZPU1qd2TtLuQXZN0u57BpCGsy9khroL7B0G62G9wZqYSeOASWMKYnwgRl+PSanlbVdHYpWRmEkwTs1IzMhT5pKPMu8l442PZGQFRHmISrXg8OmfMjkV33T/U3hbjObr19bHE5FYUBl01aqXtAqVZWMoY4uLvyk/TrwUmIrjjQUMQKe+ObPAAHTML3Si36/kmth8rgUGoPN770t2gNWjOuy9k3QgqzqWBxRdu7ytoIcDjcH4XD8b/n2SjcyBqUKuyzAid8LZmh3nx5QXvNlvpdmcbjYIdWtQXpnZAHYMRThBpeEmNMnVOhqpaBxWdSLZTPIi+52S0jd0IoEvNMnT1lpyPFPR/nXq8cgPxFmWmw0yb3bN+1uY0TLyUwdxwUouF5nUU8thcNU439LNSKPaKDWqndxd3btoVYWRil1ZS9gyb7OAg8YZaNz1AAC+1aoRoKRJu8sHcNHoYYoDI1LjiydZwouehh6w+9cjAYisLgUcIQGAx8ULhQQATmT7BFRPSALg8UBTJNn+8RXyZJ6W/E7+ASh+HfNg3C2+ZU3IxtNgu0qkAexNlB80n9W7Rvz/aeqibi1xZ3GgBwng4f378x6g7Nr59Hhn9oSYmgCOYNx1ODHaKlMselNLFiun6jd9//Sl7QvxNtvWNXLwHnd8nuDVyGnRHGG2RmerOQ6nwI2S9YF9y0Ka2stR6TvmvyiLtl9NTS27u5CEFt6Xadff0PRjDtJMGyeYNvIXNP+mjHYddV5HANJoyoZVMgGfyEU9mP9paGyyk8YHZ2ZeQP7/yPYuZgSbw4Fws3M4TkQ2hWHWdzwNlJoKMoBJoH+/ETSeF241VMK40tFmiGyjTVptk20ckm2ooFGUxze3Ric7zmm2GA1ur3IKKwkpovfCfbDX8Py+2InAlmAk0wNF2ef+9StCOigJBZ1BgR5hNKI/jd/xe46G5tNs8xobmk+zaW1saL4D97XW7+tqklj3acKflpwtOEMNXBKGb3roytRzc1zVshL2jtjMSIoxo/fkXxOaoG4+OiEOV9GvW98UHYk3TrMVagAyqQFwI60scFjAmviqONBqmzq/4hShfK0aXghMsI2OLd5XL8tt676+pSjRHBv6ukCjQrHm49O3zCcOl44TP3be0sDMrsk4TpCsPY+9EZx9TPv7m4l2E4RmTPpqsfo5N0z2jWMSx9MSTnTENFkonKMiweh43ADf74bkgtfG09Htf/oXW39ANfn0fJgVauYdOoTHqaM52nl4nuUjMNTu1GKnwPLR+n23CsOFdt6uwkV1lT/Jq3Cl01NrDkt7GjbDKpJ+NBlC5W1TQ/oe6EGU+YnuOhoyT/BwJKgMpBp+f9ggdbrp+cFHeEzDcTpUvI45Ke4e1qe4ViXNSW9PwRQN0Pc4Ivkb3zmTcRy+Uj8/w1iCfiZSvp+D2+Rz22jDUh8xDWbokNOKdftQHSWjYAXHngUWMcHB+cL09r4AAUnewJmpC9Oaq0PyHjb9Bbxh3QYN8mPuauxo/jMUC6zdy6n4jt7s4ArxniSK+cNjE3uFfUFX8Pqm9uNjjqj+ANc6Zr24WxyjY7CuGKy3Nw6urt3Oek+T1a1Eh8YV5zw6OpjP0/vlc3Vw1XOoxRxLIGI8IqSYlO9U4qyjGfyYeeP0wbfKWZM+zie1NDpCDjd0nI52L1Fkq5BjpozTM4k91X4fHXMQS/cS2Sdl7M2UHNxDuF02RoAMJz0RXdOgMU54LM/MvMcrHHa9TE7ydCAPlYhtQFXf3epYrKSUCZygCxu/whnj7GBfHLGDgb7mZ/k94Pi0VewZKU/1bwu7cYJ6Q854R75hLKMCk1b9uOsqCgO46vYv3Kwxu13mJP9GTitnEIN/I5e8/m4Nnvy0osekAzMt2TF/WmH3O1HcrymSy3DKN7/kO3xQ2KvOSe8X+g2oJIpalobeTBmpvJy3xQmWDi7e023nOrl474anxmG6WM5nAajVOUkFxtes2TSMn2DNygssJJKURBZjdX3f0DkakLRnAIZoXGpsIRUXARRLOFhc1zvLzghLqU0CHCyEeEDD0V5mLW+SaThGL3AVniuOE7gCxj7JYwaMM8gXda+yvIv15X7ehREYHCGJfxUhZTCy/2l4u8eqKZdNMceot0MFySHu99qIGbWaaB0F644pOc6oHLN/9kgAogimkD6u5ruWYzkcUo36ycMPtgTNd1OYzTIByhlENyjfOCHGoswtXuH5wBvk6zDJR2zx8XsBTxYOjGaanfOAiGM/OunsqRFphPDRq9v8js7B2ljgB43+xA5UshDdxly6hY6ABrRQFLhDL2G5ajIANFRvgxIEw2HW6HS1jV7KmujPbNy8Ic5/DTR3HUs6ncHmrhNqvJCQip2sHY3Ek0Hv9USJJlcp87+cWALTJTPxTyJbMnnWnTUYIJJ/XFVtNcwdicpUePGoXd8vsE42nDIE/Yabj2vLmqNVTIpCjOCu0Ho9iOQw48IB/cYwF25YEX5NiSu4tSvZn6u7HUyfu4+WA5ssUm8cJ4NOUG/gnjqcg7yC1gj0yX/mAaApVV6nzY9ZNe4W+7wwzmTQ0qgFagvL5B6zMyjWRXPFZsTxPQKw5GOWirsFAzZsrUC6oWx2GaiWvGb9ydj/OQtjq08Vh/QODaD7t9lkE0F/TL1xBlq+zkjmGTY/nsG2r2NyjTNU9DJxyRlHVxB6o5MrUfRSscVbet6JslXfDClIM9e23vuFxq/z/IRx4Moa5Iym3C6z5aLUtB2btGP0TdakTycKjtrYpXhMwnGi/oyf7cV/pimLg7VqL8qZHrNGrOjmzHsznTCcbP06Jnk8M9EjpcmyhgH59MIjhV+O5x6YGeVhdhq8mdHi7w9r0Xnr+QQX2jFjx5msgoVA8keyjycTK02y3gmWNNA6ZNM7CfIwLceZmSXumsI9qMvysrZTs9IFM/vHmYnzv8cSCjJSWOws9Z4ywjCR8iEbRxfYnR2t9VW4lYAyzcKZYOY9n2MadDuY9CFsNNg4rIbX2YDYzFaYPAVxD+QuptxxmBpLbHPGtXcdTFunRU6oy+Ie2BIGDQemig3o7F/lwTrQxKugiUGtUStndrTb8+dA2e99iJV1ui42O4veVmNfPEIlrg4M/5l+AWdPubSmOC22IHPOKVHPgrhRM8/ZmUDRHxNj3y1NAVtCxIwi+qET2MaHByWOyZfbC4SQvNPR2PzDgxgQqM+/zFFOR0hzflLBZHFwH118jBXKPexn0oJN28GZFqwIDL/hotefWB83qSDugR7jBApSbGtYwt0hfmZmDJv7JHDKt+RNza/1vsH1yjZwslf5zPm+Nji/HKlG7iCXIjO7nEhypQNhvey7a3+QIBXtySE16jXjB6LvYxaNu5Vr7E+zTXLQZzqnN4lEdOaMqaG63u8ibGPa1kykvzkBKkTh63xOLyeErdjc1BsV5hRvTdITWwuxHd5Rl8Mmy2HBtyEC1BMkHLipdq5m5hCrf5XeST6slcnoKeULu6AmSrhbORlUrKXjEBQaXoLuWMcH60HiUctGS6H8uJvikM7hnvx4T/841DWKcukTqAW3/sCxccyxcRYYESMTQsRVA1mXFiDQ+XyW00Ukojk17h4sIEtJ1kAQ4x6u33Nvk3ojp6azqAucI8s86ICFmBIzSXPyYuVdfsmlwpSDbGA/xrqiWfmYSSNEPjE+O9BQBXTYVyAPW5zjj4ZknMSR2EpQ4ivsZK76KxAaPC7ftQ1NOMctggfsrPHXv4XJQ1N4nKXU4bIhXe1DGtOgXNLu6u1fB1KMn0sPu5BpQHwkoDe/B76rIHuwnNEF1UYqxWEPWMHLV+VoOLJYjMPMunFCNjCiTLftIH+75NtkobN+MEOL2EPTcNwtBuOr7TdnKOh1/3/HEe69nFxeiaTn8kDg4xGThrig7g7CqCqIxLsdjYwSNDuEsvpqVeoEngyEb7y+0gX4hjUv+uAdUGor2ioyHBNNgmqx5wGSwLTB/E05kKl2XR7ns5Va6NeSfiiwSCNaGYSJXSB4OO7zP4sADlN13C2mjZat66JW8nanU0vOJrkcqEr0VyNcRD2ZVuOsvKMqhiBQiq7HFwQtkB5GoTaPYZvTWXZ/F5GGy/HGyuXMKhpSuToi2aj1l4ldtzT+U5dCh3V+w5nCxdDLtBpnKXe4DN1Yyh2aJuTuytU6IKt/dFiOuDNGPSDNnPsft7s8N3qxGGwKjrPQ/1WjQ1GWq/7+zITJmcBlfgozb96JE4Qb+aNs6db5kPQRB2np27PSJpf28vJQzhl/JnMd9h92Ni4PIYkWfsX+vc95V22agmUDd9UezgYWowl0MwiTV9vidQuziC/WMuD74nP93xNyEbUlnxIL6nY+D+6+kzkFgoxycyZYH57HvgkyNOHG3erf7Hn9Qd1GvEzR98JveBBQ7TrRlBQlIYTUWzjS7chsF8YCBqieaJbF4ubSaTR9p6+2nD3aFcTY12l7uxqQUkOF9pN0Gwlbcn6edBtu1im7sjrKX0ej5VteFit5kTIePEcmu60mOn8US1FuoqCd+2w3gW02gW0D7YHFd9YxtILipE40kXHkHuc7A5e7e2Qjwzph99A/UUK2QdSWKiJuW6lNu7Ud5W3GPubsuHvoujwU7u6AcCg/j87PLgacSQWIYxqNu5WNVMNcEqTi0dLeG+O03d9IOHUdhe3B7n++9x0z0fRHNTij8iReiQGL6K4SAsHivFFnC4DJNs6GhvIx2cYJsg38fsdxybaR87S/owDZ4A8K2OmnfaU3TqMpuMbhjbfdAdmGuDj7WkAd/1yKReW/iKR3jaFTzC9uZhOwYZaNsyfJhRRgyB0XoUVtDZ3Wd0/xHjofpvE+EPAu55TyeG73BzpTKzTk535f0ZU8GOQPnWoGh4h6ReGobNuZDZmU73uyNVLPCkC8LBBTOMnd6paQ8BEtkHxfAVQr1oJLJGkOUymRaNbNqzzQ3NYscCQXuUPMAhvkoN/I1SqIQXoBk0T+n31gZfv9TrZuSs8re3UAv9kPjCjZpaVyBj3XrQJJ3+z+2E4nbvYxH1N6nJ2oeevZNC1qfAsi7oq5x/fqHxnnRUHSY8KMuwXDFMiCB9Y44I26/pyoi2Z6Pe7hQjOgQTOHKdvjxf4QNx/8HY+p9pwfvNmtteKP03PnY5bxddWUyPmj676AbY0jq7+DF//Y9pwCjmmND210b2JBzrFM1QYOaDXv3+kzoAxq1o5zKOp17ICdQ1GvY9KTc1AH63rVB9b667s51oI0pnuX7rENbXVKCYUkBIbjyOlAR+WEFMv/kXUliZKrOHD/TvGPYGa4/8XaUgw4qzf1XKQHjAFNoZCAGIf+Q25SqJ9wzi0Mlht3danbc5I/x+VDa4Zl1U8Gxc208R5lCTYZPYPzhiJrHULfjgXJod11Xsl4NYOk4kB3PUYZso9kTNogkZb5T+jrpD9yClES6IX8fhEB8FyoDXuMeDWM8D+2uw4tsWPt7nR4u2S5dgorUU7UUTNR+FKH7nTIGZLNje1cHhnG0I5VmMOQmMk7zlFI7LrmjgJil2rgKBpmSpa3idGwbXX35LdwEa4y4SWYMrVUiOCYa+Oc8S0mFYl56dOxT+pMlKZQ8g3MzPLqvl6YVAPOnU50JJ753MIF7//Gj6nIqtv3QSRZuYsI3gmXHav7RyVtzOx0ftkJGg4817dQ0OLYU0gyjmdrkIjq7ddNeMiHIBaUkpHgprS/7JZryMbpmx35cORHERZ05p63v/svY9gK7HvyWPAcQSPn+m6/YD98QnP7GkrZAU/EQ0Ss6TfOkWQ7tgGPJJtpSN6mc+EZsIdfLdpzhQ7II5HTWNCvGU7cWCzimHHjPdI50pR7JXWi9uC8b7T7ux3dxYN3aEcce9FOwuvf9e5EKLJUBI0kBmJVVMB5RFTR37O/dT/L2GTAE+NGZWXLaJH6MlNdjpbmu6T4jYNCr00cJ5FIHORuoVaGxI744SNlE343AR5RSaYGnZZOSY6OU11uDSmqwwTsmQQQ57lLifOIv9Utg4/hi5zDkuZcMblTx3n3qRsQD6bhA0KlDeb9vX7pO6HkadlMjmP141PAxd97ubp43DI4jvcD5YYuADBY9aL142UO88B81E9DfO0R18Z7lHJTBWUPqiKJOWDuZPSJs9zTrAgWf93T9oXP1qx4EWELzpH04sRZ7jQLgam0ZtTJ40O2T0F9dSNKTjoPl0IRFZvO8kt0fuF+SZvif+yqps7zoKxKPGC4aXAiVn9ZoDuKAfpPRiGLvqXq++x7W45S9wsM0rYRhHsya7aZUfrZ/N7D4zrY2eFxTUaGo2hvkMP8farKpujnTTy0iefYxRXIwby/nIV6n3tppd7/pbETre4/aKWiyQMFMu5jcnxUN1f6AfOppGuQSDAaum+Q2k8TRK2gat27GN4vNnjKRkemv8VP8kFLz/7bKkRpLiu5vSqpI4KQQ5GKNjm3lgc6J+TUjjVPptmbXgKYojiNN52HL7JMPBv/YUddaO0BKWIceFqAFDFewhsPSBFjqvgNQYoYy/peCIbsdw+6Z30ZyFFA9G10HgomKD8GouTx+4f3Jd9h3/uB6YfzD0Dmt1mojPTqfIapZlHnvIerUz+HU/Zu1ocmHHXSTQ6Qd8zvKfmRVKSyQO1SULNXzenjqZiiK/6q7wWZYdE03AR6qJoF7FtOQLzBNtU+velxsuEU6V/8qYsRdTv+bhX3WkvlRdMXreyQmDniCFUaFBhlvd2ifRgQhPe88nxWXQGllYpYA6XbqkzbyGNfvMz9pdwqllulUCgIihFNE9NOcaZoStJgY3XXTwFaVemN83yTii3BlBtZcwNPMtNhS+zXFh/R++2QcSZ8fZwLdkSlz0TL+LqsKgz6KvYaxh/jPH9usHRo3+v6IPSA9H02u+rOt6Ku+rGtclCqBzNIOmq+9XYTmM1VdLSALz8qN3M2NA5Uuzf+EjBogzIhVriuU01EZzcJObZzcjv2p9eA/U6NLKsSt3HPUFYlDrS2UGb7lbOKWT7puLaxCShM6XcWdA5td+fhrYo0DUQo4BCty/tvSUFmBk16yqK9+Az2tXv4aUlRH0tWpHd6Hg882ThEkwTfyZx3Bg+uMAu2AjbfOPDIoaRKPNjrcEKX2WJEQflf5YZi1r9n3fRuvsz0EGVkTwtljcbflROYsNVouI9c/zpXysGu8oghIQBBf8hTx5Rv+HmJxXdizyuWHAXhxnaJppQYtiieRLcRR3wJ54Wvgn1ZBBxxtDh80xMq3ame2QGO/mhxkoL2rVKaF+s8CJytIxJuUFu/2+XyN9vcrLa7ARJCkZOsmgprHfe9NUMtp8om1wROaQNWl9bnw08qs16CrlgklcPpaehtOVpK2109nXNp3bMGd4fpmR5+xJbLMupezMxC69mQombJeOijU9JcZt/c7Lt8YwXrKolY4DkOSsG8RmZMHKHr1dsp6hEZn9oXqo66diIozVrz6ZO3HG6J6Wp/JEi/olnw1lShnCJb8dWDMcKqTy2FvdJUqoWSQewe0ZSzYSkgHEebLUctFfu2mDTiCCWD5YlKNGSceHwCItiiTyMl+1QkrHP+1OoRq+ytJVut6q1NuUjAzc9fi18go17CZr3zDJrNsBn6gJXjVQ/rxfZO7Si13nt/K7+Ay/xt/RIkfvQwpMrH76ZKpu5QbW9VWmD1Dgs950o27aiRVJyEFqeEX/G9nQVXbdwTXKH5gSvw3WIoUFrLGbW3GTOfwhlxhyGljOtC7VqQM6bIXpQd4CWelh0bQ9U0fsDM8W4dMvAuDYngN63pNh7Z/vXKI2Ld9/2oKGop5zWKlkQz/R1gb4oGDyxNsGpJVgftxWqRGbQcmCvtnjWxVSgfIppQ0d2p7ekHltIDYo33LCOxCz/y8D3Tl6iFykJI9e5YsEFd06F3LVWbW3VCVlULt3DJZqF2ASgqUBpWh2sCEi0D2EnFxFY77OV0Lxeo+4RBn7XwGuHLsqiLPPsF5QcCmn717fdkrhmLtJq4jvjrrkuAVWsmNQWYR6AGByvuo4pvYP/uYn99RWZTfo2z9fno7QdtzoHtWUEWB3MjgZUmclkESB10MNX7eYBnca2BLI6WOFYnSA9d48E8Dx/tjfVQj63bE+tQj63rXpfuiBr0FCJA7gnVdOYT7MF5PMC0hOq5910fHAUyNUsb9wI43Y4/fXvYWxtqLW0wP2WgVnAsZX58ruA73xqSmZXC2zB5RKmRQ3QDwNgaR7HHpD2b91tuganYXnk30VJoKjZrwa2oyB63mpM7h42jyS2u2epqBR6DeTf6khSmOM0Rjc2nW57BGtCsiATM87F1M1qPW3hQK51xYjTLlEBXPUWeUZxWrzxuFTO22XXYKnetZsMmlnpOm2bLMSDR2LU8LaKYdio4ddwLd7giQpW5TSdwJLGu/KINCZgqGVx3PV/HzMRCNIZzNSzVZrci8GMZicUliMiWdR/xU6g06v3yFv76DfpEa/eaVA8Uk3rOly5hP0jJEu1FJBpyeLtHsn+37YKq5tEspRfW66uoiHFh0U/cLDBahzHTuoe505i5ygTkXS3U9ALckhunCBUQw1VYcnZYEO2uBVoq1gDeo/5xP8PjPMZdBSzbsO4sp9HV7PFrA9EbwVXBty8cyKTEESA2jpAKNm3a5//ldmfCYzdLUBxBE2iWUURZxMO9KCb9GZob0ZRqLOfyhol67q/fyUfuIb8UxX6z0dGA4lCi0FxIslZ2Z5zAXtqeajSTFfpj1Tmvm5pIfDxmfez6ltuyqUNRSWfN+yQTp2XDAQtxtPuz7sq+3GtozjRbXg3OQhc/Qmr2sXbekvNQvJaokRitZPdY1NiarbAGGm9D9JkNL66cueiTaY5+NJpdVwNFtu0rfPsldX41kpRE8VfY7PXoSn+ywwBSuzvVYfio3T0IPPTx+b1ToaBPYJx485bO3HiI7oScKpX+62DULtIRByZLt8jqD+bC9ap0sh86JRJOh+qYKfTO/lipnryn2KTiOMMuAgWJdFP0WKjAjIGUp7Z7I+/Ue7oqhD2dbsJuj3KXm7Dbjdlh6jlsmMkkRtrE72lrbQWGBitH0jYshQKw29bqtLW65Rn5NuwIHbCC5XgMS4/38OdInVQ+0UHvvapBLNAXRYNfo3IzzQhv+OUiRBv/pXuo2yIA5iw8ukJn/VRDBGVNnKYv91Dh7RZTHWLKST3QQR9zbDSS7E0BIyoYvuOU2w2+g+VUb0ybEcwVHrRWPzlhHCiLpt6RWemyaE+nu1g2x9tCjTJAuwIXxP80Fyx+eleyJD42q0Ipr6RrHBzf6h26jq5419ykZXv0cEAShmuAUUR1C62e9tZ76frpnmyublnWZXOFKN9sovbS2z2L2ku3v6SjeOVULRz5O8yNgTSbqQlaeuGEs9Onw/R6xL8a5NDfrC1Q8s37UnPwDp7SE9aMZ/3TIb7aj+X6iGtjUi64fouNu26ZBTYOhUfJRH/Xfwqf4pop0cIdwRZV8HBgmL1d9sVZcAF4EWP9yNLT2FUxSBFLGC2+CxcVyrEY1H6tkQ4n1tNtdPWsACY4G5j4o1WhROoN3V7z4ODI17Fc7Fl7Tf0cworeCziDDcUZDzcrI4KGcApBhhEBMO0kMrnEFBJNAHjLPIeZGzUQjLT6+6WpmlNy4HjnOlyvRxR5cbx/CCii5VyYPdLC5rZHFVQc3mBVBCN+qB+9Y8hvyBmGSnXlgx8c/yl6lf7sx3lPqHnz/n/6kZtPGG7BZjA83ENmVyhVJHOIVrKIyS+OlOz3Ebt4BEZpH/Q9KMuilXNhjQXctFn6+L7GRIwCPXaU2xsULWsm7gYTXPy9KFwskGFpFmQceAeLs1E5E+5UDmZR7EPWTWj3drFUVMCopunUusTasBQbyLbuZkTog0EB4WPr6FSMRtVSGwBRK43tVVf4pE8Dh8cSbIDi/v2FwDzUbIkGXrTH4jX+wA3LbTS/o5yHQV70WSsDKBiXAurokbQIEpS+51n0kJ5D6c+lZt5IHZqAZ3Mc7D4cdB/aC/6M/ktAHeSQvMgEgiSaMotP4z08lp3x+2HLLfDk+Nx29Q3g6ZdJFR7wq8ruOig/W5oA25Qnzut8xoBbbgy/DzQrU5InF3CyqQpvMsBMEKe6u+OHF788xD74MRN5twKLDLl8YobZdzAmh8E2XEw7DIOhB2P+8t7CYf1ekcx1NO3N0/Ee/aQibRgXw6Uix2E/PKaLTIcKK4MO01Vu6gPFYdj8GlqslmasrrxVuaAEwwelKpcCZejwJg4hkXwi+f/GaIkYC0pyjeI57uvWpmBjK5x/mCXzNnFTGFYLgv0glZNhH3Fs1ela6ePeHuAIvmgDz+JNcFgcO3sIGQ5bDtjgpeWNX4vxainUa3W+kvX8cdr3IVmt9r1mrTtBszLYWndhyCAbd9M7dHgLUo9U124MOrRDkW+MynXxmr6A/sysBra5QB+e/ZPzu7lpRIHdvPrKd3BwxN9Kz98EnZR0/SO+Z8HUWgARQgbYkAN/qFAd7zxPEhJPsVm+LMH9wbxXCq1eKCp0yaqbNMOmzbApM2zaZzmF1hh2sM3kkLFblJzs0S78GeFuItgqDygb4q/U70MDfNotONOsv4H4OEo/gBxTNb33q1gvmyCSknLsarP+ebEb0y2bD/WHqdxWp3EXE2aYGsp7m0wXW81KOPf8aak1IbWEpi0sniiANEIVzWiJSRt7WoSBeSP+umcpqroUm5CifKrYDd+1kpj0Fba7YcWrFyyhAEELoh//Y1jRVW2ecNPlp522UWbv2BkieHzYNPAQmaELWVzvDiuAACg9ndsAFsC40u9Lc2w6ODYz+tWoRh2uJ5mtlQXNHemqm9PXix6mkj0hrHAmdDw5UOM0f3v6D6f9h1OgDUN33qMMTOYc04jG/xD+M/X/TphqNPjuk9PZhtmc4KCW6wa17q3jvlY9ozLTYI2ZAbDm6DFDglMVJwCXFZ8CiO/iZ3/QxS9vYTcX5cG0uReRHnx1C9WZK2c7Oz7pE5QENOl2CJC8oGtEW0x7LWdWNpCnQq5r5XaWV/PmFYJRzbrZVxtmM79x/GJqlT3ZIgd3r/yIwQh15/amUjDv1rB/qIdT+5il35+jv5d2OuVYswo3aY7NtLSojMycpZJUocTiHK35iLmhc/YyTkE5FHR6t4Cp4b9zR1COaXt4Csox+z0LwRptXWDp0isc0rloMNfDAbfvlnXZaiTKMgz3HqdUHP1S5zOEs+xRXPQoLgsiVBEtJZYNwCHrELe9VIvo1adS01RObXsO2KxePU0uf0YYl3FVizvXuq9ROH+X7bsFbgilQq6fmhqtITVr2RW/6ABYNrdWIZ9nm/8k2kac+xP4XSnVm1JGtd6W7a1FEOKyC2+hOrOiIrmuzoUbLsLoFz9iFOEERWAVM2MZ34h1+ymO1AjcWvU+b/OGHp6KrXZZjyMhRzT5C4KRPnruz9yS+mMdZYlngKvfqNBK16Jj8x36xRKaT37E1e5zgaPX7pVcLrc6vRzPht5OOrOXBdRirsZyfcxouyzku6EExtuohA/6neauv7yWcQ417XM474zLWx0V4lQzJaCtN3cG6Nlxzc01Ht7AHR3sqCXeEhrV/CEPOHZKVHbkfWcGkJWA/DD/zIzxxLgti7BFy3eN2xX0jTtmzyF39WhLwRXJrVXeFlRxj4vd/6ne2gcYDFKYIjYNAweY+9QygmtlinO3bU6tc6nMQuw27IGnLFPBDJ0p+PCxC3n0KMjCE0NWo2jM00wLFZxAELqKjUcL7f6o5cGKm/EfpBnIXl2uy4OvDbzn50tp2GxErcTTv/e3prRAJSUw21ywrF3TsZXO7cI+wJW+qtgSxUsLo0Q00KwrGid6yDfshmWP2tq0bZahjmsz2BTMI6Uk4VXP/+8fFTK4t/8+tGS1Eo52Q5PrACMhFaMlTsgU0EuG/jJYFkQd8debSxomy0k9JTF98kiABabOO7R0uZiO4lkHFaai1qfy4npBEauhiVYmxmobjrjpf9rebsnYEXecbsqws8gE4DwMuo5PrcscAnPcCvC9bRLtnOUqqFWApo8XMvqiHPpOt02rTVjitrQDyZFrUM+HC0NEgFazQhG9vtINkuDpehxgzXSpoEFHykWa7QKrZ9sHuQutnu39f1c6k8zW+CRtR653Y4CStiNlo50JSdvRU9Ww6RkAj1DMhm2xoO0oKdi8giLbt4Cq497rnck7hHu793qV9IjCzH27ev7qk+End/WVcTW0kZj9Nely4t8cB4CqRCqb5NtJndTvRx9rcai9s21kjancLjD+z3a68DfIkuRosRncHK1Nx8ZutwWCeVuOgI7RW8i7GilYtrxEgU78+9LavEcDW+P2brWVNLYdfNvAK75bLJ7FMiFx9adkS5y3PvA3qe1biKid7pppjGNhGH1bu9oUfEECckNkqL/RpLZEkkFM2a5dbFaaA9uyZQ/UiZgCvz8gOirjzgQacNvycMuA2zYLt1D324rzRuWcR66SdE+gQao0duptlMcGevGSq6EgVF3WpjfRi9t21U6HXpyq9QwKgEcbBZhr40S/EUrcyvnMMofirAJ1RH9E8RFH3OEcZ3sXCkfA8nWnsFM9kVlhJw9BNwddz9sbMCj2pmloBrCb8be75fAivz/Nt22ZvTfp4dm5SA7DReKPGA15igHolZIDqyZOkl5ZM8Ij7z8k5uWl3ls3dfc3dzcLzeT0wIE/6NHuZpM10D+5u22b7DvtwK7MXSTH5NNO/xSPLQdVa+YNIDbiprf4FA9spHAe4+PzW1rIKSton9uhLMdwAVVpe+h8mk9DsA3NpmOzDGwex6FP4C7fVxiKAj6M0h9v8cHocfJvdws1qGu1HGh1wQrxYSjPWgryeArtdizvDqEUHMqxvvQKoOaIk2QHFcKejgXSKVhhx7GsU0gPwa9Dt+MRA3CSDSudbtLVrBIvda2hPmoygcfDoNcFQFg5yiENZw0usXPwMO352JY6Sns+FrhB5JGz7Tz3UelwMAtMZ+fkUEItDoXglK16lNfVHnakeXzTXtOAIrs7WmUIAeQjrCGRBc3FJZ9DF2R8VcU2D52Qp92zkDVuFOnuKCSoHDsQ3otMnQIkwljXjD70Bh/H1A74f5WSX3mR1Hq+KjfwtRcE57EpGgT+GHKbisgQXFrxUaDuL0vD4Jl7UHG1eVv34vyyMDtgb5tCM8dRPPo91xvJEfrjWOQcoT+O7cEj9MdxLPQI/bHPvRAlNsweNOthDw7rUMx6uEDnY3Lz+B9KtJmGCcXViup1Zi52vq7tuQNnonMqD5aLZwhrc13nOkg84u90y2ZfvH1M7rTHopOZ5HtdbThzMPJWClbQwLJpJDPn3OkJ4WdWwdQWd/5damH061iSHaHwIyddTA5B6YHPYzl6wPb3OAkkC6tfv01Hdv+8OyB24y5OveBuxRtZKT3MJjs2985m4S/xscBHyg8ALMu4rvejDX0vhpzA4BHEVL9uqvcXgUIeRsulQpZFQXNsjh1mQV/KimDxwDDteY1kEkoEgv8/iF7g0FVnMRKW+RktxE5yLAqlgPTGIudWDzqPvw+X26T7qyg/Ko4qO3fcklgbGjPgPlyCGfcsxhfQUPYxtcZoFc8PordFpW7iKMO9qrmboZ0oHHU3qPKAYHEp6B+ERLhLcT9L9rM8LqMQ2RwFD/DrFrpMhFmMJrp2j6z1jIRHgPonoeptpRBrqCr8TjUtZXxRs+O+R0Dhi9OmAopRq6rcxhnsbvUL/FRAGamrrdsnJD2/2ook/KOBrH6VSmeFQYCIRwoRAt+kvdrlQRSomMrjbSns1XZL5SDeOdOIvuJDNj+FpEU5mfl2ucU6xk/woD2eryQFc5p9C5Fyxvu5D4g4F2eeBc1cThmlBvIJMgVHQT1sDm3jFJQ3EYImUqt8O3KVas2SwVK02GsPfuF++3TQp+5+j4cjpRhGCQ7HmG5vz/2oAccWMwjSu2+e+Pj5mzTY1+Lcs0HFfgzPI5hcRcQbFTXuR7fhiyC1ytG/Z+Z8NhVURUJhE+NjH3rG9GsA4/H+LZdCrmfwCy88PH8S6CFLGKRT0cq1P5N62MWSfpjPpk/2zRan53TXF6enKn91prPKG5bVbz+sT62jTgpVDGAPiyk3StDw5SPWx3/z/i/5kLpjNVFri6/q0t/J1pHfdvrj7eRVjQHxWTt5VWNv8DzZFd6Yc4dtQ0a4MM27k1e+PDWdA1KJZtfke0pahTviR+Iq6UVX3adtDNld9UDim/gerBGBVMEJdPIXEXnEEQCsqmc8CcPjLSezMt7zPMsT7xF/PRAEfBRTfUTKyyeHoKBQVTQr2+sh/kZVNKMMcj6okCPxyePEUzUtzRbVDvLhJq8IdwrOUe7cezSukxHg1+18kff8yfOnWxbvOdzCKVEsXWK7xZSQn60UCK6AJ17+MDC7CvjcYfIVM3K8RwlgFGlWQWmC7jqN1CmcJtOA1o0T3N/C/hZ3DtV9zFEcENC/rAD3cLj5FYvwiwXFlb0zqOT8a/8zwEoLpZgRo4CtI/76ZWh8FTODBKImtbezbZTMT9J4H1z4gUlVbLegIOMN1iOOdESyixyM4rVY9DbS3kpB0nMx60chV4dBDcFQgrhpE4THg9Lujb/A1wbC/iK2jjQDP7Sg6PXcnjXQs0vp7kTnbLW4E1FHERY4mqC3lJK17cB19rZCdSnFWlDp6fjYyprjxNHaAMbKSx9UxfG7Pw3qNkuQQvoUjw/qRysbkWJXhBr1wBYP1mTfDvuAuT5iMsfCE0MNYFnRbIxBykcOIGmIIt+XU+Ph+N21moaW0tLeIUlCJ5nx4NmPs6itHF4/3cXJLr7iDpSecczNSgRe0YQApMIbC9HY4RxQQEmyQqs+j6axJVpB7FMssIgeFpFsZMm/dHZUpU1wKzZVRzwfvV1eX+tb8xZ5WtEq6t7NO3BTXQcDrFDJ4q4r8F6U/8aiEEHm07nI9826iv9xNVlDLYR4lLI8aHtw2lqEo+j4EboVEVYsQiokcB+Wq7AUCKwAA+mayZGViGpIUwniFIWhSznfgguRoYEXlfyMbXj8p/fOZHknjJWCkPT7d2kicm5/TkE9YqV1r94BTq9VxQT75tiZfyM9yOjpcQs17GJhWdPCkp5U1xReNqcwX8SUHIUkHUUfNYqyogSjkn3mzCi0lb6HNBclaDu8xVaAOyIkfD0ZpSZqUTidwYdbh0MB3miRU7wA5qiAf2XxKPmnjiCpmpKZZItbaOJUxMOKiT2iaDNGqVpMVsbDiklDMjKIHdEKUGU87N3kohtzkHGlVKiKLqeadQptjVXYW31QWryz/4EoqLa3atpbdcVUBcompeylU0G40AZppb1l2o38Tvmetrcqgq+BmMUtVprTgctFP/A1rDtguZuAo1SK5GqLozbktXBHBZp+eBDTCymqRaU3FZVzLNLtTNfxHkFgVQusKoFVm2cwih8XVS9SfZP4hf5QlvQcrlc+OpUsE3SUCjowlwRDtYbYaMV0FEfRw2MYVqmDgzrcZUI9itGKpYL1N5qGymBGa+fdm+8+2eKIA3eCOu4DsYeeT4y6ATjQxNOVeaG4zF2YXG7DAzn5cpKwAyqwEokrkhDiRA90CrgqN2uwb2ZdJW5bqdleeNN7Ote9FaU6udTsmqhTS80WYLXLEGPQ5gfnvLlXBmWHsr7enX9x4qx7E/g3ZbwhROFy94cWj8RjHHE+2F4DY8cRvUwUm88VKCAAR8cyqSLiJVJ2FP+IZu6sdQ++/XYvJcZMj1GqxJjwKNEE93GptsTrL0XGAE1hVXbhYCpoMV1HqQlXDMeahm0UbTIi/U0rKXtoc6yi2qWtjFZwVSuiJYzJ1niVuycDLMga5FIsIO1w2T7oe4qPIhdMUK5cMpmZYlOyURtrnl/tQSa89lFsJ9SiJvA2pXm/bgDdlyD0MFi0NBRqDY0dT95wGr6bkWKZpT2AYnSfgpDoVtZkYsXwuOLeAeERpce/jyP5VDENyNuk3cGWHCg84v6fVV5ITVQUfYlaPTklu3dUOMvkDNud24eZNUrAVLNXFn8g8Qh5LjOEtDpKYSPHoJ0RjW7bZrOrgX1KudY1QYyXDIPlDKvSolnX6V7Noau3S+xk9R0IWizhtghXfuZvvc3wDbjSUwXyoom5aFVOGguLlnbYEm42Xyz9cU4s1zyzFQbi6/h7u4OCBs69+GYcHQR/i+kyktrwwwKXWqlBNDGt8EC78hp4cLfYaUctN0AG1v44iRvkBCKpmMOjMO28mOAtfVMYv+bHMl2smNWkBH9AbjTmhClJo5kajFXkyIwOn1Kp9tIGe0dJN92+TbHhzoefBswjFg7hGORkttUD/o5VLuMaWOGPoD5Kd7Z2GkdcZBZ0bQoj4NnI4VWS30Q1zO6Ke28LcfHFXB8BPYkIogGuc6OAz9TMiSPOCxscLYER8Ys13fc/qdXUIy2rshzwe7q3+La0LSy/2uK2ECzxOfyA8TEkUF3ldz9+gPuRrsYjDETUReEDPdjJbH9kvB9gHY5Ll8N4t9/o1dXgDTO1RyG1x/vXPSa1RzHbRwG1R7MRj/Rc7+rhIYq94N3vHIBZZfJJ7uvODakoxoocviKuDiJ4a3Uo9f2J0+IuMryfTP+NhENDY1/NpnFu2a+IjKqbX5EA/3lNxaaveOYFO5V26Kpr50vwUILcA5/T/plQKLDc1m1KilqXBUF4vYj1ngSSxRv+ppJhxo8Cfo9aTVC7UCx2i930fEJ05MAq3c7nDmRB6RZPzB8qpuIoVIvVwBzYLh9+xNKxo4sYpid31KUQ6GktC2eGxMY450OzFvtyfNRuJbrTTOvem7rMNJOLRBJa3FlppLAwgmHV71eBPfvUWNjtYG53exY76RTFI1hId2RvZQe8vUikJdUYuleHXTu9wmpXXu/oTLynL5sOp37pevk17TXsgOHT5QYCUoNzougWzxedLyrPRkv7Rk96oz7WbQ0GNjznY7cZCt5X8xhM6pT+uYObSJjbwYXaUYa78yQ4QrhtFEaRPfyg1HtsYG5u6d2iKsg98hVebUtg79IByd8uyNcXGC5VBqb5Pn7BQYeiUrUflGir5ZJ+0Btujo8Cjo/467cmwsPO7K5KmE2Z7WXTJ9KdQj+RJfO2mGGJZWmXEKAdoCelhUfVEdzEwq1P1HSVZtrAsK9Y6NT5nrWUa92mVCc9VXHObumkpwo6ezct7EO9hdhqKNiRP2wIf9MHvU3nuyEpGtqFaxuFU9IEhESaTClLKLQWsUxO4w6Ya3FD6XQ8duucHQUp5F+rDN/5V+43qhuwUa4uLBvmuxJ1VEzBESEQPMTyq28KYTNnlI5gmSQL3YNTTtNBRGDpd1NHAfup+PF7xIhy3/euuS88CigkYOcGseVXNddHp63ZHc7qiJINYfneDWtiVA37XlwQlmedcbIoaHAXliy1blHZj3aGfS9lMEYl1gsiqCWSDWWgvD+DM8fcZL2A8OO1brXVp/Y9lBUUl0xe0nwJZvE1EAYpq8ws0QEb/ZI/xlmKOzxT3fiQmRXSfhSVMGxNwSKThZRBskVT3aCSzzZsK36e1/uj2T4s6EbCFNs1FUbiO6SxauZqJr87WuboTGnz7zph5x3BGinT7AzeWce4Xe8qbmhjbABnrDS6VbnJDWvro2IiXAfkqJwFw2ZhUHzkLDB5yNu0uU+c27fzBT/A7pt+UCOrA6UB2D2K2T3KSJyVnDKbpQyGCwAPGI4K0Dw32kXG7/dcd5juqmG7bTR+cbsnB0SYkm4LSrdHu/zqM5HdZTllaS3Nx+5vTIR9GZaNI7Oi42RpuitrXJxf7ry67EcfnQ8qnxow0TM+zK81kH6uWtB7YzbIJdlpnrtzWoOWaSPFxryPronOfY09KxJjQOYOO5gGimbGgd8RRTO763ZE06FLmPhseextZRLrV1SfNY5y64pkecGHoWkU55YdotLfc91DRs6GpR3CuJaOZzRWJJXdt/Xk7StSjdvyiraIuOAccd3PsvkB1vPx2gyZZ+YNKWCKafO619O5dSkuMT0FyVyLO4VV/ZH4P9uyk9g15c6xWOcj4Bv1m2FpFaAt9NTvlxnk7VkgqWiAirXnkr9Agx7e15PTAwce1k39YKx7FvUD8668TdQMRrtNB24B0369ywsqjmvzpkHvxPIu74xrihSwe1QVkmFuRuAfCJOsBJ0M+xrH4dy1oGPg+czc++nsZHTXjxqH24X3MjjTpkzE8GCgezK03x2Y62QasTiZU1au8Q3dLyhdLrlLrvVjEpmR2H7+LjNgXi052ZC5FpEIGoBBuH/nogwxT0eZRR09N6+zTCo4Ju94W9jZaYk3CVIsoZ8F3kBehokKY031c2iqvyJerAzEx8xybw8+9i2kS+Lnl/xeS3bWtBk1QcHo+uHRUnENN5TZeA/p0fomlmZg/choLOhDCX4vJjVsTxq98js38ejo+sM7+gMCSVxMFFImK7QU04JkrOoGHgG96Je6r4aX5tZpQlg1LNX/DnJEhDaY7T4Em9HMcg20pyaYoGx9tDBN0DvvsRNFoG3GxNFCi9SOsBJwlZ2MU4G0aSk2hfyYdpdOwT5c2PhtShqGfYEgtQCvsK1/00U8DYEnB1IxCUiZgjBeuo0h9jaVdVJG7Edzxn0N+piD3EpWjee4YYSxuVTkZDy0mBXebyO4cW/BA7iJehEZxqsAcnZ4D2MdiDJtUk2mS5dgF7nO6WD8wGhaFM+0/6UbnsqJ6yAOn/31g0zUWRoig2iDiv20XANar5hss2idKaO5DkaeprdmELwL1BWbXuonYuiRp9UUFO8RYtTO7ZgZ6hV5KnFWQUUAxTyu4MeyNTWRulGc7Vvm1iSwqTc3fPrKID6ICwn7kV/8hpgF+Z6WaVP70r53nF+wM8iQ930zpEUrirnUbRtEk4CP6Wk4D0o4ys/UC3AsGgxmbr/nuQ8HtrtDNyvBTwrHEt8RkRsheiZ1k2n0+Dz8ipZ989ADNi1Bg+kDs27fJrr1TS1TgrU45bcpeN6m9NAroeLs3NKqK+asispy5SqSK2NnQ0rKu6fCYyqmhPeSwUu2L8EUWBZKUJRdc6FyFSxR+SDt+dVZP7Wq4+eELapgwfmSuBl+s+wqXKgQ8IVGrkLssek6gsAHnTOQccnFuLzZrfrFFZ/k6BGFA/d0M2sUpDjUeqMci6BFEXK0rIpZco/2IDFh7D24T81bb8mX9aS/uj0un1NA9REtWuQrqauOikPUZKuMEIsoz4dCissm2RIpgBwJ+K/JgM5DZ4SZPcoC32JZtrMW+RbLMiJysW6zzMlaaPkvY0JrerTir8D8FcQPZXlrA1dDc+o6/Ncm/JgJNYoL/T4dHkjZOrEQr4OSN3CQeVHArLssaJGZTi7IZPhytgiXsPcmKynJ+FHzs/izjpyzYolr1BmCvsMV5DsXzBDcmbb6Uoizd1jZNzSzGOByKegHofLiKhJxhFjFsga/WDLzvcz9S8tsPkZe9Mbb+KXSlzeqQJg9F/wp1rQKQZ7mA3iP9GRPlwl2PK7VoflE2TRYZss01gERiDXmJALs+MpdbMzlK+t+cyoby/G1RfrgnNZMBXsbtcxsVALmXkO2O19t9NxrFCpTyc2ifJn3Im1zjnutFGJbUNRkyI6YuqQcckDqXXXM6jGxR2EOnD2tcZSOrjU9LOkIGzIRGce20rqQOVmWI1YrbYm6Ytv8FtDLUI7E9koV6N0zlGvHxO1iko9Cko/3r8f3aHwtIxeQOs6WAJ9X1Ln3IB0oHRJwE9qac4Ym0X5m8HiPCh983IIcbUHICl96K0LWegJdPWd3Q9UoUUQloSyumL4npqypL6IwKF5v2025hb+/yUSRnYYlb5M8whspZ02bU4LnI+1kk/q/TQ3h8+EBjWK5QZDxWqHuVi624G64yKdnEvQpeo9ArgKGJDQFYF1ld9M4IDm7bBtdG8RVZRsmsis9d1RNFdHbYkFcmXxzQiDDLK2pQfZ175nx/2VQKNUZs3sUhc9NYVZ21TBbgEIL6RJhCXBxgfYIZ/H1LWd2A3mbMKRZgPsLph5dU8TiaqNOYjHdRwks28XrgmT6bZQNlut/tx+15whRMujy2sZ/7GxpU7MnQmkQmdvm2JY5ZoqQsmWO7XbvlNaKWDw3eyLiuqyA9tlnyFNSROExKmMt27rGhn/xFEFAEzdal1N4M8acfbUncA/11ZVzCxhFtqtVlpOSK1rujdJEmBYviEzzZ9BsHmeqFFLvvn/dV2SUTimt46GzXFQdrbCWRDGLQwnyDnbWAzs1sOPX6RE0HrmCgy7kGwnbqEUWqEPyiNUHtCF3D9+Tpnq9j06NrPS7rrLYuLy7zMiLxB3/npuv0nXPYpbDtnkEPo9ISsTQL0Bb63Oj13txctnXuJkJXUweUlCkw1BfSKTZLeo38zEUVTmVgLrtCNoGgVUEZohIHvBl1W1M6dRis322KdjMCl/2ZvKzzP6B6NKUDRAN3H8sy5DRH7/Q2wT2hnDcUsEU0nvfTfVwJttZsI8mx17WC/bR9Li7GcJd+rRhXH69iaorUPYVBkCiubYrmKVfa0a3GIzLXLzsoXTblm4npZup2GNc46OdqG+PebhZL8jjclDRqVyUwEkMiTBUVF7OY3sLebvyHSX9fJ6hOJmCJGavCLKA7OixEXcEazwWkAdaE+9CQsplLymYDW8p26zd5CTZU/hMe51OQbzEYuzVYvA1TeBRgOqNX2QldeSfyrwpoAGZysiWn8qEHoWEHsWEHkWEHuV4XYvQoxwbikHogZ3jvfVhE33kJuMpoHV+NVj6WSaDf9uDr0lheXaA0V/L2i/yhVXsbheaDMfi7FCcmbejYPSjlP3D+ZovXkybGafkZxeW7dW00vUm+NuodLyatuM94iywzXO6ZoFl2OkoDfOomMGT9G8qz8biw9VVLcuhQnMMCDkdyAkJRlQ+uyY4OduLmDteC1hddcfoMz0We0oMOZf9dNK/cZQcNDfgQ476vCugfNgDWPzqwxFapCsfa22Hrrfj0NoZ9CmYM6ScSafNuSsgwR+zkprA6R5bbioEmFS6IN3z+eR5bwp2CGcljQazcLb98aQcGmgm9igHADu5yOvMiLPsjNIBrnjPW0ohzr0bj78TKotCi64HoNdoVWoPk4KCmyP1xxUVsrMjlnVR6hAj5ay2w6gZxdYaGf+0cDkLUmErg6JvfVUHzg5w+lX8dwTZ1fMVynGacooKY3dm9yiHMuzYODsb5XVVG7LDI/Vqqv8oyEWc5/VRCuO5mzc4hV3CrifLfLP75qMucRu3TXYOO2lP4CHeI9hBhEg7gntEOqyaGOg/a9/klMPyZOXqgSd5GF8VQai4hiybav6O+aDoVuRWCRWCBR6QbiUNbl7EnodrJvr5/q1u+frka0kXTjTLuTyYyBf0UFp8jDRXod97SrbwdsXKpNNvnHQm39I3FWn69SnSINm94hov9UF+Q1QT1p0LEADVxCL1gTyTGE3OS6XPx68LFkD3OxYUWuZ8OXxF1xYFpqxNb2L1QbCshpd5siVlg5KMww2dIQWu5JnQk/4+kjEnwm/f64bvOfG61T1lHJuJU8DdmQo7+GBy1+NqGgfMQjWcjiwkUEnsUYPYwzH0KnKPt9k3a4iQVLnFowk87jerGKyXVXiq0D/DWm1z3rFMMTpkBAYVSoLUFIvL/Uuu9gPMwqswP/K110dzp3mw088YoBJ0FjkSq38uQWHdalWDE6d7bAFkrM8dPBJVVdONvE2owCL/RWd4J0EzGNBWAOG11VdASPQjeeqDFTGrGba7pvLw8wdXmqRtBTWBBFqr39IpLLRYBeGPo7RwgtbS8iOyBz85wYvlh71SgLOW7+5svt30t5tcXPNeosU1PCvm4ES5q2EiKaqKCiaawKn1rsp7L9SDLWZKq6hqW43+L6RqTN+6xrM1Bv6qqhrEERxjYn6dcK+3Jvqhd48D8qw+y8sJUMZqz18Asv8+yPq4HNhWq1qaAcuTBFXNVPASfr7hEdxgxtx3RwU0//3rlyY0/72VP+b+Ju1EFh++9v5Smq4pZrfKDUo0sxnLzG7ue0d4Wn6ZI+Yn+3jhiuMhPezocUcTAHLdRhmTKgorF+5Wx58cJUHYKfAIRtjHXUoxPL9+G1etPX3wa6mDtTzcuWTGBViYA+e9PAg+MBkF+qzl6Z/408r51IyCrAUofiGRykT677p3xEotz33sl0yJCJHpjaSULw9Bb1BQqlk9aqHIsmfhPcq4hyCmTGCrfmBBjVVqa8BtXw9ClKfgI+4VUAf4FlGV4WNmTkgaU3NMJDnVIiMq8sbRxeoushB01QyKpozejN2H1+ZcqFOtsERrk2u13NdJx1fr07TN8GfUI+Bc3Ryzd2MYuIZiS/tftOSHcm1EYI/eZnFQIBnX2bmgjRNp4+T+WWQMMSO0mt8j0hvxSO9hYZ9jDJo/dodx4EKg0YSIbjVFTC1wR02TLxxkujWVgw6oPB7vAjpQrGyUtwL+RikxBaXG4zxCbYFQccZvHB28QHfXUMnFwXsIW90yc5XCmBOQ+MBxUk3j8R71b5RMXVCkF5WmbQAMFHqNE+TQoIi5mwANi/evB2s+HGVLQlB7GOm+CKKodmh2rylXiwPNTfwVNBm10cRRFZwnHPNI5KR6VOb6YGZBWdAuSCSw1enhe6YUlODsYm8sWMvibBUMpBaCFGuZfk/mkNXYST45ZGnSGIAWghZjuG66aQNrwyvSqju2vsztE+CcaCa3cEu6lVe3Vmmg8p1/PdnC8iUslgoFVbGoK1lbU2dg+ogyMX5NmO3Zd4PYMDkoQBLtnEkq9BBXza99n8DZYLlVjmbDfVAa+sV8rBtvekkzcnfGM5FAGr9SoaBKXK7EIL5VYGAzNQlucxZ7edzLw1569CLLKgq8EMWCHBSFPCtoUx2DYE7o29x8Qn5x2bzP/LLWyQqqNmeqb2AelAp11lQgNaAaBQdaRQHPxIQ77lnRXmVhUgvQJ7VYoiFLM57i56GuuUtgpd8CPShOsao1VYJmZtdQe8M6WPYU1+D3QDfLcjJ6VU7XkRUB27urjFnyGeYIWGLVWj+7I6vaV2XBho335fli7tdV/CptrWrrqyICVmu954DFQ/lRExXV3xM4U0apYEdoj5HFaeVKhQo2N17iLwAyqupqFTU2UQyJZV2AwvPLVcvjmriO8GkZyIpSj+Ksr4gJRLsHG0TD3AHmw/3fFB8teYoCP+wHg+KjmvSjiuKjmvWjVlpbSpYCL1YTLATMJNVcHpvbZbVYqrCzjEWurFhab/pzreDSr7fMWDg9QyuSA5cvI1k1YIgNUZpSpVCoOY5QHlziPfn1FZlEatHVZevYvNxLnoLL7B+1SnBVi4vg8cCHs+VZJ7AnNYqq1EG5Ezrf9ZqS2ccsoQUgiyUqK24IQgoVavvm8qg1aQIE9Aj7HFesRx7V/NgfoqPDJ77TyeCKQKvjxrazwlzPt57+DCmtIuuEwTeSPVbRd5DsMcrwgrInHTw8RWCi+ySPL2pmiQFr/yQQvD9TXomvIxK9OUMswaoMq3p3N5jAoi6vwBjVZiObTHZVnIZxhHppnL9LY6nyiEizq41fQ2lnNaiipVZU5DzXeje+BJgaFfd8GdjjVy4pNVA9rHdCHhC6iCO6JupxPoZFPLzgPpDz1UKrPZqvEp01+oH5avMpiDwuMQhK7EargsugPnKRc8RIanvu9QnCk92JNKLaXKCbNMnbiDZcrunVkOFcTclRkU3avBe23PvRMtyCl23FbyavYLMd1hIaYKHSsiLvB/NSyDFXzccRdUrS5BmXND0IeZOLZtxcVtAnRJ1YXUf3oKopR0u6hNZTLEGB35LMC4qbxdt0X5Q2QdMuFNFINLgcdWwvuMh9Bia6OppcGwtpvgcenkbdwOi9GvwduVG1555F3UDlJqIJhBNVtF/RBMKJV00JqGrOjGhFYUZOjEnSV80jJPOZtgQpOtVlOBUwfv/6vZAvdsTiHVn8NRVnkdbQayIH6SyT39POyYb6z9XC6j1C7qQjKrMl5VHkdmWDCOCqswIrKT3ev/9SuVXzflSwGyvye5RO/uVdC8K/jAr88K5FzYO/BIpwBWVan7dk2mCCIi0gHaLBKxDwD7MnlWRPyg6P7WzT9z+aFRaRbWpW2BRrOYbFpEiFdEcfpMFASfRyCY7eqzjO01MpMUqC+qd6d7XCluRUAWvwEINBTVkfraDCorIXGTN9/7UN1miDNUsq8Xi8Tf4o6X12bUwE5UwZUpF/oAh/IHf+PnGk+J0r9D1jsAUs60VpNfw6nDzt7AmEuxJmmR5dW5Z6VLWfSgKParaO2uBaNLSyE0tm2sFeOAR364b99RTpVeAgMgJEwdj3RL8xDTATfNQmA6zZAIvcIUyLdZuo1bSsCW5wzvsD6pgU2QADHPdVmkebEkPKKwrkWL5rM5wAE6p/ZFf6DsXFQAUnILD8HXxglxXqoQANo8rLrT8cZPsYe/ItOm8C/pDwKRCAWcHgEUh5BiQZ4a9m4Kg9A+ASeEy82lcn7Ok+HC43AoGqkr2R5Ysb2jvYkStWTQRSO3PFTC4VTZ3fxGMEALCdEC3RJbZCW1PPy73g45BlonuVeOxIF7dfUw6znlzVHNDKnlrM9eRWdOlugkpnBKT4e0Y1ljII+UhqRXUM9tGyK2g7PlXKmcVYYybIO7Ke5OKN1JB8SphEUJC7jazg7sie2sYKzQVjanELCo9mAvQ4mmyRt+ABnus91z1s8MS44Fl6Wh5bUB0Jb8biQEj1rgKtSXiUvb2XINPSlMdZbELQgXTW4hZiGqHHotuZSN6O2m3Td4W7ukVsoBRyCnV7PAPPjirkhZi7bA2QfcZtrY53bEaRa23NCJmV7d0MPepIWNjLVKm5qZnVcYOjKU50DwZ7Pu6j1ncX3mfTX+MMu6fx/cf57ql9IqsH11HxrCLkYL47f+yb82reNNUI6nHOW4x1pD5f/bd2UgbXoBdZbEokkQncUd9HLpcoPMEPblHV0zizDU1ASTVxR2uZM/O+siqWLEZJTcvxHkHmdhtvfY1P6BVYimFm1dpRXEzO2lGpSbjWZ+1pk5VPRDJ7JQWsroOkZtMU1045ZiKPgApxfJZXzObe1S15O8p4mw3m4KPL2R06Cpe0BVUnE1V5fuF3z93fADep4u4Y9VHvPPDg7jii5A9gbYoiM/A1ehD7nftHEOMboXzy4cosOpMB6H43Z+SLVXHaxxH1r25zbKRb8R3pnCYsBOKRHA9L1WNIkF4Tzffy/tGpayqSwWSCGQNqjhoEG/QJxH9YXffjM8c9t+8JBWHYwBvl+fGrL6AnlMVzqIUP7Bh5xuZdbYqNQuAsN6MDPUprNeVCVBfw6XxVGysD2WHv39stDucoRejRwPZhpg17RQeZgqsTjd6mfN42ebucAqLpCNgmRIOSXeMI/sJhD+KoKNOkfNVdzsOLPJp0RG7N85Iu8faZFgMJz++pxy2Fb2YbbzQW2ua8xl4gbo3gt89EVbmTanrQXWQoc663Y/yDkSSTddRB567rKldQlan0j4w7W+1wEwR5F7/5RNJlHTa9RrpohwHAD2Kg9FilV2E6++89m1+gjw+8YXSOuQVdMHdgbCw8wxGIb+6oHXg7llIqdoVibwKHpG/H86y2jVw8rt6EsMy6O9YY44PNAZb1WjQo6hl/51ckMfe3RqRfXnPwdtglVRcqdJ6PJHrNqc7xtNwBdYfjoYAIpHn5lXbDU4AGaDWNRw3SjuyMpduYVBLGnRzpWdwBriVwqTzf+qoEfEZReV2xkFt0XVEj0Ydd7/dDaj7BmVPNcFEHjDClPCKt4m1V5JTCc1icDFq3w6JwpNx6XMkyKkHhLsLLo4TsmePW9Ga5y2r6jUf+oHdsv5Nw/1AetXk+CqrSXd+z3D3YyxECMH0s0yne3zxGNMQiomcCwzpkjI0rBWSMmcDibaIxZn6YGlZXbsDDLp8RSPrUi+4cT0mmObUg+24NRs05C7EBHL3ojDooZsxexvLG1cXZ3iMY5Sb2qDOF2DJxnXzZ046hmQ7m6mKaEFtiyXgXGqwc7xXkp6mm1niPMCGmZdZUdGxaWAIRoBXLnIYqQ75lEfG8iQjvWSN8uILCs5Isd/VPBdI4P0mnblnwGpIXD7fLbBbgPOvVlWE31u3ycUwlteJbiVZyxCeyytMXu0U8xnIw9YaJJ4Ed04GzicIlHO4N20Ix3rWQNT5ut7gxmn/jPUpGFKVPkVXQTHlh7P19MFWHeBBX06uTtlg47i4kccoemxaoMxep6NxUMqSKpQPT7ZKAViD4h8ymgRiHoNOtcKYZVzhBBlenTaKZ5MDCYYEgzUymwUuaoeYuLPaXFSh+hhnizIk6kVoqOVxR7L4p2TB0sYeX3B5w2tkVJm6OejGWkynOFfQkzpkKki7sBCZxeZtQMqhJyy9/t8RQ7dgXp8SYkHbTBtlMTdy8AqwLkPTkPoNdtpozkRtm5nJQdF9X99JTjDyc8FTNxsGWSiOWhFfVoR9pWn5NWV7BByKNDxQdATPVqgFqVszmk9Uc6vT2OddDA1P5lEwXonLwkGD0PdHdZVhs2tbirlXE0EDMlbIjzzPgI92fx2YA8tKFfmClhSG/ub6w0gnStSIOKdpjIpfIRKjs53avtvrpT0OW+2onaJ1kua9mMamTGnuo4Nrakj4sb7ZNtYk64Ntl2YKRIGdbdxHaTHN+zWYHA8/5qWH13o9W9jQUcepbG4o4j7pt0w15aSawQp3ilaQI3LFr4yS6UxVfVuH4grrOgljtivTci7Am/3hdlmiLJuS0RFvP112fKYAJmp5weT0NhKSXbq6ubCm38tozwAZWzcTxHlGxdWZyXcxyrmYhqYtZztV0KG8TspzrtAdlseLsuCwqcMwMbdIV+QShxVmDX4v9tokVxB3Zy3LvvD6puWd+tpb4MSPy+0aKgAldj/nyGGUPao2PlrwqisC7mMrzfJ2KkgNi7Qjoeud9Ov3yiwCZZfUnSDswoEoArYCFdBE8z/QxmxMDLmZzU707CueC0csrrbAtuEt9DcjDU6QNVpSFf1vcjzSdho14ZBZc/OlKIRaeELqPWsbtHzPYP0gpd93199KHT70thU/1qzIb7G0K5fshE/bbTlDaqvfiFFJ9PcKNZBbjfMa92eQZwgWy6tDzXJOlLwJpV7/XQVDcMPdKwyzT6O1L2QhAP2L0qJOfW2P2PMQCLCuyCzhFTr3NPcjzFkhA1ZklJmeN2wuuvnGvoL64rFEvyLTw+991HSVJtHv0Q5fcslRbkGrrVtZL2zsaaM0soQdMyVEXzbIb3FigndKO+V7EPEThUgc1j2XhsuhQlFerLmYuWk1baBGMIZj92f0Vu0fnSfApmryjirzjfZY/K6k73qZ7FjIwg97CTcBnjo/DuGRih1YcEiMj5uc7q0u2flaauabZSME9bvAK1B3B03lb4LC96vjKvF0uWfBSV9eyRkaSPKKA8Z6t1Lr3RLoU1119CcSoYkKfdEsqBp0pOqa673SZxt/2MRrWYS+N1FtMDqvrvtxh1Slu/7PD3addcHwrAG4QuddYkzI7438cUEsvrDaFzbC12gJ8fwVnuwQkRYLJOKIsRnb85jtscGvPItcOspyTSY39LLyJn5KsU64b1n+IrOLnhFNKaT4KfG6DPTaIBoIGzy2cptuezEhYwDQ9twkVcEVYV4CIflUUcabPpt7eMUkhFnIhg03zSSSD6KMD/vZJJaOKti2GdsX3N6tGUKCi85Y0O5l2NejCV4n4uGStTdyD8Mb98BYUTfthiZZ6kwp2Iuq3ChLvh5m83J0ziLajjEr3BT0v8CYbzBy4qYVZUHPkmO52z+LSN4HJ24Tk62pOnoiHwxmx7kcMaD2cHtNNJYlXquu/vE2vIEt1q9ymVMCcN04koMhNwMQap3nS0ixTOuyEHJedN1ADpwYvhzbCTdG1LbrA1dGH6tQPGHeutDcWwQL7DiC0LidOxTnnM3dYUeI9jz2nqRLMGO4I3c77fqdBTdGcIBW07u3R2KIasnINBl12+0LOsamZp6PuhCcqTCvc/5Yzsa16Pi5/psTUbVlC+24beLFRbOz9626DvF4OS6a8V5FiFJoJQlCJBfE94euMI9GSEuEDLpqToVWFfHTVZwgZwjXrYBUlR3UKfpbNwMyetwkoZWmvJd2aRTAGyJKfvMStqWeDDLV3o1r1r8ITvHTTESbSclQTdZBsQiAgknNXea82kgGDM9RrLvO/mgzUCjyl8hHpCrEzvpKNo5qNo4qNo24LoH1Q3p3rqKHCVZTbwIAMgDCs8A3GpU3EUUHEkbVa0VLg/8vqWTwnTEh05bglkQhiJAn2oDAjTCRh770JL+ohFbtzNAoyAyKpn5OWMZ5jIMcB1dT790Laj8yw44ToIzNsG5x5ZIbdYN3Jco2K+gfGGqyU3tsOaCq/pP024E1lkSk5IU1VAAygjktr8zyopRC5VDR9DkNjpuuoqA0oZbAj3ODJdkgvpRqijZhMs25E4YaPV6wdTL5TnbN5fgjVkAUUeL3iG/D72Il4CFI89XaDKvcx3Oo0zqfqtRyFd8U3dP7+qVYUV7DvFkenfTgJyM+zy74/Yy8wKvw9orteoa5EnJhHMyQAH+Hp2ZNHiC4Whtmtw6LYRUt+0rtvRf5XPtdAxEMi+2pNIviXMNPMQBLJR6kaKHkRtb1tyRwg61XmWVlmN2/9EFZ/zPO7ULgvmX8R0whP+leHWapm4X4RXmPOjPcoN6zn+jjOoP56LP4c05cdP1HNvPBtWqe8i2D8Z6gSxmHijA1T805ueNoixu8ddTxa3A5tHSISj2XcSShHYBy4tvpSRN70GzUIOfAJrMEHI0cu9mNdIOoNpYJzHOE+cCpaqV2JKpdO/O4mwDfeiUjX/Vm3pd/oPUttvo2Xj3hOjsXhAIZMfXgXd43BsaD28Ka2PqXKUfGpXcUGaeFhf9+W+oVFougBXwwunTjHCxkUwcWJGs9PoaT3dy4gR8gOvV/m9HiP9CXuhgpHogpdEs0QDBvKcFBQTTwcjewiSyiMsVCoWQn+Dh2du5Mf7gd3e0ShTAuS9PbdAlzSdZry3CPQkcMb6b0ffvFPKiecu80cG0ET+3fT9gnxbcL2V7K8NvOmvkfZzWa2jxZUPhgxWTctLsPcPfcs8EuJzz7pApQimKUR88HF5/+YXoc0sR/F8oEm8YRA8pJ9Ooib3l+Hz5s8Tyi5niH/o4LGhW74JoQTGXLi0qObgBrxbfErVkAjmkE/7UmcuQmmc7Iq7FuzCne+YvVQJiLRoMgc+1fErfuIhW5IdjWs3dcIoorJMm1NXL/tkOG1Cc4Uv8E3LXKpw7wUufLP1j08ssgY1rdr4J7Kmtl47BycFc0da3xs87C3zfF5BSJDJMnAH/Oimfwj0Iq5p7WgVSGOu2f63gdABzLo9thZkJb+lLs9iP/4xboHF+j6LztGlIWb1+muYizybran87W6vyhsr6hHr5YBtFXYRXmPXFHFVR2DIZoz9TIaoohte1Q+anR+WBUCXyTRaraB20Mp1szS8R6tz3yhLWU0VEn/+1WWAF+IGrLux+QgTb/xBDnTu9yZUtUOd4ApvWVyeigcdsZgX6e/IZgOplzNoJyNRIH7oM0zBF1YGf+rLtnZmInf5KKPIz3Ic5m4+uYdPhIrOaWG1w2LPrN/MfC8M8Hou4OObMtt25DA30UOeoglj1g6dNtMUMvOLD+ZwDu1jJxxo8uiLnzq9vhLEcf/KySr4nRjbH6e7TW0udduz4q9OADbswJeP1Ww7A8Z3J5MCgPfURj+sP/Ft7YXR/tu0EgTk+pVyOHU/ZEzUWwK1eHco+bUxSiei/6ee9G68K/2fMoeSNLI1GrlASemqBURanmb+WITeRdvQ/EVKHF1ZFqmli69h2lPpj2P8yfvMNyCbcslkFp5tG1ZmJVHm9Z2X4s2reVbMfj1vmR1Eyh+61nuAk0vYSCAQj5R1ok+glbK+L5FqhHmHGzgNFLiEUsq29bDxG/FcqugwPnb4rdBftjbMt2Si+o4UtsA846YGSIOWURxZs0FDm3GP4s/fKkc2Xpb4DHWJjFbbq71OzzInLMS/h6BSWcKaIpw0AzAu2aySnc01XOMoyTXj3JTXAIFIbgmho6eaaAFBx5JOhBbqfesxTsl2DhVisiAIOpbSfOZSp65cPwMStQK3nPdiht6mL4GVTWwc1Tn68Ms4f6xH81PCzEwczgqvDvhAv7cVFTMxBHVA/DcYK5lvlUrLPvcnGjfClxGwxbQImOy7QIG4ptrWbXCYuzSFKL2yeA5FA6tH35UCzLY5K24ROdDL7uyQxAibg5UhFM8AwPcKH64T99fKcXEitOSozKfaXFTSPbbbJ9GOTp+bsvTQprfVuxBh4K8m2DbBTCzb8EI1YltptxooOqQFzerG+YJWvZPRfJfKywnlhdJlrmk+lMT2CkvFxAy7+5jLaugZonwfwfIsVbu2CAxfymMUjLrBecIhfK4L+5+pjOHS85JH0UT5m6eURUzx2/5y6Y8OyplGss3+3ci+eUfApE423sDgHXd+/ZB2JdGyNzUwwyvaiTraCbrSHBHJjrgkw8wYqcjKC0yllVt4upoqI4dDZ7Oh1UMKJ3g4KqXBO9MXTLv7nw41+7ex0rPLUhEpegijV6JZ4gjl1uer9VkdFTeeql0z9sUfk+AtKu21MDccSkLUzLMSChjxlgDhqSrWkhyieMe967YHSr9jNiVUGsl8l8Mzz8UvtrvN03Navuslh8AZkS7GPtmwvAhr2UzCKPVBCjGX48DAYrvweMm+D3ebt2mzYW6+7URgrojJW6xMlgr0V8qk4X63vsyM8A7E2nbvqThDEW4K0+QBVyRV9KC4OMzZhUYDac8LDfobTn41aGckBc8Z/vmsYLOR8XnmFlM1cbHN48G4YpNKf3RBPVu2Z6GpEmdX7cG3LVVbyc1/Y3LaN5n6+HcPR5JEzNwtJoex3XpWUAutTycGVcPwj2ZZqjl5SnQ2QtLogr2KXlG6GdW7mmVaK13aahTNsqq5JurVLcIiWAW2SKtiTEe27xNGdjohrQxA9NvOtjT0UQB2kDksZ2uMfQ2Y/0fWK2ZrqPVRHmUaofDUH9VPCzS6tNbgDPIc1It0OqsX+Qrhj2amZMl1aHaJgNY2UVqI6cnlRabYL11XeORnRzZ6Z6zppj4y1fJZd9EZpYep7yJVdyK2JRYyri3RXu3DA20V7imTVvw/sqtYfkFlraGdU/S1vDO6pIJcwk+bZFlnhuEc19bBQVwU5oOqXidPLDYK7lF5PO55kLdji0AQHggXQ1Qfc8Y3wZY4LiJB3BDXpi8qtW01wwpw64ZKhWnGIqzcNsnluJt5f9plxrf2pDAXJ3AEp4fnqIcfGb1vi3uw9HY2qSpyEFwKPvsLxEMdsl3T+OenJ4oPEU3aCnSLoYNxCtNlA5MTdxKrI5gZt6heW9owBK0ZpkHoNMQ70JbqLxs9njdYfv8c13dKNATrA2aPw0OEu005DtrQd3xf+qKyTuimhG6Ve59aE2YKiSzJDE1bTe28qUnX3oWPQzn/zXLKB6K+XPXRUM5g+pSMjVrhCsdvU0I3ftQADSa+TayvnV23yKvIVvsUUW+84BLj6EauCWa62RkhSrc009p32Jts8A911jLF3mJLE2ub1cz9zJvY0djaxzZVj5GUpOtZmKRqMSdiwKTcTeOpeqmr4bEpS5vQnC+cySb5+crucZ/MjLAe9bEz4FRDJSqI3qtJeZeyhPoWQNSMX1DqNbN5lpD7nO7hFTIhjvnc1+tTw13O4gHx9+lFuroclHHEd3NYn6LJmrkJippEUDNfbCVe1aHllTvMnilWPglmjnNWnD2lbRQrayByyP6Mt2r/bVGQ2EP58VD50U64FvMSHTdA5+0xXJbkk64iZ8j6rNmWpYoSXdy3Mz73SaHebpncDdu5cf0Dj1G1j7DPM3sGkENik5Z1AXVCsZzelkslNHRMJFrTI6S0xAne8/z/AUfk/LDHqSjOmk5/TjHjGwAk74XLW71DYQc7dq2jU7GZrdSg5dX8BZy07QoFfETc2/tRrDIn9qaRVlj2nOz56EBb3gZ9NF1IeU6t3vbWw1FuG4cvbUNkofLgvYtyVeQV9ljH/hPBb4Xv6SFVwPaPsD7bsnQI3ca1iVTFkv8PHkL6h9P9usIlXAU/2l3R2RotZmArPVMET2iegiW9/3RUqPAdQEuxisrgm8n/1a3EOdxL0pzuAsvAWhTi3idK7u3/gBQK14UoDTfu94Y8qzcWFyFp3VQUzXzcgTZKN6q25kZYj4/stEPLdk7cj+wQtILctyo9yCSEs3qUAfS8tT78PWFS4H9rol4I0Ez15SFLAhUq7vF0IzZPRq5O5rrIbWe6sWrVOpDk3FGKRclSiryLve+E95kJHqDt3V9nwLAz+M3P7yDX6xxVC1netOovh/LJXxbh2vsCNf37gCga9XEbKQKi1O778UqqHICHKApn6ppNw+VqH6nGdKfW7o86SgCi0ekjH29r7E/Ca9WkgdEfiMgvV/pZIup0xHQkyensy15D4eiJO9mQWls9HoLLg8MR39Amcnx6NTD7ahtKAt+RDJfUJEtburhTx/yuZ7rdG7VO14pw8c0ddQD2pf3Bz9ksIe2lzs8ZttJZGmEG4vWeobMjA9qBftal3AafsY1ip4fV8xGFvIzPje4Zaxanxxai5E+2Ulb3sHcgWG0RciwofjfhozNbm7w5+g2KPMQ+kIqwwp6pjbVPqpfX1+fEqWNSDoKsaquIFQeRtS7/XmdNli3kOiywbptsC4bzFlUrcv6UlGmaKJvpjsOD56To5oHCy6yEdlK3yKUzaC/1jfH1hG0UCGzhzLao2bSH5jX8NY95UG037uEBRYtHvxNj13/NAFgaWMxFuKF/szCJSfn4dCmZlHWE4nm7Mao7ZeX2ObqzHhWlYDHt7jexU7vYv9cRaudDzppb0dOgd4P0Mcq9/p6fpcZVtW6FKl0LF7W+IHCK81EFe+RJqytuygfic9uUT0oylz8bCDfUxC3xK/hUb5LYeU+pSa2r9yNYg7YEE3X0QbYtm9acAOBh73OGWfNHB5BPVHPuZmxow3UsJI/MREPAKi66tPgoDhwNgj4GJZRQ4CP8CjIzwv+jkihx703oMNTmWuNlXzbsFtw0B6TIVEGWP6byzM3rHMPQUqJ97Q7BPU4j4Tpnk1o8CzblE90sbMITOcT23NjQkNeRFN7tIAo5jd25v7bxBCJaVneJsRzjHLO3m2X3mwDJZ6dCwkIklQ6qcEO9Mq1bBqNNkAF3IZtgAFTTP4zJqybU7kh9N7FnnWkew27CEf/YifIa/u2UompqFtv5usgroZkGDbBhHsYli4hPTCGNgHB3VGpjIOJsbfhql8xWHvbg0SmeJFQBbw95airIjIIN8Z9JkyEYfN8pOswM0kI+kJ6eAB4PIeQMG6uSYWOTMDRRroUo4YOF2+Ba7fLzTomQ0njkti3gaphbVhDD9YOjInlX0BIMK8cFBxMEnP+K7RQU0wXALjL89luUH6MBru5LyILnewg7dFd3BkASJeoSrJydb6DURyk8GjBAlICBwAnxEhLLKr+iU+uSoqbEKMBYvMqgebtSIn1mgK2kkY6EUW2oQC9yPNRqik03/bz3nHGvQOHOGMfVf3b0LdEXbFoGCqfqAqg25T2XTLiGLg3rqKujcIRMRImNtcfboPJzy1cIyWCiNAAI/CLT7rvxZNbxbpXoxLPu5I93AeVeFrf96zztf/jI+Qgzcf4M9AcPqh2mTMc5Ij7sVNrUq650HSbgJvIsCHaq3pDn8iFTj54tWCo580zQNbkqw04oFpAyyi1q3OfmPYbzIJi8p9Ei7EOijnIaGKpl2YXxnsEKTy9Zqe8jNPyE/rtNBllA8J1y9HRuZfO+5KUjpaxtECHqNairBk2y1kvYeX7H+zBZiBtEybPlt8q+A7GP8G0CdZgFbEYgCKLNeO9FiSLbVrmTKDx210xk2j8wB6piZTBUdbkP9Wme1tRqkO6zkYB3OngBUDe75orBOvxSzUbZOBSaLPdJ1HhleUfoNbMkXk0TaLc2oMWAU7eo8Eb+Uv19C8FRtf37oVv4QjM7CDNaCYca6iQU6+V2EcBQ7yK8qzO95BjrlTNW1tuYGhrNtoD9hN3WYr+VJSojHZfA4D+e61fQk5Hk4Q0VNxz8SQw8Hfu/qxreg3Iqe/tjX8OePSVPlxRF0xlDEYhyisYPQavgMCbFnjk+JjmRmyw6iRMWGCkmeOjgeNjDSUBPuNw7lCJDDoCXuO+Ixm6mfWjTXJUtWnRFgorvqmN1InCYke0H0FsEItgGcRegVzODCkJ0klC0lWfD7soQySTJto6i5uENZ9J3mBiPlHWt8mzXwZdjMJ2RdZ/Mq8KsDN5wa3FkrGALW7Dz2abyhHzy9rcnITexkn40eby9CHhR5t2cE5EzLrDw+vQZWoE6tOX+qSpql3NNt3cX/IMuBrP3S7S9x8gO/fkcDezNjFRYEzcTi0LhH7dNW0R3jjPuF/pfF3VgCXfEBooPkS2WbPQOe6gM9bDJSZbJSNaGKPTbVXEozGrrAUE1Qd2Clvi66Fn36w/bWUE7R1NGfntZPj8/avIctSqjLETJQHIi8e9Qw6+CFHe/0+8xLJ8Wyj73JZNgsWyz80kIm0VpHHKsmuoIXCvQORUOKWHdETvD/MKIVT4Eu/ohmzhppv0UbjCo0ubLax2Oc9WbjBRDwjvU+ZPuTuxCS6DoRYDaKbveI9ATOXiK7vrFEXFO3E1y1Is9HgMiYVjZK7mVzWJSVuNlarLQ4xBHE+2WWckZHMlJc7glZm3UY5XKbMMr698ZQBChCCsNmc5s0C92JYddCtdHsaSPgdDJQlC1XXZTFuJ0ZdVOjJ+PJ0v1hadjsuAz8WoltlCQn3nKFkCr/6DaCUy6lw/IipsBub83gUK5Jc95W0dCjzOTCI0bR4JCptYPRqrn7Yg9XAmSVt0Nq6owGnczxooPaUq03GEHh5VSgBpSTT4nQanx1hfG0NUH++BX440+M0pUC0827ny1x3aRIPImwg4XbmlpduayN8KWP/HtVaC3cin8J3vdMl6ZAp3knCMirASMNYd80Vw4i8RdDNdR1vgn2lm63hbGg1V+rKAZg1bTBC2BXG2naeHxzpQTbN1WaCsZG8NFVBkiiFCkWlj7g6gwCKtVFPkYSx6WXwtwrxMFBCIWH4ee0hR1lSg0thKyyfEn4Qyd4QZhVx3D0/kh/IHlb+xKJPOwgKeolIwJGXZHFuUY8EB4p0Ajsf2+VAfB/hKr2NUZUTD1Ko87tUBquVxZufTkJpBD01ob7xGQ7Mpx2wFBQiXg2V9d0uKLceC9vMTNikwi0zyIaXi5nlvAEC23QLjS5S0s0B02UpGR2XPZnqPtokQMRXH24K9dFtSgeOjKu2qgBKE+slifXhTPraNSnJtexPfqJaoND3GIO4+vGmId0Nj6G00sUfblFz7PkbeRlONvE3JXynto6iUpdmKkho9b2xVaKfsMsQvSHHSlnYV7vZLO/ZesHmLdeXwJlJ/W7xt1rw1Ii2Uw3S8u1Jd21mFWojR7OuNv28gFrscbuKsCBvxswlvJEm34P2QSE+aDxyU/1j7Kf5DTdyEJy2ZPmp+bI9HB5/8uyv5rDDLcsN3pDCZPmKHNjVAi+hJScSIPXG7s6S5jHpUIJBujtVtRK9mYr8P2Z/MS4APoo6PuzpYxVaaMl1X5tp4j7AbbOu5oPkwDeXcnKtyL44n3URlN0+ipgVhGRQ8HxjfcfsCl651kndoF250pyegSPL+p4byCXGpMnbbtso2aj43k3+8R+nbl10NZa1/6pjnkBoMMYjmDbKPwRts6GpHjAF0OTzlcUcXF5uF2V5abHfRLm5ee9yz0swcchEfFgoLx7VMtkS5ZZfWvVNilxR1pmzaNsjA4nS51UmxE7STusNmh+203PureqFMT/kHjWUX8nuUE1W7ZDCYQ3WOIP1F7ux8n60k+YBi5Ma1y/We6u2MzN9E5t+o3SZx8NvkDw2iKlWiaeXrmFNhjfes7nFkWCEa/RYo26SriFBX1Ccq+PSvK32uoTu4r8xN2ZZ94IwMlUzVDzLzZMkt0Ah2OM79Brl4MydHA3hugwkVjmj4Zm9s/ECIiVa9JnYed1k+BRriseQ75A1ux2G5w6qakXYfXo5H8NfD2prNvDJv05etrCoYedk92IMiflgYNfH3tsCrFGwe1/F80iZby6SsCkha5QDnh7JWDnW4m8L2TTgH73P8ql0OO5YZQOK7ohd2RJ5Ko+HYy3kyetOVpssCvFPmWNDTb95325iHt8rQKpRk63LhNUGtrkVzCMV3Efl2QCPxiMPjFF3DXf2ZBKtrOCKPlmrladfiDxd3ftpjzyhoiW7WdRg0h5aP37t/6ctKwltNLE+EsyubtkMS4VfdEqE6gwT9ChUFLI+dCoeoRhOGtIOKLtGT25SOcoEMo55lasoH9ZaAb21UPo9jaqBUL+exlNgEWpm8ox0P2CuPVi6gIIfDcFn0BQ9IrgGzo7QkAmk5UbwUkehroyRQy6lDatsgGVQ7quob+wc77fum1l9d4Z4VIy9daUA5M2ygpdtpbB/7EkEBEn+vTX/SJitFuNf3CP6BooT/OOJyuHNgaqOwckUGkItL1I1tRJ8F3Uy6EioH7Rs3AAWIzXDACKKZKyrrLuQrWdAFPD67ZufkQWmNosLAsrztjAKG7sispD+kt2Oz7CS+I8xu7jflW8uvg07taXeNUuUxKUjUQUO3LA+PkqiPRWzwgGBCrXunhF2JSKLA1qDeNDfD7pfg4gDw7DpP4ttrxyLsoGhNV8nLsZhwYRaQduhhFL/U+U5OJ0VfR9pBotlrY37S3sIDzy/dWXitiyQkjuoHJJ8qlmgnYUAFtZMcvf3J91bCMdG7XZRN8rW/DfeB+U5d8f840gw96xNEDJ0svr5E/ARRTUQz7NTCjLn84+81Dc8rt6UbDBG4mEzymTL4+lO+aAozanfTdvSnsMNavh2QkiAVw6iM3FjFVF9JL6DYY+BscUuJuPco9145Q7J02xV6rO5nTSvOZ6equ4Ca0N3JiP2hR/E98JekR7GbNqUn/WJug8dnIU6mEr2dbP92Xp7Nhzvr+kn2ezlvf9L2u16+ue8IAZlaqfJ3rlcEILpgXz1rO+SbuRry08FQ4nIDq2Zwqt5y7f1J9Nq8aNcHkJAlhv2Fx7obZfPB/T6GQ9o9pF1DeudX+hJVPFfJSz1IOJzaUOCm6Gb4KBUDppU/uWnN4W8wGPgnQIV5PF0MIHE00bvhrzC+qf5nqydGduUzVRIAjnyXw+sk++gm+wh0TEIq2qUcRby/m8mjR2IZRmR45OfgJLtvA3nyCNwWR8koX+QCRblbEXeUZDmISLMnzeIkcOT6SfSi9KZE9I99NxX4xlRXJ6ud59stf0sy/o2Lh5wVz1j3Lotvt/y91xf3jrKc1fjS/iSJz7H/8e9SZhLb083vQfRH/C3KGOzPRtZu+3W4fL7T/s0bZSWTt/06YPqzuUVtT5c04Yp3jMK8khLLXS2Nn9fFEILjAwNwd4fT+HmXuxSgj5pfx3tk4D1arlq/beA9eipG/oZwCnhph+P20CjTnZCtpil4uJ2nMmoa9ve/hT1Xn0BQas9GQXzJVcwXyOj6PX3wvt0tGfZStRHsUhLnyctx3WKokX1JM3qB96YHd4ux/L3AdfK2Lp/H8bW3oePOUlj0XJldMDqqaH/GQUHGbnaOYI/8+9RoKiPfwym6pOjt4vlm7ksPW9RutE7Sj/55I7CjdJeYQbWVyAwcPqXjIk2xKDHB16t+vQpcqPMgoglwS1XQU5TLdc3jlINbC8jSw9U//1Ny02J5GTMoJE7qZoARR9VF8BEVY/HarV2PRg/Wj5M397wgvqObB6QXsN6rxnes5z9T1oiqwMQerP7bTWnZS/+yzhRkznQxbZQGkkM53CKfm18oXR