Outer-totalistic hexagonal rules with spaceships

For discussion of other cellular automata.
User avatar
LaundryPizza03
Posts: 1886
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Outer-totalistic hexagonal rules with spaceships

Post by LaundryPizza03 » April 27th, 2022, 5:08 am

A 4c/8o spaceship posted by Hdjensofjfnen in another thread; B023/S2H only

Code: Select all

x = 5, y = 3, rule = B023/S2H
o$b2o$4bo!
c/4o spaceship, B02/SH:B026/SH

Code: Select all

x = 6, y = 8, rule = B02/SH
bo$2b2o$2obo$2o$2bo$2bobo$5bo$5bo!
c/4o spaceship, B02/S0H:B026/S0H

Code: Select all

x = 6, y = 6, rule = B02/S0H
3bo$2o$5o$2b3o$2bob2o$5bo!
c/4o spaceship, B02/SH:B0256/S0H

Code: Select all

x = 10, y = 8, rule = B02/SH
o$2o$2b2o$2b2o2$4bo$3b2ob4o$4bo3bo!
c/2o spaceship, B025/S0H:B0256/S0H:

Code: Select all

x = 7, y = 7, rule = B025/S0H
2bo$bo$obo$3bo$4b2o$4bobo$5bo!
c/4o spaceship, B02/S1H only

Code: Select all

x = 13, y = 6, rule = B02/S1H
2b2o$o2bob2o$6o2b2o$3ob3o2bobo$3bo3b5o$2b2o8bo!
c/4o spaceship, B026/S1H only

Code: Select all

x = 12, y = 8, rule = B026/S1H
5bo$2b6obo$o2bo2b3ob2o$5ob2o$3obo4b2o$3b2o$2bo$5bo!
c/4o spaceship, B026/S01H only:

Code: Select all

x = 19, y = 19, rule = B026/S01H
5b2obo$4bo3b2o$4b4ob2o$5bobo2bo$obob2o$2b2obo4b3o$2b2o6bob2o$o11b2o$2b
3o3bobo2bo$2bobo3b4o2b2o$3b2obo2b3obo$4bob2o2b3obob3o$7b2o2b3obob2o$7b
o3bob5o$8b2o3bo$10bob3o$11b4o$11bobo$12bo!
c/4o posted by me in another thread, B023/S2H:B0234/S012H

Code: Select all

x = 7, y = 6, rule = B0234/S012H
2b3o$b3obo$2ob3o$b4o$b6o$2b5o!
c/4o spaceship, B02/S01H only

Code: Select all

x = 42, y = 41, rule = B02/S01H
4bobobo$4b4o3b2obo$4b4o5b4o$5b4o3bob2o$obob6o5b2o$9o3b2ob2o3bo$9o3bo4b
3o$bob6o3b2o3bobob2o$bo3bo2b3ob6o2b2o$bo4b2ob2o2b3obo$10b2obob3o$5b2o
2b2o4bo7b3o$2bo3b4o2b2o4b2o4bobo$b4o3b2o3bob2o3bo3b4o$2b4o3b2o4b3o2bo
3bob3o$2bob2ob2obo4b4o2bo6b2o$3bob3o2b3ob6o3bo4b3o$5bobob2o4b5o2b3o3bo
bo$8bo3b2o2b4o3b2o3bobo$7bo5bo3bob3o3b2obo2bo$6b4o5bo2bobobob5o$7bo2bo
10bobo2bob2o4bo$8b2o8bo3b4o3bob2o3bo$13bo3b3o2b3o4b5ob3o$12b4obob4ob3o
2bo2b3o$12b3o4b2o3b3o4bobo3bobo$13b4o2b3o3bo7b3o3bo$14b2o5b2o12b2ob3o$
15b2obob3o13b3obo$16b4o3b2o11bo3bo$17bobo4bo11bo$20bo2b2o12bo$22b5o9bo
b2o$21bobob2o9b3obo$25bobo6bo2b3o$27b3o4b3o4bo$23bo5bo2bo2b3o$24b3obob
ob3o$25bobobo3b3o$26bob2o3bobo$27bo!
c/4o spaceship, B025/S1H only