2eS8BodrM1vUdpVTxi+gmcKOif5Ubeg5O8+6uSf1h4wwm61oDRKa0T2R3dLBi9wIv4/n3c0jhI94ONzs9sOV5ocHXzt3RQfRRvJe9uhyQhpci9b4ME9262j15QhKxOxzsRFAhHPC4S9U9XdeE4Yqct3QoK9yoDfKJk4Yx48q2VOJX0RBMFJBLNbzn5aaZXHxT0KFvhlsPByfRj5UT0kohGg8wnlyUFzUl3lSAKk1zu3dQfnTP6UfGxslmtvomVuB92zuKswODqQhzEUebOuQINSOlDyPkM6AnBWaV6CbWAXViR9SAy5keyaCsAd3TzgbxH1BSK5UZhNZfvssX6KdI5klDwEwhIvCweZcdMJ9tHVyHnqCYK1ytf9CRYoLnSUFZLTUJNmz3laA5b+JUDJS3yuQE1GY1KlXjtd1/7uxmE/wLdO54j50fUlEwCjFMEL3/XUeF3OecT7u2VIbKu5O73TO+eMgB7JdCjm+ukVwI9utlsOiA5Vc7199lpWW7XsuvIV337Ka9vL9+y9wwUXoFQKeICMSblpVLA1eeelRBSWeO9r48tSbXPIrciVNZNANIrQmWq+wyi4nJjt2NCjY+oNUPCvRaELELTGWhBtKwbuPm2aGidEloh4IIZAeC/PYDBVA2zqA6CFVVtY9UKeJIwJbMmHDsoquJnciUPZJJ182/0ChRjF2gvjsCpIuqzQq4AxVApr8zz0SuY4IUmOmmC3oqeiWbFFe5sg8iottuqpJvJQqJwOmZYrfcsvJNwSgc8EN1EiITxFZUeiooBcAy4tNKiflUtripohbspODoc8tXgeBT6iWu59ufklOufDMmuqlkyDWAqRbUIvzhYGaOOqlpYqCwqDLoJyMJZL//jUzsXr+xysL10J7FGDc+/dD8caYYVUN0uJHiWl8Tzx30Ya26aQnewXsVw+asBgEE350eUBGSvLQzrLPxcwwM7gRHttd0LU1tVlgEYJZSrtLmELLEqcs2E5cjqCvlC1u6RkxHV1K5QCFYsnGZi+rcDeAOrUxVRS5VcTkLF96I1bu8T86GuY9dZ3zT7KHTD52gva7R26t3MZLjVdW9MvmlPydwRn4vxoBBz3nvUhYjN6zEi/PDL7lsQJRgxuLtY+NWMny0z8kFhVBywD+4i22t/o7RxfFbrHqXqYRLwFbkTvdrJUY8mhOV1PZoQFrM1iRq3OKDh3dnBEPEZ1MNvLIvm1BzUOO/eGrQDpuY/NaVd/BXUuFWu6gt3Zzp1rxaJLVPOpKjILm72YWYCf71EpsEDmxreMUU+qM6LvNqV9CJBiORr4B8JS8pcER0pH6WqYlTNNJHYwpvY4ViKLRgddav0Ow6VhVSYmRszCvS+nX18OhZCMIIMtsAyana7iRGkm4ukixEkmG3dtLiUpY4HpRVke4U6GRpDb/kDypQYIdGDESthCd3clB30INNBq0GToBma3sAQLwcy/FBdpXtKIQJbFSAq0+d6q/exmKdmtgouiVz24sPvT/2AkJkj68LmPegocE+LpYa0l32cmBtnbEf0OuMc3WQhXbQgQbHiJob9lOTaB+tkKNje6SdquTIkYkAx1VSUbiOZyAiesBP+vlxQkQ+O2/Tr2WkUeK6OlowRqWByJNNtqrglibDCLeXTf6g8kTXSmxVLxmi7GT86llaxahj4lPha63inbLTm2l1ssuZa5Eq5/lpvMulMHxIJWqmj0BKcjI6LY2/oM15nzkCMUsXKC0r59K4ay6/+37hu72xAqn7jaLNExA4+wn8i6F2cH0Em9/DGng8z2bMv0vnrH4qfUUxBUDE6XNv9puAECcC+WsgJ0s0J0psEnLCiZ6cWc0I38t5+DoMspgbpgMvGL5/ayxXB8NeyV5kEpjh3U4AE2hDd8j7dQJN/VC6E+Q+3VFQm+uE2lnUsVnAU+gxDoOFruk4ol8Z2nzfXnCVfkIRgRCx9XguX02bds7itNZtfbbPPIqumV9O+53DdxPJQuhNzDAzQ7+AP6vapd/JI9Hb3zsP+2sRriDrL6m4oD+RM2GdT7W5XdgFHwp3sFSq52Uf1Ur1wB9YxIipuobWh+jvRBJygMrPiRvOLZAVfZTUKItzp2ZVrLvX07Bmnnyre7rRVWeiomwEkpMDf5WsWkn0ax9VZtqib0aaTCCx8vU4EDpfO34feg6mY5YaikPF2VNBCPDi9l/uk9PtOVbiII3waU3yEiYtB67YGI1iZU6nbW4qPHNd7ks7NFsc9qH73eq9KJs/7NdrHpx9Fa+PX6xtgzZ7e623ZEFn2QS3Q13B2skZ37xZgvRV2wrOi0ffb78glPGQo2w1ExdukYZ0UId3EHahUKO7D0ZCC0s0P0skPEluUW1KWLbEYxxGIm8xLFWOeunIk0GDUMm6LyxR6LzQLevewdn5EG3ldDuBuoZccIfkR230c9wPZi9FENScSKYvaUPi1aS9Mq0YOMMKju0rGjwXerH6DMx3Ie3FmVBRnusTCnKa20jpDbH24pwkHmfKRBEya10gzgDFarvE5yDOrfNCUBucaTjEg/Gr2VnYAHbsrlfeuOJuJRzpchlG7hANQhu7DPbQuzjnJsLJAmaGiwqHFxSXFJSffT5G719viT0GwY+824zrBjr1bFva02wIpJ99MCaBxju+4txpRg1e1tcdPrafeF7csIauzela+0bqPSZ+MCo5Gbcq/L6X7pO7tbOH3iHuYRR1kaBD9yAX/YM/ot9rvsziVbVhFZj2GYXs2wG7rInWPSsiIlTuHpvAFtl8S4EVR82yoefGXCoOn1PGoMepq7pD3qPMijsthMr5YVh960vrd4sAU0kX/EswxtJG7fYmRDozvahMz2EKwNq0yjgfQ449GM8h2N4U+l/we3qnBGhKPvbcevEZMbomvU6Fn2oHx/+UrADAVTm/4MRJZi9qQKUT6IPGVcbjRlLHByvW2GupkiH+ioOj3undgPyyIBiD7Q1lg8wykUYjX3PFm04H0AONlz+yEDMqQUEippQF5b6xpH0gUNxbtbQBYmx99bWB9ZC8Qv9eHSaeoZA47Qgcts3F3J4FEXDy6D4FExn0yCjtfhxoe1K6qWkuWdFUKk8JgotjboA7oo91bpjb+TnLn4XRWE+rK/p8dlQT5vvnRzucOHGJHmAaRIsPCbiDljOo5gqnjftiEF5Zn2AU50gYT7mZlzsH5fDGG2FwphAViL3XWewSBO+xYHCQb7sNiccAuc/ngd5+oAGaaWyvmwjTASFGP8JMp6jFgmrtgc4UjNIqTCr3fkMH+nuoBGZwB4956/wBY4H+jlGH4OeqyCN+F3CjD9kMx4ENsBI0Jy2Emk91DJzh4+8ul83zPg0N6TE/HyU32BgwGy5q9Tf5KLGvmiqbRBP6obhqcHpQh6RCJDSVDdCVCqPFDWs6u0n1USlcJeVNf1dbZWMg+UYSRuVpZHJJ5mGcOvs0aQmi+xykhtrmWoHQ7+FuZvv6dlJtYTK6cYMfJM8SS9FSqksMybjDzrNt7/DaliFDVrZZQOX/lWZES/1wFdeiV7JYMozqyrHED+OzAnhf6TpqU+442A18iB3m/9+J47E9Fiz5AP7yVT5VZyaHFEdCAKGaXbr6nZpeFFBJHrwowQZninDCogdOxiLl0Bw3xJFrE0J+3hbr4UDZaD34QzDurADPRp1uu9oJE/VfXo3tlVsLypkUN6BKr2TRgG9XH1Z8GL3DfwNzYLyAR9CDG4k54kxc343el0my77KakBunePwJ3jfczW0hHdsxS7aq3S4mEjb+PT8m97L363jn98bJ+QeLnFIosWpddsTCZFRQymvDjMJI9s2AifeiJLske20SbBO13E4q8R7QcpjfkAKHkTmAGlg6CkNZFkROMcnp5JUomHOCTbZ7uu31VXlRZDpp4Lxd02lvXRMmzRzRXQZOeiqi8VEGcwWs8F1DzrM82PgtiNvgORcctX6PMs0brYEbWELf+YAYJvKsMlwlAZVegumIDdpZ+R/11Fwqh69CEIHJ5mw+kT2IfL5B2CvtozpK3iZrC9D48x0PPbu4TcF/d2n990kYR/UWQf4EWtt/KQSHVTDcTxYZ5iTtHu2ze96NdZqoiYh+mioU9h947x0efQKzjhWxSTeb9ukZGuHTDBO+fU1jTRhv2/8i6sgTZVR35f1bxlmBm2P/GGikGsm5/lYv0gDGgKRSaH4THVsbkKvzwDqiRGaSbGaTP+WcPuzM0DZDi5P8+08Uc/GPwSBZWPw3rjmqrmCbxPvykKoOwKgd61QcLnLRqzAnRgw4Eg2A/51xaZhboc2mZWQbPRQN92qExaZuJyKQmFnJ6lqZmwd6CkrTPt+To2DQ/SJ8pwWw9osKu5EIUI+b5Xl6bU/bt1/sv9OJrkw+R13ADReZ0AuifUzKslV8FNDiYgqBZjiWCVucTGYe7uT2O8/DL23Sbh1bX/EOQ1cEFsgVhOSUT202Ug9we59N26fbLKP2VMRWFIFjxIbMpO3/PhjOVsD/pLHIh3HuE3i4bbSvL6z6vopwsyubKeuyegyhIGchDKYusb9BNBtJXQTflOMPqKWbWvCdkle267HJdqALT16PvZhWYbkqRvlgFpps8pS/kKonfKZIC/v0wXXITVPWbu7/h6y0LnJX1OSX/SVDdJXmLYkWrivSAwU9TgXQUeYmC1YwqIK/OJu5avodfhMmZKh7HWkCRHi6Ey2IIV7lfi/7JZaztIpJ3Wb0LWwZDZhAK+D66KYlBp2v7E4QfMZF+6qV2kH5IkjC9o5rko6/MMPOK4joXp4cNJvOL9tXVVX83JGYOewrgW72b4/hFNuI27i0cb1KABwMnGhHS5N3T/BSwV3WXgL8t1BOWxeAiZX4P1pOCIiY90WW5HZpKpq80xqZi+uGQwvNU7qgB8S8KStYivr/z6UENGdZ8+xGcYRBjXCtqz3cXnIyfoMQuB9fA8nFc00dr1dm4JRerIE/Mf9XEgi+SNB/dNB99TRQJdwC4YC8qyuCdk1amyT76IlrfVB6R2cKxvbpkAa4/WgHb5f4xOAhOkGfBjXteaEqqPD8JSTXNxj2a8AtZcG9wkPffV43z6CqVf940PlfdYJeXh3PDCa6UkbvfI9z5DVePH5uf2f5TMH5E5SoZkygJt4NMFdtiCkZc5dlL2RW4Sw4NOYf700rD4YPJaLt0MUqk5Kw1yDdFpAIF2jryVxxqpesIm7CAcpQuJakmvg8zqTvJOTRr9tY22TrqrXbfwtjzEL3CyEQ15RogMe2x/3QWB71/XwtSOBTFLChXVrSXlMSR4JrhayDBTOBwj9K3t5f9TBvO0mFix3sOMiHMvdw3eIdNczGRqzebahMU6SvbBtUG8/D9Wx7/z/2P+64pRXowguR33BbeQQmCHcWKQszgVLCW9d4gBkmPhtnXbtMBxMNIsh7cIME80V3ApSc5CNglfK8o4hmAs+2oz66/FD6M691WSrfJrLVQQiQP6qlA3r+Pkh8pyIqnl+whRCQofQcfBW18WxiRIMTVlSpSUh1IT3xz3sRCbrf2u6Wi3PmV1h7nlG9Chc8FLpnv+SA3smzv3+kWeO+2Y1PJCYIDfxnWWVQcqu5kmF5SRYN5Efe18QQudWVh3v0t14I9vzmEfo979uT1/lo0x34+VrKBuMQQWCK6yhuWiJriHpKZTeDcLfeFi+l1E4LEcHNuWkDv8Ze2ZJ/0h0eDRzr3aZPL7lV+U/wC8M/eieIwSsCjd74FysD0/Yfy6jaXxAvLUIeLe8v/ChNBbL0i0+jbhtbOIJkTujOjPBh4FXgmmXTfxjZuIvi3Q1tbCH4zkfS9yEt+PMnrYm1WaZus8HDPfVehrnc3VCOxIUv0uQkH4DX+8os7moXdVs1ORcnS9n00I0p+MB9IJ/GPRPg9SK27KpF2bzplzMBxj7iZ2Rzbwu9vy8wt/P5e7yxuZPvtWvtPdIUa4VZEbGQR5qGY5WIU5Ecn2XQtbmM9rub76/8YCQvvWxwudAH6i9Is2xZpm0AQk4XcI2SibTnmfloYMJuFwI5tCyPoQDAm9iSeD/W35H6cnWxZ7HxM1uzNsZF1wF8s2/oc2gTG77CUeDfZxz1azzUr/8/5zh//TwQMNWL0gR7qhtcspIomyu9ooSvgmh7/g6Ib2Xb5gU1fcptyrytKC6DX8DxL/qAS+JaeiTiV/tvqGQHzGzROPZAUz8o4Vb3TRzys1a10vg1rxcOOgjARVuI0I+beLJ/9YOZp0+IVrxYf4Qwm1OiHIH2XMEqgO4Yo6E1eLs/J+Fh/2az7R9chl8o9ySPUsA8IQaOC81Gr2qeE7HpciiyA25RX2n8hOIB3by1mEOZ381p0YeGOI2UHJSe7SwXfFsIN118N+of8Y1MjeBWLCuPz5v7oJ0N2RUAnUiD14yL3ueEJ1XRl9+CoWwId2mUBVyaDVz+yzKJoBSlQ+pFt9pTII8PsOHJ2WM6sm4KonzF+vg6KUqzx7vGXl1LG9ctaPeP8pJLOgxTgYu8E6D6Ui9T46VS+bHfNTEsTgZ+O4R5nkhebO1qi2172emXB9bHeBZs39exFJp+eyzTFl//+/ecG2iG8lZPsup+fcygCjmXjAaCkCYC+wRkfVTLouQKnbT+2qw5yzowCybTYPEVQtlEZKzffRo9Ch3i0wmCjsh57P0aHHMTB7m8m9qlp89p3jGyybS0bXAbBbvhaFqwDjJMc1vLvlsb6vrfFEyLzvKWLKRDvvfcQlytejzHTuq9CvlydIcO71dV84lz4vMwG3g9LcPbzOn/o8zr7KRQMjZrPpCONxtwyYiMYn0lWkhBjW59IhvhIwLYIjhpCub2KpJom+PhkZ40PtTiHWMfjaP76LIPUOflh+dY5ZlbeWUDuXiS14EN+2W3ZbvnN+C84X3iT8dX/4I+ipiHP+UmezlsW97pM9Lq41wX+2SHGkmja//5DM0J8wxC1RgMLi3B44Hl2eOKexiFXXGyA8OOuEiGFBsBtWyWR4KkeRlVm6l92tb67Jo21KJELtPAyFDtfAzbAPdGDmlbWttq9iBhQuu1mNdPhtP1BUoAhmoA46hyi6k/ToAkOFSyIJkKXOa0OssR+3vBAegxTfSTbYIbZKR6WtobxbgvJdf9+bsnE3WpMUAOrlQJzqSlY07unDzy1exw7xk0L5FsbSdChc0MYtjvPOHe6O4ussqEIauCZPg5M99Myq0yE22X1v7QXAKQomz+TkfCU8W7AdWXy3l2QmCPSzqs0FD52vJ5sfo/h7zhAbjlUsSUsBpBbDnP9jGABSRfDEWRkgAZkSOMrE6UNjxMTxje7MI70jdAgEZaZc+EaIJJn8L8NE0aML4NZQieTam0IkDdY13i7psLHqb08K0EfPMQhEi2N4zJ/ExnGBzDHFOPqhjJ5Z6gW4zmNy2D5HWF1HelQyDDIFmWQl8KZtdwDOBVviydNEjGajQHpNZFP8rvZpmtpzre3EsuhnZT63G2Xt3kNvvz2drG1j23PgK1Jsd5Zv5WkJqMVw2N6OOlffhdS26QCFiR6Vrsk5yi6xL0/nMFvCWZhOvnKDyuOvBp93BaOB+1gNqiUD3ORm/J5BQMcRc7DEUvr5N/PLZoN8mMOFI4pY27BcfI+5eXMjpIOxXvKei3hiqlrGuo3J8AjI9hBnlWQZbpyvOVSCyzix0V43K+Ut0abZ5m3/NhkZOhIFx/WL+9R//dLdvGXHpO23xCgIOLni3eYvsPG6JTXMRIrc4jPBLhaGSOIynsTaCh4Gg0e8Yp6IRLg8CY25QZRXqvK+xnwUoxw89juGwUAxVEs5AoBisM4twEMdTFb0BhMx/L6GL/61yiITwxTeIySBpgDxUhbmlKZAtYyeIXHB1lJo7yZ0WCCMwSXobRhMDO9AMu8aFcWfz+Bsyi7/f4jXfowmcconcPT3efO+C139OS7+LVgO8uEDNOE3SMOZ/d7dA2nhW7pmqbNI0Z8otlzJsJC1WIYQY3Vy6OFiEp/MP4UtPpQBXEIFbsHP4QVozI4rJZ38GaZkJwg2NtMXTnZhvMSPSUIgvlODqYVpIy5mHgcpfJJPW/A2h1iqp3f4BqZ7kimi1WZbSDW06uxWP09yXtJyq9i/wp8cub43pvf09KpAJw/zB0yYDqJXaSwsMQQSmnMhcQ3uZ25zoVOoOVSqwz/ERhb3MG9XFz4lgDB5YHBW37z/XFCTE/HDcLYYRqYEWZEKg+lvLOQvrJFTlTgdlQy6UFGxj3PT0+uxfvA8x6eGpJylYFicBwmmYjDeJRQK8ybH+VtqPnYqPysiCVw5e0lsknNKu+x8Ajev36ZMzgw27MKBVX1fhVQrSF8ehn0h4ygVmba50DZUvF3Ed84xHAZ7BLYzLlkNqIsIzg/3r5YQXI6wq1IbOmokF5VGV4se+aYJ9L3HKzsidHHradbdjrvXLP+Hh0+6LlnqdRWS7GIJGCCZJhrb/IKD/AUR9Lap/uVB/qB0XS6VTbwfcRJ3S3YD35b1k+SCOsVDW9EB7viFn426wPlS1pcQEVxNYxrEHB3D4YLQqOuRo4s/uHaZPeIZo7jHAN0H8F5r/yOA6Sz0Cy1IOFjBNWHZgA4QaZSSQYpI0RYu8g86HoxcVTYGX8FIBJDCTCi+puAHNYl3iwGlsfTXyqmF70bcQay1Z16vTgWNgoqQmDhXnELtwgTh4zwaeYMMIHJbeIWYUqV2wRfkPDdd1dMTm4Vfxz7/9WJGqxlPqrNs9p/bWvGp4e4PCIh4N9jlGlJxyjUHwIBQ3VA44irq3tgqTlXW3F1oFIO4bZAuL65DwyAw/sq2jSqDaaa6SQK7uUHOM12WB3MJecgrD3Zp+leTn5+y7MqEVctOqnnvcJLoIOhcrt3113d8wl4lgBgpQGDIhWm1aa9Z77ncjuwnGNcVrS2SOhuolFp5Ocb5t0YdSFrRZYcSv6VyJpSN/hUy6S6uAtY6RafR6S0vTrrIzg9MA3nOxPpjcRbQRAXZ6fOQ+uibu9CG8Rf/N6sCzm0xmF+ZXe2JzZ3kGcXHbkltgdKBph5PgZ4VxQmQCRkVAkuwAsdZgV8527y74vDj3j/uusoSib8+VnUMqrpgTu9RvW8u5BQUjXivoLK6g/LxHt4EoAHSclmkVby73GTlc01ZdqKTEM9+fdzC40vk4CMRkru4Xpot2lwC9nvQlByj2oVICg8ShoL/kLtDl2gIIaJSUeDD06y8aMHc2rXrYNWkTk5MkFlRsgCn4fVG1oRELv+5tp6pjfbUI3CyyUuRkvh1aT+DN5QURtsj1O6bSvIxhzNsgt0HVGeGN/qZN1iR/AjN59X+JEgYRwGf4xGJP198HZTcltKL2O5vv0oa+OU/e/RV59EQoqUVHuw6TkGCTuGqTYGCDtqe+yDI8sBl5+9l5wdwxlBg3q1tqSruB4krPJTb0Qphiko7lES5QnWHd4p7Mei2QgaycbH+MHymJngfARjR05HkalHU1q0SrT4UPPd+KM+NfFtXbX0JD44pM0KUXK0hOlmZ/p7TLL0B0DX56BQutGtZGAa7bfgWB3cl8Jz4noLQ/Qdo1nqNSgcLTMIWm4UjfxT1m1birE7fHJVzk7j0ewdg+wd0/TiX2+bV/k+KC4t72sFXlQcxHtm5mqc5ukJbipLg/SDnzekkzN8/rBf3v+41KYXL2ttjuANUZGf0Vhu87YO4DepqQaZR241TnoPCfV6Cvr6ITmSqKEU6oorZVRp/eYJxtnvXuy1le+25o/BjzIht1H0RVlNNGp4eKwR879/3SIUh5L9N7jstZ2QBDtO9NhukFMMJ0MFtWre9u2dW9uDJSLuHA4WXHWSCbDbZEkz87zdBCDI+9ctgCWag3YPFECYLC9Hv+cr8zra4W5q+4tkHcNkHaOl8iheOtZ6G6bmaPQuNGMx/ou3aUAdut5s+U7BZtEtqTpyw4bZO5KsCAMkaPTozA27r7zc1H+/jinah0axwwNRjAiev8qAiMOH+TpGTwk2VZZnUbfvWSBDhmEHqGt0R6s6ypMpxeGaLJvXMVyAd66u1NzapjuwW5R1IsNGtyzrySt8F7ZpujYWiSpUFfHLjjB2mao0UGAglDyfBOftlrrL0tbD5A+jA0d//xa3pC0Whcr8oSpDTkZ0jFB2clE/dT2oO1J/aOvdKyXGMpMxXJ9SDHKSZH8s3XpjrS1OiUWL8hNXK4N1ruBzjzB5H/4c1B0eh8HkhCLbJLhmFu/iTwmsvQBISFsdotLI7Lu8QHX3ohgMH/uTcjkiXxsf09KOtNoCjZ6BpIPvL85u9Aevr3yUB7bDLlfUDeDK51fq4MV/yW9pOPvNKDq7ZVSnHfYkCdk6rsLAc5KfI4zJH/bH0dMem1KqJvJLZMEg079+L+bVtRzGa8FO6xIYo5NncTzdu5NncfT+mnBvnrMbnT9CI0a96dzVixzPccSZbauMKXIiZp2YBXHmew4pRbX9QnmTZ/M0zN/94kV9cXSXR5fBMVN4jK7gWLdph1INDv+cAQptfiJUJdzb6nJfnK+OkfXkxpdOMRJm8zkev77JCWztvrMsmViekF4UfFVeNrRo+n4tXFrr/Gg9Ha6ET3Hr2Q74vUSym3mhuJPfF+lhXLSATVVzu6r+3AhKVnjc+uFma4ulHy0tG3md/PgjpM6vc6yTJX+4DPltQq+VUIbqAa4ZAx1EjB1VzotuJaHDt8hVSp1Fcez9gWpECaglgaw7z9BgDvoVh+Xf+H6pkfYHlU9ozUJW2fHILEcC7K819Ygc4BY97wwgkURkuukGNmnHGJRiw8JvkBj/Ng03oUZSfexHwP/fX2RhIT85Sotrc69I8NOSBJa51HfTzVsst2A7GI6WgafDegddkDJsSkGJIQMJE2dllj4afWbcGDCD4m9zSy5oeiwAU49WEcGmrh5Fiz1clV20qRIEHRgui8yAQeQ8NG3JwIJWVvgCKnuIo6PAD1BdTZHQzDEcBRsN27hyxgvC8mZhu0Y3Y1Am5RijsbPegkdGwkQktUGPGsVIPeAdaUDKiOYQcuedh3H2K89+BMHIkjkq1F0qi+M6XjESiNutiAwWKr8/bGsrg5iO4RDaEKbDJCEDMKIy5EStraT3p/ygEUY6Ec23AOTkGC4a9lslZHy/9e/a5PyygBoUWcHiIZ/ySAyichmDFQ8XCddeZ3oKTBpxGE80SccYk0vfbsdBjqkxLPYGa7kME/SOpOio+UE9gSeVrP7W/ESqyjDfWUZpA8vjhN6diugRpuNskADcF/coptpxlIJyNmjXtoOuyNceLpND5/+wGjLoSjTP+RhyJb7ACKuBfOFdV+ZqWqVyOk0GMi10yQM9hkXZALxSkVYWQCvn9WT/bqzB78E7vBPYVbsZR06bqSoGCSh4Gw0Kd73Q7jjcDS2dEIAbJplJVUNIqAZS/DjLz6PJFRweT30cCoQ9Z0HgLTAt1nuWqmLIl18PKrq2Vu0Lr5tvbesKnKEPQNoa2JDj7+ad7jGBKE8xmJRc015HsHOU4B7HEAcx9L/fLHvFn03PMWaCOe413v7nxwC5GSXu0fnFYgOtf6eeHO8oRKQ6ozRLxcZRsrZXPtVx0ln+1Mo7g/gWxRzujtegCPCK8xNPKFMnb9/u8AHrpybOXekw9c0CcltAfCPibwXXn0vhLxSnjJN2gVKoClFZsyohfiy+W33PgAkyLfCmEBzzSsznu5+kmbr90xqarEVmMvVoAi2pjYAKGoBPfhl6YedvHZcBdo6hTBUy+w1pQglYy05ask3ETk0BmTKpDZMb3BN+PgI0/x94yGS0JUg6XtQWCefKfYe8zQKSviqnkv0kVdE483CEsYOe2v09O/evaRE7kQu2hGXIdfCZN3OAlKMb7pbdMAXwmFoWlpVzIEooJ8g4Kc6aXaHrR22N0ydv4G4TpPEcPDMVSfPezUUhPp3hvFAUs3+iD5grY/ujvX6histwGdERMCWMxnBvJgMLs7+m9CIXhVYGQOr9h7+eZUzvqd4J0iD4ySeMAsEBJJQnI7NuRtBxIOtm/ykOM8g7NEy2MebinmUrbIL1V5DoisAw96tTNatsYc1UyULh4Dh+h17aaYjhFKJjWvbM9B3FybQsIgiXVynfkuSabRklLmbIN677DzcaFA7lPEb0AH1NylC5qDtFuqFWkdTP3lnMza2dwB7IebgTTKNjZhDbt5z33kczK1eJHbkXBHQkQKV/UlZKBG3MtzlI0zFM3BGkBxjWKVb4MjlAtrVA0BFlDjiHOkyjopSLoEHK+5qTYyykZVoYKMtiLNdJrXTILku2IOrACFlIgmiq2ouBnLJmx8/aqJo4lt2AS5kOeE7SaoTq3j7hiJHXMkzNMRatMEP4xoL7xNk0mdakyLw5XKwaak0v7zwrc8G2fJhXEWCwV8Ungg8AD7UEXiT+Heb7GIvEv7dr0015I8n2IB/I/6XUkQhymItjrITcyYwTwlhUkiSUqdOE4QO0E7WYMWSbZgBnlA/pmkE1q2v0Oev+SWMdwdiBd7KgXBkgO2IGiQK5iS4KnxMVqP3R57vsDFqN3MT6rkmGXpcr5qauIgqTwhjmsqhYIE28f9ePoFqdvbaDcCUD8I5iOAUoqQK8kWucTmG4l0XTAsuUDBk6Td+v89cwbuB6kCBHhtswG8c9Yk8dKCNjxzA9xxBjx3BMboix476LH8yssGF2pbHGqwGbJTNiozc8dCGRov4SvXGxjD8q1kruxF2VakB+SYq0DafUFPtiOYeb5LL8WpRob5uNBTH+JxAg2AuG6Dg8TFOKyORHUFXyNbnlLrMcTzkHvFgGVkv8pKw0FhcZKkGbhT9+4IacStuOy5Wq3/3ZJtDKEtBb1C9Jn/GUhLUA42E/4UkY3l6XdrD1Wg575EduvYjRJUHSgc9tKbvggDnCGAGl//aStMPm5xE9nGf7PQbZ7M7vX6lf/WdJqQhKwnBxA09dYsmWXY3rgNBTKRSV2B1qbOTNG8umGFk5pAfTfxCkHMoTmKtwTh7hd1jnapiXY4iXYyzH1eJ9T55s9gFQL4grKGtnh7pQHwRsZ9Q6WppbqHiZsGOoyPowr8U9IqLDBClRoxVy3LwWYwvRYeKs20REhzMUR7B0BK/FMOnBIAK6yBhoQJk358NFQYEcJNN0jF1Y5l7YnSjAzXNkuxd+wG1BtpMJTPDhQnTDNnX72GX/CXGCsSt3dZ1RPz7m/Jgqu/6pBklizp60KX8K7v1l+NNJ7HHkUOHmNrs2kT/bm15IfHwyy1o6VJq9ZmPCCSjLadB02g6GoWD2ctXyMVjM/phXTJc0+9U242Em7xgg51C086RGE/Xfj39fvIu8c0E4FHdZZhUaIucY+81UIRO3ZfLuAOO7nPZeIJpWAJRkamNbku3+39J/Hwp01G233O6Okr+MadzmnYLAqok87lH6xs3tldugOLcGeEPGtsGzBxjInnO9lI6Al7GBO2WZ6zoUSIgo60DJLb6hsd+Ko322jbvfgzvFdkgOkdql1Jc2d0UNe360sbW4LM5Q5b5p6yypoMeFshIKaocPM3QEDhJdsd61AVScO3Wo9woxy4TqOYPRtv0mwwSw0hD8kRH2V8qI6aDi47DJEuwVPwuSRtp+Gw/TnodJQkaQ0WCWzXcW/aJmfRlg6rD/LsIO/37IX0VKNqxQDjB1hD9dmWjMTTTlVK1aGI6IkatjmKtjbPgah20V8hAP0aO9d3fciqaSXZoTyn+YnBjxjzDlx9yxtU2Gp06MRzkrMFyWqPvUH0htwMdelEvxlG1rbCfOowhlBG71aBbMnmEfU6XfI4RImXcA/S3JrvjA3jDtjiXTIc7DZB63BfzUVdmnDQk18Xe4BQv6ONZ6PnpHzecxIg0Gk+O8JiC6mqkT0qHiDPAKVho7vg91imP16RS4uvXZKwsYKeclso1xiTWdAxrgcSz7TvqxzW1QPmRTmFagNQJbzbtxj1KuUXNhFtdx7eP+E7pSQOkI8jeLbueo1CG04ziT6AhmfxxwC6aOR4/EYoOuJj8O6ADjRV2pMaqe8VHbp7GUsfzfIf8SGqDAHeKjI4g5uM/QPW3yh0SXZ38t/077Kf6GQmDBYq9KVKXSP2tqjXEQ4HK4qNBdZjqOcRoqmyjZaCUGt+5t5UH44mP8yxGq49gLGUGenHhmLBmRH5G70nFoNTxdqYCFe7QE/BgV5AbqekZagbJX2trkRxDZ3z3ioj/93fBPuvudVRngW+aZosp8bE5VMNzcFo8zPI7TmdAZN31505MfxhLsMHPs2MMYxB0YkDdT0j4rs/9hnTOwLVjGuc7MBwUmFq2ILCSZj3HcjGCf6jqdKP9toxe2g82kw8w54+3O1B3fKRS9Z76T6BJzTbxrKX0/FsHMPKLp8qXjLICX+aLj19cxlWj+fL6Houc4CHZgn4lgZ6bSlNVw9TvcoSJT2JTk5ugYh9nOEdd84uDADlwC9twj1LBX0LgUUs/fU90ZYOXUmYLq2OXlqB09fT8/Rt2NOq/1/3uksbW4PJvpo03+cnIHiYcgao3h5oYenlRkbLIsUgErBIRyIN/Pfk8Xo+k7xjns2s85sS0sh98Xa7ioAic5Koc4N4LS/vsJRIHD3FEk0NlO82/MQLw/nBATz26r0BMbcalpDo/42NHHabruGTxtGD5ZojMKcmNqCo9wmwimDfKY4AeNHaXGDwXBPVEMZ47tP6R3sgVuhDjV/U4Dbbp28Lc6gg+28kCoNFWXtX+IfE5HViYras8vpwZBQvPL5X+cuJ1G+V1J/TmHP8yrKWKPOEp2MSVhguzbLLk5ed7yB0iyOWx0fx68nwe5cpCrX5h22XQKxvxQMPOIfyCtrLxPsoimUdVEqCG50ieMKPG7sg7pNJfHJJfHNJfH/MBjr9RnyabbTl1tMUFqfi8vdai/zePdMClmUI384Kznl2Gz5hRWANHlRZhf1mdRnpNU9Gn+jKnP0V335B6HWnO7Mf2J0iR6ON8aeHteR3dTREGf2K6Z3zy65zQjrHSqFVi0zV8DwKtpFeQecVDeLQi7v02eGgk2GipkWdpgvp7SzL/BXo53SX7CJy1yr1LiapALcqYP9w28ibfFPZnlB2lOCtipzJg6clupb4+cpAp3WYV6uOLEZ0kEzjRbR2G/p/sN0kR71eLocDymZ9/6OEmGz1pIGpymc5nB4xHqyV0NnqSBVeypaSw3Icjpwjsn16E1DBRPvafplUrnTFruM8pkykiaHVwc8oR8HOn9mT9/BntHvuYj/0f5LoEoz+xc71pQySq98291S8dd3hdgbbF74JWR5thd4sS1fpkXLdIxfJHx9nrtgNsdO7+zICiV0zC3e/WekFJvNWePfpzlx1sVmDum0tziCKY5fasFvFV1vgUNS8wF5hZqAgh0Cf16mpXjHnFELeQK4fbTuRCzEG5/X2+7KRUcmYSgY7qt2rXSgJCdvfSrkpnUi/cAlNKiQlBZx+D9DlKTKU9jVOtAv0vxm2T0UREUlN989dB6ssM8VjiECqZIOoJ0nk+YPj8WmWlGFkPqs1hIRM2oglO7mwou2rxo/oe3+HRwCPwSEBXDIGahuDL/xj2CuCrVLwLzS0m8QQGc+r1q5zVAzWaxECyoKS2AJPg5IlXCY5fARN2RlVxnMR0P1255HsV7jLlpUo8ZAXkMR/UsaSBIm8XCNtjLc8cxKcsEt4NQtATwTDNvtGAP3/97oeigrvvRrBhJnMU+3DY4AsqK/cKuzt5asGE/il+WzkFJpU8JL2VkyHa61O8uuq0HFhGx2+I3ZkTsNi0xJSYD+QgfGj4Y+FhnsHCIz4zVdLvDsvfX3GHEdbCQ43ObPQigndX2XgCis36ZlHG4wr2lqDJNxyRNh+gd7q72lV9A80butKfJ5MKdHkXUwBTr+F0zwKxOEXPc4UX1xFne56O9Nc1vMQvtrRlEJOL5v/IwYRP3Ft03m2xZiQlve398qaizwhK5szDxSMvoWm1Juhene7ouFY8yS/IPjIxrahaZmZ8+gDfwgvjYLJZoZWtDWF6+qCQn4E7p3MheOIZsgPunhSt+v5vQT/mL7Qg/4L9fHscPN4+aJu/CzVu505tqgUtXznDDYOy3P8ehWiCKo2iiWlCsKRRIsIBJcgpCXSpFAJsiZqh7LmsgTpB4xC8CMX+/FTmDTkaXeJoejrQlUmWlcy4X5mpVJ3pMZGAE0bKvyA/6yZEyUAG6zVcg8uMlw5fgQ1QbaJXm2Ixwv6oozIqqmErVCn9L4sH6izLkKhs2sSrlWbX0quW31AlpV4Y3mpqIxdLsOcsd/HEkzopEulltglWaYKaDmJXmlypd7c79Lf9lVsA0cccEcYfAT40xmQeEiy44e2VWSvVqQVUBcpqm9Mj6bBg/C9Go6pKzz4wns7K487RlDTGpKFljym7/kWC1odAkt1hs3elo6vwdmZjH074iJDZDVbK3ZIKv44Wm+gdXqLhLwBq5PMgI+03Td0wkX+xmCoy6/pbr6LL7xTkTR7BmnFw3g44TA9XcX4bEmlNWISeDatW1OYLo91cfriwOOU2vcY/2D0oARZ6i2tvnygqtr58UrpIa5TJfw6yDtxyvpbH//oTIeFYp1Arn2CfgdCjSEhBw106lnMcRx9SiDpQdP+U6g3ospqbm5i7w90wRrcQRx9RWap0aU5s/lVDF9OP9ms11Im4+zQAzQd+xPluPE3ghIWiCzZ192C8tYsIdPUTr26LGNiwB6SaUmHZ5zrrY9eWur/Yzu5nrF6SGnNzrR7UlQOI2Mh5MPaBaTGFGbuEi6+rYyHdxpZrOT7zdA1pe1ZZX+F0xnBZ2dT+yod04PbdcdgWJ5VxZCiC6ZE+fUIyEmqTJtKuttKpiL95g4Aqf1WZJPeUn67EsTu6jnRmpL5pHnntHUSEanWbrmPVQBpxlSP594aWpZMusHnpg7DuYNbPD6lBdHrLMTRF1yAUYERGNc+NWJ9RVKxnukK67UM+x6kvFBZj57Xst6HJTQGy2D6k3TTsHnPvyCkZkZPEm+rrBT/2TToGCBdHM9D5mzhWzMiP6Nc29MRuiX9P8HvcIobqpAHY0JaIxgO7WheUpFV1GY767Eocqc8accxrlIlMdqMO1mKGXVqV9DSanz/BiMofnHmPbUkpSHHXsngqXD4giDou9C8q6jaNgIZRiAuqiaHUlAPDzhO3F6mHXVk8OYKE2yWJxm92LVtkvD1PjfGt3+i02cesSmW00cdMy78ttAthnmkBoRvGgcObM4kkeHB4lHbQWbKBWq9XMUSfjEdX2x1cRh7nSovxA8mYT55RmDqy3+IGWzKDv7hX3aRjWXl2BpSbyPBJIpJ1VBDemeTtmI5XiNBHupF7QLax63fzGo7yUmq/nA+8OJjqJTaKlzwnRUzweM5KbOOZDY/5zFu8kDWHXdKjHX+YlH0r34PGYvAgVAqjgLCRaN0MpmsfMwqulpbaL0bIdaGiqexuMtA88O9vk8rONFWuCL3ReHshsIENf4kGYSH3hqo38sX+vUmv54CBWfbmoqaone7JmnvzL8YQHVGGqwClBVTU3x2yLfV3uK/aARzJ91v6NQSR4iW8mSSNHWhwdPsFzBbiOoQyKUrRtGoCPnM5pFo7ZtiaAJWew72ICvOW0tejGOyuD8irSS1eTpvIi9OM2KEU1UIL5bInwg9pba2sLbAux4fuDn4KSWKtw0IS6qK8EKSVsewudDsV2PPRktZ+m+bhHyL0RELUDiuw01nK4/dplCAJXZ16gIqv7QZ9jtykG/ur4W9yC6n2aQwdA70/l4e5Ov3iT6UvWT0ZMa1B6+veHhkBRrlb4swKGH80lk9TOMP/Rqe0Wfn+zWcwo6oTvf95ZAIRLmd9JWyo/zkS5o+VwlVz33bt2L+DjEKAvEEZA/cup8hVw8EzzcUzmdcxuxaFDlajySYeRkgDhs4QLuEeLV/mFZJB1Oxw70R2qjHg2h179W8H2lbdRtd/VYG4ZaD17wqLjh/m89x3v5drboEUqjr4oEeqe6M7Qy2hmj9nlZeyWl11exm6B2eVl7Pbn9oYK9TM8fkF5QNjF7KkTyud1gAh8DsuezkYDRKkIiYbCDo5uadY7HEtyb8dRor27ORXF7TRN8DFRyjtyYD9O0frfpNj66VNY/CCUHycpqlxAKii8RFEw/Z7qDjL+0a2CROYMBtUWHOz7slSOZ4JFEH0LcA1v6hEf5w/+VmZIp0U2AZ037oh2abd46pO7gmUeKzUF/4rtqa/gyV/RbvMVJE/MbgdjJxfVNM1HTkjMEduZHRkr33OgNdoT3RUnW9qV8ZdXVclVWyG1KdLWLb7I5KH5yNSlSHXBl5SpaOqO2YFzqe3nHhtKupOxM9mKw3mY/TFN5jH7/uPMRTJboD2kRhP1c0/0TNh8mf3jPO1bk8G2XiQeYfSsIAYkHitsfX8wB2D1uFsVV9A66dtuotFIqFF2w/iFDqLiYwqGxXdTqnRj6fbZbW/184csJfGzO8/0jESs7BOmOUqqZGKC4fqYoCqXnUy7eOxPKazg7uKjNXHCSY4BUoBrDjgT229OwtOaOtwXbzwHtY9ho2188wdETJVBdBxew4aehDWUvRr2AA5g8ZcDnxmGVrJ/b6h4bmjzHLpneYYIdnFRtoR2+YOtQJhGsapFrcvEHVNmmYk7Jqk85rBTcihkNmwVRv25nFvD9uqov6lJJA2p6aijoyvOSXfYUDAGVZq/ZwsM8H/dv+/hi3o2tX6Wb71b7jmmXiyDWV/3fH8vZJVNc4JMFDlRZhqkfH0RKlB0Kk4bia64owXbSA12KRFJk1EkHVmDDvFi/K6YqXk9Jnk97t/5A7EJBwcG2KCTkfrbEQDrnFRPTxRUerkM5zhEMGh8JL3HM+zA77H/Fg6PZkm5jQLoUkmg92b52M77chAcLBsMn4330SDPSmhhdmoOxEzDnf63EtoUUcZhmsRt8BwCT7BRb6c2rjkKgF1QR8rpYXFEi3I843wwMDUe6+REbuw0g8wMHozULcxMNCORI83sbjfvIHLRYKVgiv9N8ZrIA7IDaRC7aNDpHAAvzmHBNjDxfyrjKrH0BaEGOIP3kCHQmEOFm0zpFa5hOwdA+NNUIPeoc2xs+o10O8rZhjJ7PyV7A/P+au2wgMwUY0XWmsZDPR1gpD1MCXL+xQjJX61Kj81v7rAVCTnnsA2HCKZrE51KZ6tCVoFo+PVKokiy0/8ZCB/nM9J5MF9tjvepD/diuyEHaaluk3tLWqr7vq8J5PqCri5S5qqywlBIarx3BsuHE/3n4VoVUUAjnsMMDhMEH+eBf0Ecp8oIpe7EgLmqJtOKI43owfImeaceM9g9ygVmZioy3rwqPu0gaXNOy6hJy8EEIDO4PQoO9M1mYeFqTk8RbcoMS5LavK8l10z7ztmMpX0oHa6SaiyfMU3FMSe4gu/f7hakqg+NQk4dl1LwM/XVZ/2lK2XArvl7TzD2aioj+mg8+f2Z41kfpIKkAPevh0LmmaOUcypeNss7i8bOsD4y02tTH39JUpPrR5AFTyXyBw0hCgEUwfVOARHTfMiimRy4kYv+6ZwBHInokmt6VPfdjW3nSG+bDmPNxj32gV5mYzmh8e5DhIoAhbOpz95Nwd784jFbniiB1utk1eZp8o6JOdpF0xQlfMi9LCOgCj4zvQtNmmYmNYN32a4jgH7ueTbLwqeLB3vMB3eE+aYASz3P2d91mEaaxytKBz2VFbzPLfk9Xa5qTi2z8e78yx3NjLQZTB9/07nMxVcGrQkTe0xSfUzzekxUJBJpFmIrKhSM37H+zdy/uMM/tWgCITusgk/A07YcfQzxTDN0TNbJvS1eAYvq93QQZCYbxr2d/T2VOFrXjWqFRNbyqsDAdUnwr9OfbbKPORenj42eCSHWRUVXMHvk2nIh2ekC8RNV2yPE86NNxb/cfyy8ptyN02bClLtx2lU65W58IiAwuql8zPYeuvhQJScha7S45m1wJ4BvYb8VTvN3WrJNhNNUSDg35qB7/Zl8GTq8y+cP8VkOgb2OM/PJwhavNDEbIFsP4YF5Xh+z6n92S8rca0h7t1y0yx4UfMkum7YSF8JpWz6mNncagc4cWCBJsDt30TILMvD3pLTNKN2RDfWq3k8wfTg5cVeipEzjMWPgTrb4Mcgmcwj9Q7RNPFBgHl72O67CWzq6ttI0U0S4r1xYwX1JZRsV4I0W+Jur0NcCgn9Zmgn/uH7LQM9FK3PZpFuV+9iy8F2V+9iyAQeqD5PTslSSjd1F02yZP/FA9RG3cQ4v3aiYM5ubmJLkT2N/LdVWY19to4HhI9LM6CM4pfxJRwLXeZwo3HoBI9c04ceEndtUzbwAnti2apiGvsNL/owcrbOVmALxkMwl8yzYMV6pOhIQtFff7dot2H/F7tGiCHhyMI9MdRP4KDg/MPpXggUoQRCG1blTmPJkrs53oa9/FSNB8S7Jop0vYxttgUc4isfSXBzp4Y4y17+8S/dMuxbWYCEtojNY3v62e4LQBbksMheKQpvZsjPoa5NkDfFmcY/QmrALciVM5CwX6Frw3IpvD/pq9Rqc/NazPB816XDmshdykZVxLsvXherQfT88CgjJnHnZiZhdb2NhFiWdceGi3Km0eNAo6JZF30IgbauSMyjKq7Ki0nrMh7ytiAzCcuPWr31gEutOBuwMvy3LOVL1TBN9zHDA4Z3f8C8awsvSfG0geQgJIJIohl/+aiSaVXMuUjqajGKCDMREcVc61V/iPQLHxeMRiSvs/J6/volFnKM5RCaL3kug3I/ISSpwb0/Svkin9Bc69SdspwyGAFPKNTTo83i7lLYLK96LeJFgEnG8+f5Hh/TKbM91tOxPKGoiji5IBOlT/B2ILZT6sk02CK3krNkHjqdX9Aaa6PZOHJwgJ/9Wt/zETvWW+1s/DjCmDMoZNck+PrdjYxuUwt2g82QoR0tzC/RSM1bPzRjbdtRtK8b24ppbMbbl+OIu2sr2uxWVHtMTzaB/SI/LBOdzBj96/kB4w7DCuAu4TGaz7h30ICXz3F9/AYAUmPW+UTrlhDqdDP2AKkSArw2/e5ROwWVloaK5bMNoOLzQLw3Wxrm9V28WLaODC0FC4YjJQ3fPsspHBa+IwiaOFlsYeF6aHdb4SAsyTQsygxYEH8SCFfH1+9LyCxdEp39eaFNr2vZO7saaRZ/PKeigmGBY7PWeapNuEymx30dBWfL+8OUgNBPSn1DB4PeQtgZakPAd6RK9tlyBbRC5vd/c6XRDbJuuexAWvR3X3tzPtgciCToE7raL0awek9wgqo6WG6Zi1ptYim25slF7syidQBWNpzkQ5x7sutX/nV7D85La2p97RN153MORts26dc5jJZ2kLenFp873DOxq+y0ghdjMPTK3PJF8e8rjEvWZTZpEAtppdo97BIZRp4AnfdNVMDQtUMr1i9KL/MJL9/AwL3hOtsXVzmxqOW1Bb1OfF4W82VtJKOnE4E3Pm0r5vQTtyZTsh0GplCjmAckaozNrkT2cq+qXsuDpNCfHZP72/esx3dwE3i7H7OnbK89BkjXObT1hk6xxPkzZBt/VED5+cwM/ggBueBoSm/3fjf/xDX6FKsa2gNsUcKYLuUcBgVMKaYaBo/ElSa/E4/0YjYcwSynmJcHjyfhWvGrhk24v3eAQNnK+H3bkYGrhENmYRMCxzkeMdvg4ivbJ6fI4GWrlzv58noGlSi1WJWrB+3JNYneIfI1OtrsttI7MGzKjTFl+r2MJdxLM/5wgDcEM8W9UVjq3clnYfUfaTgL5A1gqpW5n1H8pNy0iz7jG+BAFDB2AnwdA5NbMbPyhfAR3N8QmRAFAtPmxgDo04o6RIyf5PeT+QemPaGWATkBk5ROVJOzMPtlkO+RpnMexlYMqGErEhte5PZTAaSCJeYH9Q9CI4ix146pXSBQb9W23qD9ZdTPO9PCQ2+oe+MbktrpN7Q9c/LD25vTKmUkP0nJeenZ0lud9+2FLJ3n4OlRKHRRU0wW4JhiIpISAsNbFEhkoNxdIllfMd7doO5lrrcUw92/l7bl5vTeOw+KbAm+Cq83fAmjH5jJ/kzQg0zQgUzQg0+Qi8yTe0c452DWhjnD1c36/Tzr/cLIRxa18kElC78+lYO5P0GMC9fKzNaShWoQzBCNcNMsnn/dVxDiYxdgPD+b8m3eARJ8tUleKsmMT7hC4fyzcjoDix1bTWdRvTS0yD1LR7tbKj0wrR77WfRBavx+Cb9wbqsTeU9xZ7HLdIIS74WTO21FVoXtEGzPKcr+Y8RGS/+yMncgpcXKuxFWixfnSCx8tfmUmViqvpvaR8aYr+2mldlSdKVnl4dlR+X4OmAUnyMmL/UnPp055Jh8iBYItoSL6Gq2Va88GbbhkgniMRiWKBvcXM0NNQ7M9Ebdwzrs+MzQ53Sp3PuFENkHhqr+QMIkd+beCXd8jbraSSbflTzmCzLB4wHLlryxzgdyjjFRokdQ+Xm5FT/CAjNuRQjuueA87vJuymz94IJfpZG4Ldtrb1NyUAkGY+fq1/rdc20I8csn3FUcIn7jgIqiWelBEeo8rEEb35Nedje6U1x0UjhHIcDD0KhlJguX1KTa2vgqDc3J+LBQcERy205/vAFEcDTy1+o0ZX1umG1kf42u3R++s/N5Vu+xqqegpusZMrFaU89W5TuKvb5tSjILvtIycc0sGv1ac0hWfiX/kM8/rUVpomQOERTaXaELiiEOaokkOxwX+DxncYHJbnxygX0MYcn0PA0fYoYqtBSc+KkvIi7oKZ1f3wHYObPeQdQ1s9wiANPvuL5xNpSXe6j5q+iWAlCrKGYkjcAPJdvvWYI+HJwLyCZbZQdbHymWuCfFBl4uWv4iqZSqMha94XJ4DJN/dvpem1x5eZrDFgpxYLSxctqIo2XPvZuUtTKruiye2rfW5ql3UE0+VwaxFKzxC6dM4b7DnnwxF5n27DGXGOtDR+bqFOhyc0aeTwM98T4uC4Z7pzmRVDaN5wNiSeUedv3MAxU5ZUZVYUrryy02dYFzVMgXI+uB5XM47WR89j0u83HGUGXSf9FLwNM3zUDObU2J7SmxOCb1gBQecoCJ3EqZVXI7otOLcnMT19HcXTeLtwd/aHWRcrI9VzFzXqGUwR/lYGLjez/vyh5vD+WRp3uM/RO+VMaQlLpCyA4uSr3T8zVJmRLKxCERaGs7KYKA7MZr9jhnmjZb682jOYjlCVyRk470lEVcBoELe6oQFJ6WBch9/q3fE6alarTCv/yP0V7G8KR8rOGBWQj1b5qVkYGWFkJR7rR0A35e5Q67Ng9KtVeQVYFM+IjVqkRWWZzQ/uDTcpPyoi/c/WJJLuS9xBJrR5Uowt2ly3SpKepuSZpR7c1SwK78WCwhjj9NdVoGrwdZatACvouqrwfKWDWZ61SX13aTjHap7VllxSveo8K2rQiQTvJfqesVRRi4VQ7ubIldSERV1kE3xMe4rTbSlXKRoSkWziMs/jjKep6hwhTC+T/ZUJH/Icp3FVRBpO+IxBhfTy/qeJBFdRV7GRQ5OA0UBfl8yX9raXEdppnHCl84pFOWYlfi9CjOul4HlqzC0tsqbOfkt475DRVIKytdTEJ9PD3x32bzkp2RAdFqd/IKFI6+xACvAjywzjaySGoBwiVcHBUEfdyFV+HtnD97Rg4vkoOUyJWT2WsXcXxNZSLfFXR+HYzI8ABNFkFVwbleUGRBahhGIZWqPewTRKwv2fIPrWujYQiNyhXSZvCh5PoLAAi88SnrIo9qHX5I0IqtY0IlGZIny9x4tOMfuWHq6LqA1V3ERDNQTi4pCRc8DYcAoQudlmZTs5fKgpt22T39eIxSIb9aWIosHb7vcyUxlU7YCkb9Ln3JmSIjfGSyT8aOAXNCCiyVd2dzK1tHQbW1jFrMFxTmFuAqalwZ32ysW1jIgGee6nwDyX2W3/4fnNfYMwYBapV5UBOdf5XD2vh0yQ2uSD9QMvvk21YQxtudbc2R6/CCdvp2xaEehAAJegSL5f7ZGedKM8q1YmFXJt2JZWj8qaKZFWfVjIVsuOZKwLbGBZM3eMGxF2Al/2DJ/yMJQRfoPNRdwrot9j0DLJZdT1Go/vIXmZaXdVi3uamIYxC4B3q0lhE6jIKayCEbu+FlAX1SruA3dt8t4iqqE3I+CyuD3i8gTyyDnsvdsVeD6V1Rte/KzEtu/qqAhCwwizaSlmaO4M9XinULyKiUwJSR/CvKWdb/y6dXDCujUcqXYVdPxeKebCKtQH2xOSyj4d7dwf6zlvcwfsio8G8HAjFusRaPmUalVZmEvMTlFE0WEOU5WZRb2/WaeXSm44pbCzgEaF3+bW/S4d+/Dc6aBJYUMhMWZA3GELSD4RLAFVFITLxOKrJqMggJcEVHr2oX358G7ekzpdqQ3aaE+m3RwBEZKeYECTDTLq0pXQbXaWynTzESSzJbhy+RHWG2Ap5lW9seds1qIVbofDVy9Rxy14S9N9+M98PCPzY/U351QaG8aH4Xq1tHiO6Xj6jRTtsMPKUV/gpRpRYRHqkWFH3JVS78KqKjLRB66ZpSPf3dGZN1chYEjVThy0he21FWnx666tNSsctcFFPdPpYKkkVyZiu6TsuE3k6YksCYfaLlWU+wcX8d0XMEcM0EVV7wbQ3cwyUhSTGc2MvWigYwoE9H+CoRasZPX7WEDtv+xzqyKsjH0IW9kgJdGYw3U5y5pturmO73tfLOH23OeVFir7l9Qxqrkw1rGHq1KPqzHeXqb4N9fpv65TaDJXKZJvk09oQfrex/qEHGsAPVMN7VLmzb6eqry5RZ9PfW8B50fohSKQbOKMM/mNlAtvt8PZrZ5IVbLWNr9ZT9ahPiPBq/JRFZLN+R5qVCppLso39XWudCbJVRD5bPmgemIN38uoN6Qzb1cSOYeFfbwuCVrNyq/DfHT8viwlXOsylOiKL/tw2fMn3qBmdkRjVtZRExhWuIRaZB9S2iku41SKWp2D7bKjtqX2YiIXKY+WY2IyNVeb1H8zKXywKE8Df9aDW5mDnwSmuHJ7zkJ6g41ixm25HVfTQG1ADL+e8TvjJVVW1iN69ZUI6uBkHg1m3fJK5IfzbsNNJ8tKPU1YApvIx0QcWOXGkbdhjiBmk0btLmapVtLxor4hTvCAC9K/LUvsp0f+DFMj7+h5HsbPsqux0a53ZSwdY80re3aCYorfCFv90knUnMsPIGQOKHyIFc5WuS3k+u2Ls5+eyO5fEXukOWWYg823SXTJFezWGsU/QGcgKYUxyihobz8qLYQEvruwe6d6h8qcacQntKchi/3bvCImDhwBZcInuePPjWHbfs1LlpFxzpUTdF01UyExr3dITCJHBF50ld7Tdf+HoRd2IDrBQ6m+/lUqjvKvuk752sF0Tae9BZLgs00ddb5m6ou9r/VLNHa4hB7Z450dLyygnX3SJNivuuSZ57zmCVa/jMD96d8KgSk0BlrOW2z9xZlCB+YgR18p7dVGnDqyO08F1cDI+T9636xJ8K2foCeuBx5bDbiaNkSEDbQGj2QzQZaA/ZRhbwyQ1TFUToNH9OILBLI9lepkS7nZhsrtvjssk2sxlJo9ldG0/kdiEUMiILRC2plE+lUFgPZ2f7OaH/GoR0wnD94SjAu86Ih5qfVQZG1DElfQSeyo8KB0GlMp6+GQ0yIsXDf4FmLDk1ziKxOKdYtxToBIcu0IqsTEHKbAJ0jiGAluUhuQOtdjlIhy4RDtykXWRC7K+Gz6g0fvOmDgdYN9kDVtSL9JYJ8wiD+gBevME2ul5dvWuDNUEz5o7Hf7Yfs9EN2G0B3j+A7W2oGzUjwuxNJA5yYXxJ1mUO//s3vLnyQT2tIYtVm3BcSesRJHbFDXGKDrVO6mSrkHqVPtD/+m/nrd8+izbzJ9CULu6qQ2+NPUjwQtFcW2ybs4GK6F7rrnfOivXM0L5QFd5s0LyzyOygfw1H2ytvkYvbSW50Fqk55g8fU2tX7u1N6lVznGGWP5zP3epaoVlpxoQ4q1PhkcdcrvGzr9MHB9eYOAvepjRx5yNMaeE8vnxOe7v+01ByZD66KP5lChU7hCLH7NvN7DjJkGlzNy+GYPvnu86eo2OLabWLDasE/CW1DqJLKwKJjrqtP7hJvlHiROBbaQvpTERJrsmzzPdOjguRr0TAPVp6SvkKip3c2tzjbHn1xgVn6xczHwFlFC1A/Js94dwJBx+q28jukmTx1mQLoeHrPNA779b6vsyf7nZEprarbiEKJt5WDQVxE8hZJPLKC9uq2ujplmUlIVofPKux1UQCST95k7PecPyyagQPGfS3TOvj2nc6Xm0MgGH5EdWdEqT9JVtib4+E+GlyLKRKJaDUB43DFNHWJMbQ6zrsCmdyclXtzbo3P8TMk2K9hkwzJBUcJyBW5HOKVIv/DMkBmjQ8kjmK0P7OyQOIrNnx4zfI1m0+dbqERbPaNFZY65pINzoF0tSOHWgFbUZAAYggKffqjvLvk3iXsEIK2P3UJBgp6akeiEiTAqq0504sskoksk4mswQzs9fOEaJW2MH9+Hf7V1Z1PBwB9mcfhHo2wGJW2hvjkT3GxOGPxPppoOemPwG5Xe+EOYJN5kT1kDbsjh2Job/mNTFYzKHu3RSn58ftrhG3NjaY5rpSWb6EOy5CdMzrf0D6KQZjIaK8vvwR/KyNozXWt1lBmmrUyQpkdi1os/baGObJIxLCGrbJgD8Eb2yUZnct5Nto7i3uWSWlu04YKZPacFQ6O9LP0NznGL9/OVRIYOIlO4nNHNml6QOmJRtLaGi5fRq+JGUTWGOPH5bkoiBxYGvBW7qoFuLVEDRAZBIiYYWQNhM+U0pVscTvIB73ZjMy7jha/G3mL13jPnn/owOHHeI6o4A0Jq6X8FHxMCN73ngIjdMx3zfnJGW9aLqIt/gjTl0+wFi1QC6qhLc0G1YBGvxUqj+puWeo70uKkrQRAi3fyKCVzSOZuw9XBFJTg7HqcFMv7m4T/VRa40pZfdGulGWISYHjMu/maUozbBmPsKyArSlZZ7OR+10w4JPn5FwgZlfIf/+uS1xnOh+Dxz43pHme8wzxWdZF+UdKmppWU98mNSDlvaxwioxjLqWnVrPyrb8RqDMvEEGsAvr9MBbMGc9MSsVnhwI1/UD65arlkvrFcIwvqoTg7roWG50xLM3BAFgVdGzSnq2MY39l5RfcVMNGDd+QFlSb2YN1m8LnK5ClQrppwcNbipk0w0omIp4TkDU4pCjcvrvCWM+lvN8PGPWJM1VQmgTHgLDrvSYSGDNvpM9OwqZNd5fDfq4er8N8sxxiZ+x+YjLeA/C2yhLJ7lhRkFqFePQdvI9TmzMyX34Td0s7kOSIeQvb0bRi+Kez1aVk4AQ6Rzx/g9atTyBeCnMBl0oE1kxLLz0B206twz4xBqqxhHfF6jxVjOdM6wiTX4wpYqBlrFxUwYwJ371QuhGWolZretA2GBNAyNUXrbuAcdRYGSDbviX585zyw23Dmg5YokK7g+ziQ8nmlXf2CWFePmT/Zlo3fQbFVVoG8Dc7jByXWMvvImqwos8xKtJJMpOTrveuAsgjU05+y5Xl7Vf7ZXVNbLsIONFrpQjjtmZnr0eAPS1qsKIHkpvOjXCGB7LYqJjkTiBY2zm/2fnlQx0lw7nSgbMJxY3ECusMuzEJ+LlwxfQWnrLfxmQWnr4hX8hF5F99ekNtFeEwt9XFT21Yzc8aXQMVQEkwi0v/UMcDtnw9pIrN6mS9kkUFkmb8j8Dccy/k6RdDKdHBpboJWpp3EwSOSepCT2G5T/UlPG6X9hP69LbytaI//BkDoz3zDw6jZs9lnysE6dc5oqUUJgrG1yI8YFmiXTdtlk7hFk4qsmeh8aTykR76tL9nwX6KC3+77V5MHpZeVHZBrXhVHPipFl6Y3ZlKFrGmDRlQhyywlayXew1Oa47cUkJkgk/iEBYtaTZg8pulYKwWweelrB3Wyq8RGw+A1P2QRa9FdZ36QBaqVOF/pswDaqyJMSHbsv+bhuEcI8fMmKBV9W/nsyAz+gZSPkajF/RCFi0LcZB/3CMbCMlwksN8FB/o6YTHk9F2PXQSwj09AlwkigLb9bPY9OXHAvLDAGaLsMZJ6L0EKM6q58N7cc5AFtEwisiIInN21VAMMUTZ0cBFmZqky1NKnEPTupDBaiwGyZYfhSpdzy4i+3EmtRZWGfJKF12Le9FqWh9jtl9wEApRLKbcGvbyJLyRNb9cAThjt/aJyNpJHcpltei0G1pbNqgUg449MEUXIWl40Ige5I+TpA/tIpRVnAXZo/eTtBOyPz1eaxs5QgYhlKAj6trs6qi8GTef5HHVFVC2AY+4NbdtlG5P8IGv93ChTJuhy0cb1fkWOgnZQlidea/xwB6+VUqslR3Fl3bUKHMHdfaAsRboUXtzW1kqwglQ/FV96OBb5KpadskEQkt33jh56AOaHbcHg7PkJCQNdskT/UQCRkFuGJKj3d5ciIoZp2dxaCwzBOyH6d8tIKGFREQGBxUTzMYY2MIfJ7tPRb8urtZiS7vTeTD1awsClGqDyGERwLztjF8XBsu2+UmZtTWiGpkxaO5Ey/lmfitw73GKP3y9JL6KZRFaQLGCAo6o62XFWEINg6ttVujYUNM6sMlRKzPWxmXW/xBUSR0iVlW1XqPap0lqJ4gPokONdCyldJYqd2BHNnJfuDJc44qs84aRImWnj1zooav8VBX1AiipzFPi2vkTzQYaJ5XJ3a2c16mrzvYJLxg6aDbDAmFnOI9+ika9lmZzjHkGhsR23oAJspV2VtjI5eUhHzlyAvInDZGCCaEuSFJ6751DNFBdc4t6hmMzalnabxWRuB46b6FDa33sUHUrrvCY6lCJEW6LkMYngV5KCpIHhWZWkIGGHDgf4g04iqENW9dfZyKSeLiu0UHK2WREkKYgAaBUFa+IMb65N6qNZQRZZQZZZQdau8OCrsHyCRsynd39HkGy9mlS4peXZbvW/MLGFhPNmIQ/LSIlQU04EO61WCOfslx13u3H1mTbkNiUkS+WQsmR73sbBxeAwy9uYAGRVoNxNGCQCjCfkwQjSpCsDBTS0q9Y+9RR3trOzBv8FLSQ6a1Nvd+4Tu/2pn702K1PjYUhKXCLR3qlRHRWlnY2/ass+tHLMy7DAByJcAuPs0lzjgHfwDADplVK5woLiHbfPgO5oQpC1U8lxIUusdOe1xe9QcvYUeIC8FuwUFN9t+EWhRWs64c0htiW2aYmZHmRtYfNNDxL5Dz+6Fxg5buvSjobBFGOh5Z1IPhptE1N8rJ0Scy87SoFMP+aAPLri1aBYmxbZfksTcHzzyv0GSgErvOdYou1dfnGw85cuuFQCsvbbP5hQY5KQe5QKx+c5wFQplQcsm+6+vS2PCHi+upbdhlvgxW3RuoVb3GDk54mCLj6dbGMau8BIGNk/rh7WElqGUNyj8YPWZGG2buqsuheZI5R4luR9woJKLdi2x8j/sUzZcVsQId/eUw+c2tsU6kG+FFSo42f+tJfBcUBBdP/2Hz0Bypyx7B/YH12bvW2g7lbwdcghrRQes4NcPQD2Y5hW+gBH+dPHZs9JyGIRnr8xQHrkoK1wVqro55H/OtAHQqYceEqKirYkyVu4mcsPZLewss89+3UR24BJQtZJEXNMqLLAxFKkpTpecWwCHCoFn5jiEfvpDzN7mA5m0o91lEJ97KA8SqE+lt8n5ZZAk6TjKZ66zNlT7LPIF3fawxucNMCHMKy1ITs98GJFLcSiRh7As65JB7Je/h9qvNyVJmh3qalfXaVqN99r8l4e4vwSQdihycMNRhmjd8sl/tuE7esI6GEWkQVPaqAouVxA/3AtTL5ZL6C1SiKhwWtyngqCBXvpAbqi6iee+x6S+0Mrz/V0SGi1Xi7xGdwcgqQldKHFKh73F8Kbn9w46WJsXRHIyAxHN4dSLzmBVHsgebfDPS8caDAm8hJ3dLDr421uJ62Aa2Yrx3mjaOZU6aA6qNgci5eT09vA5Imcz5ekefRpbKQd1kNbJh5ZCEMXm3qNNaHxUObpKwMtSzOiE54i8C+qSlUy0l4RZZsaDDj3NK84xszMIbIO7ECXEyooS+5way8Kt5rvYgnf7fkcfPZ8N8u5Izej+U+unZG5JKc7Cp+KXTS8U3L+RpN7uAnnVnAx5cU1bIzKAylItLxr5r/f0p6MogcBCO2ZjpQSeaMACrU+ceh4OO97ZiTxim2zuoHySwFe+drl6l1CaZw3oQ83BoM/ztFmZqUiuEAwbPt1hkjhY2jMOeiwTJieRlBrjh9CqG+PyCYhiMj5WoCLU3qQ8oX17miqQxaqtnscTd7vR9rd/3IebFN63KMs9vvHc3FbKYGCYyrn+3zSr+zBrhZ3NWs1teVK0OmyzgcVP4gRsvvE4ybkp88trmVQhF676ShkmfmMV1epSxJwkxtkmy1kgxukusbVzuHwvm8CgG1ykI2ctTsnpPS0Ag1jm/xjR9wZXRZOcYc3KD72DmKSzaYc6ea09cbSgc31vVotuvf2jTJ3q1XzTZzkoo+WqXMIAtlmCdlgCSnyM8CFuz95GUeqQIJBE8LQ/D6Nc8Lggi8DZa5flwz2/35AJcGdy0v80VBM67b4VaAEfJY2E7UB2ivOuT8mT2/xiMRR51C+DtLpeEfHn7aDxnObO2cHT0ha4aaUuk373w+fcEGIvGrd1u/T8hq+S3qcj0BzCIouo4tQjeHTE8CUFA3uKzD5969faEy+o2RXHZmLF3+lgYgg61AM3aPJAR0e4onMh/Ougph82XRpKi/zW+0PKX73r3szNXmn5/zU5B3+LiCrloNu5J4ZkxLD1DZQtve8dwUKRzg3HQP1akHCqDevvObccscWu7q+l11//wMVhTivNjjAohYYp+aqnIrL6yP9DmFMfDqn6d7u7jochuVJzzox8oifL+3VuNp3Bj3INj3I2AeZHkrCXhlJXKp2ndFMzgSWJ74Xv9stdH2/PuQeNqRJR4s6uv1Raa9t85YkPAYrZHqFJDLfcaCWppg5vckusr/TjXP6YK1p4gKpt0XvcbRUjruPKGnXEHJ/7arUU2nEbkeEtzfTa9IZq7GBQwq6KJOYZxbLmJMRllqg/+0i/+FmTQt9CoErvU1/kPzb2RC7AMR4/063cHC9Se8C1Ic54loFE3aQHAqgQ0KMLcx/z0zLBBJ86z+lMpbRBqXAMtherrvAhXv/+q0S9+GS7kDM7YARWs5WMCXsUrUYZxrKcn4lUPjHZ9h24XOru4sC1rtY7hXJNBvGu0immdYkqgj/+wkmVqD+a28/mfS9fOrfuxNIPUQiOsnopIhcrexg84NQyXoXS7iSEijAqxxNolhFONJRifye58FlGK2KcYOAsfpqEd1zOCWaJ0nTlGj+JkCAyAA48M6FkunuIslQUCHS2FzrJVzAv9XIsof93RiywpjuexQjMURBM2pu+UNpwYPVprdiDnGk/na/Au21XV4Haa9tc7jsQkNtmxholwGPH9dYA7eFE0rjBNSslYtwJKxliGTgtMGPMNazo3cZHOThdQc+MRkiB6w1zpBu++PanTbjN+L9TYGKA+bS+6fo/8ZrPLyTwzvb72bDgNpWtaw4WrgVNX5wZTqNuWy9lqAXO+Bj4diiko4AmWMZ6bAJSMVQwAwhkvO6trgzrmb9tSx2d/mrLUBHH2XU4dJSomnJOVWLQIAFhXq3PSQ7Mu7xustffhfOD0tvcNHc5a37gFew/ozRRmoY/ocsq0kEJuq5XTaXsWygxBVndyzggI8cKoEU2W+Z6hcqkU5BbcU9pRoEEQ4ieZ4/h9vD+aGjvP9RmTR/yC4s9mlqWs4RbpUTyDoR8vk7KhngP463UjQRUnzhs1VgRLaJQ3b9/qgoUb71N1utYzaYiuWej8kQvA+a7chD6FVubaIPMzaLhkq6th2rb/AiLLRqAVcl4FzRa9ei3eHEkgDlfckftEdIu7lNwJYrrDIqy96EQxOSuZB2YJsa5B6Nn1gFHfY7ovbYh1tBZuNwTdH7I3tuIwe+4iZPYMqIHwRdeA3xWIuwiuKfFFagXC+9vJ85yuL7mhVVvrZ9B7vSJ3kPPjetP2oUmXVuO10fINhX0fqklcRzLLrIdKQU9awj+uP9bxni26YZ2rWxpzaAKjyR21kQu7KKqp67YaJfJUWW/9KsskFWAdiXKYASNl5TNSFH3UChcfgetswqYI3b5CD3iFqDIeQ7CEFyepnrZNcEiKhIG9nligsN3t8zNileK7zai01uUoJsZwPvmuAQofj/1igCLGybxWNXZJcNM1rTdqkKfO0KGqntBNJdQa6stNaPVUE4GemF+uU3updM9tL2GnhAepNWi2oOCnbcz67vPN1V+Bq3aUB2pa9xV9tmdc4XWZyZDeN85c3JOd/Jv+h8zpptZvoDT160+JsCo13Vz/9UP4aLNU4TNI1yN6AdT+bXxSFdfrcMFkd5U1yHOI1wGKkT4jYePpLoi4UuY42KFG1+5e2BSufi+Y4yFSe7ZbOpbi6it/FuLXfbhZU8jbvakAoCkNwXDdzZyQCSH91+rCT/gLbjB4ZRlkbsm7jAg0hWXPGaeOO2DSzdFcU9wxWsHXYh838LOHA1fwqdejyHgcY/qjERLWCflT+skYOujPJw4w3l1LcZPnaj9BJc6CNLpQI3bSHMd09svgTTtlnIBPtHyY56Q2/f5MhGmh9JmG/rb1zt7mYIEW5vliCsDbJSP60QdyMUN+BLhqSMgWoau9k8a0Av7wDPkChhNzgerwm43mncuxQD7yNiwfnxm8nDmLMwCqt9R+Az6T525G7Kqbo7OL23QJ33KDXWrUI3k+yqVxCZ3IMfo9afpRSkIOQJEPRiIJ20e/ap7uUP61loyrybPwFgIVsR+zhCuH2H6v14Zzfq7JUMiuYs4C5aAgacKLGKQMk91UZbQybaUaphRZJFNBC7T7vZbOTJxpM9sqhr3P3Nxoz84iE2i7Z+qqvG6bqlP0//3gkxOchcxPDO93FyWKw1irVIh1Mt+90k2ZolW5Nka5bsLaNrVo8+EHRe+8smVaNsEyFShoVEJsxMjh1J+k+QtBRuyrCGs/butp5FiOHtZmHVBpdff+fkSw7n+Y6+fivInKzy+pL81Y0tQOs9zqB5wMR+arVtu9YbqCd3GATShNvkjB/vLGrkzaYfE8RcDHxk3nLQNfuTslAe4xkAqH2uO8W9sFnENdrEpgbJgq6hthax2yX5KloYg+0oynFP9SiCBlysHm2xpN8WGKudmBT5pFgjdlGKEOSVZNsiBNnmOMm0TGwk/XWTUiTmQ6lZ4avn/5B8wmOD6HHLZrrfA+GQLqtP9ml7e2Raa+YgHMlL77Q/8v9sFx3e0E0EnsxqGrihB3lzkG3JIbw4TSwO/+CdylbqgXoqrz40iufc/VlO4cKpbOHXDveDt4CORve8+6Z/t4n47B4lXDT+VrdM3khrAtzV8YuGFVjsLVKQlpYRTi2+qPFDWltF9Ydmk7YwOPULycsCdjtPnr4s9t72FIb+AZFX/ocwZoVD1qQgCaI0cDmxM6/iO5WwbgmnoXz2TgfN1cubYo9ckRPIyNswfMXS+3vQCjJVFJ6pLbWTXgXaqB/4T7Y5OzadgqrmFOem61m5RABovSKlu9MyMzfI7kCLbHODbBCBKGMWxvFtFMkrNgltiaqKsE0CskEC4gDWtRUT1iplicOpwgyDpnUwgsgi743jZXnXCd3fJt7YwTSc88V7646dJhd+fy/cNmAY6l47DYkPp4nSBtDw+8NPD8AGcv96qHv9gb5tZOtteBx/UrlWjghHn25xkzvsDvPMQUkUO1W2YQWZ6+4/cP74D7DiLgPp4/RzHK0PddZjw0rW2xCFjdoUVRTIjY8aYjJA7ow3OrOs7G550gHgV+b6YeaWvCQfo0Omt9idcbVugwqFRoRXKeEt+jE14L/IR/t8dsJ2GySo7wDaXKfmejvtllAddFY7yHwJXgntkeNj6y+kNqaTjYoOev32qNrAyLnfNfwUq7+s33ZAW/8p0z2O2AUHwFDgM34R6q0gvVkRXJaECxiZ35wBfZNQ7i6HY7fDEYxIf9ECg+BQey4X/Ujm97hHudM+UAI8Z9WJnjExeI2nA0qhbfOG3KP95/vFVPn3U78bUIJ7nsLUuyPa+XlZgapFpdSuFk2j2WxA94ibw/FnONoc7IwM2gh8zfexZF6YtmUHVXNqBQGuKSAJiFZAzLfZwDbr5Yi7ttaNOIU8OKFmYqIO22Ujdz1uMpOoDsVUknL6ldKljHkkIMh33uYA2WQF2eYW2SNlVmvPk5MQ2j9kr3tYRg1an2L/iB0xdjSTJBEKucXdUYJn6yePEDkD8bt2r6U7upN0LQ6v38FctHugTz4qo35CVCP6WaYQuXfdYJoMi6RR2w/wCDmdj9h2j0ruhLdvlkr/vQk99qBJNmySjYqo84wuZmscQx4ORbQj24fvYBGX3CAlmzy+aVDe611jIgG2giZKsxzi9070Xlrb7h8Q+zuwe8/TPhBstdtp0qh6gHTiDovYzHuCtDW1EuibTxYJ51gcXoesBs2y4P140Zshu8xkNTsYQiLkjsWaSunDOwUxyE9pufW7T8evh0/1zWBucjcjeaj5bDeSi6tKLyqXcJv84x5hJ3DexwYdiEvKMIutWjGFf01EbaoS75lJVJXJQfZImH5k/4v1iC72aorHPdIl6gSD1f++NgXYeAzEezBYZq6QPRQoMwvJDr8Dplh/TbRrTMayAZhbcupk7k/+T9c9c3L2sL10rf3/+mJgFy7B/nshAcU2H0eZCDQXhXNbID5ic1CWfUYn4wra/jsJo1QqqqIG1f1d0SGxcu5hJ2S4HfFUTwEWPds/i2TTShgpcwGg37DSPHlYBvI2SwFHRpyCjJ86w52tcR94QRKygOyx3RfUbdGWRLRA8H08OVtQVabI70806haRRx166Tc/yDS8RNnZN/g4IyfYE+Zw5zIeZDD9bA+baiPhMa/CCQmxfuACJPra0zbXBH++hAjzvLcIPyaEigwh/cjs300owfQOMIltnFYjJiwvqaofpb0vgH/xyEulD2dWj3tUf+B0skamFAzwkpm27fBX+bEP7/aexw7aNJyFA2kykh2BypxiZkrZ4YDDyrOuMyty/bepdPasDOE5yT2+ZDBB+IQ/dMhtwmx/JVhAOR8nTl/CHr8xA5mVFPfOpfl5Ikzkl70S6B05ypEPQDf3t2hEmMfjHkEGzPbuw/1/Wu4hCaUoUTOrpIYsl89J1C7bqf8JmMn8XkGRqwAn5v3YM93c8Uv3ObzKIH2i68z8safwjA8bMoVnNEH8bUIqDx3BgGNuMXdscMcKe5fMzNrSduOp7iVjY07a3hOJ05/oFKV1TSHmCEPdoogom/Xt9s+kGNBex3qfGIZGE4VxJLUGROCUt3KTWLgNZeWC1/G4ONVHgID5Ku5R4ZP9QkBUTpNxTobJphkvZ6dqMI2nmAqTzSvSxEW0I4sAQx94FDZR4Z6WYHMyTrJfAiuD2vNZyWAAafKvzJrat7XK1sgx+2AL94jdtJwLYEm68lVjO/cyRxsaJ4IFC6u1bxffGeS6jbgd7pAgu2sGyEEVpW9wjQNBkzJsWqpNyTAzjmzUd71GDqfNXSLl138U3JW877sERFbVXUlevNJNXLUn8Ix7WmRNZFHPz4G/D9byFC4yaphxj3zbB/akaQzeBCFYETv2qfRDmZdjT/oSp+XalC/RLCP3iBqN+U42eEHqlqUcSejh2fxcvXKvD6SnIkqak14S5c+WKHUZvk7VoLjnQc6Z7GIvRs2W18/6xg+Coa7Je3Ls4Ht79rAKne31Ctuk/eXKlhCOotwIfogf6w80uP4wix5E84LsRT1t2UxazJ2+z5lugo2nCl4brOXenWGhTSNqyJxz230GmANlFc6QN+m75ryjAF1KXSYS1AQUe1X203bPquNXL2qspPeemObLWs4K4rcxZAH8H67f22Ju/0vkuIlIMEVN+LEXJYh5PPZi2Ze9LDkXy77c1/e4s+zLnq9/jeB2c/3sKKOS9r95tm7TRng5kvvLhL4UzSfTzO8n8JlRfjozKd/FUXh6J42zhzEyzsJDs22Log7IUDpNptc9VnPmLd+zxLmgcezjJ3650gT7zRwfpIDdy0BSpGtv0XYEaTaH04Jtkc9qi+2jZMA2poq8rehRpKea7G+z7uf38DUr3UhKk60f0uqca836r/c0fyICGE3BsdcgrYJYNhj+uMv8D/RxpWtRG3pB1ugPffJgxd1tCpC9iAFZ9gIuCTezguwlyfY8cQtEeUM5OnGUX89V7mpbHOU3rVKqJaBTCvko6VQ2WzmA4hHsV2xw0cO4LOnWYp8t6RYZRe3YgQXxHeNBQBBSBQodEygphSPGnHyI+7o/PsQzYmtGWGKCVdtrvRRQVVUpxO1Q/7aOco/grZW8JBBF6eFz0WH84IdBDvLQQKtBJPfyE8RddLOLCgR1OAPzqvDTx1I27VcLvLLT+OV1uFO+dUyJtuxlXJJoJoK+TZRoDzGxmHe2TWaywQty1wt12Uj1CCHX3i65v/KD+JSvaH/6oiT2M9goEoSzw+b42BvUjHvbAYmqFkournfV5U6t6ESrf9JtJjBp21Qde9NL/Gq57YKimRESIOlnztjygtn7D8NZIeXJuyVWxbZ434TlmzRkb4XGtrMJIhD9CiTvgh1NylAgX3BX4ZMn3lTsi+Dg7U/474riDgLJs16Oe1DZS2/Ou7KX9Z0DuabayeVDJ+VjOP1DoSw7R3fjcFpe71yGd6eX0r4OAvTzDQatst1eC62ybQkaJetyGu7ybj1/NhbkUofJ+r4T4mLbFY46KrfcS0RYi+omcryXQ9CdmUDuEeRGsIU8h+Vm6vRRVt3MjXnovRVv26b/2KD91QYGiJEJj/buf0LZtQ1wQt8f/LpgZLwtnjKSYKYU2UiZMeMZPSSu7VyR0RXnvSvonKHJdI9QY1c5Q1Eom3NlvCdDgu2XLL33AMeZBhsI4yYojhwVQcTxBNrGpuUSrhO6u03bDbpuFalkrbMdbAyDJ3DWWuAFCQhGxeItWUBy8ox31sEetm3F74iOtVyUvnCVf+N/46F1f8Bl8St2rFDtmfQUtTzRQ1pC50tNrzhcXUeuIVsw568uyfrye6/XLbjptoXSBp5D+TgIkEdz/f+IAQUcWqmZCiTjMH1K8lkJOLRti21ydClUlxkfuJ/7RVtsW/KJC+QeePkgadwuVSJHijJH2XNtUu61JdIm4p5CoaKAhACnKL62RHrOPdNI381YnNk89j4cTAMdD/yZXIkgMipXqhf/nurL7ZC52uZMDtmopfTOwno3Ccc+cOOdqv0X+Lb2Ag2HnsRj4+dOFgzg+bkxHXU/PSp/4nJFZfHqL8YtO1MeV2D81/49pBScyb8VhCZqL8aJHhsKrmNRdkDWyCcxMSl8wQp2Nz1aExr0H8WKShEB7+HUiiMOniXPYUKZuTz2UUKZqUb2qSDgFJUYgG6qPaTkiyNQB2kO93H05VTQO3yiuP4+eo+PIEVLGa/HZhj4P4rAs8nBlv5CZvsQ534MQDvAj5oxvyYgCzf1lydv1TY5yA74Qn75U99Z3LSOfccn86Tjlu/mBy3KSn6Yp9PrT4HBqBccNkYAoLCaWoNcU3mIDh6NLsdJhOXxcjZ+DpMejgXdQaJnWIO5OyX87gglXWUOHUM7Dhb9nbZ89d6Z9HzsQAzOD76CJ9ag7WsakY2s57h++k6/AYODdKEqQVY3Y9DH0bADGqttYpB9JmqMKr1iYc86in983x8RFdXiOEhXJA3eAvl7ilsUxC0+EaQbVnKmx3VyXI34O1Obg0NqJ9H4SiZJTmCFTJUdbEKPe5SiVhsdEIxPczhMIXsWFehgSuZrvpAzVrx4pa+GzJj7scA6RIKYF2SfBA05aFC/lD47Ge9AxhmpnxzXXf9fFeVtgotN0o/utJuF6nOfMBwkg9nHsuwQu2fijHuk1Wan5tlabes1abXZTg/6j1QRjhXE4P9IT4oJwW5The3lhD9U12lykdePgLIH0z8ZI2v27Ub98kd1heJKcRZ376WFaFl3KNmOZN35WF76iOwjrciQ6t+UZzpYyv79ZBAkxVjc+dgteD4zg5lCbYtfzIpP8Ibxuvf8nMLH0fPzAfwvBGcMf5qEJq5DsNo4tisGC25avp+SA+crGGBFE4LdHFJmExI1KqoGHTtZzwfQwzFXyD2aGqD3QFi7xyQy50t9TdFD1OC5rTLMDvR6ixAEge/vmo9EGB+TgpwvTTNe3zYI5oyFPl/9A/cqpBI8QXTDaOk95thWv14lCxXXRRMWofpFGmsUDKmEWOC2Yjza7V3S8JjmvtM0O9/7SKmFKZ5aEV+9rQrSppHYFNkI+cP3uat88A7kWSo/a7+1ApOVz17MBr6qljsD4+zIQI2j9FHJ+57UTWlRKMpUB5bePdOzMheXXToFNAPts7f0fKC1OlIU4uhwGLo/ANOkzZIcTUiBvHPIt0KE+Q79+Jta8RLuu+fuePfOKaEYQiZK44wf7+AXiMjs5ngdiElhqsvRExIpkHoUKay4j/mKvzRk4xdFBSr/F2q9qHfT6wguxmNWkPPRxXjMNnJAAZIOtP95h8vQ8Vt8WP+tM/45e26KIqQ9qPl3vuXOrsIH+xYwrF21JOvX3ltM531+fOPlscUquAJRacaV91BAs7Ao4z3V339xRiwbwEccIEeB2Hu0NSemr0ybR07Udno6Ypo1/oMSmsbPoi5LNP/k/iepb27iqlw9/hRRO5924+2psNnj7RcnAfEDlRdeJCcjmQGvtBUGsNfBHeH4WzNN+pgF+x51XCZCtkj/SyktQzAZySK2Fzq/N7XDTe2JsGSO1rTKfUZmr0ikjrFNETn+98OcD7ambeK8+ztmbvHeDvtlFTMUJCtElHJ8JSDbB83omOcjKqJmRyNa6MSNU2i9OWkwmg6/fyRHPzrXE7Qg2Bm2+1IAtjgm/zmloBQb3ufLcJ60vauQLrw/zbXGDNtj9o9TkM3JlN68fD/GHF7t0cnxOsNVUCdfu3p8UXP6FIuqyGk5EQzRwkiIb8FPfgvE0z6nONwjeIurZ+9EUWHjwA7qS06xySbh7KtWOCllzefxwbt0iqVSaexs9Qu2qq75KQ1IqyOxGU3pcDC5xJXGuWMLLkT4yint3WT9BhhbYiLNnTW+w666Zx2lzRT5bmSZPObXOIWCrby5mxiFZqb/tjLkhp/6/xZPSj6NSCxNoGcyr+8817Mso2dK4L27CxIZSn2TJpmGX3Lgff/JmSaNpJIG77Z4blD2mEnklATjW7ljtbbbTEdwZXVg78xI1LNCQ3KE4y9xCqTZ51J0QBqp0ERdpfISi7MyOQssh8rULLB0LVOz4E2/iRq4x/wvp4AxYUnxQ9k1YfDrWZwX3ukLkHFVzAy1gR3dOU5MVrtnWqIVSjRTg9yWhNC6glUcHbQouFkKN+VioVZYmvMUy6ICOH7Rex+gh+8f/795F3/CBcI7BWhXor3ulPE8BahDxSMjEhAehWkf9Yn9IG/69rlNDbI4WyYSHPAB1rsOlXr2q/OdRQUYZQ19BEOXhBO2DAowjac4xQA1HeKvwcX7T6pAQUDZBj7qYA8nLR2WUj3leCgRODvFQrDQxXLK8digfpqg58EklfNHlsKWuC0WFzV9kQpXaecwnQhZCo/hpCeyjk7+tcMG9rngTgEY+UnVwy3NUt4Fczmm+DgVEYIWDJIe2MXgw6keFWW3nWrzLhk/8jMqu+0E4wfWkf3dNepOt5zjfmbkTufns20WpB+JRjBN5m3KeuRbFcZaogCzpRW3QBWNyJ1R3gfkH166wcbH69x1Mk8NW8bly+1lKMJWGgL/51GD1sqH2cSqLDl9gvDjedpOrQj+4PnIQpjrfTS4OU59CVwcbsm3ln5zISWiWMC/F5PMEPGpZNRnvPtjJcHhvjX2v7n/yJZ2FfNTWefsHjwHIA1iBf2iSYWOXrzBZbKU+0EExjG5x6lINzsiAKn0pE6FSlokcqdD8lhc1UyRjZZ3Gw1x93sks35zDnbLNOmTxRId1GK22D3Zc7NTOTMRwwk1OqdrtbQGN4goHxFGVd2/zmqo20WlDtlBxFYSgL70lxVNo8HaPvdMT3+wLB0ziJyafJg/0fNGKuZmQdYKEC3n1ZoJghC8o6Vd/VO8hXGe20o7shXoXa6JceocP/rByJhBfaHZQ12Au3IhyuuYIeSQUuzUt7rXb2bvlqBUuOLO2+S6/1N4GdrCI23JSuE/mUBzAphxApvJOrrf2Jxzy+O4OLKWgpV1z4458e6R5oEtWnDt/ckwO/37w6l8h5+OHZOGnEphZ5KQ4OrIJaY4fwluO3Zgu5eoNNaV0dmQSxsN3aekE0pxa9k+qvkqOqehqRwM4uydBVIlW8AvXq9b/O9UsCOjP3c/6C7HFCHEBh4zhJxKa62+Dfq9muff0dh6/2+f1pj8iaFQQCSYMee0dIlUk/9mfC0IVm0tgiWkPn9jy4jb48kCb2G3rx8WQvteR/YvOKRS3GqXPgiRFQXGk4Ax71Dc74Il2CwVY0EV3Nzdwg4ww44iYdVqKN2kXI6gIeet31Xrx1sPxrdoFSEvCPGNMDzh58qulNcCIec40ChQmIf2kDNyhKY4Lu8vdDWa0eM0YLnv3+YWCgnjIU8j0f59+nATCtdKkV0dmqLr8wxy1h3TX9yjwhT27F0av9uQlftzblafaxRHSgU619452L7EIIpNQoGXq6WBaqkJhfF/bH1ZouSqrux/jWIPwfQw/4k9pGjIde77qeUi3WAMqAuFtvrwbnn+YHsqyjs076gNIcITwgZTscZLoh+WUq1rHthMDLaHB/ApgBk5qgRU/T3pnZ70TmIg2OqpxVdLO627Ltfv4ibI9bThqSpgCM9XhcTjvPpD3o/TbNS1xBiZOKJM3nRZ7ShJXo770LFAEFD8bW7ZvLNHcVJ7NJPHCQoQTCJ7ZoMBJLeKVt+FDcpHURwrgWZ17zf2QJWqnhmrpO33c4awBfpsW3PeIqzpc85pBpfTMq0pFxGm53e4+Dmj0/2Ed7JoIQnIZ8Ba+1BAq9lr1Qo9ki7SdFqSXYWPyA0L/hLxj4DlXXSrJbZS3sPjRFLuYnGVqIElMpX6NW45b31RerW3L8tUazYJm0w1J2seVA+acvWS1No6VUvRpdzBlCuzv/2FnoRmkdHOnzB+61wZLxs+0+vNiLB4g/NuyS3L1pkC4MeR7l4PUk4VlYng7J958lXNC5tn0ABsEQRaC3taEzhlIiH3PJW600IzB8gJUfaoc1h57kitEPHsPPM9dv37wdAsGCaOV8xKX++zWDvqxBzXWb8tnJtmjTjh2ceXPO+sxvVmaR0MCSmamzDGJ1T7tNZiLwnnePzT84dkflDVSHw5by+d6tIDV+dSDic/z18AQ4nNSP7Mbq92h7vxmBzk9AoyZX78K3+aLqLXs5X/+Uh3m0O1CdPV3JMX7zt/rMZOMqvzZmsH87AgT4VR2k9kUCCbcrHc06nrm+TjHqUQe/VERdp/f+lvtxEXyD3gvJjKPjpRIqqE84S+5J7+R9ncKFh6BYFVA1S4rq+M+OkJGrm3jKJX9l+jSKzraaiE2TG/xgcJ0OTzCphhjG3Qd7CBIRrnOZ2OqmfHHPKns+rZ6bbykB1fxR9bkpkh7yMXV0B+8yUFT6hApvSAWUMf7MilbkW2yZA7sL85SBHXLRfJnmqa38ay91O7B6HmcabXxNi/kLH9s12F6MjlbKMs2EAeCzqTcJx0fAiHOSbpOH2qj17OiqYZ13K6J0M/ThE+ndlo95P74+eGGxBOI5oa9yhB2L8CWHUWKUAw67YBZCbik5psPjt/8GAuZHMoh6qjMFHU95UT4OPQvdddnA6WHn1pOiyPwGKUkoiqhox2VUCGTtdF3RhJC3iKRXzfSO+SE3CwRJPTZDZLjt4z3Y/NQUgK4ixnkotigw9lPvKOu0dEbVNY64qjaBTCluYasJraM4T3Im9XFOdGqTQOpF0XFdTeEglX4sn6jP+xx5ZqnXKu28LrknP97d+E7x8D1E9HufDhIukz5dq1y6QbMqnqDIfWRobWqiKxP5R48Vv7icsR6nLtn/f74N1eC2ZBREEVPR3pibwatMmTqdR8YvOII113xLt4hvyQw8JuAEpkWvZCFe8bDlyxSLnyzlD8br5PNjITKHCjQiiVlamS1yDo7yTsLyYHOSQHOSYHOaP8lkopotXVtxjpd7z/yq9BJ91DbQxIuEAQZEyn19/9pDdq+qYA6ZF5iVsM3wLi7cVWhkSbWWxPZKDlRBnFj2601O2GOkkKktNxvqb6o24Td/Yi0YPxNLGGSqo7MeWMBhC+EnFGI/+mWaIPr/DANyjoo/l7dkCiueArCSdflv4ZmYakl1so0ejvRjzF6O90lCJ0rZ9TeQbfI8qToxP93UWj6kAeGEHiZF8Gs3wp//DaWGD2PKb4OKhLHr8MVYyM/yw2Sj+KFFpc6O/KPOtjApET3GP4rjbrRoaunDSTbpBXRQDiz24E1pa5F/mDQ6KJArNoBtJ7FkySREQlMgw1Zd7iZLBzvP1hciBn/dG+wEmaCD1tgokMi6/i4uzCVo03G0GxPkWwEeRZv5stgypN6Om4guvF8mcsjqvtuKFw2rCROAC6loBkLmPs5cKi/yS9ARKbgRsmp5xBb1J8TjJeHpISi9A5/fnSMuiuG9sflv4plSfKRIG8ox2LY3NkbeOhYLnry1RU5lYJUCovQ8jsOgY7aetspHWmPG9w50artuj+Mft9CFTWNYFsoA0KrmFRNiS4xtuBJbhMlXIG886OyWsOCEGilgrVwgDKZ0uVdt8oOM0Icibqwwj7OjuqMHbfArk3Z1pgTWpIbzuZH2spSCRuEMgfxQYKge4zYLCkpBggqS6SxRHCxUU29SetgYeKCnaQgkcuNzUEGUh096FokD7bOEW3Hb4CMyEqK0rjvwpWUn+rhgcr1Z2pjWF831/vVzHKc1puzJRgKrUeuVX/fmq9j1TlMp3V5/Nz2KE46WKclnlTLsYsih2uVITRpvyM0/IVTCH7uYPuNj/+Ky629ysrD3JCh9HEZ9I+m/ZBkiLk/hUNGrIrfoLgM3XH+8N+F/1iQHNJvKmDQr6vcDLGWCl1gyXcTzCFGMp3JoNl5hhJqB7GxIJzAq0fkH90bYMPohubSrOq00SanRO7v1sgSC2wCksRnelM6kmkmxlBzhygEBaFe1iM2bCoLrZBE2O+kR9MLFCh+k41QHlR1wQnPvdZz3NoGlgy3n2dM6C/s7grmMLlNoEJ95jd5gRAOJ0W5pU6kbNXUse3WhhsISWzfX6aUjxUFam5R1jpVYwBpU8G8OYcv7bDnIjrTO2FXTDlSd17A/z74lyD6KKHPQ2iENzb47/oy5mGmsyEPW6FKgYITGdwL0B5UNBx2u6CQLl7lByCLHQ8nb9HnOdc7ymcCj+gx4lqyKrYQ0xalFpkVO7KbNb7VbivcYpZKIErREsGJSy7kIuD9Jgn4FIuMXkmRZt5Ns4kqP/Mty4J6j8uPnvAF7KEm24LUjSIEPDapTcuSJtVMwNnz1efG56yeeJn+uO4j47NsXaobB521qGyeTBQKisxAQEo5UGBJkrBSbChynjprqPMMjbnwQgWGIjP8qwPCiSMiX18C6aOUINRDSj1GPn3tgJl5uS4R+sn67elkqLUwcmgwLK8CuLNgCnW/w4sp5a2I7tEFJhZQY4iyMveKfKEHNOQnFUA0eVYdQLIl1kayeBzHMwL8C7ePNbtDxJjkfjqmC/4LBJfHdO4HC7xL3BM2pSjQgDMDqnuga+D9S9IChwe0e7RyJB70/5fFyBVVhIaMffL8IooQIinePwrgcXLBtxCoeqmCpaHvPTTRCB1MQC8HBwLdOvPPK5J/apE1Emvw7J4gT5gIoJ8X93SnWVkZ7XXs1y+1dUTQLxwR1/0Zos7minCRpMNvxzECaoQfCe7TlfHXinE4F0LqbpHi18R5MMCny5sPcdK86KnUe6a9imet2wQrKH++S1R/KfaZGs/Sax9cQVQbtnCNZfGAUNIOsjQ86wFHloTjPr7GQnEN0nIIUnIeVitIAnBKFmsrsxNK1nAS3jNTYbh8nJD1uTdp9hHG7a9qcoCqouxnlN8gcHxmFzkLED4u1ZZcFrwvqLjqYtLJEtXIF3+tm6aT2sulIXI/5CN+Lb6Ey8mTCxrKFGNI2V5iNteUsL2/D9jayJUm5jPD8Tx1yGAb7T8dotdX+9BMeC3s+f1BuxHomWCbXPbReWcsDKrk1EHFve0ZFuJ5W+Pr+VfJrS8nwcvoKsj8rkwfhZrS2JtWaytzTQq0eIiju96gVF+Fvd9G1rSWzkNJsqx/PuJvURSkC7xpD3chm2lrUOQCZWXNuHceO+TKLVW/9DnRDMX2x7f7+psDTbtFqtrFm3d2aKOb8k0C7AtmbbsvgmUDWaS7dT9aYE5VB2FUXh35eVVFHI5ov8INw9IqyORTDt/JBFhS1D0Plo4pc0lcjZAGc2+jqtKMa/pSBsCu1pTfGQK+WeykKxdiEc1tyTmzDRulat5S9iN/cehkwljP2H7awDnOL/0HNmq21bcZmTN7BpZ/xAvaFV4Vw6ziUxO0Ijkgt3WFkBKZL5+LNOc6/zIwMzFif6kFdR/R8617zT2x4bZbij/rATpOJo/CQ2N/hjvVkEiktJOjsfvB6VPeNM2OmMzbrgt/gRa2DYYNmt5nreCd/odFf0BB2W0KtgNkhb6kTLbUXwMou+xHbOJaN72QW44JiSHSpRRjMkZVLA+hZ20rNrY+HL8wV8jyrMj6tcyE44qe2mTUu0tJ30gyxmaKaaNB4Q6ZrpYAhkr3OPdBDtZZHCYOOUEcQiG0N7I4A3BrLLXdMNMMilPJfbiLbVMMrQTosI5Jh9fk4mx32SgMDNNyNkoC+NcIED+ukFplW70bbtrp3ss2ZKY9FrnB/JY9CNpqOd/IpZk/YTjxOCztb3ZsbjpatxW+7dcjbEDIdoZjfPX5QrfIq2NwuyMbYzGXqghqIprKLB1tgXITgjFFXXz/Cm+dMQW0j+S8pxtWbazBozwRvCj1ufXAWNI0V7vPGLn+52dQJA/MZU9KQGU0hG1cOd/qs5NXrezXWBdq9QyOgJy6Kc7cqj5m83kNhG0Eqwqv2lY8Ymwfc13wwV9wyzdJ2hE0ndgvp6zaaSi21F8JPsl529r6wOCd1liyL/hWtz3KGsQu/YJYjlFeIfg0OVdyXZzj9LRpKLbH/xO9LVhAt9ztmuoHrgGH+qOJcHOscPx0OF47F08cjgeO7FOhssUZ9gVu6eIQu4WO2zhVWLpl1fzYZjsOEx2WAaGCvMHbqurPnGspnQP04icU//4nStNAfcZyRVTX4iVWU/wAT+vGirH/AEaM13ZtTfuOQvOLMFQXu+2T4GSa2KOE1lUGLLY6aTgHjLoH/OnnINgmZJCgON/FJz3d+jlxvUii/sciyVKPYfzAdC22XDar0dfJHEn2as+hJIXY9/HGPdDb+N545lTr3XBtuJosGW6BbLH/BvnCJt/LMNOuhzj5JNzONx8uY3SvVroLvihc6xdJpU4Qsr4YESa/eOcwS731FrZFkpDpIEJbBFJgOiQbTHRhljZiCYqMSZfuU2ZyLRkXKC8iF3sZLOdIqqaH6Nax1GyA5q/Y2qR21J+UnHkbVcZ8PDa//spgnBnMNNVo8zzT4rTAdT7k8Nk4kZOJB2HeIhj9+CZ/FLG5B/WezjHSuFZrHXgPLPym1ACZ3I3AGeQqeqYY/8cuqjG48usdUAunKVEzs7dwKbYIUj/2BQ7GTWYJt5f8GubO7BA4tnwWoXy67nkD6C/SyxDCc17fngBqsUSMs7SHf5sGPQyPgeCqENuH/2l5WUMrpWfCsjn7PO32/ziSuid6Wkb35vU6Wg01CTVfj/49J9YjSSjlDaSyp9zfp2ksiZfDtXJgN/iPEDx1fF9lGOs5hQN3LzbQrXIIbTaAt5OgfI49ZFZvPsJ0pc+5GjoPj1GNP5Wt2hEz3FTbovCPteGGn9SB3tlLynE4qj8QFCY5TbeI4D2eMgS9FIu0JIuoGFC5jhiL8u7xfrzLdPHEha/f0dhXM4KJs6UjAhwLdyTKh9U3XHQYMpbVleyAUS7ZGP6HKPBA44cs3jkdlPG+GPgPISVUDAtgGhCJaAjl380HQBjhsDSMHo+1egIRtqCFs3Sb4CLKX7y2zdMC5cUhFO5qtzG1Vj0zYRQ/z6UgvnzqIS8a0oz45Pb4YGnNM5SDsg9hvnVWwqPLwLu6aFQOnec8VvFG6yj0cq7ft9mv96E7gMjTgUmjqZe2CPeF0e8ec4AY9YlI/oCaY8sivXxScMfJFPLhjI10yQTKpj9HO4VuO+b2Q+4d3zDbzo4Z4e/SroFltSUlXvE/e+7IteJiGcbMlYDJcft4SQO7J44PRSZdBZ//RJTs2F4cDKxu09pqevX5RE/I94uBND8uElMT8s0z+XfyZT739m11uJUWO5F5k3HlV4A6fudRb3K8VWcDctTMy1O5rJb/ppwJwhsw6oV0S7q/HG4Mpe7DQKQOPBnAwFIdMyvv9PHGRPGfcXnNkpsZeEsm7so9P0FA4jLnLRdOWrbXd5IXC5KF0a1Id7laAFufyZtLdsvcFBg93N979r/FE9vRHHHqZ5lp/1aLcFowicdKeshnfJJp/83eZGW1PHUQkhM6JUrY1DYvaqWdOTL87tbUoB8T26+9KRDd5ArAIjkOLH6kpadEXljHPWf7FzFMNe7ALSfHNWcOZ8zJFvl/Zd3JTIcCigIL6hoUCkCTIH5lYIlVSzNSuGSUh5TNHXOo7Pd9MvnIdErnN3+cve0/X73pcYHvxuAjYAjNSY8IkNh5VpRYPmeWd3Zys5aghWmtQvCEnVNYp+prikY52RGjiKVSO6MZpH0xOqrc513weZjplu4tpR/E3Tk388ugXzMtCJcaeFwrC2nCiJgCj2TEDraqbCESzgXTWfns8o5buKucDbbNvhKZkT/eIbqnW4JknAQ6ZqmDStH5V7iCGEl3boe7HTXgB66U2AFdF3zdR0d6H6vTp1AKJVook5Qmj9eX9h5SvG79NQJYhN4d8/SgCHa3NFIix7pEXhNqJdh5u1JhUeJcwB4xIm+8ZUm4z8qSO3sP6i8kig9Zcl4lVlTAfdHV8GOOw9r5/39xmlxRYtXTZJZ2faoFXw6TTbP4LavyHIcpaopTERrGzSK2HJhPzdQSsTJ7v3klJjv0ZtfZPojTRY51bZe/lRdb/Wb2DjL8hfLXGl7TlpgvfEgS5iyftMKNz6Lq31/JT2Hwj/QSd7eVFqcXBZi4PyIXVexSo2JNo5FdVn+xTjirqDwkmiA4nYekc0trKx3FsgHJTqATTCwhlUx4jz3LkNfQwQBBQpfVV5X7VSyirXeohHbnidpZTnlPfswlzX9kobWK8bSsS92W9hxyuRTBrGbcbx+XXMZq45Whb4SHvrr5rhv/cEhaqqAvCS4PFw84QNfWfzVC1XJL0uC4PzAYJ/mJlD7LesvgEHWbnUBeplLK4FnbKjcCOv+xGkat1qwviK+xUSlaEzLy1zhB7Dp0CnpJN8dgyWGoTp6Lrv4u8xPfP+38aGEhY8jKgnVH6cW6t0iLImmzV1tvyYUz+i2R3pGWu+DBBmpvWITrZZtNQu0xy8+h1WeP6d7ZUFApUGIhmOedwu+q3XsWhcf0+mnimPuDdVGHZiBRlhUMhdXFfGsnjYwp6qoToPcA4/zFl+RkaUdL1K1/iUEzQY4SD/i72sBp4WYI0ekugaiH51DGeU4TZncnBg2hmoHIFAVDIPxaP64OZGUraIMFRpDXOa379jLqwVapRFWbYRVGWG1LTdpMlhSVeA75FIvgTZ9MADQqN6zhvhi1oCUqjbKKpyIpmyMlgziF6XsgmvvN7Qc5+R6a0MOaynB1dZtHaiqyUE66/AEiQOUdI8WDyyypKPJHwv8jMLnJydQ6CvyuBRwIMeJHl3s321ZNk/Alpr8QHHE3likVYq0apHGSo9tiSjzA2ettvgE3eMu3uEr2JKbYRYNdVqO9NjbQAu8WqTVxaW5KtN84pgaTrWFF7l0+PwWscH3kXtB7e8saji1vk5BEKsiYRD4pBT5nNfJ97CEq8gosyWc3KnPL0aP0ydOj7uCCneCt99u2OfVmlYFDbIocwrAAdFO0fuB5rf1bc9UzVyxCP1LjgBKeHWRt5wOtwW5/YItGc9+O9WhzHDizm1COWxlQVVUJWpFlbeztBZu7CWY0++eYvMIkZnimtSTLsBmARZ4QHTmuCUN/CZMZeusvMp1ujLgNL3w2zd4z+4W1AmjLbAg/lTq7OowlRdsXwDjV3Qg96hwsZki4WsgtIquTjelUb3EWtcwU5qE2yoAZUf4yKTZHbB/8U/VpYveXbHYmmVfQ5UI2iVRhujqJBpkeocaGUWwBTVEyOpfp0H70VzvG1JgiLojjvC95GkqZ/J7qQJbAEHROQu15PtAL/0J6/6Zy+TNuM3tkx4AJ0cxF8cdKOiRzdKrgVrftRrb0vBqYgTiEZ1p/khJr39nuAmHYV/GX8ojeFWjoVvhGMnTjlt5CjQamc3GXut04IiCYiRiMDcZARGjiUDDV/IRSH9z/Y1Nz26zk7p1ksDIsdrgRV1CuJSlS9zBzi731z8EotVjVpfvqnRS0yzKuwwPM6zMKOv65iio/6ORGmul4dsse9rALtJs0rVBodwsPxt5EQWorgsJENQekJ5ep50dzd3z+CJOZtY7eIGCfVyJYHFO+wkHzw9koVanwKgZf933yUlsWUEekC4N+RsoeyOeRfL4x4nu2QJGRFygYNm9D7HF2Ranp024iJhgiKb3nkVLqI3XNP4YZqARc/Wyg1T2OM9TAUnSLdwJWGGAlk3lwd6Vz/Vlq6xRxRZNSLTkziuV8qCItIvUa6MRdgs1NKLB45rkH0qPhk0Rrfx/hHDT/06NAKQ+LpZwz2TEKfg/BlvYyWsrTbZUDqFFZ0P9d/G/g/npk4oZRYhyI1HOyuTovW38oIwb33sC1C4vEEqIjq9b46v0njXLrE4p1myGYZd3ic77LbHAE4mVyvLd+KlndUuu/o0f5yMgpsOVITotYsvkSZd8/95jIcm6LaIuSfbAOl2STDQp0VS5ja13YYOu9BwEHdSMoSd8bkIA2ow7KD52F5KWfKdKZ4zS18tv2Z67R/4xrO7vKNo5O8eBSJ/4oSgFNv6D1dUtdjrCk/JXp7MDd2gNBu3XLbY6inmPbvWlA+whKtAFIooMfbOjhdZO9/YfRmF2ogJ5ELGmaC0cc/sne2I9pJZV1BqL5sctXZAfHI3Uj8dm9ogCfsn7jwdaKPUMlL1SW53wCGUDxBkZQRBHAtdx7/LRzwKxLzbozf0l0jYU/o7/wdXQ7bLsnWpjMEwAChCNA5PLTu4PllaMo0DxFdUHZsBoHntUp8GslRpHnM6UKPWgclh1Auls+QWq80dHMt+jWxZyfZBuFTe+GmFCmEKlZ14KJHScyXHdUI7ebt5TlpV07mdfrpjrv/61shUP6RZfnW7I7s29JwlxNStQHNED0C2OOkiI4zpPIJAQx5j4uyaOsR6vk2Tj+aH19iy7O7Jn2Sxix/boZOWY+zW26XXTfRv2DdfaQrlGo9+vraMVJQ4WkHxGg9+Cplu3BdhluHWH9wjv+T5z4zawJEjbZfV3U5l22sqS1fcoA8yCh6WuErJbgLSijtll1zensk26Dnmp+pkRM/73g2iMBj7VfiUmxw/RjscR54xMtj0aV+vedvgEAQjG4L3S4YbcLdEB1hoqV9/gXarDtLGDLvX+9nAg8vfjTFrsjwJ2Y7E7Fn2g/xDUq/gjmuxjBmfFuZfaMhyfNjeLv/GBosAJqrd3CdmeIh6Kc4DSU73otuCIENj+LD15+or/LQx0d0hsJZ/XAIzt8mjoJx3Sw0rlKBDOw1JyFO4QwzG1CALnJxgWk0ELgxV3XtOATHw6ywAN0qfkmVrgFpRnB6U2P/mCfobYsbdRQaEinNw8EOvi/bgaF3W14TVLJpAp9qm2F6+h7JgggYyW6Rbu18NiaaTMW0YDI1e89vP6lvDGe61b8v0eqwVeT1ZaRS2HaKHhMumidsWzaotx2NgbjVIjJsxmU6LualiEv9yKP7SJUZA9Idd0S83NzjzM2f0fHJLSdbJEV3bQ3sTRK3vod0z756iW6TVbkpKxbEWo55q8iSeQZib34gLOilc/ozP4PPp7CqTbeLN5cG8YNgxHWiK9CKczK1KdXKuhHOrhQfOhAMQY/VfnvVt5g2MopmlmmV1bsfEyT+UBx8OwzBsZaKv2GAudMcRotU4ORPx9nLbY9YdxImNquVkuDgm4MeoPCDt+4KIb2dYSP5f/n4Ccmtmnfom5iBa/QKr2V0sUYq2WTy1HLYywDxtywRKC7tkoA7YgTm6+jDcqvlHlmrSrcoDE1ClNHcnxtw8q9YX6UEGv8goqrP2TNTD7gdE01usL541lw9hc2dbVx+aePBxhCwUGI2x5PDaRb8crMZ7lgkDJmRx7tGpCDbqPx34PWj8WHtxb0SqSiPK1H8Qx0kibw9CDMfjhgBzkRNxh074bcEffaS6hhdrdSw+dYEiOM/2uLGzrwtwgDYtFgw/xESA13r5GwI5BQN/8NA0sUWcmKzsODUjNJ96PdncJpDl8ZpJsFLnPmJn0Piqnt3U4dgTznps4lvm9nsCxMz2xUWO0rd+cnRCeR8grDuw0kGSmbW1uufKl5/W+gsUieKXjb3MLtbPfk+hWn4bMzEK3+rDdH8pJisVhsRhaZpqKw2Zf5JWUNI/s6gy+kBLgpmJ4yLxmXfKSTLtrJvTRu06Vnzp/qrChCGCcRTnH/X3a1APPr1xrY2QESnjiAgL+UuwvQiGBuOy4BUt9WghOOie7EDffH501YfkiJhLCZRrtOBtm8HTYbYK2keoISN/2G5PG/Bo6Zr7CHnrlgiIkznQPOzfdaTsMFCERSMdqbZhVW8skCiku3thdTcrG8GR7MMASolPmIBRTLCFtV/qIpyoK7yonxLTwm4M677SomwMpsWLIgD0c26d7M0i7RqEaRJjp+ZrJzv633nGc7olG0TZ/bkWrayrmNvYE66uYm9fEhj62BQNKezcZm1n7esEzwCGkd2k64jYn15mtuynQvlITkoQIV4lTDzCDESD9PzV5A4ygRJsci+QXg8/vXr84MSzcJrGQ873C0sR4i3VRGk8jOePVc5VP+3cnI/XKWYqjyZalFsICpoXVzKhV/PJKfcf/Glu7PDr3P5SokZgs7q/4H2XbtKNypnEeF1DnnhGgfCDJjf3ifQLItSpioDBtuUlYsoWswsM9HZlZHWUs5MgHIe/9TfRKE+7GrJju7Lmr9l0r73k2SiXQb9pJMQ+04gcXmArCTYNT5qFWPO3rDPaQV7i708AXo0dhaGvKbq2DG4PpeAJpAUdk+IpVz2A2JBTUJQMfVJefhcOi6rcsCFZy7t8bjtdCARLgPjmE1h9+S22G4vNYO1+oNNc1xkZ45IyFSh+Zcy/AvrjlLMNRVmE8CRetzFYxQF+hfm8+izbY3dasMi/C/Nd7ZdS3FjvTrsw04U3b9l3cjfqbV/y3Rt0kqsOApo/pFA7kTf4uv8UkqnfZXFv0/i3bgUu21CsUFB6TnDXLGkWShuRqtroTQdWU2dNa5AKFdf2qfdShsqfGqkJd+h6KwQ3C35alzMq3lr8AIPvwozyLbKWwkz+aLDB1WZihslT89St1bCvLXk/gzu78ly7bS3qirc2GWZCLfmm/lG62LHAWgSXLHu4lYMn6rY4d/128GbW4ILhKpUKVTGr/eHdPhvGnNPuu+aJbSJdd6U1eb/0MbAqh55k6Kv6bhQlFfVpBa/jDNrjn5J08PKgh0eUE7h3VW+MXD+pggDPka6xWvupkkHO95TJRlFv5DXG00cLRbmV37J/Luy5rBrbnmUXmXnp2cJ/vcBtclkVrakIba7JS3ZPVP3Kprxf+wZeon+spU/ovh90WqV+M7K3Ixja9VW3UqJYx/2txbqz3HDCQlZfAFPgVjJUFbqA0cqkty3tQh8hzh2yt2yp/fJ3sr4DI4XHCsxV7C3M4DYAmcozUTKLdg7QRNNRsB0mvqieD4CvO4tb0EYi3jKZcWw/1p5CnclkmgjrkdzlH1UCwPGqfrAR5LLvN1kHY1oU04CtR9aVk8ccV79GcTbbxiG2KgNqrPz5wn7FedypDyMEaghjihu+miuIYCLXyicshAxO8Rj1GqZ7hWg1xJNlmt+f+aBw9rPoGPb98MyP/a4Kxeogl2hZcm9TavyVq8wyxaiwCwbZNuw3daWn9t9zLT7Ysn8PehnSrEL7xH9JicGNdOSuaU2sYft0WJRuJbKrMCfJDE1zd3ysQXZ+2NG5E2zIuMlOy+wZc7QSZ3FOpM5Z0gFheIP2CX52I/O1Q1q6bD5hObYz/RTelkn2/u0XZyKK+J9nZuNsvGiPY3XFPi7Dd+PUNJdxN42mrMsAL+fWDE2Wziabxtqs5iENSzK797kXTeDkVYeeU7F2B3LopG0Qewnoc0WAgJsBWAncm7DzqMdp7sdNcOGI1oQ4kcpAJ4tPiNOq16Xbe3vc396FthMmWg3JbiBJl7vBhK7qPLAfQAhbnWUADVDXXudr/qa/VWiWqeo/3aC6E8Z4sBZ0LubEuADHUIDGbThvY3GjvBb+TJ4vlqJIu2Hnbehr3TsTk448PIBlv46lAPMme7yJKsW2XZ/COY75Y3u90Z2flYBLI90X0glhBWFRC+heiYeVphGARib++KaNu2xnU5ASRKyj4PHiN0pRa8giB58y3oX28rR+SSuRq7KS8IoNlFZl70ebluNpOrNpxbG//utXjZ1DkPdzE3hC7+43/RsYVP6rGh/tF1o6eCAX8DwryniTmhEVpt21abVAXH4EZNy9Q6u2fBF9CFOL3Zwoq0LHfgjucBqf+2K/JIYIX8UQ8mgpvUzjU0LeDpScLgBZBsQW9lvmdbuU/yQklY6M4x5F2rMXzmFoSYjJM95BLz5HRg/zMO142t9ZmWP54UztEmRw7KE8SNwjjDUFRylshhPpsQVnupsvhOza3TsIQhvIWGmqfL+WrYvs6dCdWZaef8voAt+kp76nUcI+F50Eq1md+ZxCYNzlWETcJSJkvwGI5FmknYeRGsBPcqMTaMoPTIpIrxvceiq3rZdueuv+I0o1umLQIk/y08kvJEw2eHIknEaSNPswHXoTQkzL4BssuyMPI9LHQO43z9NjvGVMu5+mxvXna39T2BdhiFCR+Bt5Jue2qWtwVjgH9Jx2RLt+baTurbHkECBg6dkKezs6+nP5ObJk56wrrwXkEkvpK74Jil+Ulux+E1Ry3pP5/vDcf2mLHYMYz6KA5FpAnKb18DQroOdxxslSJMNUFtYd+1IwzODA2yU5+x6ptKGp5Zb+r664rS+3YugiMbnbU8baTKdfB3C1iG9BH3Kn55s9EeaYosKfwem2M5xzFd5SEFuwhT2Ke+WcOUJ4f4bnGBhxeHNnIFPCXo8B6KbWHAuusz+Rg8T9qXOdtIsL4n4e0F8b/2HtwhPE/b/2lAiIAWm1aXuLE2lC2jjKEMqQajC7KJJvjDw1xnXqJ3X/HhbLrWHad9OlMqT4LeFgZxHeL4B5ocMUBYX1Y9OhaAW/AVoZOn4XY4WPP4WEQ7bE7hFmNwbPMOWmD2ddfQpONvizxOk2G1Y6NsIMk7K28my6AmmAxRVG0I/l9p1EKAuG14C4qIvgIeqt/P5mbd8MCsLi43ExY16nYPh8nJEUJMhrW+ywFk96pLnGE7auIriSOtH2dd1aCn4pyM+MIdcaURFmyIFaes3wjxIyLCpDGUaOEw2dKQgHTMaPYWVaHhR8tLph4ieKulF+XNbxg0fq04I6CZgqQFBRzGcWMIeWDx7yY/aMEhwiGQVki5UsJ1lcocvK1n0C1YntsuHVmlxUpcihNE9dO3yUTuY8pA6KqAh5e/Upph30ckrQtp7H5Aez694i+CiqRRXP1CSAPEDBxtM5Bk99ml6yFHS1+O5SpjgOPCspUD5PeRhO8MsU0MbeJ1bnkQGSVGMVYE1+QT+/+6kD212KKHLBXVBdWrBR2RaQicTTQ5e6BSBSAcsorP7yECtm2tsu9lq+zRv3HRQOK11NN1KJFNNzTwRk7/LokaknslMsoRDtAjHx8RSJGhNj8ndPLss3ZTrFmGcGZIpq+Wt0b32Hyq0n8BrTw3094mmy5d5+sHqTMIY8C73qDH8dAHWuCy+6Tb4LlFqPF0xFZa0XVp+JocxCmJ908nCzD163vXzIVc3TTPxHhOn50fjBuGMlAntoP97SJLXz4oYvj8T5oQpO3Em9SW06CK4c47inASHNyTuL7pZoVUtX8cAx9m3vB8iAjyaaoukZNSuUZyGZ+yv0nlSqh7nnT7Z7u3+BNC8Q4binD5Z6RW7xIGMdWx7Y7pjW7/ZxT+Bm2P3dOgLo+a7QdRE+nyWlY03scP7xM4ZF5h3n34z4fcM6qFk4cqYXm3uFG+ub4+WMIodDbFvH0vRI5JMU8IcGonc/VXhBHWmFHZJ3R2Dm95A0tsWKwF613s5k6i+Fj0bTgJTr7NW0AKIIctRY4lAdLy5gyvzAiLVwlXI4BY1eoK8ncVqp7S+kiSKEI2BltyZajGOfKoaz7aJwLAmZFIKk4Al2i8vG5wwsz1RpRaMo89MYlLHJuO7ipl32RRDNZSUHSsFGLUbwHWfnijATdfZw4fEm+TiA0fvjrQ/9ReuXm+9X3lMOuLKe4l0Lkulj/adn+4bkbW/eyaCuIvpTyZjPxB8WUHBGewFwxrUmwR6bRoBqOmYb5Q8GGWEKRrs0MxKL6piMqsv5L9vXpp7CGrkBqH9yxAkF03MDCqmSl6pe40Dgt+nzEonBMcOyZqFaUqj4ybSJfvvtr9MOX7x6hzA1SzuCqoLTr3kUK8tT05pWo7mJKkVLSHaKMWrBbRKtEc6qRe3ubL3AolvLT8idvkZKtyAu0QeEXcKD/tZniC4mlJa6o6NsbdFaqTs8jIxUHGlJVNkkF7fqwchpHXGKWYIWOxWKqk1LoWLxN73HwJrEYaDZllGwI9ljWTplyJ2YRayBVFwn6OEosnhJpCwrpdVXgIfVJMa1HKYv9tagrmeHtnXcVVBypVSnr/IoWYwVscUVYqrrABCUez9K0FW93c3Nxbb8/alXHfb0QgAGxddAQdd4iuh5wDhfTixTQi4RSmw17HRCrc0LNQBDlFTK7CulFSnmzNmH8jgHXXdJdKexx4lByjj16rI9L2PKskPtR1VdbggxsODSUNH/fnmqrKUEKCOujZbmFAjhWsMJDEfjnRFIIsFT4NMy2VpGBGYWgPN2BXYoqb74IdGmm8AXnvOcep42o8eMIO61Y6kfo0WmVKe2z8BJxf5Sk5wj+BAF0UaEiTmm+BydBtdlWc9OIk6cvSz3S2i+IqqtoDeKSzfu+voHRi7vEgo/GU7w0xG6KyUSCnyj3UA4QaIQURA6FOb+gZuJGZkcxb0js3uiDteNK2EcxkUGphH3c/vnrEfZR6nsYYR8/1m0lwFZJ36navDBKYeB12b6qDUKi2rSrOQn3q5aBQKPobPXBvRnVxkFt7mrqCuFQ+I+CLf15U3vx1BSxMVYJcHTgeWTkOeObJjvfrGulFAg4XO6JHtq0xRQ6RFVX8xXEz1K8OZNr5bsI5hHRD/bMb5e+xbtZbr9MylhlNZ+vcMlYdiHFV277SA3lCdx6BzNMS7WwCgoRvP9wb4emgK3PCtqGpc99xQ22B4fD45a4tate1VQrXD7o1MmXphi6DXGTI03vVO77wQ/CPKcSsWD0bzbQYMPgrIhTVpMRgXf0/uUEi6PO23mQAXnZzSzATRd5PBLec0+QmTzpwi0mEwk2OPbpzf5FpUsGbTRNLhvBIQtYGuKW3TcHvEgQ7Ppx1QvONXrnW6zzwkEFhYzvr1puo6ceUutTeSsJs+6BPy0iZUOphfcIKkWUREMHyK0pkOMVRo2z6Iq0wbtw3b0NfqMEatj/wlUEqRlqAsz/H9WZ1fc4gvKrAOzKXrYfb149HITzWgZfznIzgr34BttfE0QmQeNtf9hd1uBvVek0evWH12ID41cJNhGzZEczFk8zM9WXBoP87PMA+WZERbit8kYmFSktq37Gn+oWTnBzhNyjjBtGgoVz1j5ETcMZ2HnSn3jHaHC8lmbXFNhtwz1M6ZYvlm9gAYiAR893kjUc/+ts1b7Z1uaVw1eq3zblGpm0ijlRSiOT1n2Z13QgO6q1qtBFSq5qmzotsa6RCiKKr/IBAixSyzjCymwWaKAeKcK+9g+YoDjVnazzh75JXOLTecYFtCM0p0BXUJwIHxTqGGb7UFrjtFDQqATnCIbGsrclS2TiU9NT2hlAtL6FaEKx1l4JginmDYm4XGhsD6qRGq1NH1Yo+UScdls6P7ftOLiUu8f0A06m0SbOPqX1bg9SA4/Wo5EooCAoRkFPxI8lUQERC/WFn4CZcsWUI6UBEFJMOVIaASG3yZ0nsr8EUcujQI8fwEG7XDAYPHnKTN+0ZtuVcY/KBqLyudNakkMuVWnVJVJWGpUTCdv7fGDJbotfA1WIP/nze5KCo6W7hVfZU9hIbnwP/O0T238XqioYRMp+bMKalB1xAuWmlK9wh2rzdQYoFiX9r4pqKiHi1EL1t1krbYtT1xKyLU3d6W9DWL9BgSOzbnNVm7algG2kVZVmWTWBtPObLzd/fovdtnMRlCNTPqwDlmLu3yt9Kw7glgaAXwn2EcfLSgNTZGmPJ32jdpnCsgXO1tbtcSeEtLT97p3JX3JAJowpZvnSf3WBl9LmJLal144msR2fLYGOTSbTOuAWdk0XVLWN8zyOqPzZVVoaKaLldw0DH1Kaw1FgHmmROMUVUF7xlF4qomdmHmEYvwTxyPOA9txPDGnIzPCZdLboevtDvzc+3lNv2sGfZSE+kkHi5N/qFuqaBuqUzuDabXpnnV+3