Code: Select all

x = 17, y = 15, rule = B025/S1H
2bo$o2b4o$4bobo$2bo2b3obo$6b3o$7b3o$8b3o$9b3o$10b2o$11b3o$12bo$13bo$
12b2ob2o$14b3o$15bo!
c/2o spaceship, B025/S1H:B0256/S1H

Code: Select all

x = 12, y = 12, rule = B025/S1H
3bo$2bob2o$bo3bobo$o5bo$bo5bo$b2o5bo$3bo4b2o$2bobo$5b2o4bo$6bo2$8bo!
c/4o spaceship, B0256/S1H only

Code: Select all

x = 3, y = 3, rule = B0256/S1H
obo$bo$o!
c/4o spaceship, B025/S01H only

Code: Select all

x = 50, y = 49, rule = B025/S01H
3bo$3bo$o5bo$3b2o$4bo3bo$4bo2bo$3bo3bo$9bo$8b3obobo$9b2o3bo$15b2o$8bo
3bobo2$10bo3b2o$9b2o4bob2obo$10bo3b3o$11bo3b4obo$12bo3bo$14bobo2bo3bo$
21b4o$18bo3bo2b2o$18b2o6b2o$26bobo$20bo2b4o$22bob3ob2o$20b2obob5o$22b
2o2b2ob2o$25bo5bobo$24bo5b2obo$26b2o2bobobo$26b3o4b4o$27b2o2b3o2bo$28b
o2b2ob3o$28b4ob2o$29bo2bo2bo$32bob3o3bo$36bo3b2o$34bobo3b3o$40bo$41bob
obo$36b3ob6o$37b5ob4o$38bob2o4bo$39bobo$40b2o5b2o$40bobo4b2o$41bobo4b
2o$43b3ob3o$45b4o!
c/2o spaceship, B025/S01H:B0256/S01H

Code: Select all

x = 12, y = 10, rule = B025/S01H
6bo$5bo2$bo6bo$o8b2o$10bo$3bo6bo$4bo6bo$4b3o$7bobobo!
c/4o spaceship, B0256/S01H:B0256/S01H

Code: Select all

x = 23, y = 23, rule = B0256/S01H
3bo$3bo$o5bo$3b2o$4bo3bo$4bo2bo$3bo3bo$9bobo$8bo2$9bo$8bo2bo3bo$13bobo
$12bobo3bo$11bobo4b3o$16b5o$14bo5bo$14b2o$21b2o$15b2o4b2o$16b2o4bo$18b
2ob2o$20b2o!
c/4o spaceship, B02/S3H:B026/S03H:

Code: Select all

x = 3, y = 3, rule = B02/S3H
3o$o$bo!
I haven't checked yet which B2 ships are self-complementary. These will have strobing equivalents.

EDIT: c/2o, B03/S02:B036/S02

Code: Select all

x = 43, y = 37, rule = B03/S02H
8bobo$3b2o3bo$2bo2bobobob2o$2bobo8bo$obobo4b3obo$o2b2o6bo2bo$b2ob2o5bo
6b4o$2bo7bo2bo7bo$2bobo7b2o3b2obo$3b2o8bo4bo$5bobo5bo6bo2bo$4bob3o10b
2o2bobo$7bob2o9bobo$7bo6bo6bobo$8b2o3b2o6bobob3o$10bo2bobo7bo3b2o$12b
3o2bo6bo2b3o$13bo8bo4b4o$15b4o2bo5b5o$18bo3b3o3b5o$18bo2b2o8b3o$17b2o
2b3o3bo2bob3o$18bo2b4ob3o2bo2b2o$21b4obo4bobob2o$21b5obo3bo2b4o$22b5o
2b2obobob3o$23b9o4b3obo$24b8o2bo2bo$25b5o3bob3o$26b3o3b2o$33bo$27bo8b
4o$36b5o$37b4obo$38b2o2$39bo!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 35296 spaceships and 1451 oscillators from outer-totalistic rules. You are invited to help!

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 27th, 2022, 6:55 am

There are 16 self-complementary B2H rules. My script returned gliders 14, 21 and 33:

Code: Select all

$ python new-glider.py
>>>B2/S012356H
>>>B26/S12356H
>>>B25/S02356H
>>>B256/S2356H
>>>B24/S01356H
>>>B246/S1356H
#C Glider 21, c/2 orthogonal
#C Discovered by AlephAlpha, 2019
#C
#C B0123456 S0123456 H
#C  --X-X-X  -X-X-XX
#C
x = 9, y = 11, rule = B246/S1356H
2bo$ob2o$2b2o$2bobo$ob5o$b5o$bob5o$4bobo$5b2o$4bob2o$7bo!

>>>B245/S0356H
#C Glider 14, c/2 orthogonal (period 2/2)
#C Discovered by AlephAlpha, 2019
#C
#C B0123456 S0123456 H
#C  --X-X    X--X X
#C
x = 8, y = 8, rule = B245/S0356H
bo$2bo$bo3bo$3b2obo$2ob3o$2bo2bobo2$5bo!

#C Glider 33, c/2 orthogonal (period 2/2)
#C Discovered by AlephAlpha, 2019
#C
#C B0123456 S0123456 H
#C  --X-X    X--X-
#C
x = 12, y = 7, rule = B245/S0356H
5bo$6b2obo$bo3bob2o$2obobo3b2o$4b4o$3bobo2b4o$8b2obo!

>>>B2456/S356H
>>>B23/S01256H
>>>B236/S1256H
>>>B235/S0256H
>>>B2356/S256H
>>>B234/S0156H
>>>B2346/S156H
>>>B2345/S056H
>>>B23456/S56H
>>>
I checked rulespaces for these gliders (I checked both phases for Glider 21, because it's not glide-reflect symmetric). They are endemic.
Glider 14 - B0136/S124H
Glider 21 - B0135/S024H
Glider 33 - B0136/S124H
Also, current version of hex-gliders.db have a little error with bounding box of Glider 21. Corrected string:

Code: Select all

:AlephAlpha, 2019:B246/S1356H:B246/S1356H:2:1:0:8:11:2bo$ob2o$2b2o$2bobo$ob5o$b5o$bob5o$4bobo$5b2o$4bob2o$7bo!
c/4 orthogonal and diagonal spaceships:

Code: Select all

x = 118, y = 19, rule = B0124/S024H
2o37b2o$4o35b4o34b6o$2b3o36b3o35b2obo$b4obo33b4o34b4o31bo$2bob2o4bo30b
o35bob3ob3o26b2o$4b2obo2bo32bobob2o29b4obo29b2o$5b2ob2o2bo33b3o30bobo
32bo$6b2o2bo34b2o2bo31b3o29b3o$7b2o3bo34b2o31bo2bo$5bob2obo34b2o3bo31b
o30b2o$5bob3o37b2o62bo3bo$5b2obo38b2o63b2o2bo$114bobo$113b4o$112bo3bo$
113b2o$115bobo$115bo$117bo!
Edit: updated database, 94 gliders.
hex-gliders.db.txt
(13.57 KiB) Downloaded 4 times
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 28th, 2022, 3:40 am

If I'm not mistaken, at least 3/16 of B2H rules can't have any spaceships.
1) B2/S012H:B2456/S0123456H (2^7=128 rules)
Proof:

Code: Select all

x = 29, y = 10, rule = B2/S012HHistory
9B11.9B$9B11.9B$9B5.F5.9B$9B6.F4.9B$9B3.5F3.9B$9B7.F3.9B$9B7.F3.9B$3B
2C4B11.9B$4.AC3B15.D4B$25.E!
Let lime cell be at the end of the boundary row of spaceship (backend). To make the cell die, 3 alive neighbors are needed (for this reason, rules with S3H are immediately cut off). But then in the next generation yellow cell is alive (which is out of bounding row), so pattern can't shrink. Q.E.D.
2) B23/S01H:B23456/S0123456H (2^8=256 rules)
Proof:

Code: Select all

x = 29, y = 9, rule = B23/S01HHistory
9B11.9B$9B11.9B$9B5.F5.9B$9B6.F4.9B$9B3.5F3.9B$9B7.F3.9B$9B7.F3.9B$2B
F2C4B11.9B$4.AD3B14.ED4B!
Let lime cell be at the end of the boundary row of spaceship (backend). Due to yellow cell from case 1, red cell in generation 0 is dead. So two white cells should be alive (for this reason, rules with S2H are immediately cut off). Regardless of the state of gray cell, yellow cell is alive (which is out of end of bounding row), so pattern can't shrink. Q.E.D.
B2H gliders from current version of hex-gliders.db covers 333 rules out of (2^11-128-256=)1664.
c/5 orthogonal spaceships:
B23/SH:B236/S56H

Code: Select all

x = 10, y = 13, rule = B23/SH
3o$o3bo$o3bo$4b3o$bo4bo$5bob2o$3bo$6bobo$5b3o2$7bo2$9bo!
B235/SH:B235/S56H

Code: Select all

x = 13, y = 11, rule = B235/SH
3o$o3bo$o3bo$4bobo$b4obo$3bobob2o$3b5o2bo$8bo$8bo3bo$12bo$7bo4bo!
Edit: c/3 orthogonal, B24/S246H only

Code: Select all

x = 15, y = 15, rule = B24/S246H
3bo2bo$b2o2bo$b2o3bobo$o2b3o$3bobobo2bobo$bob3obo6bo$obo4b2o5bo$4b5o$
2bo3b2ob2o$8b2o$4bo3bob2o$10bo$4bo2$5b2o!
c/3 orthogonal, B246/S24H:B246/S246H

Code: Select all

x = 18, y = 18, rule = B246/S246H
3b3o$4bo$4b3o$o4b2o$3o4b2o3bo$ob2obobob3o$2b2o3b3o3bobo$4b3ob2ob2obo$
4bob2o9bo$5b3o4bo$5bo$5bobo$4bo2bobo$6bo$7bo$6bo2$8bo!
Edit 2: c/2 orthogonal, B245/S245H:B2456/S2456H

Code: Select all

x = 12, y = 14, rule = B245/S245H
2bo2bo$3ob2o$ob5o$bo4bo$b2obo3bo$3bo4bo$bobo3b2obo$b2obo3bo$3b4o3bo$4b
o$10bo$5b2o3bo$5b2ob2obo$7bo2bo!
B24/S245H:B24/S2456H

Code: Select all

x = 22, y = 22, rule = B24/S245H
9b2o$8b2obo$7bobo$6bob6o$5bo3bob3o$4bo4b3ob4o$3bobo6bo2bobo$2bo8bo3b2o
$2bo9bobobo$2ob4o5bobo3bo$b4o6bo6bo$bo2b2obo2bo6bo$4b2o3bobo6bobo$4b2o
b2o12bo$5b4o9b2o$5bobo2bo6b2ob2o$6bo2bo6bobobo$6bobo2bobo2bo$15bobo$
11b5o$14bo$13bobo!
B246/S245H:B246/S2456H

Code: Select all

x = 14, y = 13, rule = B246/S245H
3b2o$2b2obo$2bob4o$2o2b2o2b2o$b7o$bob3o2bo2bo$9b2o$3b3o4bobo$4bob2o2b
2o$5bo5bo$5b4ob2obo$8bo2b2o$7bobobobo!
Edit 3: updated again, 101 gliders. The second hundred has begun!
hex-gliders.db.txt
101 hexagonal spaceships
(14.68 KiB) Downloaded 3 times
Edit 4: B2 map