NvlFIyr2dqUO6H6xaddOahXHW9up4NRILlT73Xrh6BI/Umau4Xu2DYKe/si4fv/oW72w690CEPwjTZ8SSsQWrJM7/OON72t0dtoWXa9/CZ1A/FDE9xHzFkp1t4TrGbeNX4QHiLSyRyCJij3tnY4asM4RK53+yG5x1RvnbXeYrjduvqZFCQYtrPluBSNyEFOSm+6l9MwAaSYJAR2tyRQLcx1tpZJusvT2epOYFpds/jrDCWYMofQQVUn8AkyEAqff+eOUYZZ16RZhHVSqkhh3ALgkAr+nJVEGzUvTzJfI28FIWUz1NNOLxPA9wP8V/xs0i7pDaAjX3x/ElgBExziPjCoThFZuUzgHGnFc68/o+/qlSJxVgmfa3pg+qJN1q7d9AJyoVOB2qOF3GSGzo8qg4BBldSSsKTh1qBWYa6R0htK7pVpPp1TT9l1RgSN889pTGeMJFgTynJeeKMN0xePTdOTCCNfL8o5vBS3dw29HmdZtiHXJtG4B1rOqmriF5I2+S1TeaFJ3vSxCIknvOZ7qCzVRxZTakOdrwMGHSupmKC9d72tBRX7aYhKS8Bmk72Da34xIwZEayAkXZ3oqwHPUgkyYUYm2Ms6pbJ4z+YIaRqIOS7fw6hRnZiYpYhgJmnc3aVuwZzYYRrAt2JPcMwqkMk9Lgyvf5EejyPQhB0h6x5o+lEjN/+wMYP5WWIwL9aRBNchEE5mvkK9xlng+y4AjygoNyjhEO1FzPXdQFyRA1O75Q6QsmOajAJBfRX+30qMv5jiUMnvw1Lutf7ze/QaXSDGXSBGXSDFxSBlZYUZzFrpQfVxQZSBTSSmZrXCfHD8PRuaZJuhA2ulu8iNf66/zGncNfB/FvCIF2GFR9RIyF7zF9NwekHdMdnSzHEEZr6fg6r+iIm2fLwtd/SG7LcEgEghfTgEAKPsJzhQz9BVydxfTwZRBIT8suQZJs8pQ2TT4i8JTn1N32BIcsMlsyHFWKCH85OSK/3++AFTnrt+IKIRL4srlagaQLJOZ/bN4G0wb+Q3hDBJ8xiaNj01N4Rl3Q2eoxiVIo4Yy3uOIn9/SagDvWMwCUobkl621lFe5+Jzexrf2K6SqV7MctHw4k7Tz4kL1Cnlrhk6zYQN3ZEywDkUl76etKBonK/ke6XMOf065J80mUobck+Gw+TUMI8kwt6JhZWdM+qnNb1RiEaSvodvnl8wioeWZw7Qks0jgNVxCI2uHZHe9nL4P6k04vfAN4KQxRn4U8H8V1wi7R1AqzHEQHFj4lNpmZRQMQyHlcBMJR6wEhj6HjbmxXtWsCZqxq7M55AfIZ6wYPzjdrdHyzgFu+3segJpTMUJx3pfwkksVvmqWxc0OS+37BKcYRh0kkQgu98zaNCyHpcnIgqCiTJi5w9Vv2eSGt6aaS6NWyv+x3ykbsFGpTqnxR/kZxVUHlb1xlAZ3UIKoDEfcRhL6VxdV5d5w3sCEX/tH1SUJacC6fQsuCttpI+20GRuSgt59Jdl9UVUSvPLdwhUHb4zFDwu9SRFnFpISOTgYW5uR8yP1kEAUX/rawzP3ropv5CSLMsF3XMUDXsfAC8wcu0RMVlSGvTqO6viiCNLdo8Xck3kwWq0Kn5tRpEwGLUwOEnDifJ9p8TgVcjOZSUlSkZJN3U30r5vUrUwIPGNPkbtkjFUD6dE9z1VBqQdNy7+Z0utav3LRj8MA//TmgIzq+OW8gt5Dk0iMIdfqJ8locaobKVfiJ4kQTkbZcx1LJ87wuyNeHrw0j+XwJLRSGfvXROFtDAOZWe66rZ/7NHqeps2xSNjHsNZ31vh1JLFoQ/C2em4l/MapTCFxfnJBkJ1zz6LtwLy4Mm2ukWWkmGWkTLAri/yYRAsuzrcnXYgm+bhHeYrLwAdt3j1lvQrGnV/NPsbZCZUxq/k9Qlo6vWwLUfRpfhwqbprsbWPH7+tVF/nN+uplI4nVSIZJoTxtt02UVCsmxCgT7MZBIGJ9CNW6XClVrhlDIeG2iGs9qKnbDX3Ha7eTJp9d3XXzO8xma4ukIsWkIlFckIP08yyGVaYVoTmBly/TzulgUElJO8u7ELUqtVU0bm0KmtH0nyr2uU/uDfG3uQVyJIrNmBi1kFBlu/rvPuXwPOJ6RiUdV5nvY8BgUzp0q2DVa1P50IVFI4o5QgKh+O/V+quF29muj8tDk0TiO8Kn2Ze3s27AHR+Vd9JnBoBF7lIR3hVTiRTQXtnp22AmRZwHi+RDEScHO0aW2sST/QkEkZxvjzxUhOd6Z+V+ZjbYa8un7e5i7auW32hFutHy0cedpXd8nvecXG7te3rWxKxW7DHf72H+FwIa4YTyNle5eZgupCzwABYnHHQArHs6dx2tS+xOlnPmlwM/vun7rzmPdIfbMn1rbhDLht76COtdxmdGcWHM/QzPmVqurAKyb/NLAWEjjkfQpKVu1XkjDKKZQgrKeccd3sPmD0hnEHD5TNmVPkilJ/XJarnNvh6WVygmFyn4lqvQfmPyPSpWO2OHjP33ZPcNtW2KeUfKYtHQ8jbdBekmbtmomvzvl0N1vvv6qwMvr60tyBlxRjNJc3iZsQ088MgC8EpCpQ1UbWrKtHd+bQmOEdMPl9UgNtufDVy7BrUVMYZc7YXdtfm2aNCZQqQEqQiGwU7XMN8wayxVUTixTTG2HxR7fx6Aw9hG0Ir8dDdFq9TdDVYbmXwFVNPjpf0XFtIpQR/y1kIQo6HXFoZgFXnUFXDw1aXgofJ4imlFyiL7MY21qPTCMwRhOhQny9JuySe5bAcuJC8Fnh0j0cBAZXxFr8QILwu3lWWL5IteIBAIT7zyYlZqnYF9/4muPjK2AhKR+PtaOCT2V67MZfNyhT7foowt1yvo4oxzhDQTxKuzeGYxh0dBSdF6BL+4diJzXdb6Se29/6NetmwlLtL5F/OslGBZyH3nWWJJJdJyBaav47AVkO+7wXu1oK52Nz63g7zA7s0rL1Hdvu83i+mcNOUAufuv9aXCCyQPUGn2SInjdmPnJAlFRCFakVXomoIwfcf70oRcm1CkkFCkmFCkiFDEknxkWcYZvmXuM8lu5crr+FDnnQzfSVeEjaLXLCExk3M1iMk6uPL/PU54kiAUaZ9rEKn7sl02kRbm0ij7gyEdOwDT5e9mlLV4lqLM92hi0M0hUjYrsRWTiJQkEcnZcV5TojvN6Q8ao7u0mkikOir4FJNKBA1tenGqoiAHXMrhqaWtTEa5YtqQspnE9nh0NoLTUcCblxG8ffeQ9U4Cr4xR0A0x2fjbuKqbnuUhI2hy26O5mYpdXL2obKx1VydjLsDjDhnQo7bwPWVDSn1Ns5Zwvl3fPbE5hM0z2QKYiKF0G+Xe4+9rObyPRziFW+DwdAqJ/wKa8F8GDbFpmFWk7MbxtajbMtvMX1K2zLZd33XcHvb3zpo/mHtWcw0ThZ3pickXB1dlSFfMV3VWulu3LbcNJhWVo6iI1oSByg809Q29R23C17ZdmTDKFb0ukP/rvG73lX4soHTDW1PYMXqtO/0SZhgpO1H/YtBniZFjlRd5lSJtXPTUWCJtZisE08iLh28G2CKTz/HjLXlmLpOyU555NkXOXEoG1RysqJIYJ3oYU5zZYG6gYn5oS3CJeKGyaLn3r01hZp6QYEhAXy3MNgrvWtEqQXw8/hPD7v6lTouzz79f/snbQr+aOSujhHc6rmV0ZTZzcKeV140F3TxYRJ61toWW3BZvW2jJPd7tM/dmCVVU0/CKHV2ZpT9qW5zOuWkjZoPOuMih1TrQOK0r0bViWccP56WI3wu0vjYjBvgPWDFMi8HVIetrg8XShEQllLPxn/D2JeuwWz7tzcVHn8magJtMF7XR3mFQ5KZ9sm3MoQ5TcbyBbK8q3aj1K8cny1SXbbG2WYz9lcPsDDQItlD3oSG3LcoOGY2LKUpKLEl8P6+x8zEOGHQwkbKyZBedjyiBbS36pD+nHuVd1zlQfuOzjDvJ96g4I6uNFJOHzPNbAYrkvXeZcmQqsziPLacDP+tQMv6kKS9fQyssxycnx0BZnXIsaeSMiM3gTZ8jHOTbwQ7ckCp8eG3i/Sto66FUPTbKDsEiskXJSVS1WS86b0wfUg4YscoLhR/w8l/hYvP1VK6zY6fMSfjjcD1uDpxZlyg+H3tHQcBqyc3AsFkzCR59qseZSyXTy/IuXq+HmWumHikHXKFyfAOpG81TW1TnPajUfYRWBL29WkbnXf16LLdWzFFSTibiFzPURyZy+njXp9Dp+lBjq5hcpIBc5P5iNoeUOnHqu3GmKyjRKTk5sEU61YlG3bGBdpjEdiw/jpLYTEtSosAVPpvDdEE0ksvr1PXH63CQ0Lb9yEyr/mXtaJSfR3aaUp/OeA9M7VH5DB1VCOqn+B6pLYopRkrsV/keY/1YMgeCTblNmNM2BU6KtbYew1Ik1CPvyI4kliF4SR/lZJnjEcALvZJApkdEx21hamwL9cM425nvzhpoS8mDfIA+DbrdyUBkPGTDtn0E/dcydG4bWUdeddz1HbA2iBk8Ck9i4px3UW7cO2Oqf0tuumhRAdtIcTUBqJvDriE5DF5i7yEQ8lgmHom2Y9TKYcnscpy7cFCuWjbZQaVj+23jhPW7VElB87JiSTeytH1VFrMuphK5R7BrzFGSwZGfm6JMfTT3N0tXrnpu2J3OmEfDcQ5Ljws4Am5Ul5SPKAtn05NmhxNXhln9JN+ONKzblKyXWzReGReoSkeoH7amKgbPsByRWCLv+5eIEOUeIo3JgjzWFa+fbsnZWk1EUj9UpBHsOuA+6Ylu9rahPmxViO8AmF7NLlLJLuLCtUxXWCqbymIv1WQiUdgR3ZDMqx9xjzUYLwQqu/9BCL5aXtfQNrBBbb9UZfD9DA9sZfD9vBetDL6vFVoZ235LsGXmbzgrlgcQ5DVVvCKzkl9YcwdV8z7F1BI7s7VqndJSlZR5j4A8qGZ+qh9glWKXysDOtAOygmVEIWQPfvPAgbVZgYOG2qlRg05S8oC+tA+Xvjpbd/GLwt1YVdbqHtHdWE14cpvoOCfg6sNkPEqWiRtzwroW5NfB1xEFV0jSfM/aPIvLWDR6EXnydQiAySWZ9Gq/us3cMAHvmR7b8SfXYSIoHEAKruwNVas6KaZ+gI88Iy14efne3YMzBmdhf9eBkXdLb4zoCO9NTTuI0X9pnErnl6FngsDn8JkqO56ziUGyCWafaHDnprrrd043l+hIwZCRfHjO7q/f5CSULrZJYelkk7GRT6R9CNU34go/ZnHaTg/KKhyn6W+2fhMxMfoKHI+3mcmxOxlGui3TLaCPUpwzl/bOH+TMitOxRISGqiX5SRSd399Hl5RXGCTY/fsTuIn/Vj7eb0kxVk1Kcps6v/3ylN7wgNTghzlsgoAQo3utRGmLrmETjFi/tzmnMJtdqU/7Y0Bca7C2xX4ff//DLkve3aP2wwFQ4ev6zlvGGb5fQu/W2g834/NOSYIc+VZzMAXoBMNaVamaEVxC/36yhyOJJ29nppFKppFqtpIqppFq0pNavj81HMcCIt3MRD0SqaLjqqsTmtv/6JtifXK1JKnytdijUVDgoaoKYrSUB/QsLEE8Xa0oaijhHk47gpFx/xq1vLgMiwVaoXFWVX1zZAmmnDklCzK4ZlQFk0ev2wyzqbjFbY1PjuzKtOuFDmHtRjtnKkJey/R9E4FHV3OKo45eVn8a+CWWfH5xpH4L2BjxEZ4kX/FOW60XF60L93G0tGWv70JRsmrKviB80a09eYiNrP7uNZhGcjGJdSWaeorzGgw8FRXiohUK/Gc5UlH9rZkg/56T/NVCJhKv37vtuANzvTosUEE4Ei3uUV40FT0eHZulN/bykSimmnWkls6h1pOziCje3jKjJD1YqypP1aKeSADjXtnMipKt8Uv1OZmXIwBENEBUC6EZRxppi8KgH8FIexcs6QIOxgZ+/ApK5Sg5Li6sfFZ/5F5pjOJhnul0Q5bxR3/ugj8ELgOC2ZQftUyolMGFLCfXj0oOjfye5ZHKXOHtgfq6tofpgYInspqzpJapER/u/SRyXmDWnuEbSUuif0dVhee+vk8POi/z6/7+h9U4koB4nbDJIbLiM3X57UdST2QPl18LhbLlPr7DwXmk/Ih2Mhgaf18Lv7Z10sB+4j2XH7U/fm2L5/AIYF29uZXf5d5SNMPtHJHBcBmPNvnttsIcs3Kv2+8+LCEpkp8EYgXwWTBH7sL7dSYxgd28SX1pb7IgK0eTeHvGIl17KzmlF9imU97NfjQvnmBJVFs8wJMvBYeql8L901zAq5Z08L0Zkt66u81wr+9b+6pFYCVKih6zkVPmWvKnPK9+rYCPVCfJ3iMqluY1uU1ULIu3dZCRdPOCsDCCkBjITKgib5PPv5qcpJKKREp6Bn3zjHQmFgbqD/V9c43UWkBSJYWFzJ5cGYVY4WqXbq0JGTEHShYh/y1R/KGn5XUMsz0oQBBVC9Ys9sIjUjkLqi3Dmtwp97tJsT5rgsFEJTeYXRA/bJGGpQaW967vRvPX81EBbR/tvkHHVJ/soLuMsJoorDeAUDUScUZO9NEWHmKpV5mSXasNvIh451c2H0rU7MLq9PDV4CRJqWd4dg1oQMn9x+pchSvevibsnNURnkYNSGnnEWMtv+mVLdU7JUGK0Oee72maKl84tv8POqo6cpSkifni3fNHRTLw4IOUBZFKt/ZNTiDLltrJYGmYVgFsuZmrK2JruMr2WQVVZI0V69hPraSLrKY1qXX88fv2vPmjMag1E7PTM5gtnK+W8oS41JqeR69rIAnEKZEZCaEuc5lAnxzV5CRh+OI2FlSV2qPpOu5RfgXBP8Nv8MdlTb+QalCQD7DK7x9H6XiQHJ9pKzdTToGjcwSIXRcgea2asqTWpYk7h6NTkdXNuWsFIHrz43AAud2PAV0XlxGl2pUglQ+jDIsW2EvSbnvuoSFr3MHNrWE7Ktojk4t9tMlWN2UEzbM1CiglnN9UQx6dbPEcZ4E1Jb9FzyZbjj6BdgOLIxjXvaksfEVhvPhLPUWaj6lCaj189e0OH42z/Vf1aJDf0j/aIJbH/WQk8GzF4f5v8iRtTqnpp3IG2xKr1B2rRVCjU7I21kCLpIFzYOTJ7R3p9yHjxvPrtMT9tyomAaQxiqKjTVpRze63hizt6iSQ2pilXZvhLlFOLUei+VuBfqSLWWkC5h0p3hq+lhZdHxIHCFCaPiG51mNHk3uX3ifTidwjbGZmKwnkY/pR1tsEB3jB7Xqmi742C7gGoi15zhMjF5jtKonIsg1V2T+zDHbFFlqjttUU7q2qgn1v7xfKNDdpNPSzdG9sLVPcni1Sk4bmL3d6AaKvBrvI8xSRc6S6enZUs05vuaKjLIDhNPHaGjtsL2HLeJs5dj6IKKeVto1AkksGBZ0ahFZry/ZvA8B9mwG/1/mjdV2bjk7lqH751K4GyH91Ed/bwvWmQOJIDkTMMhsggQ3M9WZWmxr0IymQHTOqrf/BDpSCqaeyV4Bwq34eSOSqIbKVmLXaLAEbeIvMtdx2+ghVdTQhH3mF/doNgcjqmEkAB3+wmpUuWYuWhspq25tNQ1K2PcgoZ3CsQgyii2p795gcVBt0bWpQbe40ECBP8RQEr0r98STlmjTA6p4++RR/FRYglyj9WEHEUi3AYbzG/aBbstnuaWmqBevusKOI3tr48WV5sshlrD2vq7TYInPQy5Gs/vfA401W/9psizbi/QX/EFrpp0JQ7Zvva8nV9i+DaKffvjG32umPb6HDSxuniJS1UKdycbna6EhXtlgczV+js2SZtIzWPE2H+kRwjjxNh7wjn8kxq3hHqqlIKnhHqljEomI4iPHsTmkHLkSF20Au54yrKhPOLCOVvCPVpaFqO+sHnTzGIx0hkro2W2f9+3519sFcXqfyxRFUBkXNGMZQmlGQffKK7iswqgYy1U4yrWqGkZqkIzkxFH+tSTqSu8p6Z6WCKDLbjAt3KS+K7nRbZR0UYtwfZlaqcOoDgtP3HPezjF+gDuj4n57Ry+LtXwvCgb34xXI7uHuUvfRAvIpquvGZV4QBMs9NzVwjtYO//5MAvkfgU69OKa+dkP7aLed6lu2Jk4sva7+xtg7j/wH4kgIfl/i+TU/yeCu6tqeKVs32I0jiDGQwasZiLfT27pmwAEmriZJOwVLqKdeQzSr9tmWhRdzlPQWaV7cp1xVg6xadnXj+as6UikILdylwWGqWW/+pQAtco1dgXAGTKbceOEbiP+CTVhhglgmUndlyWRC0Ghhwj9hlm1SdmtVROjbSGoNo5p0S5lm0DLfQNOs2EXqaZs1k5KTeOQGgs76V8MufYlz0uTk3Ddim+//3aFjr0rV7GFQ/pgo4PZprRNx9mrewaUZykdot+3qmGgTFtdkmmd5XzfJROzPXah+vCZlr1WQwtTNzrZrYJqoAwMIPzrKS2aHBYB2/LFSfr/VNoYXq8/V762hl9fkAwvjBYbHdt/rmz1kdhoFJ9jTJRZR/DgHyy1UJa7IShA3g2bm4WawfKE5FDa8XCY20XjYoEzow3JyTFkvkH5lSdO/5G5k2KqUWR7rKb0LxZqaQlKv4GncBLDYt3kiIj0JFgrOWETCTdddgIHnZT7Slp+cV3JBO6QDtRO322XWQRt6/frvzuxFvuBa6yvOUTOiWXEV9z/hZpOgfJZZFywDIv45H579oO5ncpA7SIddnCaDEU3GFzEiQSpiKPQP3FGANTUZdUYj4Wpd0NuwDpieRXZJzvTqjqAIhEizN2XDA6BxciPY4Zn0QvIMnv6hI6vCOPtJUq0YFlkMquRfkH0w4mHIK5wavGBMBmnW4ngBqstyG94zDjkxg7utIUOSWlQNS67SgVE+JNxWL/lmoq15H9TimQ/tuMe21UMYNi8ZRuU+YGyTyR7FPjO81pekTYBaTI7RdUcFHlSyu4c3o8LDPZDQip3lGCsx7O5R63w0Z4Pc0J5A2fpPXaaBJlEcw/2SCxs98b8f9RmE1zOlvnyQe5ujB+f37CaewyHsdNtKGjLRh8QgikuHa5L9hbuS5Xl3XBvvQZzaABHXj4/v/iVTf6VLeKZwJwasBGuA6mK8mUB3Quld8cswW57btLxS3MV/qCqjfw70iFznAqE+uke6gmmmkDmT+37+eAyy3UEfW1ha7TE3qkZxBKd1fUHmAA5l6wzXrf5H/Z6NW4T2r/U/GzW3ymyBjSgtLJAZVDCIlnUU/g3G1rMrv682StCP1CSTgm6+kO2Js/FK0xN/iFk5ElxEdckead6QO0PsrJz4qMXXex88C98jXXmYMCEKiAo/PSW3tka0tDgTn7N3NkVV0JB6jrgM3YGtZYYyxf94GNzdg04zUZB7J1W0VI5hHUgsYjlCBYf2VbL0KFhhgeiYKGLCCBKOr48qVBb1puQzWop/X9CJ1HHXcvQRs1L5grKwX29wwqIYK1VdiCE35cY84pAcb6FU95UR07fQKCpIjyQ3WhHumLRuEseNaDdZELbbI9UbUCFQnJgrLeHWkatBYgtgUT0fUeMe6mrbS5gfq+vbgUUm5pUosUS+Mlyxfgvk7v/dUxlunLcjga8CXtoie6QkSwxDDdJNmVYbRf5jKKn/VkBNuNS0VJmJr8rIBHWzClCDWYr/FRMgs0zot5mYKtSYShFnXj5iMWlOgY+qWHiAbib/VLWD6VzC4MCGqmiqAHI9VVCRxRMVkWurN5Dl2XUmESKxf3N9bQqF5Ol9VjKqfIkAmHKkTiMit4atgW1eIaGtBTzv8JqqHVpNTVqS0dBeKPv8eCU+pnzqhZTRpHCmKFoUYEIaaBvKrfkM13cj9kY7GWd+d6Gicll2zs8qDVmRdzG96ZtVMhSN+6TpHpR+UN3DNH05d60qTbMc1PIos8VQnnI7rKCsVFGgqFtnOPPzKo/0IbTKl3TVIXyXZYmbU07Oecr6li71+KNymxd0c8oPTjuxlI4B73qQAZESEKImWx/BIxTOXyD1CvpJL9TH4MO0XmFoe3oan0CJmNqlJNpJfa7w7JxmedrGOnIGqhOfW4V26mogIK/cAy1A1+8g9QoW8wQkbR6xRoehoFO3jOe7NYpctTIJeFF02FBFMI00A16TC/SnsqOiulUYhCuc6DpRPgj/Pkyo8SXBQJE0N+4DiqP8mTbGocA1OkZ/M3D/u4EOSm3uSv3FGYoKBXcSWc3AKW4BN+RxNLFInySGriUXqJDlknfNdiGywamKe29RhbY8nUjKodh883QVMJhUqKemEGgIzot6tXQ6Tps5DuS6aatMRtvWHrVOlALuX//owW0U00uZJnfoVWuqoeCI/UfiQeMX0PbDGTChSxTFSzWhSF4i6VUUNbumGNuXiynm0LKcXuEC0VdK9F+3s7tmgr63mF6krzcz7i0AHBxDC+Dvdoqs8UEVdtn9yFaq7y1YjSm2F254yvSWy9tePv2rszdHi+8B6SqxHftWCkpTKQ+r8jquOny1vZQpb0Q6bcuu8QPein1hQo/DR4ZXsvVtkPL5N3U0oFKCKm3G02fJYvsIuh4AJtg8ZJ6uhzu+rAn3OnxUUp0yZI/Ac9a+LZEBinHlZdVlQkW2kmn+kim3kNnlKyTu5bC6Gwpnrblnar7TbuisDfuj0Uv4gU7zq6u++KL+upOCrkqCu2X9WCFrE82i43PP5seypXNygzE9SlyCRohUJXRAKo9QGlkrPIq2+qv8ocYWwi+UabopqiycwsuygWSwLt4WibFPGxL8ffof7K/i0qthAAmaC4JHcLcBFy1YqBKE859MC90koIG4ZetfjJjoa1njX/als1iprsJuTbKtn57mNV2pWbX2mGgLac4r/KtO0cd36Y6tQhanLYnDBC6mAX1YAwIVO5spK9SFN6KpnBv34mYOptvZNRW5+2o0cVls01ZYR3Uum2jKWgtU23JdRaTuITyTgCsncXKTQw/TyaGahUdF5SUFfSuLRdvK+O2Gcy1JspYVeVJtaWVZi2khf0U9xylr5eWyGBbvIk/UTFKHxRuSqqSAXeXDTVRj/WU82UWU0I0ld5PtM/fDH8RA8I5hRdr0G0QgW/wztbx+mit4fKkTvQ2bv9ERq/NoBEa3J1ws5heu2ANupythFNOD9F1dBZuGnPSPeLZpcoguJUrCTt9TU2GBDrmauqJtEcAJnxVFjS1cLY8xmAqnBMVJw4LHIVRAnV18GH5V4jirLEd1TKdY/JaCEe/Y51MEz0r3ttJxc21VKP76WzTS4BltRmlBLvS8hqbYESDQSDhs6PYNoBC/hrXtXKsBmRqngmG6uUtyySjFatl6MHWq/Pr4NX6RKHy3kcy35cSP9tvAyjyG9kdviZac3MjKX+VERW4gfuIuxIKPz13vA9f4lPypF+9fA+WhGtmjhRZJRddMjaQaS20L/07ZHMsz0uyNQTUNe/3x+pZ2Aj6urPf6ftvmcd056RexJaOm8Nq1aI2ZkE428C+38/T7kYE8t/Eg6QnFKXte6RZ0ygVHRDYF8W2/QadK7zmgFz4irLC99J1EH9anBMs4+eEYwWBY3e1JZ2G8PmFQWtq3hPcGcIduwbhBsFQr/c1Bu/J44jaX4XzYo8t9W037UTSfkthNyIyc7nuTuwGsgi3qSeok3TSPzvFSCTRj1TkYtYSQ2FrnqQp+scuRkLERmn79ZUPL95gxDanu9c1hNxxVuv3Qou0oJXPJOHgoYPm7qAM7eLEX+7PJ4kQwNKNVA9WiriTXSN5Z9cbQtmEbwWe32jLHHZ13vcednDp9fkqT7I+rSKIRcFHncdhSilLNyP7yNi7UHUFgTbRPysFWEBNX5hktwxBGH1OiRfSBau0DP9I2Zj0ra/7GD7yAzZj2UbyGjANYpLlducUvWdNyh+w4YzWNn5BHcUVnjcQT3gpj0Y+z//YJjOnmD67H9A36RKhc87hAAQqnHDJnV43CWvOvHNudJoIjeB56caFWopIIe27W0UwTNbeP6EMtvuo9KYpFpfnwGMUUkEj5LiCATiUTpG46IDbXkFik5NH5WZbrltp4e3CKpYGx7eE4FGd0V7q8J9cer2UNvU6ZvV4pgjJ73rMMchyPn40D5oe2QNCjJx7FB0HmBn9n4ku3dNI3I1NdhszJ96JXnqYeC4rRDAORZyANXMYtNWu313EqH2/CxFDuSWUFlsthEb4a8q+k75Qpvg54eV76qyhWX4T4a0T/4nVqY9IoCju37f08DWmLPkXdQ38QcduxSFQlaP0RhvOT9k67GLS9bsB2kslhoVyvL/NjHSOrseizFjgJox868o9iZCVCiGmaMspJ9mPx1fmqo8b5cbm3MCYtIZSx3oEp2Nvg5aV73JY935CLpNu7w1GbwZnBml8TJnJyroZ7IOJ8QxKxwXY0pOQl3FC0NWXaqaER61uHLVzJ+kUQiQf7qFjAIKOwyUmEqD/YKGhHK/54cHcHaBN60sxaf+UMrXcUwYIqQejYA4qqA2gm/ubaA1fGDytj3r3vLytjVxCI1AgL4jG872mBor2ZcqQdkfIp194oqQVFniuBrWhxR9faprQdWmfKrSIj9kkpOkhteceYPcNhlYz9O2mWCuQvdccyWhbSXKkN8bOakPqKQkylp0oEq6ro3lUHIongZhXXpIljSP8XCP+Zg27pMNQEDKVOvoV5iv1uKArPgYu1mC7tHiB82M4g0cIrEL0pWQfjG7CkNvaXACsKGfwj3cAmBrTTOcG9B9diMqGvBKFLwtO0mSIbmaG/koP4gzRFVu43iEkp1PWidhiY2EiRclrCRuez+9VP+kDyeD+rKbRb66yAh9ra494BZBjeEeY5b6gNFtX3jpCzHWjxnA4bGV5RrMOK6uJO5yFBvbNcuyiumP8S5vlFqIy8s3icA3qQMjRqFeYGsqqyLlK/Q/AoNHNa2ritAtELRJykGbuJpAMxjKS7jB+bN+EvYVS2cls1d7ZxNxlpG3AOj0PxVe+WHru8shNGbax214BUp2GneWRlGN+dCb2DzJXZ2q4qWT9/onhb3PUrt4BNWmYkk9Y1TyrJjb0HhHYaHdnBo34dn2EwhaCmfP1nAEO1xql8uubWEiD5Qz5pIP3pHlUlrn7VxRc3PrrvMt0NXPD4E7d+m8ePaSU/XTx2q+9E1MjL6v4EwySfNJ44Obj8jUe3rcF40eAcizvZx+g3eihtqQ9Z+e0GfcNzjVm9dLs2Kuf/0dGlqTK8ZkF45HHCPGCCQjZCl4FMFUQowgqlxrQd8qQueheloPIJ99lJW+zUPtSmbe58F4tq3/Rab0F3u2yjOLnhWQR3xOM3vAnSjzck40iaxvIZS/ioewhyJ26oM0Ew6cnEEzPr7u0rQNO1ox90EvHG4wDmoS36KCIy5ufyPu3rY1eOuZpq1oGIiTTheOgf5PIbzzjo5yyyjwC1SqnzSEbdEbLI7bxyDXBTUCn0iO2L+kYilcswkUFthnvUrShP+K24piq/ephxZKXaoRjXfr/hcrtME0KgqNqAaSYBC/TYJ3RetFikDYsMUZUDY8Lxl8zUY1mLZWMDp5dRJZAS1Yn4WuH8ENW3wlzQVZz8nLZbtR8BX0pzi0kqtfKQ7TrOsie8jmlIjF0lGR4CyGbDEqWxCh4b8su4KJw32zNFkL0k7imv8XID3HylMKwh8biGjVqHANs+OwoiRAq6WwW2uWOIFd0h+f1PJtYKSHIGxdZpzR/L9nUCih6GXpJkd5B6dX7qAxq/KCVoAn1rfAxixw9196ZywMttaAUXWURC2w5lw2+eLqEQqUueFtNJbENPgTbtfC7HEpuhQvxvH+h8fKoDX3vvK+CUYaEgyuq3CulYkKT7KhHB3oCeWciRmMNN5HTApBJhFDtJ2ansrvqmnGBDo8t9HgPjfq3UIYiOVUxpJ6p3XT8/jyXGd7xxuBMWCNVhDMBG6Z93kRlCauxLGWcs1788e2P0UQf3dCzXYNFfmSIVTNt6GqWYxNBpxSfev+5wyxbFtDKJZueTcbiL6iLQWSN3yNq3FAq7mA+ZO+1sEZrCMdzMut5WtDfrotM1Kf4r1DZaMennk94iDfMXeZIsGeXmsAGdcwsIVFMeSzTpQRHR6ym5Ohe2BSu4JP7bAK+YU4PCjchezeCmHu5jFWsm8s6rC5X1pxsizuElmfVumUsyjcfN97oASMhXhWE6b7W9zEruy91KVo0QW/0vInRjekigKLd0t6Hq1vKqw1ZooR+IobShVGJks6aFQanj7eI/hKxLX2EyorzQ7lYCNMuuNF21fdPjgJYRBamcFP3ang0dzuoHGm+ppSEWaEt2ODfwhO2B/8a7B0gZRZSaPVuF13JrNoN8QbmOtGhfEpu+BQHraA3K0WlByWYI8Rc/jUUXxcBUCIm7/ykTN31o5CBZ/tf667DeldBXAMRlIr76tAkX9UGsxvUerlZ20bAnHPwbR+1VU180ZVIv70go3HitAIGB3oR5xk0vFaH8wcUjuiIv83Ma51TziCXPUJtpRz8QO/lZTmDkRBSiuJk6PqOuB+1lU1c65ankIupAmn3bryI5TlKwRYduqRRSJQpQEJdoP+5uCHLTzmvcUTtXuarutDk3V7vfJAgvtuFTtmYst8j7c78dXkLux1ZzNzfjLUpAQG+e+czB042N4fQGsMEwCn+qfs06DpgvvYPOrIguyVYu8OmnmmFyjhZzDPLG0rQlE6MFXi/Oi5OS/hNj4jIw8ipKvU2kxPUhDlCS4neWzGVQ07dm9R4fnKHNmVKZoiZ0xUemhMHs6LI6lJVpliZlmqpEGvpDkwBYPwl8wRUMSr2sETQorEYjEERgf5ULT2CpK2CiWTAtyf0pLvdE8KZkgEjuDHLn5SGcyxgWcc++TpzV2mk2GKmOsWh5W8lU003S0YAnJZe2KqC2kduoT9b1yxsmWaRRR70/weSHC72l+0oEkETHYl7B9ZSjIR6g1ND9tvvb20Qfdqm24eijq7HGeKHt6/57v0UKUzBSJHzW6LSuDRst2C9jBZQ6iKGAzDVVY1tkh03/cI/DGVWcao3Za2rqDp6DPLiUbtcfR56a4WmssndaaBWhDUtInoGYW5vhD231PweSmhlo3yIBUpIQwOjskG9eUSUNaA4VxazbeWvmfcpXRECwEeMJINvvxH8Qlara5eqwMiZ9AXngy+Ez3Alw7qs57AMMV003BO/wtj9nMcdFaxZxoFlSNoqvZBdkkukxr0hrJYhULT7Ft5FQF4VQz/0drDYqv/JGxO8Rcl+LVOsNGzYwc94iDeYdfqkhLD+N5jIogBBWCKnjJJ2/j8elIp6fxE0/CTtFofiXCHE/qngmdW1ZrWbdWzqakBMl51d6pCEXeltdEvLszhqdA4gYfTCCImok/WksIY1OmSk1Kl51/58OAJvtKXvimrYxbFwuPlMM46TNt2VeBuFTQvMJHVkqzztIGoGEKyyPrfwqPnhyYOW6WXg08/M20Oq0R9HGb/BkJ+mhB7FQQ/4pWAHCkhs2JJBz7aWXwOo+fKENHkxXG7L2bGiwZh3DV6xGnswVfg412rzOHCBvkmMiYU97GMqxRqrUl4aH6uu2FDhql2p/A222liMoZXhyziV9i3pUX5WlRSgD00KLmT7rxX8L71jbXnijSmH/YzO9xj+rPqkcoP9j7/HOq6tV4U77tfo/g0rPga4R9NHOV3KbND7vedYdrYfrCAx721uxSD36QtJufJ7Ad8LC38gbzoAh6ddWOcEL/qleF43sUW4AzX5sUq9rc35fyGoI6M1Uym16o7Xv3CDzjvgCNRpOHRMWemJoebybLFZG09EZXewSdHtq1gUpwd9rA0NjEz1T771qLkxfvMd2Cidtt0HUmnUVRITUxK2DY1bS5aMVsySogzbkFrYPUUamNWfzxgZNZL8BCrnND7cXdoGveFCMNFPdSzUrb9BGIyKMHeiL7KVakDsxuYMz7j6sBF7mj4L1qxkTcIzoW4mOoIEDrLDTTTJHSQAzVx5DpD3d/c33grwIR08wKknlrvzzj1Dg7d/oekX/0p30WSJ3W2WrWja5pjlCMaiUGYIeDaCOsAxPSRP1xthxTTwUGhUg1SWN7DH9GmzVwiJz4fDKCev/+2E4dtB5F+RuRJ8x3sweyA8eoGCdQaj87Qmcx87dw/rlyKehIxiNXv0eb9/dsprEGAhKHhrrstW7R2wflRU8X7N7MZo68KmwuJkJpPfUnuTyqgDn+FfpZH+rnoEPe+3xaaEvbXPiEDy95N2HHf2vNXAGP+GqESwVBjP91tsq2/hqX9awvCtens8N5FirbKZvRxprJRJKGNHthadgJFmkmKmkI8h6jPkmD+KmMWjjLcN/1/c4g1FYT9VEWW+JpYiD7+PTl6ZIaXhNouqGa47Xw5Qz6LUGSwYgmNB/YA7o9g33paf6qQOu3bnd0J1o/GYjeumdu9X1x71YbE4JIQNCl5zHr8rX+pvT+5aqN0pi5alxUrZEU8P5dj03u/g/aAo2ucMyEJTQMKGsd/I6t2++I8pc9YmbcS+ZG7qZ2u7i+86r+OEyDqpVv7qBaByG3HxjEhGAtK1NsHMw4a6YLacAzxi/F56QG2MSvGUfYcE0p0pI/BAefmxpH3VrL+DpXpr1IQSGSYj9ozHtJ+tDe8ofJpw4/lRl/JqwlkWwzm0gbH3OaqC2fb2KDd1kVFn/8nOyXVHN5F0uFIQSJ+UbaSAMiUgioACxQAVwxLu1pQptvww7HkUbdkCISsfa8iyL8maCIS9wZsBq3YRMKGJgmKopJPe9uabKigEBtw+iEgVwYMYOB/9+o9vgddIjiYiikJLk/+FPRuhv1XUStwrwl13igY3LkhkeVHUwiQzrxROnkFYB5p/rSRDCbSAs2kfGfguwZpo7G+cvD97sKP/BL3FPc44bgtYjpYMEOcRl/lV6NyAqB/COVSBs2JQO9BnxaTn2E/tsQpubM1L6CfOOH1vf+/st7wmoLT4sGmUgbxsBrsG3RkUvk/vXMkbwb3SOU4P0ITTT1buY0ba+CXQtCEXwRuwCj/FwuOhO1NFWF7XLXodZB0EsobEBf97DFNjK7tidmQy0ZafmcFdZAchvlC18EGtZ6UFiQnbONROlHqgA+zS8CTNCIYfk1kDOm3XYxJjpeNwCzbMOmxFAYZjicFzwiQeM7lWJTJpx4WlYNVCwuehsVefkkCzNwiFQHuZBcc8/k68oJFWd6Ri2IRNN6tEH2pWa+kntEC8l8JQ1g4VhL+CCLxUVFyLc+rXobc2PDblwvbk682bB5NsDB2pTtd4+g9BnBcdYZvLFCxYOOe2c+3yONsKXkgLiTtQPSg7ibJ/kB/klUkgV1CJuAuN0Bc7OFJJdJPtmuzEFyLAlRovJ+g0kojbTZfYRS72YU3iFqYHEOR8/dA4GIug9G+sBsCQqT03LaoJq0hRWriFQZLOKXnxNqFEbJIn9+k1/aMj/2FKzP/ZpA9tbGeBeC7K2Z76rN5DWQ+xw5fNEqfmBE/lrkWifb4jkHesq01/GeFEOlCZPKupz6h7dzD5AAaNMoQkGYF9Mm30SE7XPIC5LnmZ3YDUzvcY9QBVnUgquxbMMShRKzI5oZ6e4RpP60vJuCQ74YPyhL7EuA4txEpSFUuHTi0NLwFPsQJqnBRGSWoxs4SLu220w3OuWLH6H4YWUAzLwhjUwibXojngBCSoihPIpKFW9UAI2zJEomLLbpKqadSR9VzBpzaYxtsk2CRqZNp+QRwfO36dpbUInk3Jw2dWcGPoRFp0PM4OP7MyeUavfNkcsi/g63YHue9jlOBNqmaS860vnih5804Phv56X+0EMdt3ibICoTWLnRdbOVBNS2vsPrNvKZptSfSEi+p6znYp0Mt5nf47bkNnnkqkaYXYluZbEQb0TKfQWo7jWzwYse7fNHD0JoYwaC4CkUkyLNXuA2JdJMXNKC3xef620SwftY84P4XRPjr16s1Ibn95PdFaeA0/TrKo70kca5mT+kzexntcM0+LY5rdZ7POAkXDIH1Art53d4C365djL0qAxGrnRLNIVb59sZWWStmb6jkU7kVPOTdyRtPUrFBmz6cASsZNw2gjrKvY+jzYe9Ox+eo6gIABjxV4DRQhPkqTxT/t75tnhy9DfzkER6baofrmqDuHXU2/NwIQW7KKEzKKz5Gkd62/y4RGxjTeRgtx8s0wI0UtVfy8KeUVRurBFKaLaPtsD9KABIkBckFZ3ABSVxZ7hm+BrsbstBuvUHE1kbyMGKfz0/PhnEsIpZYiLhHA+wCQYykWD0wjQNDy5PYdxtHXbBAm4x27otm4irUAQvC+oAEWDd2ERKPhGsjtcjFJCdXdnd1JrnC8SgP+8dK6SZVP+vIuNO4EglZDdTfLRF6bZq+3WALYi4gDNNn4lC6WIdEDJZ2Z934R1Ug9bsaGsR8eoSoW0h13ofg4DBcK2iXUGQh9u2H0antoj6V/ZDKH7QxJqdfXw1w/4XCt40MzIksBOfxyIx2ETweSyFFqSeKj2U4NCPmXBsrlRkDEUhOV/DF+1OZAR0ZAvNfDWNzOpJNkTthoEf5Z3c6wz6tVcqtK2uXhuXshL9LwciTcDh0umhk+O2LleM+sRiq8Hc0sRZlYtreFYMzoorCp93cWUkTli5xRCtah1dzbr8yf6lWa5KhElA9LMvJMlG3sCeQhKV2VyIFm7Ay+I0SEXwxSzik1Wk5riUpCZepHdokEBVBfKSCOwpsZXZCmsqvLe3+uTZkCnNcl4quLNk2PXKqeCCta1yV7C9BTYR50fegwS+9hcMXmm2RYtfSWabiUAaYhMuRBOVGHKDEPd8U5B5WX4tImQNY6PJI2KMhNmgt28nzO36t7JReDYJuKnvrOhxXO93UCjOvCH3iIamKU/agt02fogxU3huYawaKY/bsohbWRU7PJuOPk6yvS6lv2T24GPJAxXqq/TTFsHk6225BJmYpaStzGWTJccE0rbpYuw9vWdB37B/42k7862FO+tEuu1PSc+ZqBmZxHrMphDdln9blttydA+UIgp8yE/hpKdO2+oRhpSU8A9HEsxrCWWVjbKVRw63yKbivu2G3GCDa9sicKe9VpwXkALx59fJOyh5pSZZtEwSlSxsYhG507DsBBFLyGmINRsW0XTP2b0J+d92UG5B/rftwM1MbDv+o0lbwnm3Qib2XdzvLGRit/XzQGRiX+PSA5NOoOBGNt9NokP1NYiHERdI8En9DIPwTuIBSkRSvqS9kZtRt23H2hamRwSiCQ4pUdLLZ+wM0j/Q3m70mG47KTdE2Sc3cvA3ppku57O2/m1JtglfkDsmiypkUqSope4RJ5/lUVSUzBcwvBHsIXGulFkyacoHPIhlMF1IEBOmy0kQDeCyhvArFQ75OM99ZQrbg0ptWWzmHGmbFbHb7u+sRB8dOe3T8g4Kazp/lYm039iCrz987dwUU6HM7ljx3Wm0bc3u4Cn/n4ty4uAif/vJ3cCWVmC9f+hPSW3cgjLkhw85gKwq/l6OhsZia6fxfEz5gszdch5mcKOsWhisbqEpsW0UbGwiIvhgZYbteCzYMb9IJJCj4gi8YOqQttNSq4lgs+qzE6oXpGd+8XXYI78FMpuWUlpP+t+MEWgHFGVtW3ptwiulpkaUleqTWUfa3poSNjg307KbCRMbnDBRacv+eJiY4+dG0eN4hifxAe0i/786sJ0qtFSppZpTpIFTxJSFTZsJ5VQWZ3hxBuziO2qicRuntDSpSCOpSDOpSIBHOAIWqecvOzaM5wjmdZ+QSSxGWfXU/aaAdVFoA+s3aEQcQj5g6G9mEmnn+1M9r48Oeg4T2/Em2+cf6JD1LUcyqbTDnWBiVNfnNCHGtUwa0g5lmblIgsYLg+CaLC2YRXIamEylgSEueK/aw7btckjFjHcoC8RFRapDb6OyA5oHh4E1s47clvTwNSdcQDhqh8/gXO5Dkpap1Z8XrT0Ve8ex8XaS9NHheFTYvK02XEDKoJ1kgG3nnkE1czHmcJzXdojiO47MHRYJbcfr9KQjkrvwNeQmbzpewaoyOvJLhCvag5/I5tlheVDlYW34Js97MOhqzYka2anonBH9B17QqvTcgIyFsi5eJPZMAbX5NfbCYa7TAWNTFZWTM/Icq9ACYZ6fbnBDORaa9ytxJr0FNOgcO85MDHqRVEAeFuSMyseL++HTV5aav1BDhytESbQKY1w7GFXElGnXQbjwvKaH0vq3BfusGUhyHw0E29Ow54EIFL9I/Wjzil4k4ifAceiTMX8i4Kp+PaYtmTkk8h04eLb6DkqQRWIz7txZcVOJxJHkyM1mnh+/5Vky1CkeIj853dNChcmcM6XIPeLGYOvskOtRdFNzJUqR2htqIjynOkukNnN83KP8PuZ5Q7babTcpKDhKZK5WJbgdi5FDx2Pwkky2UMk9Nv+SXiTnmIU8+MZ7EWFvEGOGmI+/zS1QzY5T1g6iaXGZV0FaZUPe3mDEw6d0ifD/R9aVJciu6sj/s4q3BDPD/jfWSDGQdfurXE4PGGOEpFBEO7kMHGL6yykvgiKcntTRdqYOc2nHlu6ASiiNNSu/KkK4qhgmF0Uc6sZmeD04KRS4bAWhO+NMcetu/Ord4iQmb6p/wouI2iR2MUiqJ4hdTF2f/Y4aP/HswoeOpbwD2p31EIIlJTcgGrR9lfOT10Do6u7VwjYyWjjDpFcdXCZd1CSxlSMiuBaLdyWSU+o/ZVZWwajKKLYmrzwfVuj+x0JMxWaiaCwupWxe7OBDFPdhVZP8WBUaLqrhiuJwCI/6fwAvutJFsYVav5AxiTaH8uC/X3KOAHzxHL+EunBngUN6BDYLNqp3YQq+7fNRyfbSn01Gt8tNq3pP8sPulwsYblUUYQG3NT3BIOwQMm6iLiU1RzcpSP8am6tJI0QdMtge9ClcK8U/izu5pAqRepzY/dJJOdLNS9I/5FnfpEv9tv6ZKaojWG4e7BRK45WHykfjn8nDFP0CC0r87d7DZ3myM0HSzEY53Rl8xej87hc9UDLYA4tYUJQee0G32k3S04OHJH1wk2p1EJGULrqZWFtkPujrbyChLOBXuLJ8gKBNp6juUXzw8ZqanpzA8AShds+O6Mvpb2yCfdfe715MnPxicvoHL+7+dfvIdNz1kcVW0k7I50AR6n7Tz9w/FTJIVjURHo3UX0TbPBSAkBxyOOuGk6qCfjK9Dms2xhbbufzd5OK6iqWikNN1KjsZOyqv8poiTCKjE0f/a1HyTTZ2++l24Z3d/F3ZQ8uvazeOo+l7bY4FHwNN5fa6IQvBTkQaNBIS9BRdIRc/ChjQHk9eKE+/f30n8kHKWTO5zP1FZawb/ttnWtDb4obrnNRpRai8h0wwnu14JKX5uy2ULDBdty+siTyoexRJaeT/NQgO3wW139hhywUm6SAjiZMc+/uIra7egZFtNpJeKLgmvHzgsOcfh/cOCqSZu3EqvWA50aXjE1uI+3bTmvRAw+E12tyGp4fpYA8QMOde1AlM8d2GEkXiZwQQzXL2bEFxu/HdmDN2sZRtGV3mU9zowkYXNxonSddoFULJzsNNl9H58DaBBTo1n2WDF4qcOeqhFlOMHuqlstPr24Pvz5wmd4vzhAtE7i7UzIoXozNK18U20kPTK2a6UPRSSX9qdeHabm/7eJTPy+luCK8drJEQdLG0Vi8c0KYkCWY+NjGn8vsBZ9VZF1VJF2wldmXT9Soi8vCIsRtZB+IwESxSW7mbteQOR8Ys9fo+DV3xG03yZ3RRmcRWcuAKMhz8/D+sVMgexlEueTp8t91jBNz2qpoKDnqiCxVuBDymm47jOhkfm+G2k8q/Swk2dqUB6aJJBseeMNILgOs47J0wfiMmA3TjRaXNcQBscow72WRw5kae5mdo5nUdncREKl95Z9plG7PLooRe3jhQJ9sWiqTk3s1dMDUEIlPIXYikdZOUdJGUdHMFdeALt2wK2Ym3rUOpfEGKTkbU5R917nNKH3+EMKXr0oMhgGClVfnGbP4KhGq6ExB3C2lahQuT5hgniQ2SSwjzkVTmJHuxQSykkFSx0qppEe8CbCgWvMDpFiEINnh3vvrt5m3ODtvN20xzCwUXl8YSm7faVEru5iTpnMx+UIqhB5ZUZr+TE12Msv0yj0av/Z/gKsH73X5zIEG2llMukGK3CNiwCos91l1owK6b+3PlDCd+JWZ9egTkidq92zByUpe45u8jPJoj9v6PkKRANqEPltep3w+6qQM6FYdvnch8fvktgIwDh2+FmbTayFUZOXOhBK9HLhf6u2x+g/KPGFy7S2iN4Jo5+FAIzx190AppkCjG0p0rjJU4WmLzVwGNeUxtwOuLBjIIOTsv4p7LrNtIKAtYfcFNP62+2inZ0EU2cp8cDFe92vqFd4k+EEizRy1pDg+RkMauzs//uPMSYxKXFIOAAODCoQQBNHB1nqKD+Y9Neo0E37goGXPgZDJZeM7W2OfNb6lVPEbzW2j8fE2L0ivtw3npiTGRtvXHATxRkCvpIXK5GDuEHYVAUxzqFkOr5v71rTrPUjE9mPdm5KtIm8lQaa9e8YG4ZCjf1kkYZJ7MTqGjbuaS4JDFnW2IatcQvlZTxUo9FaLzDbZ3Kmo1Zff4OSsCE24ZZlHBbkv41PmBq74DUj/Ps+411Wpc6YBB+wcKE8eQbIX9Wbn4NAlJ11TsFGGvpBXrpkjpEItx5oLht1kdFd+Lr8mmDuQ71/C6ZoIa0MNzap185vlbKHj/xajQ4hNUvktC2ndG7fwap8fE5JjQSiPgy3wIez3BQ4DXYusbBCb5YYnQLXZBN6xXx0qC46Dk4sz+Ub3PW9Iped0W8myxMNvvswjACeqW31E7v9uqUHQKxj1WJJBIXOP+hk5W9RaTxMcefn9CnKzEpOMn3zsxlUdYjjRf53U9CuIUxP9QkRT79ckgfRV73jnRyXEz78HnOp3YHoVgcE77hRV/vZ5fdaAoEv4FlhQsoEVWsimCUKR4VjLRg+u4EwA16fVNieQz6a4177EkxSsXfqZDw/ZovtsHHtvhf+BoC41VH5+m+YvaYPLvfBM4rB4UrP+hSYmdj6wEhsacJ72x9NvcrZ/q+V0URYGPeyjj1r2Rk6s3Bz9bIiv7FiXL3TrQrRmiNxsLFD/dEemO0rVTRYyKgML9mua7Lt1+XLVxgbW1cI64FlZGwQ8yeM7hfdaPsx78Jmj0/UzIoxacIHgdzaY3SE7yC2xeBIDlpLiM/a7gsvqsvKQ2iNq7mUwSIBbBdq4LQkfxnynLweJfXNfYyVfZLRMcIDE8hO0XpFnuolar6dn+//QKrpPAOSqYDfxdb45TtsbXIFBlqJSxa+wNtgZS9elcUSQasZ54F0JVp0GMvWXuLuYiP1iuAZpF1u+b44RvTtWvp0hw/H17YALau1enA91sL4PoBO/OlrghIPSZiwdsv/eCPw2K93CHEYccglrdFGQhIP4LHkyTJvgN8/a9DatW32128HDDBjv43RRQlKHVUgYUptYLrAPp5jbpUQl+p0p2WWYSpuGSvdFHbY45gtBkipcn4IzIOPKrXmVzKph+TJo6k2X0xqRdN6NKBCb/Jc5BwQak8uujVeqo39CYbADExu+qujyN3+fy5wQ6k27ukt5QLbDtOmzkfC3nMWXOTffRSZhlUYZKMK6IAIIivPEc9+vizGCfLvhM8NDLPbM1J7xZaGtO6G8XrbKpijqYTZqEq89g4m6/Tw9a1kOZJggdmNyDeYcm1PTwU+8tFpHe6NE1m8EG7NZQn0c6hwqquJCchfbeWpKZVOOTkDRRAVwJZiOcwL5MgZO8q9cNTcat2dlsB6NDuIKa8ia5p32Wd62gE+jd82vHaDUnwQ9lxfEh/Tdekvo3STPBiyxwwcWB06cs3md4D5sMshSxePdOwq7ec57LxV/P/0HbJbe4ZZ30+B+/2zN/UvZxcK7fe4RarQx1uNwwA0rv4OT8LDBUWub2RVUrV1vBgEB/Dl5j+RoYx90rsA7rFrJDbg+W3wpcTrJBvDk+/IlQK7ij8T+AgPuTYmoZzzZZYmr8ZVvquzO72d9Bz4KEO7NasX0j2aAagiwEz6t4YQpF2eavqRTwSncxkiRaBzd6D6CQZXcwtCtaaSaXHuK0+fGaoaWT3GQrnBHkHH+K2zsJIH0COEv6z4BMJLLPCERG8ExwZAC/0bsTZT1XDMGmxdmK+bxuX67TlzMtSkdNd3MUIJMzTNK8BMfHs9wwVnn37rmqDyZotwqmI9D4D0TW6IAR3Io/wCUgweJUIdSYve4OYXZGorudsp4qAdbYpbEUOHTMCTkEeRrXxfnYC7ZkkakL7LCnfVxC1TCAWW9XcofmCBphN68rJRc0Kou7uFLo4x2VyhYqcmeliTUrgnuZLXO/LqBnRPaW34VZZyR5YiGWcg4X292Gr0MnZf8AJCOxkuADqVakt7W//W7Lhjh91hGyjrJhAk4xTUXVDUYfEwndrldnWq47LdeVlus2qD1xY1NQ6uAb/sEzdCiUWUaqd5S/dXOa9E63eCLrXzO8Fwg6Diknsft7OhqziFEpyt1hvOouTxUaUThnC3KJn1eyRetAxnuF3nImCy2T9UhyiDAK0lyfxtnLdq3LrnXbtS6nzRQj9yP7OKl4vg2TlCuCjgLYQ9aRnjwmPU328LEI7QgSPyHUV1yKiSyl4WgdzCXx911i/XjpNBoKlE+mCj6l3FjM1E0+EnHJfHLznPQBfYDQuP5LjBo/iT23MZ9IGNXman44DTeQX5SK4e07AKSXFAB6Vq3ipHdrGLRhEzfkrg17iyAtCaj6+3zOydj5kHjUBhtyN29JH5XFzBL6LhMqLFOxVD6i1OYXYJ53hzsfvCU9eEsm92T0TGIMdeaCXZlZOBX3KOujM3IXzAsvZj0SYfn0J7Lf3qw9oDXq8gN4Ui6yu78vXtTtJLTE4oR9sFrgbvi0ThSHIdkdl74fmRJ2bfyVOaBEdjdxyN3C5DbEhnlWhwCxIrvgZHp92NevfdlZRRZzxx/RLmc87hYDpON1SAYiYtFcvIez2HgfSrJydVW8tgwjZVpADhvqUWpT3L+EYcStxrtKtrZG72tttPVWac/WIjJK95L6XjdFSB+TH9n4EdTtI7/WpdKWMjF/c0BOvVcbOdCVxDSEuYFrysFA4ppM4pm/xHD4HnWkKsYPADtfvY34YHV3f8iDgYoMiXshs1JjWvBnNysEa++xHhALVUQOy6Q5fWv84Cx5pU5cGjifMJiPG3bMBl01s550oOLLtAlujG+NXV1EGqtvOLbiJ+mZwUVnXJOyeK1UGotULg6K0th8mcucJRuEaubGoCxaf+HiYCzBrdzvAOfI47vGW/OjCkSTlyDxdHx2TCUBpd4ajpPPZeNGypL+8nqD1FzdnB89Qvh4u8/M5Nz2irQDEsBLH01c+R0uQbBgRqaxD4nRquZVLpOZfJOW9Inq3z4dzALT/0tWLbKyGHaIooJ73PQZaaydRZtgSQrZPXbBIF5wesjER4P7bu9hZnPaSE6gly37sSBtYvasw2TiNGYERellTYEDC2J1S0MltjpPWj4JA8HEJn2yrlsVz7GV72LJDq2KCrFu4pIO4pK7LO7LaSKUbLz83CS2xEQloQXAx65+A5VDwawsQSPED92AollRjt7NRtTB1hpQGr4qpjfFDgg8eN5fWamxEYesjW4KtdniB98phbRjj/unqdFeUM42fxbCqO1Mjif9vB8xCkbUD6xu0kEzrUl+Z/N/ImeBbHhGH/07+Mvl8DA//MKbkxOJSU9C3/DfT6FSpPN4jlLaPXU/dv7lFBBqHryOb60JyZQaoUvEN9beruiB4xKhlWmXuN47IsPQqpCJQzBXL5XvH6ZKH1ZyElcSAtdacYO7RGVS9/QEXfxo7yE8NKdq9LiYNMX03YIKpTkG+9x8ascXp4AlJkAJDCdPWy8ZEz4XiGWFX9oJa+g/o2fye3MqLQDGWH04lFEqiijM9tjBW6I6wkyAviiaZ6X3McBdU5o5OE3/PV1pVgB0YTfv/MDRYE9tLjbTNizYStAHjn3OzfXYfI+3iaoNkhrD6OYGFr/u5xfVlmrpoXLnh9yoKKqy3/UPUUcoQmN9Mfe7H8eEDceEonlTLj+HRMpJCJFyPi6T5/sGQcYlyxaHsFBjeweHoy0biSf7tGWbsmzTXiJIS5aIYwLD+Se+2YXamm9uS0xalTSVmECekSJ20gibIDbOa5iwpJPX4v59J2XVvKJhgXjPkZl0sW9hvyB+o/rAOAyKdu6a1C/D3bavfXg3jcilNJv5UHoQmGCwnHdUxXKW7yrCC8ikchxeoxSBiym1jvCo8EGv8q4Lsx6sJz/PkcGIadkjhgjcaXdmICxppWiTs6mLVQTLDh7XylXaenfqBMLlafTetTbdjGXbtpJ08nhEEWH0rgr6F62Ma0Op4f3B3UPfbTkzt8g52ZcdIBA0m1IsbUNeRkauAezQH09AlvPnhW3AVpYaxC9CfXT1g1JtEfblzZ1ODwaTfKfLeJakMKnZge/ikOzoloCJ1TXiCiYY61EzmSiA4QzvSmTEaU8gDhOfaMpUrdpXf6fEo/WnQttXWj4rRyZLSmRql2u++kowpuVAJtc/jnsv+nPy3oJNDUuJZcO45M+Zm/zuAvlX1RI1+RCfddqFfBk/N5o8410W89syNCJ4mSKYx2swyiEWkyReeKhDVqZ2SdiVRf7ublKTDl0tB0eJRdVLThVSnOAWMAsSTEYu1ljkVe6R7HvKD6F/zCESMgY/CYqVZo+tRkzy+ms2JFQ27iIyKbvnCn+G450xuklImMI1axI8uezZrcUJeYlye1RkmT+T9CUYIkaFz4kOvBO+BRkRThZpSXDFp+SOffBKANIyBHERVLJUL9dRqONK160wuxU4gvs1fVe2a26uX5dtHQAECYr7JY4NYye8bikkrbkHewgxULkMplvCUa731MJRLruxIdyEL9kGf4GlyzSRSVeTd5OW7f1Ydy77BfqIgloEEtab95McJH5x+QyHlOeos21BXCS3s2yuWaqtNSzvqjIRuXILXnL8twld3p5QQFNyLy6DE6JGPIZ7vo+QuG0Xbyv3pqLF2GI4whwpHWEhuVGdjOleQpLO5P5VnqZl47fik4WTmyWeWXveTSPSN8sEtl2+DYSTiuCi1C4nSNUH9VSbwFXcjVxVif7gYGxaB1RDUw6sQYvbRmfTk9v2/7Y8OfOg9I0qWdXc5JIfl1GZISVCxxI3aUZAg7bsx5Jvoklc0XL3lN8ZvSB4rwBD4PP5yDZvEQ+JnHEErf/Kl/8y//Wdmm8ByfRjsVRu2+TtpsHgXN5uGgw23YGiz2/H7DXJjpZW0Aw/fUMAYMsd7SipMocOp2qTltwtQO1DoDIuUpOqMRvoKOJmtPIMLpomRYi/h5fYkMw55oDsO0sF7vW8jt4qFTBTSd8DnAteVBWQ0nUVuwSKBkqRovSOPGn9b0/Xcoj+33buNg3dHq8BCVEvUsYtlAvsIjQpC7CFWiW4mgwYyd4mItNS9YE7y7YZcty2gNKQ6Nvu3VbdwHaKcCPKHXSZ+C52RYRJTjaDbC92EBmGYIhQocQjJbi/IVR53v8xPwSBsM9ebKenX9QgCF/nElh9yFHlD89AIGmgOrbg3Hvw+HcLznWe9LdAJduO384kSEQnZRChhFiUggY1rnFIoVjAPvd6b0PGVGm9DM7dzhAkAgVFcRhXNYMQRXNd9c1yuG1zKCYT7ViTRPDcEXkTXOR1cg6G8ukTjC2ssU1G0recOJOR9K3wpGlcsjYOH7j9+A0V008G6zoFqPPuEnQ8KA0rR5B8+C7nVVad1C89Fou+OwgGNwVIPx+JtJrCTQv8nmXYy2xQr7zHTp8FXIBkDCpBCoejKdCqja11axDcV/NDQjzfojhXZBhMa9JPPqCL7s2CaN4THj98PKavY4t2CteRxzPnKVxCnu+dl7Zy2rvSZMGFSaCpcStP5SdRAoqewj5bZDl+ziTAjrIas7hB2sukKf3Q3zj2yA4hJMd+3wGn5VZToiDon8XqwprnN+lw64EKUrdcUz/Jm1mGwvexhcH/UthH+BHj2+4urKGdF0BZiR1+VpQdR+lg6CMUwSUnRJ70QcWUjTMM4jidA7qdn5zQSZWAGJB/5QmyYkGo6DIHeLv4QgIdwAbdFg5eHq5afU+AA8QiVYivP/axjmq9gzHlBxd1VPB9slHMnx3VfB/Hm48KvnfkjX9S34dl39f+udNH/7N8DP1fLPPM9KMm266dTMfh1xCgR5ZCfI8jfZo1zVnKyNRxePJw9XxsFw5zLEsUGhHC4R67Ch87avbfFyV8yfFK4KDkW2FhzsNCYvELv0PZWJ+TbptZ+wBlvLsFOi0zk/v6Mski1A8X5Ys62N2MJ/2w5Dvy4JN7wKfEK9DHOAIPj51DSUDOiVLC2O1G0q4dW7oju2ZelHAxOEQ8hR8o/wzVHc0DIfXuXEhC3rM1dp2Yxv/240lIF9yqjtFh4iwUW9o96zWNz0e5nNxHn+0RfQS9yWPRWahLbq/lh9LBIkcmB14/NmwHUgEmrWE2LzBOxt3fgxYpAP4jpFetXHCPYYO1Z3wfmytwygiKE/T3Nb6ErI8v6Z5qc4YmemJ8cqR7Gz91FAdsUUNEDEGoEre9O4Zvkqidw2dOVWAccVywHkrE0bZhtpPxARoZ0E6OMBTGKaUhtY9hupPxlT9y9DCDXjWF0/7vB75bWKw6vuL+AE/F/du9B47EEM1KbMGRiIpi7ap0JM5+uwCmJ2Mb6BHmmH48BFGrChMgeF7ez2xbdUsqOMXa0cK2A/91f/ET1v1DIsrZfbhWFFEnDfKEvK+EBul0UEGPr/lZkQazMkKD2tUnslioB8Zxij+Wyrfb/P4bO7X5UZo61TnqL3W5TX+aKyUvQAYkxKaAtpKDv/v96vvvZFN6BqC3faD5Ad40vv6uOdGsbgHWyIv+SzFgjZl1fjEFCaEyrAcCmEPfcmypVX4quGL01qK6OevJxY8jatOhkqqs+8hLDPfVYDOHR9ZY7L3u0TI2h2R/jUnlvM5AxulZvRnwiVzgpJdUjpHr40OCrYj4PPagGF6sSmtDQ2xpXR4V62jtdKdOtvbnKmrt9KBKhhIV7y/U8L6GLA4g2qqgdc35/mgZmIQIsWgy+3Dnx7LcR4ufhiliQVASx2qkYpEv74Zu/PjedLGwWH1xvPWlCJCSDn3y+5JS1jy8xvZbQIhxuCB9fKTkGqYrGR8puUZwsvxoAt4fwD5rhqXYBfbZYcqiAeHrMgR/i61coS0FP0KknYe4GYfz7X57AIxljyVBpF8iirUlrEwUx5A2VxHUYHznnZJt+HSD4CbnIdtgmjIO4nh3r7udNJPDdCmjQOVG+gHw8JeC51mG9t4K1jrVfMz3Z3xT5Xt7YCtdgLX+pvI5b5aXnwaK4+5ZvgTaXbSYGyAhCSJkdtKYuXROQnsfkwtJacvVjjXS7T2joim3OkwyMgqq2u5ft585nmEihKwBzzFk+pRRkLgYW4F3jnCPkwn2hHsnuTATazRXmIysbsybV1+2QlpZc2RsHexx7H3ASR2W9c0hiSbboJX6V0bmK1vX6arlSAKHH8USFp7sWG4Qm1zWYY/ZapXGRstZGwQIze9dZ/AkDeE//Ii1cHYX+0Qp5ycwVEHzkSE63+HwgturmlFANTlK8wggFdcotoYheYRXp9q8ETwk+eGbNGYAVxQ1OJ8aDA2E4tB0Hxzo/d0tcxEqYr5PR5bCnzBflP5PnuebDbbbFqakbSvhn3P5Gyq0OS9XpwJhlT8z5AbdEK5j4xW0JHj+4a87a9dUzjW4ansn5KpvCPzTpp5yuLVZ1hSqnSpwaXwgqaInUW02xEaopHUTc0ALw5BTgLBTiI++W+iKHtBz/Rix4CzHnFjmW6gf2iWxj0yKQA3z8I6gI0F/2GLGlTAehmeb5E9Wri8lel4KAyswgeFiCzlrLXxTOA/NeNeDaRMKq6aWqIDClRA2VyVR+y+Y7XQB2jWzmdw9kBZSeBEVdxqbZ9Gql+1moh5bEZmpexpHO8HxvxfDbLtqarTNIvnIMGnJEPnI3eX+PGBb1OgYgpPVh9s/XHeZbWKU9MMsvdX4dmWmQImr6QDImfL0WkY5nA7sfVUNQVuDmpT/KrqizvDd235Ed/OTur2sCNiowPGrXagjv3uNJuTHbM3JuwemysQkozJVNqryYqMyVTaK7WYtHychVS6OoB7J1YcJj4LNPgMww5xoI5LXiREwM+wIApJgCuhSjR6jskxNZFSdMEhhRhKwikdRnHWAgsRgUuQRnXkboh8JTJ8MSHBE5NN7JgW9ZSga0jeDIk3Xt+/vpdpU1XSurb2TWlwhSGiV8VERYRymUBi1qpMNMa31/IRxYk4JvV++gjQvo3LJBlh5/O8Xj6DVME3m/FAGPMS5cc+FAEgTMuFuablZbYIq4SDDZCajIpn4faob3RCBdYFaPQCK3kPtYVSC+jn7gwoqtfB4DUQOR32vHJj+YUqSUeGCblF8JOfHc1OwQGkmMhqVHkftHhJdJ2Qjkmh1NQXqYMTFORJbgOs66QiEt6lfYotttFtXZbKq7So4RlaUa4gZKQNm93Nc77RU31apRJRJYgzhWdZofBSv7evkULVlk4UNhSALsDfwx+/1Xl9ahNBh/s9zq25gp5/ZTKRCP99EIaMC73j/+luaXIa7hneENiAGjg1TEozUHEFu81/bGQyQuBk/t1CjyzjMEFdrwKL+/dAMZtUyTnGHL35etnI1ASBWx9ATawkamXRcY2vaj0/qlZsprmUeA5DM0VBj7Ry/KnnGWdVWpQJ+ev96bFK5ZtQ3K2RaX9SIbRJxMqpK4Obaf6jt0nQfV/rfA+tvEShEQptDK5wjbLQqV7X1TeKJDQ4Ru3dJNfP4qzgMH1hwYNTsDStLYpURr04HtDReakqBbnjsbn/pM3furD4LgWZprRcQNTrqMLmKNqPIaCiyHs3WqyEppCxwGo700T0qGxSk+u+bDnU4Q/3TDQt5Kk6TkffAfcs7BvNAs4vVqMo23rIQ5CF1OpEGDg6RtR28H7EmKDU+msN8DSgPcbwUVGyVqLlggRyvYszvaAx7NgcAWmVT7aO1v8HgO0B0DpdSFDYaSsknQHHnjnfVw6u6se1jB9jIhbeaI6fZRrcGKoPbTZ93gcrgfhnu3sR6qNgfAXzn1gYTo0Pw4MZodgi188tJPsdsX3vt0zHKG/P7O+ImiS1MdM0LqtYrn6p/joEHg/izKoh33LHhibnlyr7/fg8Z3rijUnR0wVTDW7lr+v41qmMzEi7oZAm9TZyjWpAaMk9snm816CCYvSTo7OLu92iB+fdvrFL5jJCUFmn6GPC7BP/fOoJBD9KOjPY+q6HG+VOkfpamxYmSXsuc5UrLDKRxPMfhzx4o1Ct5GLI8kWxvDn8QdDbafHflDNbszTVEMpr0y++XmGkKCTIhZVatVB26iGjJzx7UzAmuXQ4/VtmtxbxqqP35HCRzX816vof+M7c2Wi6FUR9P12jvm15cfTdFAHPv5gLcJJ6hVpUBarl2JRvQlQv+aPSa3eeWXJCPfCv2jAzh3zsBeYSFyk/gt4ECyeS5dXMkeIXfNtgjVa/BOpVQqcD33BgAas4ttKOn3n5qRBW1ZKoF3CUxIiUZNxTTEHNI8O6BdV7V0z3De7WaTjCI93lzj9xDuThlY3Lp6nRo4ubzNi4nDCb4vEj/vEghTDVYx30QI7fNJrh/qNtv4pfs59+jsh3izBrdocSeWeDah7s36ULylvaWe5o0Vcumq+1K1mDO/feb6qIz223MekHwyCVVq4wf1xMqT6O6kSQDHab/COZOdEd5LYIUl4BVhcKzJ4pcDQwcIAlRaKbUxcevgn/Owo62PeuVU55F54KtDh1tio3gtMPXYUKWoJqDnWn7XWvDPX2Lpo56yG8LmbgmCsi7w2QcDPa9egP9kSBddf8nCMkvpDuo18GBNboXHb2JuEjTie5Czr8PJICKvQYqBwKP612D8USzhATnCPuqeTxBKMSV0SXfwFCJ4v1QgI8JAg+fAqLCULBk8DKo0zBzmf9/gA49FHKF2yNy6DozWgfSZ+9vcDKW6NqHGpKfaLPDi10mzYQmmkqrnLmA4sYYjD3vmPzYTuGnQ5BsZFVflmu48nWRSTsKEn2FJMLSQhA0VzGdS2ptkNr/U1Xu0XuzDeuAKkZZaGYSE8aRlbB4yuH+oySbiEeZZ+gqs16VHwfDg4u1JaObEbjlt73UKWvlmmctjuVFBdlhTpCoQmE7bOpCdAu9HYJrEeJmwin4Q/BN2Vz09MWWRGPXyoyFCVNWYehLn+/1WJi6fim9DqBHYNS1Jwv8ogRa+PMD2KaAR2UzYatIcMtir7zK+7i3utgR557oyTh4MATUDrQanpxPyFBUHGXfu2/29H5NzIn7UwNia/w3cFioUjes2j1QABFHq4qgohBBZm4TShJoKJ/D2cJ+Wz/Ml1i4K0AxfGu2oB1YMPEe3Z6HI22tudYYDjQTYOAXfnPQayPsGIIRqvobyeMdq6c8hNJckVN+BfqLJsLB/8hS5kMMe3sDVdefSAvvehAOkhKmG9jyMczeN6vaq/ljgO5YIXP2pjCpTSgQs3hEcBLtSHX6wX203SYjGaARaQ9TQNdTnCF1FxCYDEmpxR7OXKPqZUZkON+KmUUi1siv6PghKvBrwyw7ETKJR5cm+5eR3rhe+7GeozJIquwIjZccxuuFc4E06rs9hrLpRcQAoBV0BxqluO7uNhhotfDjdA4i3vcX9Ot1Z5DQNSt/CHTzJA8BWr3hGXo0jmPzg8RqN5w9aVWD/kHozWucGH0dtnGjE9DKGJ9SpMNC2gWKz8NA0QFqvkjLKGmS7mKtL/UyusaE7eAg42OsILxr/ThSlK4cWnv1RYvI1n8o0Y1xpvPBdKKYwWmJ6A3gtu8A+dF4Td7DeW1wLRA1Jdlpql2oB3W58YO7Kev/AxMzf3iNiElxqGNODY/XgKSr0QLpQM16SMphr83XLM3V/AzyEq9+mmq6w+X0YxCbP0x6cje4ZDPlyt0F7nJ+/6uD2cEiaAxcjPeUCRSLO3q8L/JdaCGaFJx5lqiygrQPa74pDoxCV1wwu8rYjOlAxlicz9YPOvP+pyngqQ+DL0tpqVC94v0VjRwoQjASOmTpf/22Mzu/P9s2pdCtEjoGXHr5I4mi+tE4iQPSod8xp/wVvZzt9dbmcz59apijKpBXbPH92vYMpdWeRzKOJj6HO0c6dELUEBr4pIXHOH+olEqlozKcEgOfSJBR8cWhFrOYbAc8jhYVuUP34yWO93DWdr/MTNbhnmdB4OHu/CFRTHywUV+BrMuLmuZjzNTRFpsgDGK1/OP9OS+gTGVjbdMIMpE3mZNQZJhNeohQ5O7ypSCeVZV8ja3OPUt7DqY7k4oMkIpYE+Cuo5Lj5y7r/Apnqmo7d4YBOJ0ZEZ+Iiv2uL4CZw6Qfd6vwtuZSG5Ns/sPMJGOSzX8EN4hA3WOS0P++lw4hrxJKLPHDgGl82MhkF4H58wOGz5DL6vaaQ2C8lkMtXrMIB5EEH+IV2R9z8fOdn1mQ1iJY7tLy+BeD37whY2bZ9e2x73vqd6VB+lbv5AP6R/REGgD2yiYDjxZgGZPUWWPaNZ2g9Q/NOjgJqBx03XiEyzFRuJxpgGbkLgN4J6hobXG+dufMZn+3wcxmKpK7RZFiTi4gIpnSPupFl/BXNn5F8SYj3ZKgaCHwGBcQi8CqsCHTebbJ1XyMQK3SpjJt0/ZhDlrkadM+wXOj1UztkN7U8uBAoySOc2MnbIarHu8eLJRNAZH4W7PZldU5+J38mhNVWsLdBY9Kgij2lvFXlN08G3eLY8mxy0neLItkxlZiVRVczpL2Hxgz9aDCUiqvwCFgF29mdDfIdLUqLmDykAmfRF+YJ2SwInFM5/bnAjGkUsdrYfUeIW4q4WwiyKZn/Ln/DANoA41pac79xyKAlDB+1ySjILM5B+4WlpBz/4yLzUWkSUhGMIpgXNirDUqRnGHmeEch1CMTlGCSXBeG4tXPzIyKPBVUgCainmGnboIadphFZIBXJMhEPo6Ho1WbRNdiKzHbzXp+lYupGnFm3z/Airy8Wy4UpLhB7kygJ3ZYExQjVQv96zqk4dpW2Rnro+QHLtIK8F9/qC87qAOGSUDGoie37NthLDwW8/sdJN1aiXJ11uoCb388yyx+hw+ouQrU44UOji18IMsY/lWaHnx7V+dpyqN9GUWMv0aNMVu1yvxZrC0WXg+vs/Yfq8es7jI2ZGU+7qiWbjQ6PapC7ZVIUFN7jOB1yzs7+7YUvzQ7yViKX5oRZSzFL80HM5bilw+SvyqQWoJvxHIP2U5PKeAWCWp9vpsPn/L59K4GX7BXTauxzXb3wCcRF3l8KcH1n4kvQzrG2YWX+hGCHSs9umasV5Y/D9vlsQjyXfaqklkEP/kxIMLNFXsuC/JOAgkU1P4prEl6h2u3/TV0wAoE2KwMRS7HLxcjmiYiGeAUGcrNoC754ScXMEld8Ku7xh8cMl44LUBK7GGh/NqxdtXnjeWQ2iJuZ9kYhrVEd/TzUx83glcEw8bmfmW2pkmjhDTDxsdCyzl8F4+gCR5p9nP6A+Zdip8zYqolKUyNWETaPiCtGi87RF6RsWzAFpS39WZmRf7oRxJSLuSyG7egeShGsOzn2EuPnj7JEElIo87mWDZ6QaGBPvO6cYHp2MwMxBSKLIMpzdYwSXj0ph3fTmat84sEXo1dIhxJpR7IWEZDCtaxbBdXoqXuYk2Y9VUmX7qoRO4eTfEGlazN1c5ymCi6DtPEeBdP9Nmd3BRGgwpF/JXfvJirXG8mORDV0VCKLTZJFVZBEMIm2c6BTKQOEbyFwDm8ODkopzGNvezGLfAo1VeAUKiCMf4/x+cwd8g1IR9btL0HujOqfz7wMZU6BZJo2t5thmPNATKACJOnhqYP8Yg01duI7CfIJvEuTSwy9sf3ZBaRkbQn+Z5s6jdIFprEqVoW/8aeo9MaCbvHdqzyjsKkGuLnhpjzOV7TQHr3HH83cAi01q21gVpFML3U7skHsknboIgab/G7K73OMJSS8Bq7kskSw/6DOf80rRVSEkUow+DKnZN0SUGPeITSSSMztoOPO5f+xTogsYW8ljz0KorPYfaQsYU12YafbGFNHmfnFtZke/2whTUxtc4IXpF0J9e9/IrYZAlkR/yQFGGLt5iIeZZ2TDDPuXt7utyo4BLs7IMcjOUxh0IHQhsH9R373/FMEIok1IHL5PvWcqFRXVHTmSY2q0jItsU0JZBc1OBR+YYzymq089uAkw2Zm2HekbG7BrODFztdOauTL5SGjfa6NCEZdYbSoSp3Bst7nzYw8I0mRov8JuZwF/yOzVq2bVO4BzqQU2nWPv/gbjbQzaISaYrRmwHk/lQAw/+FrtdvTsPIkz70B2awMpO+uZ46tHhvObUJ9d+2eJuL1CAnUdxjy48zE8jYJD8e22uDePc/5EH9+0XHFAZat6KUk5Hv7cjiTs7jWp7i4sdT7Bs2+cKaVoMuhpfxMFgcBnb/IDfWkyQG/URx4LFfbmb/wtMn0RliC1HENBTaPZI257f9Mi/BKYKOsrncOdaDVI4RZ+R0igB8ZW9+REZE7IRJdvu3YLgxWGNncY6Axii7frKUg8JuwxQjd4sttXnc0FswRZbS8/s4pgdGj85QdaVvK6qKICfJHpLzUFLiFdfQcD0MToaVUA9FcR56yPYz+URyKDlKG7YDU51XQOcP2Jkcc3evirk4kMUUEtz/YHiXSHv0ewSMf8k2ItRLY8IY1hGj/ziEahx7dCcrrqVKSN6EocLd2Y8u4fHK/PQpWpN1uc1mFxlcLVRpMaVsW4pzq56M0PKTmGjNSCdLrmsxYzyMvUg/ggIorlKEaC7fx2D4cZzxsELn2L87CR2bWnBP5FwtFHRNQOM1ts+ggDet9sZMnUXIOOewFvLY/zpcdjwM5KHA6DiO3SedSMkOCjdhf8rbHzD5lwf5+PejcRy/g6ZbkYJGL+HYITtNZLWaRxpAL/W4c+gtv1qUoBTJRrsm4KAMW9ZvbmZCrK/3gSA8/prDkgbSWhR3izmWY+t30lGrVpvA1KngCwl8Y4cctcYYxjEat2Ud5f2r+sfSFLw+9sQyiJNd6lDnGazCPQ7dnsEqXDP3jDOYlxaPGpbbn5XAxkn4ZNzVN8thbWra5KoNv125ReY2jj0tEGc5ftGXdK1MDMLxbGt26K2ZRvNuqXOdqmNYRKQbyVGfDr0khmcnJOqtTE9m3aYCN8GGnZOLyBQaFL7GMViSDCLDnCLjJBVk6FnSPtZDOrNhApBxFPd6i+CzUH5TOHsH7z6UAkV11wfJ7+4a8xeUA6mQ+JUd9FGViB9GRW1Ce9V0lDYbj9nhkCWLqJ3g8yIIU69aH8qbvIkueSGRwIDgQZ3xO8mUZbXouxZE4FdM+OVEeU9e+KgIM7Z/rVAu2vv3viQWBIjyIzTXOcEZfAIyEeXFW6UVoM1qDSEQQXZLyvjtaJaCZPNDdUAX0UknfcwUQ0awueVHfvfUF5+bn8DNQVKyeC1Gyo6Cr8ndgA9Q/vX8siogLtt9A0y6D34NyO/nWB9orULCXBfJEWuO94IRvBTII1nwVFFUbHU8hJbG8yOuZH6fm1ZAqPgCQJA46MKMBFVc5ZW3TwI3mCnISDJ5BwcSQaUUtqa6W1Caff/6gSgxIVrog1L47qU9FSam8CSxhcS44BcH5Ttdyx4BsuNINxax1mnekVCjZzfIVsyP3tp9tHcUKoOmPASS/08xgwSkZOPSUhosoQODSzcP4cHhpkX/N0BVOkziN79Mt8WxftJkGDE1T8KeHlv//Dq7pldHNgtJpUUSxMjWlItzNia5+XXfFzGV+9eDpk8+QPd76ot909w3HcmLGVUqYmS/e8HJPE2LM78BTuZhqqkZGI/MjcqpiV016y2HEAexq6Uy8zBQegaiLkRte30fVhi7E4zXyx13jV3NYfueEik45X0yf7EQCcL4RbzvHufrTn7/CqT3UvXpuEobkKwgFBgPYVeoSmC85URcr1vbKjXJc0lmuquqCWj6WeHETXOVzC+tnrP4zV+l4AkTqPAyxYcTW5wBlr9Cwivn94YS4ZXTaZ/5Jd9v8biOrYVnVWoqhJ4RyxGl1q58iOVRsvh5LD9WMtRITCQtSKARhB1ouG19V4DqRd3K1LbGV6XMzrehxHn3NPko89t6WbnoVIB6fsiPKErBci6DuQalAKaLg+eHlNyUlUPtn5l6yCY3vzf7H05z55P3Pb/D4nKrsdc0U1FSKFrJQyt1/L6zfy2jW0G+k7BOHIFw5DT7+/wOJzpl3GYwkaAfZD7vLk10+x1V+TH7IyoZlwsIs+jgvlxGBL/w51ycEizx6/SZeB2O4N+tNH5Ni5bI02DZNC0WOstHJ0RjAWpecawGJXhhq6GgsYXhbVL1WTLqF7+wPQcgFkMDajLd4ebFfVIQx74b3y/AeJZCYXtG3L5Eb8YE7sfNavW4qvfU7xcCVEBUowY1BIinpbJnSWYtKZBDBj72MkpWAEWYJiKZgYef/1MYYyFrMMXGIQzaNHlOo8TJNAZtFhlA86TcXeXfn2q0KPNixdrxSC7tl3EcHBLTpCQH8WFHWBDtnfZNJlUkpwlG7taWK/gIMrGOFDXs7FgVziI3jfnnKTqL+EkvtbmbOqc1o69mkJLkQDc36gx1rDRZzxYXlMaZfaiMQu5MXbwkfUq2oL8LHRwjNrPUZ/0VVU2IfWAzFV/JCX1G9MFs0bNw2We+kUlSklmIPMFSVMQkd+PzgdluU+rXCXz+/du9hx+njXGBUJ9GJ8SrTTB+9/9K8YL2rWwvSctka23sSj5j0JPkjpzl9h6PDHCCD6kJHdIY97n7PTpR3T3NXjKVe5qOXM/C6u5p2pFZkhP1OH0GEe0YvliUxhHt112aKCON/X75SDhKyWdRQWgrVtFJWDHNTjILrVyxlSuL/r4c1JZagK90rHKEb+GPmNiZhkJMEJQ0KyQkf+BKZgOt97loMEfJLJuvd/txWOQ9zYVyt3ZmEXjvSu1fFd+/y54f+NgEn5AruwuY9fTeUVURR3ngQH60iaOlsq5++muY1IG6fz14Mg+3VInbWdN499O5K5k4bIVxoFYQ0ZnVvl39ZFpsFutXOVKUYpkB4sZEIOd+1gyX7nUUYR6oZ2pOr0+g/wOcK57VnA271RZY1vZzAhyGajNXaY6cwJ7BURIrInR+wpN4/oQo4D2i+dhsoygBduVkUYXSmJXaNha3WeQeLT4AYrnKoTJlNM03MmtlE+0IVSbgZrWdJSnJUcilQO8jAvwcEBSom2YlmWAl6Z+K5ReJj2skyAYPgaUyLUnWrj3CAZIYTlGB5GrmpVf3KfxZL/EeCPjZNDPJhFjHq2yThvc0McmZg31ga1JZGHAb5I4iMcl8pEC1AYmliFdsde4RDehCWfI0M8mskM7WFAPJ4+5qwvs7VMza+kFBcfVX7eSAm0SI7AUqntgtvuco7cSN3bl986G6Xyz0ImSgg7z+36tfqUEph8sOdycAJS44w0quKrAW3Czs3uGmAlEyTWMyaxZ3D8ZfTgMvKG/aoH4YR/k7ykDtnSi8hquTsCI+ftJlCeNRPzXbhqqiCu7+9YOwAm6aL+TuGnzFtrKVRQHTFCIz9DFyDWHKooxslpw3+7sW+KEUPOyHk4NgEWdnvkPJ8uvlZrb6OLM362Kb36y1UI8uQMCdaXI+yVIl9h7cNJdrTEqtz8ikMyw3a0ZQl3SgS+daIhwhQ09m3fws7H9H0g19ZtehIlShJOI4iC8JbF7P4O1tpGqWeIsf4+MnLsRQ60i/CXQQExMv4NGwObLthdR0LQUpC2ALKt8Jm3jjwbanwkcTJJjqiw4ZJBWSRg9l2Gc97366nur4YhvrguA7kWNaiZOcUXFfgo4MjmkQQGOgKW474Sl4sYUE5s80QVptN6EBSzLb964ALAk6bgP/2+v7efEEMVEeUG9N05lM6Ie1IQKiliAE7BGkZaPKd5p6ZAaet2Dj866G04RVGPBT4q/yy1R1vccOn5XDsD4lop6Zk1IdZa7z01nbZx3dXh9fEJdk/5qoYTaWvU3TvUzWa1SNtSSaS7oH1U+BdjaOfJdBlaUKEQLLg0jJ58UdakNfVctsKGqaZiaZDUm4rjh2/bJ7go/dXdhyLU4bDJWSY06NiRKJV489WWsyW3uHYN5t9oiazFr7uQ2y2wqwdDBN1Jh0zHPQ2A2eAwPK+4TpehZveCWOPOs9pnolDiSAodWJDMgrvudhaNLUJxOraC2P4Clfh/GNls49EuddXD+ai2S2BI8IgrLB2f08CKxqBR4UIm8qeVoS55xXtOVqtGXNBrEN9Wl/1+VSwewvsyUw0qm8uximY9HMrfohdSu8XVZhPdLpMtirSg9rhW22khlsJdk227gGORPLyZFXZDoVUgbCjGKIOCPLtupztdWnjh+2xe9/+tnIEjmtvDZbQqC3mADuF9Xzf378d4NfhD2xluZvq5Zkd+YlhBNZlMaZZnwulPuZTmLOtjQV2DlrW1PB8jvcmgocAG4bFbCzvfkSYo9lq7iLkF7VrkvV/h7oEZnxRuWBKiBG16Z46dc2H9vBOHCVuG6DcPdiEptJHJWK8RiRDNEu9EJVt9gXa5pXbewa5WimCU/uVprZb/FjSC35lXxomk849O1YgaZEYN45AFc905mXDvjI7EkM9XXGLjrYKBWEzW/OMSNgqGZ3OCYYSu59X4gBxZGy7cmPeWcF1qsCHzW7K1xRUHp3uFF0wcxokqnggiub3bPQZzQpy+xQoZHhIUl17BcG7iyAEpRGTCz1j6wFvJcksO+85OYl3k1ggc1kMnuGE83pDgHv2O2w8Pn3I8AQFGg8QEULxLtO+A5En8ye9HI/q4t/v+Cu+B1pVtOQQrXHQZoOCprZ39tmzrTbqHXFebvDjEBp/Oi35XIiiIl9Y+YstG4JqTBMQfrygwD6/5+FDGv3GO9k7Z+9vfYA8jZNczI7NdVm98KgpzsmnFIH66leKWiz46B3BcjAtb8DUMAK5TBjptNqu2eRtgl0ktLjL7/BNCHJBNGo122xaMQ0EzPjC9AEJUl2W4/lUdWnBsJuF2h8B6J1Wj0hRlbaywhi5R9/h/dkpRW7OhgiM6SgmtcKgb04zk1m9qzbXwtWErwMO4F9Ir3qIj6SP9RHuzY76LaaFnKFhXpiuQ/38tNAtK3pzJ11xw/7/OPe1EkCvSmSkdSzDJHUx9vcGFsyNckUNcns87fsYYqfZL64aU8k5AuXVYjLDDsofU3e752C+jXj+gtUA5R0rWXxO7b31emPBXWJQSN3bypa3nlYVCSTbObTXCSzy5gJknTI3Vv2G3nplwnFCJhiW+8KFJ8o/JmJCuMYZ6db1t9T314e/5OH0pInP/YKI4zllr7qCFvhkkcY7lACijd3nUwnTCozTt2RRbGRTNOcTLGR3MZ4AB7msCN3fLiLCezugMj4kMA2VXTsQgL7Or2fd2Fao5U5JwE+0bbtI/LDEwj0d7VMrOocdrtGyh294UN/UywjwQOAsTDe9WnWhmMQIyMBgaMPWvYkZ1wLPWxriw9sCQdRCT2d9t7nyFLtxxbwcdnKfzsWdnHc8hlY0wzbsCGHzKLE183+fqbVjcKtVZcfp/KyQkP2lpHAZ5Cq/HXG8oERnMIM9lS2zXbYVxuVBC9qBvBVsYOTPUZXHKmPYLSPh7xKs6CIwaLrGgkT06dwdZ5s92qgcG2ap2QOSqzdO/hRG4NMo76jIJhufmN4S99WZv/rnf3T3mWoXieeOWSuDfxM8YY8xQ7V4BQ3vB4NHhI0r/s06FdMcbqc+kerS0Dr22Gdl2AvOMw4oIRdjmkeSMQ4H+9I1mR5ERt3xUXsVY2htvrNjAbaue21/SAc8h7lr4BwyDkMXhkDIKIxTYg2dv1xLamoMVVMshZ7zvZsgMP/49e8RiY+XWchATcPPObJhhexg66ZCUjmmIDyKVNf0995Sr6LI9MrMHhqLZk2FRc+OsrsTfKJTEkyh7yzYYs58iOOg5Va2Izn0xXugMhcj9iT7IAw9hz22Ebit8JReHCYhdpuhaXjf7XQfYll83f8pKjduXbLi7mx4UkMp7HijeEp7OwFBwnevhcQI6MkDjKsFBVUAY0Yb6dC14FlQRDtGeqxQccr7ZJKFaEptpE9IDd5j3QPp4smJbOCup0i8YYyBN0YXr4OaGBb5bNoVlXga4EZM/b4BZAZeY7XTSDYUrVvkE9Clt4slhkVyhQvO5KYNsfT1uSHNu/YfouK+ZH4WDK5NWz5K4mUNtT9nS2ejBGZlWTOBILEHY73cI0+/alMMvtPU6TMSWb/GXGbOriIniT3v1/l8oH1Z6VaoHFRntFkktU8JHNSN5PQ2A+yQHc3d8xF19l4kjkpUyOEMuRwTUTSGdkIwgQN1VlBCcZ128aws5BZz+AHTmk+hffNlbxW81MYtFm4AMWxuSR+QUpIPptiY+kV2+LMDDYG7YtVaQpWMDH9sA30W6ZN12wcGA4VTsjU2BX4WuODPO0PkH53hcdqgaqd1ZHW+HiK3yKoR6apR6aoR+Z0KDOoR3KYBLrxR4Rqzv6TTwVzWOw0wReIZ0ZLaxXCobh7fxcGhZn8N1R8ycmve/HtOrY3GbmatneTQthD+gtnfI17hvdgbRzLZ75G8uzeDffvSGgQv+aWFAauFwEB8j3Gn1d6bvfS5Z2P1L4JmwtKmUzHy8TnzwdJz82cFJNFOEq2lKiKx0mKO56odMyTzJOwFVY2bcjd4ipn2gOcSqWZHWZOyNQ4iI3S7IeKAPmIwQpB38Dh46X4XNGaaIMf6g9VciI43sR1doqVqg6WOvUzAi4PlTOBZJ+mH5kziZ4UBAXtQXmYt5k2bYmMWim3afM1adBMETKnDNq09ZrAgGi5Wj/IiciJRaRgKhDY1tBd3Izsv5jGVFP1i74Hf8DPh0enwiwzM6pCspV7/2CPJikjtVIh36Jl5ZhXmsYczhSnUfXOgRhVku0QarHrD2TuHMYA51HWhcPUkcf1cZg6+7WE+5i2qUu4j2nPLfhF4tXjibEGFY9IYgnAXP9ePIa6JXAniUVUmQjutugL8dqVwayLaUTmomdmhpC50jMbltrFJLW42u/9T8wmUOaYwFckYsX8FP8mM7bCJ1+bvMzyqhYQtFI/fc6c1M30cbcwDy0buOAUKfipeldWqimekGvf8iKjq/7JS0DOb679TsdyZ9kRWzBZvf3FTf9ApPbAGFgC4XUm0Zat2GK8cTmttpAhk8FPi/aTIUP+5HnVsE0uqIgD2ND2ToGrYKaoSKvxGLajkHdzrvbaQXtlCpO5ZK/MxJKs3jn9mbdmxvo01zTTuZRgyM34Q9CTLTBVxl4U669Hfw/S2rvHL1JIfmV7+gTCwIRdyZpSP1A8Futz3hPOD8pzwGoEG1NxBhASXOXpu4FZ2VQ1c9HbXMYdLAIZl+3bAogx2uVbk0DrtuHtInpf7630XIM1E8xx2WbKifsNf7+f6aoDqESxJvCDuxYMUcSg2cQlbK8WHbRlB23laYm6wmViAEZpNr4/4CxeRnT5kh4WabzW9+Mf9XbOrwZug56cORiumcEq2sWRcxEEsmzxRC0ylx06kl401cUQhLOD4GPwiPUbHgiGZN6Iq9S9Ku/jF0GJ4mG3eULuLmLADF8zYvfz8SPQqPr92r5N6h78Xxsq1uay1VqEMa43bwvGuLwSCFYRDBR7/7HQxQfl1ctKHIiGFxZz1mcKNiiYKvOHTATXA8On9s3Oz9vmbKH2WuwPNSTSGUWXUsbiu39zJDyzvlSO/SFtJ79rMna0jWTcn+57vIcrBDOXTIANluIowdvaeB0njHLFNJTHowpuiMwPXwQhAnOI3K0YlGxJg2OnVFEFh0/9Xvk6XuA2/mMnI5zVPKAJHrtfKCObJDosFT9YGm1u+tSmHpmbXMYz+OuiShOx9104DLYn0V0AWRPIt4NErKg4vUUKE/dzwA1sIkOTZ8HrioBcXHVRxHFuW7CNwutpco+5gcdRGd3+mEgRI0jwh8CH5jM1uI4LszBxfVqDbTtZWl2bbGQmjQhuubwr8wvSo/4qlFE/F6/OnTXXzuYmNKiJiYNvuL3L4f0D8Fnrh8TmA0qQN2S+RfbmZ/KKusgbsuULdkyg1waNV0FSNXhspXfiPsqcP5emITMJyN1iOH+3dx7D+duO91Y92nIeYA/ghzRWU4U05rPCh4VORByIewVs8V/ybhqGt2nItk3bTv7xkMP5XMYwz+KFVImfseVSXfZ+fwIlrrydQRkvFYGWpKLP7jHufU/2s43dVkHLtuln9M5Fdz0JMHGhV0qZF/peejQ8objQ3eUHm+rn9/QTquwinqCoYTO0ZzNPJeaHDf2JKuenokbAKJuGeDK7G/GCe7Lvx5DmS03vxcnhDW6QQap2vtKr30uLR2BqXZtcF7jeSzV1yyxstS3MBk3W3PtVcm3qE95Lbx/W/0CQGQN1pzKSHbOPkZS9gkFomjKkV0zCXRjr659ODXv7Y4HNx+t4k/fhKnLPd1QOiED5aDrre/46qNdLQZRDVngNjrPzrjszWNd/bg4lG0Y1DgidnTtqhbbf9CHzZKxxzleon0HCjBPhGgqnvAXPYc8csaXMw6rrue3/HVZd313du7BS12yriUV0IikVz8JxfaJk8w4tW8QUTwGLFKEh9vuPTRs5RaY5ReaBJFx1yTp4SOaxMChqlMcr/81OkC1pB0xV8ziDdphBO3bKjjJoZh25TjhwAbhJ1vrmVZT/yXrMrCgXSdPG+s0khqUwMmjKjEk+kXls1sAnUiTIEDmptJRCZzR+nuYTmeAT2dU5+0JJZGEOGjvVkUWyicxwJoSUFZ/INJ/IFJ/I3fXOZHbnfO8okF3MiAMX7Vtwosx1NCPQk0nckAopAY2MIZJXD+8t8tLDcKCTRMdbZQkLEdyqeK2xUceBrJOKbEIAFtZvOzV+EGVUx0OsA1fwKwf74wy2iR/w1AHIMZgGVVNVyAFlcteQJcEUKYKRkH9h7PhV451EeC0FtRZ4OFtVyqmyBCaO9AAB3PEuj/2kCd03PAvWU4bHVcpKGENOM5tGkxbAUr1qry/OZJWqqU7mmSgFxkko9ahHCxw6EeYNmScJDGuq70zumf9+qCgTKBc9yWXiR/TesS96EGwUtP4Q3zW4qI8BjDPsmx36TOYdmUFIiWezGwj+5xJsvXID7xQHZhQ5Kgprmldknr/+WqKh4HpJn/cjhPbRThziQ46NFUJrnpFbVIZjMhJt1OA4NA79wF/rgtSNUpnP3c3IgsGyVXOI1MoX4sQTSUXu3+E9mtTsLR4ZuON6giMDd4yuOSkzGhEvE42xOPrnrOzk6UqgpgTqOe+YXLtorJZRwC9FS474ugDZnVqfU2m9oDpm98rLWx+jkOvTQuP7qolniFi6PiBwyqIEP1BJirO6L8QshMvcAYIrv6/u8KT1ExW8/2Y3L5E3xRbyq+LWj3DLjz3K6CCuJCu3vgJyxeHAUVpyncJscBznBidbUfxt3jPZF8pH3C2sJpcQkrErqxIEfejpjEYq+tPi7s4gHy5dfxKSAVDO/hB9WNAsRpuqFCLjhPb7vTamvaTHRYzBMrvI+lAe6yVNbC0+RH3NyRdxlLRoYNhKPQvMC62yd5ofvGXcbSsJ3zb0sxVGhnp7EdE0I8JLRCOxNXjJ9jB/K0K+2d7mxrU/s8QE5fb9dKeAFYMPLe9qfZCr2eJrp0hjPSIL7Sy4WV/3bUCLtiLgUQBdjH86+6r5C+mDL7y+2yHps8ThErtYP3VS2mAmYun6A/FLjg4p/fWKNY9EyO8Gn2a4pxFWqV4Ggm366ZLDHt3j/nQkPLr710+YHp3rDqHXfPeasBYqt5/Aevoghh99/MZQWdNX6hsSLxSLUQRC1mX10bvFTp7vHPXw8McNiLGKBhh8D9nzd9L6SSJm4S6q6/0755Hppq/fj71J9Fz8z4sr3PXziS42dXkGgZH7lIxvHzVN+xRh4+ADLz9L5tQUZ/qPwkf8nOaY/kjrH8/f3++bRF7tHuynYV5t2TjcXY3DcvreG3oJqkKrJQNprX3jnZW4812sot6oBiQISlD1fWzUu/1Bg7aNRAInpHUA2L2lt9bH5Jq0dkL8Epc8P/Dt+186M1Wy5VB23mImjQPmvx+aVIqivec9fIfPdh029H72dHeX+EOW+U0WsmShC4obnz+qPi1mx52HNZ+AKJfo3Qvww+LUUOD5HjB9Rq581yMBL9DQLmYm7WSjialCq+AyQECzig1OKdDNkHkpIK5qg5aO9C33OLcWlCLLlCKrkDNrCUgSu5CkWNELd9HWCT5YKbiWk9t208vfOp9gqv33o6WUGtrZhupWV3DMiISwk+fdpFeLk7g0MmOLzbaZKpWzuFLQB0wh4taJ/3WVPwuIgmjNibwFVyxILTZb7fHBuV7F01lBlHI5aZTSL+i36hfLymtlrE+HKoNWVBsL8vMuwRY292batyiNVQwV2llL9Un3S6ocPbZCJYOV8YuGHLiu46/IFTZkEVaxjSuEQi7RjsRW53u3YS5g8dfiftQD8mEHRlehVo2yfEmwkCAMMdYBi34P9CkoP19mF7l7cmEZ13VXjPrXnfkOXwqNf0ug486/21NkS+xiXn28S80/jl9iCnHm9LOPzbOOV2GH1b/LgeEVlL/oouGxObGAX8Gk0Au+lvx/Itu5ipcCQShScn7rf7ivV5ngmpT0QSkF9EjF9JjfhmkvnuRKFgKc/a6Ob1HxD+llmIZPcbClNHRsJetQCCy/r6REqRi6wzawLI2X6fuhOnu8L1kzFG3evehMls0xXw9Csa0M51JXMIygU23CSgaGI9AvNty6Ovf42psvevtCUD9VQjiLTF9YohEesMwfcreSclzpvczSr8Sm4v/NdWmxdSub42T7LdDNW2V7SBxACHTZILTHutW8n1yVmBxkEcvwh5O/9SpWLDxBr8DALNOMLNKMLANrF2hG5EiJhXSJZeROF1gMNFX9d3jWq37lZwwUIDKXyUdW/TTl2UespEa+u4p3dX4P+534W55+G0DrLJqQ5EeI5dQyDKuSvlTSAOdDyGBVmymSjSwXISyQjajGsmLyit0quGCIV82/9h/fVPVysSZ+bykEVw8yAEUS8vd3hLKWCURWRTxzmcpvVcYzlylFFtb2iojd8Z01EPLmYMnjqKYJAC+61neBnCJimnwclKDZxl0QQokDFZXrfDpbqFrZUvuE5OrR47asNmpNKLzQ0yk/SLCemVMjjFFvcY9pPrr/1D6SvGtJLmfUj33X3uVhzqp9vMrCtvWcicrCtttaj7I0etcsSyW8gdMt/nbv4bVt9GrXMRpnO+e/8mjfB9Mv91i3kQm6ZTaSVbMKIA72hcBDKyjana7oM5lb46OW3T3ZQxhOwidhkvE1KNcVlTKJtHuZXqQtznumF1mVbFnLopGrEmhyb+avY3D1VsOtfZp/K6R50lBVr1FruncajYAJhUaSEnfIRqju8YzC93pnvIELYFF3zEXOCe96Ez/yfmurS+wGVdRjaBEVcuuA+zatMDmo7c+BecQl3dKxXLIddWj56IKmVVnrdk/2V5xVEAEomD+q62EG22N1WmAt6aGhHLuuA4XKTNdRr0pJ0lXt+VUZuLr8mIsYZWesgK/h7LYm9B5XtXED8UhTBkgA9BVEI6y8BKRimWRjVQzKLcxYh7Ta3SG4P/EScag7AsFOhfj2oPMVJVCK6JpLMrg9dd7R7T28j3rZ1hI8JE20/Qwu0cSso/nh9ffB2lyB8TZ+kQBlbpquZ5Ho51V7fvik6jYzP5wtrT4LxZ7jwOpTMBZelejkPNUcwwz6kYKN4l366EJVE5ji2KvvzgaxfYThMi0cdGUZfZ1e1Tfk6n5ZkdK1ftiiNsAFvFzvtYKGJFvpUGdD5Q7NzvxgIhotlciLlitQV897mFbuh3u++cady6LmhW1jENMsJauRVWuZ7mSRf2SJF7ZnhlXqkiFlhJdp9pFF9pEfAZEMSjyUMABlcaDWFuXwGn794EdeJiNZLYFtUwnMxYxfU9QNIcMoeBdZNX3YxvAkLgK+BoXI6gD8UiLDJNdY0va6Bp2Lb5HGxRbMcbM5bIRW3g2/QUIr15tiWhYBKJIPnoIx3xN34KrPDwgNd7b9avDrxE3NusjlhF6oiKNp3Y1FsNL92CHAoeVhWfwUm4OVDWLbKtaSP1KkeRWha57iJ2OkstmQNdk2s5ysBn/us5LYYdWPxG+SNhsX9nAcv8mumSbiOtWjaa4PET3MX80ByTYxYJdTzHX9CfKRLmw1my9wIvww1MEQnjekc/yqz6BjGlKRHgE0lKYbWSQgWWYbWSIgWSJHiV2Vo8SeVhS/57zTvP5pAaVsOQG5M69BS5e0vse+K6DIHS8zVN5dCaLVaO+ngqzFGeLB0S4QTEfa1Nom/Ey1qhkMB4fayXsBm7PXcuNQfTQlO3gHSirV9RoikYdlv1/lxUXtwfCNq8JWY3ZJzDgRVmDonb5CG4B8LVOGrEZ71u5HMrmH9swUKHdXfmtHgmwRTMr5pKvQfHJuXy9zAzKSYLiXd5tKRJKXPz+heQCP4xT1Sf/U0O09bKhNHihIuuu8GrixBA2PA9KvFLl+1P1giogFiV9IT51tkZaDTij24sYfTzj87+R/bkJhbNWsIyuJSHKMpui0BVNWz3wcrcJA5PvzSTEjvP9y3jITAT7rmOlYXMEAtSlHVk8vyXjR8pu1+HLlGHKOvj5q2Sz6VIn6WUFIoqm/M5jWbf46NUZXEJtIw22Bg0SoLRQwx14lWQr0RkRgNqZu5RebzplJ0heoIO7HwGGzZUAsw716ym6PXvVWXB4av2UIZQcJxHvHDSa22yUCOl5LXoTegz/h3YJDpbmPQRe8AmvnOprVu0aA3cPgHskRYBKVFZXeOUv18o5qv+sESSctsSk10voOzmucXKz+Pb5sYRTl+QV1dlR/90X+RYY2WFfgR4h0oIYHgRs7VNURlaRFaxB7rSppKofBftOArA5Ayf3rpyN/1t1wj471Q8ZHjpUlwpGDx8n6IJLvrQ4JpqL5i8CGbuhZHFJxZ8c4EWi//gnPWd9vVThZGJaIRg5XUqYZWUBGt6HgNGsHVfAQdbmLp7jfabu6rVmX7eq2mV22y4Qqqy/yp+EFgyzk2hxx0VL+cFkXIcCAuRzRoOkdqMxjOlkFUINOZPAcjtvlkZx1H671AS/BMq/I7r/8aogrx8/K/QCDcXf4ZSfHSJFxQHVt7BYCD58rnbz29R9gOcv0H0Qx1+a4vvuJNsocJHcPbVS359hP+yHFWZSU+fkZTqJiNBzz510R71lSc22uP+BSsU2ul+UbH1+7bdRAXq2qErp8JWHz4X8+uDR1FpehaWtglam5oIOvw8Jwo5KycJldJLGvJ/8O72FIadjDG6zDXt1x08E67BWUML/xkcFS7NX7OxaANy4WZtJ9CInRO8bFkPBa48Rt2pEFn9qMnhvkby65iDosnuEORCXbMhHJGhlRNHSxAblxZ/4tyhp+wcMxxAGS7SWyl4YVrrRz7X8PxwcHMSNmGVlDmBHzedwt6MneV5Blx+coPa6gDcE8w3YKaUIjdNeBHMJ8Nwa3yDLbCJmZepQk2DM9LRU3ZO5RVmcl5wWVhfjrwQHuXa1LJzveAzc/cJURoFrWIIb4mYPNObPR1cx3Ca4Fhr26IZyIeVfurvmzytOnPhSTqA2V3FueesrV8d6+BvSwBSssQXPxw5WG6v8SZsT09Gugbm2ZL3cNulzmIlmoIncaJZhPoxusIVCUSAlqAoO+73/7h/Xnw2zsa4JRxHXW52Ou6KXgBg1W0JI8ROgKchH0p1EhA6ne7zN9RCYhVRkR9M4cb/Odgqoe2qqJ8oUiHN4+mnlsugZN17DpGknA//0MjdinET4RaVHcEjy/Sxio5PnNGzgECD4RM/9OyG6aq+jb7KD17s8pwOZqbC6xhvN0kWXGWMtIa1vcy1WWWBNiF1cD590vpgKrr2us29cZm8UQPALgtpAkVLczwmHqtzUIDxmOLo5DV/2b/xHTWiL6uD+hkPsJTv6/SqI4GmLNgq/+QYbFz+xve12DsWbTkqzgE0H3OXs1zvmJ4kxEUixBsGb6JmUtTwkT3icH+tpIp3isKsAWdu99KsHDdPJv82VQwSAo2O5wROjoJKgR19k+A107GUrlSJiJlwR3xpryuKaTeEEikiNhcr39wbYNuwkxkDMiYBqtFVNJRgREFPIlhHw1j80Z0JAElHpqjMVOyTYXTQklG1zV4JqHVVGG1dTt8Row9D3C6/q2TUCIROTLl+bHPSn7k2bj/putrGplbqAIf8UH9n8AAAD//wMAdnoMhjfYDgA="
single_channel_stream = get_cells_from_mcgz_base64(stream_base_64)
half_1 = g.parse("47bo$46bobo$46bo2bo$47b2o$42b2o$41bobo$42bo3$90b2o$89bobo$89b2o3$85b2o$40b2o42bobo$34b2o3bobo4b2o36b2o$33bobo3b2o5b2o2b2o19b2o3b2o$34bo15b2o19bobo2b2o$72b2o2$65b2o10bo$66bo8b3o$64bo9bo$64b2o8b2o2$102bo$83b2o16bobo$79b2o2b2o17bo$37bo15bo25b2o$36bobo14bo$37b2o14bo3$100b2o$99bo2bo$99bobo$22b2o76bo$21bobo$22bo$77bo$77bo$77bo$55b2o$54bo2bo4bo35b3o$55bobo3bobo$56bo3bo2bo$41b2o18b2o13bo$40bo2bo31bobo20b2o$40bobo5b2o26bobo19bo$41bo5bo2bo26b2o17bobo$48b2o21bo24b2o$70bobo$71bo6$62bo4b2o$61bobo3b2o$62b2o$116b2o$69b2o4b2o39bo$69b2o4b2o40b3o$119bo4$76b2o$76b2o3$23bo$22bobo$23b2o5$b2o$obo$bo$48b2o$47bobo$48bo10$62b2o$62bobo$63b2o5$68b2o$46b2o4b2o14bobo$46b2o4b2o15b2o4$65b2o$53b2o9bobo$46b2o5b2o10bo$45bo2bo$46bobo$47bo3$44b2o$43bobo$42bobo$43bo$27b2o$26bobo$27bo11$62b2o6b2o$61bobo5bo2bo$62bo6bobo$70bo2$67b2o$67b2o2$62b2o$62b2o$67b2o$67b2o$56b2o51b2o$56b2o51bo$60b2o45bobo$60b2o45b2o$100bo$81b2o16bobo$81b2o16bobo$55b2o43bo10b2o$55b2o54bobo$112bo$119bo$118bobo$118bobo$119bo3b2o$123bo$98bo26bo$97bobo5b2o14b5o$97b2o7bo13bo$84bo21bobo12b3o$83bobo21b2o15bo$83b2o36b4o$92bo23b2o3bo3b2o$91bobo22b2o4b3o2bo$75b2o14b2o31bob2o$75bobo46bo$77bo45b2o$77b2o2$115b2o$92b2o21bo$91bo2bo21b3o$91bobo24bo$92bo$67b2o$58b2o7b2o$59bo115b2o$59bobo113b2o$60b2o5$100b2o3b2o$61b2o37b2o3b2o$61bobo$62bo$112b2o$112bo$110bobo$54b2o54b2o$53bo2bo$53bobo$54bo10bo$64bobo$64bobo$65bo$107b2o$107bo$73b2o3b2o28b3o$64b2o7b2o3bo31bo$64b2o13b3o$81bo$73bo$72bobo$72bo2bo$73b2o238b2o$81bo12b2o70b2o145b2o4b2o$80bobo11b2o70b2o151b2o$79bo2bo19b2o$80b2o20bo$103b3o53b2o$105bo52bobo$152b2o4bo160b2o$150bo2bo2b2ob4o5b2o149b2o$150b2obobobobo2bo5b2o$153bobobobo155b2o$80bo72bobob2o155bo2bo$79bobo72bo135b2o23bobo$79bo2bo207bobo23bo$80b2o85b2o123bo4b2o8bo$158b2o7bo120b4ob2o2bo2bo5bobo$158b2o5bobo120bo2bobobobob2o5bobo$165b2o124bobobobo9bo$104b2o186b2obobo$103bo2bo189bo$104b2o30bo$135bobo144b2o17bo$92b2o41bobo137b2o6bo7b2o7bobo$79bo3b2o7b2o42bo137bo2bo5bobo5b2o7b2o$78bobo3bo70b2o118bobo6b2o$78bobo3bobo69bo119bo$79bo5b2o66b3o111bo$153bo111b3o$264bo8b2o$99b2o153b2o8b2o6bo2bo37bo$82b2o15bobo149bo3bo17b2o36b3o$81bo2bo16bo148bobo2bobo36b2o14bo$82bobo16b2o147bobo3b2o36bo15b2o$83bo167bo18b2o23b3o$270b2o25bo$108b2o$107bobo13bo164b2o$108bo14b3o79bo81bobo$126bo77bobo17bo45b2o16bo18b2o$125b2o51bo25b2o17bobo44b2o34bo2bo$140b2o36b3o42b2o72bo9b2o$140bo19bo20bo34bo79bobo$82b2o53b2obo18bobo4b2o3b2o7b2o18bo15b3o77b2o$81bobo52bo2bo19b2o5b2o3b2o25b3o18bo$81bo55b2o58bo20b2o11b2o13b2o$80b2o25b2o13b2o73b2o32b2o13b2o$107b2o13b2o35b2o$139b2o19bo$138bo2bo18bobo$139bobo19b2o$140bo144b2o$83b2o115b2o82bo2bo$83b2o115b2o83bobo$109b2o6bob2o117bo37b2o8bo$109bobo3b3ob2o116bobo36b2o$111bo2bo122b2o$83b2o26b2o2b3ob2o43b2o$83b2o32bobo45bo141b2o$97b2o18bobo10b2o30b3o28b2o57b2o53b2o$97bobo18bo11b2o30bo31bo15b2o41bo$99bo91b3o17bo41bobo$89b2o8b2o90bo16b3o20b2o21b2o31bo$90bo59b2o56bo22bo55b3o$87b3o60bobo79b3o55bo$87bo29b2o32bo82bo54b2o$117b2o40b2o93b2o59b2o$158bo2bo15b2o8bo15bo50b2o58bo2bo$159bobo15b2o7bobo8b2o3bobo109bobo$160bo8b2o15bobo8bobo2bo2bo38bo70bo$170bo16bo10bo4b2o38bobo$167b3o74b2o$167bo111b2o$279b2o$168bo90b2o$167bobo83b2o3bo2bo$167bobo83b2o4b2o$165b3ob2o145b2o$164bo151b2o$165b3ob2o105b2o32b2o$167bob2o105bo33b2o$251b2o24b3o$177b2o71bo2bo25bo$177b2o7b2o62bobo59b2o$186bo64bo53b2o5b2o$184bobo118b2o$184b2o6b2o$191bo2bo$192bobo$193bo$164b2o$164b2o5$180bo$179bobo$179bobo$180bo$181b3o$176bo6bo$175bobo$174bo2bo$175b2o8$188b2o$188b2o6b2o15b2o$193bo3bo15bo$192bobo2bobo11bobo$192bobo3b2o11b2o$190b3ob2o9bo$189bo14bobo$190b3ob2o8bobo$192bob2o9bo$213b2o$212bo2bo$193b2o18b2o$192bobo$189bo2bo$188bobob2o13b2o$188b2o2bo14bo$192bobo13b3o$193b2o15bo!")
half_2 = g.parse("98b2o$98b2o3$51b2o51b2o$52bo51b2o$52bobo45b2o$53b2o45b2o$61bo$60bobo16b2o$60bobo16b2o$47b2o12bo43b2o$47b2o56b2o5$37b2o$38bo$36bo26bo$36b5o14b2o5bobo$41bo13bo7b2o38b2o$38b3o12bobo46bo2bo$37bo15b2o48bobo$37b4o16bo46bo$35b2o3bo3b2o10bobo18bo$34bo2b3o4b2o9bo2bo17bobo$b2o4b2o25b2obo18b2o18bo2bo5b2o$b2o4b2o28bo39b2o5bobo$37b2o45bo$83b2o16bo$100bobo$45b2o53b2o$2o44bo$2o33bo7b3o$34bobo6bo$34bobo$35bo57b2o$93b2o7b2o$102bo$100bobo$100b2o$47bo$46bobo$46bo2bo50bo$47b2o50bobo3bo$55b2o3b2o36bo2bo2bobo$55b2o3b2o37b2o4b2o3$48b2o$49bo$49bobo$45b2o3b2o$44bo2bo$44bobo$45bo50bo$95bobo$95bobo$96bo$53b2o$54bo$51b3o28b2o3b2o$51bo31bo3b2o7b2o$80b3o13b2o$80bo3$87bo$86bobo$21b2o43b2o18bobo$21b2o43b2o19bo$58b2o$49b2o8bo$22b2o17b2o5bobo5b3o$22b2o16bo2bo4b2o6bo$41bobo$42bo14bo$19b2o35bobo$19bobo34bobo$20b2o32b3ob2o$53bo$54b3ob2o$56bob2o2$28bo22b2o13b2o$27bobo20bo2bo12b2o7b2o$27bo2bo20bobo21bo$28b2o22bo20bobo$73b2o$79bo$78bobo$48b2o28bobo$47bo2bo2b2o24bo$48bobo2b2o$49bo4$69bo$68bobo$68bobo$69bo$70b3o$72bo5$90b2o7b2o$90b2o6bobo$99bo2$87b2o$87bobo$85bobob3o$85b2o5bo$91b2o$67bo$66bobo$66bobo$67bo5$86bo$85bobo12b2o$85bobo11bo2bo$86bo13b2o!")
g_to_lwss = g.parse("94b2o$94b2o29b2o$125bobob2o$126b2ob2o$93b2o$93b2o39$107b2o$107b2o3$60b2o51b2o$61bo51b2o$61bobo45b2o$62b2o45b2o$70bo$69bobo16b2o$69bobo16b2o$56b2o12bo43b2o$56b2o56b2o5$46b2o$47bo$45bo26bo$45b5o14b2o5bobo$50bo13bo7b2o38b2o$47b3o12bobo46bo2bo$46bo15b2o48bobo$46b4o16bo46bo$44b2o3bo3b2o10bobo18bo$43bo2b3o4b2o9bo2bo17bobo$43b2obo18b2o18bo2bo5b2o$46bo39b2o5bobo$46b2o45bo$92b2o16bo$109bobo$54b2o53b2o$55bo$44bo7b3o$43bobo6bo$43bobo$44bo57b2o$102b2o7b2o$111bo$109bobo$109b2o$56bo$55bobo$55bo2bo50bo$56b2o50bobo3bo$64b2o3b2o36bo2bo2bobo$64b2o3b2o37b2o4b2o3$57b2o$58bo$58bobo$bo52b2o3b2o$obo50bo2bo$b2o50bobo$54bo50bo$104bobo$104bobo$105bo$62b2o$63bo$60b3o28b2o3b2o$60bo31bo3b2o7b2o$89b3o13b2o$89bo3$96bo$95bobo$75b2o18bobo$75b2o19bo$67b2o$68bo$65b3o$65bo2$66bo$65bobo$65bobo$63b3ob2o$62bo$63b3ob2o$65bob2o2$60b2o13b2o$59bo2bo12b2o7b2o$60bobo21bo$61bo20bobo$82b2o$88bo$87bobo$47b2o8b2o28bobo$46bobo7bo2bo2b2o24bo$47bo9bobo2b2o39b2o$58bo44b2o$91b2o$91b2o2$78bo$77bobo$77bobo$78bo$79b3o$81bo10$88b2o$88b2o!")
trigger = g.parse("3o$o2bo$o$o3bo$o$bobo!",0,0)

# current minimum possible non-overclocked Speed Orthogonoid
d0 = 52132528
t0 = 117334064

# m will be the number of times two cells are added to the separation distance between the two halves
# n will be number of times that two ticks of delay are added to the MWSS in the south

p, q = target.numerator, target.denominator

# We need to solve (d0+8n)/(t0+16n+8m)=p/q
# TODO: Currently the script keeps incrementing m or n until it finds a solution to the equation
#       It would nice to replace this with a cleverer, fixed-time method, like in the speed demonoid-builder script

if hfriendly == 1:
    power = math.ceil(math.log(t0/q,2))
    while True:
        n = (p*pow(2,power)-d0)//8
        m = (q*pow(2,power)-t0-16*n)//8
        if n >= 0 and m >= 0:
            break
        else:
            power += 1
else:
    bn = t0*p - d0*q
    f = 8*q-16*p
    if target < Fraction(d0, t0): # n is about 0
        n = 0
        while True:
            if (bn-f*n)%(8*p) == 0:
                m = (bn-f*n)//(-8*p)
                break   
            else:
                n += 1
    else: # m is about 0
        m = 0
        while True:
            if (bn+8*p*m)%f == 0:
                n = (bn+8*p*m)//f
                break
            else:
                m += 1


numerator = d0+8*n
denominator = t0+16*n+8*m

g.new("Orthogonoid with speed " + resp + " = " + str(numerator) + "c/" + str(denominator))
g.setrule("B3/S23")
g.putcells(single_channel_stream,0,0)
g.putcells(g_to_lwss,-103,-160)
g.putcells(half_1,-229,-490)
g.putcells(half_2,3266718+2*m,-345)
g.putcells(half_1,3266985+2*m,-26066754-4*n,-1,0,0,1)
g.putcells(trigger,31+2*(n%2),6516692+n,-2*(n%2)+1,0,0,1)

Post Reply