Code: Select all

>>>@v
           B B B B B B B B B B B B B B B B
           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                           3 3 3 3 3 3 3 3
                   4 4 4 4 4 4 4 4
               5 5 5 5         5 5 5 5
             6 6     6 6     6 6     6 6
          --------------------------------
S        : . . . . 1 1 1 1 . . . . 1 1 1 1
S      6 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     56 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     5  : . . . . 1 1 1 1 . . . . 1 1 1 1
S    45  : . . . . 1 1 1 1 . . . . 1 1 1 1
S    456 : . . . . 1 1 1 1 . . . . 1 1 1 1
S    4 6 : . . . . 1 1 1 1 . . . . 1 1 1 1
S    4   : . . . . 1 1 1 1 . . . . 1 1 1 1
S   34   : 5 2 3 3 . . . . . . . . . . . .
S   34 6 : 4 2 3 3 . 1 . . . . . . . . . .
S   3456 : 2 1 3 3 . . . . . . . . . . . .
S   345  : 2 1 4 3 . . . . . . . . . . . .
S   3 5  : 2 1 2 2 1 . . . . . . . . . . .
S   3 56 : 2 1 2 2 . . . . . . . . . . . .
S   3  6 : 2 1 2 2 1 . . . . . . . . . . .
S   3    : 2 1 2 2 1 . . . . . . . . . . .
S  23    : 2 1 1 1 . . 1 1 . . . . . . . .
S  23  6 : 2 1 . . . . 1 1 . . . . . . . .
S  23 56 : . . . . . . . . . . . . . . . .
S  23 5  : 1 1 . . . . 1 1 . . . . . . . .
S  2345  : . . . . . . . . . . . . . . . .
S  23456 : . . . . . . . . . . . . . . . .
S  234 6 : . . . . . . . . . . . . . . . .
S  234   : . . . . . . . . . . . . . . . .
S  2 4   : 3 3 1 1 1 1 2 1 . . . . . . . .
S  2 4 6 : 3 3 1 1 1 1 1 1 . . . . . . . .
S  2 456 : 4 3 2 1 1 1 1 1 . . . . . . . .
S  2 45  : 5 3 2 1 1 1 1 1 . . . . . . . .
S  2  5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S  2  56 : 1 1 1 2 1 1 1 1 . . . . . . . .
S  2   6 : 1 1 1 1 2 2 2 2 . . . . . . . .
S  2     : 1 2 1 1 2 2 2 3 . . . . . . . .
S 12     : . . . . . . . . . . . . . . . .
S 12   6 : . . . . . 1 . . . . . . . . . .
S 12  56 : . . 1 . . 1 . . . . . . . . . .
S 12  5  : . . 1 . . 1 . . . . . . . . . .
S 12 45  : . . . . . . . . . . . . . . . .
S 12 456 : . . . . . . . . . . . . . . . .
S 12 4 6 : . . . . . . . . . . . . . . . .
S 12 4   : . . . . . . . . . . . . . . . .
S 1234   : . . . . . . . . . . . . . . . .
S 1234 6 : . . . . . . . . . . . . . . . .
S 123456 : . . . . . . . . . . . . . . . .
S 12345  : . . . . . . . . . . . . . . . .
S 123 5  : . . . . . . . . . . . . . . . .
S 123 56 : . . . . . . . . . . . . . . . .
S 123  6 : . . . . . . . . . . . . . . . .
S 123    : . . . . . . . . . . . . . . . .
S 1 3    : 1 1 1 1 1 1 . . . . . . . . . .
S 1 3  6 : 1 1 1 1 1 1 . . . . . . . . . .
S 1 3 56 : . . . . . 1 1 . . . . . . . . .
S 1 3 5  : . . . . . 1 . . . . . . . . . .
S 1 345  : . . . . 1 1 1 1 . . . . . . . .
S 1 3456 : . . . . 1 1 1 1 . . . . . . . .
S 1 34 6 : . . . . 1 1 1 1 . . . . . . . .
S 1 34   : . . . . 1 1 1 1 . . . . . . . .
S 1  4   : . . . . . . . . . . . . . . . .
S 1  4 6 : . . . . . . . . . . . . . . . .
S 1  456 : . . . . . . . . . . . . . . . .
S 1  45  : . . . . . . . . . . . . . . . .
S 1   5  : . . . . . . . . . . . . . . . .
S 1   56 : . . . . . . . . . . . . . . . .
S 1    6 : . . . . . . . . . . . . . . . .
S 1      : . . . . . . . . . . . . . . . .
S01      : . . . . . . . . . . . . . . . .
S01    6 : . . . . . . . . . . . . . . . .
S01   56 : . . . . . . . . . . . . . . . .
S01   5  : . . . . . . . . . . . . . . . .
S01  45  : . . . . . . . . . . . . . . . .
S01  456 : . . . . . . . . . . . . . . . .
S01  4 6 : . . . . . . . . . . . . . . . .
S01  4   : . . . . . . 1 1 . . . . . . . .
S01 34   : . . . . 1 1 . . . . . . . . . .
S01 34 6 : . . . . 1 1 . . . . . . . . . .
S01 3456 : . . . . . . . . . . . . . . . .
S01 345  : . . . . . . . . . . . . . . . .
S01 3 5  : . . . . . . . . . . . . . . . .
S01 3 56 : . . . . . . . . . . . . . . . .
S01 3  6 : . . . . . . . . . . . . . . . .
S01 3    : . . . . . . . . . . . . . . . .
S0123    : . . . . . . . . . . . . . . . .
S0123  6 : . . . . . . . . . . . . . . . .
S0123 56 : . . . . . . . . . . . . . . . .
S0123 5  : . . . . . . . . . . . . . . . .
S012345  : . . . . . . . . . . . . . . . .
S0123456 : . . . . . . . . . . . . . . . .
S01234 6 : . . . . . . . . . . . . . . . .
S01234   : . . . . . . . . . . . . . . . .
S012 4   : . . . . . . . . . . . . . . . .
S012 4 6 : . . . . . . . . . . . . . . . .
S012 456 : . . . . . . . . . . . . . . . .
S012 45  : . . . . . . . . . . . . . . . .
S012  5  : . . . . . . . . . . . . . . . .
S012  56 : . . . . . . . . . . . . . . . .
S012   6 : . . . . . . . . . . . . . . . .
S012     : . . . . . . . . . . . . . . . .
S0 2     : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2   6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2  56 : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2  5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2 45  : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2 456 : 1 1 1 1 1 1 1 1 . . . . . . . .
S0 2 4 6 : 2 1 1 1 1 1 1 1 . . . . . . . .
S0 2 4   : 3 1 1 1 1 1 1 1 . . . . . . . .
S0 234   : . . . . 1 1 1 1 . . . . . . . .
S0 234 6 : . . . . 1 1 1 1 . . . . . . . .
S0 23456 : . . . . 1 1 1 1 . . . . . . . .
S0 2345  : . . . . 1 1 1 1 . . . . . . . .
S0 23 5  : . . . . 1 1 1 1 . . . . . . . .
S0 23 56 : . . . . 1 1 1 1 . . . . . . . .
S0 23  6 : 1 1 . . 1 1 1 1 . . . . . . . .
S0 23    : 1 1 . . 1 1 1 1 . . . . . . . .
S0  3    : . . . . 1 1 1 1 . . . . . . . .
S0  3  6 : . . . . 1 1 1 1 . . . . . . . .
S0  3 56 : . . . . 1 1 1 1 . . . . . . . .
S0  3 5  : . . . . 1 1 1 1 . . . . . . . .
S0  345  : . . . . 1 1 1 1 . . . . . . . .
S0  3456 : . . . . 1 1 1 1 . . . . . . . .
S0  34 6 : . . . . 1 1 1 1 . . . . . . . .
S0  34   : . . . . 1 1 1 1 . . . . . . . .
S0   4   : . . . . . . . . . . . . . . . .
S0   4 6 : . . . . . . . . . . . . . . . .
S0   456 : . . . . . . . . . . . . . . . .
S0   45  : . . . . . . . . . . . . . . . .
S0    5  : . . . . . . . . . . . . . . . .
S0    56 : . . . . . . . . . . . . . . . .
S0     6 : . . . . . . . . . . . . . . . .
S0       : . . . . . . . . . . . . . . . .
B0 map

Code: Select all

>>>)v
          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S     5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S    45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . .
S  2 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01   5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 . . . . . . . . . . . 1 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contributors:

Code: Select all

>>>a

All discoverers of gliders:

    Discoverer        Total   Partial

    AlephAlpha        36      35.5
    May13             28      27.5
    LaundryPizza03    17      17.0
    muzikbike         7       7.0
    John Cerkan       5       5.0
    wildmyron         3       3.0
    wwei47            2       2.0
    creeperman7002    2       2.0
    Hdjensofjfnen     1       1.0
    137ben            1       1.0

Total: 10 discoverers

Edit 5: fixed db and maps (added missing -H postfix to 2 rulestrings).
Edit 6: after update (101 gliders)
c/5 orthogonal, B25/S4H:B256/S456H

Code: Select all

x = 12, y = 14, rule = B256/S456H
2bobo$bobo$obo3bo$bo$o$4b2o$2bo$5bo$8b2o$5b2o$7bo$7bo$11bo$10bo!
Edit 7: 2c/4 orthogonal, B2/S245H:B2/S2456H

Code: Select all

x = 12, y = 9, rule = B2/S245H
3o$3bob2o2b2o$2bobob2o$2bo2b2obo$7b4o$3b7o$7bobobo$4b2o3bo$8bo!
Edit 8: c/6 orthogonal, B2/S245H:B2/S2456H:

Code: Select all

x = 39, y = 39, rule = B2/S245H
2b2obo$bob4obo$o3bobobo$2o2bobo2b2o$b3ob4o$2o2bo5bo$b4o2b2o$4bobo5b3o$
b2obobo7b2o$3bo$3bobo$16b2obo$7bo$7bo8bo$7b2o9bo$8bo10b2o$11bobo$11bo
8bo$14bo5bo2bo$11bo3bo7bo$15bob2o3bo3bo$24bo$20bo4bobo$18b2o4bobo$21bo
bo$22bo5bo$20bo2bo3b2obo$22bo3bo4bo$25b2obo2bo$29b2o$26bo2bo$27b2o3bo$
31bo2b3obo$33bobob2o$32bobo2bo$32b2o$32bo4bo$33b2obo$32b2o!
The first known c/6 orthogonal spaceship in B0H rulespace, works in B02/S1H only:

Code: Select all

x = 48, y = 48, rule = B02/S1H
6bo2$6b2obo$6bobo$7b2obo$8bob2o$ob2o2bo4bo$2bobo9bo$3b3o2bobo4bo$2bo6b
3o2b4o$4b2o2b5o3bo$5b2o2b4o5b2o$10b4o$12b2o6b2o$7bobo8b5o$8b2o5bo3bo2b
o$9b2o5b2o3b2obo$9bo6bobob4obo$11bo2bo2bo2bob3o$11bo2b2o4b6o$13b2o2b4o
b4o$13b2ob2obobobob3o$14b7o4b3o$17b5o6b3o$16bob3o8bo$17bob4o6b3o$21b2o
9bo$21b2o$23bo8bo$23b3o8bo$23bobo7b3o$25bo7bobo$26bobo5bo$30b2o2bo$29b
2ob3ob2o$30b2o3bo3bo$34bo2b3o$34bob4o$36b6o$35b7o$38b2o$38b2o$44bo2$
42bo2b2o$44bob2o$44b2o$45bo!
Edit 9: NEW SPEED!
2c/5 orthogonal, B2/S245H:B2/S2456H

Code: Select all

x = 55, y = 55, rule = B2/S245H
9bo$7b2ob2o$5b2o2bo$5bo5bo$6bo2bo$2b2o5b2obo$2bobo3bobobo$bo11bo$bo4bo
$obob2o5bo$bo3b2o6b2o$bobo5bo6bo$5b2o9b2ob2o$7bo2bo7b4o$10bo5b2o4bo$
21bo3bo$11b2obo3bo2bo3b2o$12bobo5bo3bo2b2o$13bo2bob3obo3b3o$12b2o4bobo
5b2o2bo$12b2o3b6o3bobo$13bob2o3bo4bo2bo$14bo3bobo3bo2b2obo$24b3o3b3o$
17bo4b3obob2obobo$15b2o4bobo5bobo2b2obo$16bob3o2b2o3b2o2bo2bo$17b3o2bo
6b2o4bo2bo$17b2ob3obobo3bo5bo$24b4o2bo2b3o3b2o$19bo2b2o3b3o4bo$23b3o7b
o$23bo2bo5b2o5bo$24bo4bob2ob3o$25bo3b2o2b2obo$25b3obo3bo3bo$28bo4b2obo
bo3bo$25bo9bo2b4obo$27bo8b2o2b2o2b4o$29bo2bo4bobo3b3o$29bo7b2obo2bo4bo
$37b2o4b4o$36bo6b2ob4o$37bob4o$38b2ob2obobo2bo$38b2obo5b2o$38bo2b2obob
obo$38bo3bo2bobobo2bo$40bobo2b2obo2b2o$42bobo2bo3bo2bo$52bo$48b2ob2o$
47b2ob2o$53bo$49bo4bo!
Edit 10: endemic c/2 orthogonal spaceship:

Code: Select all

x = 34, y = 34, rule = B245/S014H
9bo$8bo$7b2o2b2o$6bo3bobo$9b3obo$8bobob2o$3bo4b4o2bo$2bo6bobob2o$b2o2b
2o2bo4bobo$o3bob3o2bo2b2o$3b4o6bo$2bobob2obo3bo2b3o2bo$2b2obo7bobobob
2o$4b2obo2b3ob3ob3o$6b4o3bobobobo2b2o2bo$9bo2b4o4bob4o$8bo2bobo3b2ob3o
5b2o$11b2obobo2b2o2bo2b2obo$11bobo2bo2bo4b2o2bobo$12b3o2b2o5b4ob2o$12b
2ob3o4b5ob2obo$11bo4bo5b2o2bo2bobo$14b3o3b3o5bob3o$14b2obo2b2o4bo3bo$
15bo2b3o6b2ob2o$15bo2b3o6bo2b3o$14bo2bob3obo3b2o3b2o$17bobo4b3o2b4o$
16bobobobobobobobobo$16b2ob3o5bobob3o$18b2o2b4ob2obobo$20b3ob2obobob3o
$22bo2b8o$26bo2bobo!
Another endemic c/2 orthogonal spaceship:

Code: Select all

x = 39, y = 39, rule = B2456/S014H
9bo$8bo$7b2o2b2o$6bo3bobo$9b3obo$8bobob4o$3bo4b2obob2o$2bo7bobobob2o$b
2o2b2o4b5obo$o3bobo3bob2o4bo$3b3obobo3bo2bo4b2o$2bobobobo3bo5b2ob4o$2b
2obob3obo2b4o2bob2o$4b3ob3o2b3obobo3b2o$5b4o3b4o3bobobobo$5bo2bo3b3o3b
obo3bo$7bo2bobo4bo4b3obo$7b2o3b2o2bo2bo5bo$9bobo3bo6bobo2bo$11bob2o2bo
4bobo2bo$12bo2bo4b3ob2o4bo$10b2o2bo5b2o3bob2o2b2o$10b3o3bob3o3b2o5b2o$
11b4obo8bobobo2b2o$11bobob2ob3obo2bo6bo$14bo2bo2b5o2b4o3bo$16bo11b3ob
2o$18b2obobobo2b2o3bobo$21bo3b7o2bo$23bob5o2bo3bo$20bo4b2obo5bobo$21b
2o5bo5b2o$21b4obo2bo$23bo2b2o6b3o$25bo2bob2obo3bo$27bo3bobo$29b2o2bo4b
o$34bo3bo$36b2o!
Edit 11 (29 April): 4 speeds in B24/S34H

Code: Select all

x = 143, y = 29, rule = B24/S34H
32b2ob3o48bob3obo$28bo3b2ob3o49b3o2b2o$27b5ob5o2bo44b2obo2b3o$26b3ob5o
bobo3bo42bo4b3o3b2o$25b3obobob2o2bo3bo41b2o5b2o3bob2o$31b4o5b3o44b2o5b
4ob2o$bo26b5o4bo4bob2o39bo2bo6bobobo$2o26bo4bo2bo2bobo43b2o2bo4b3o$4o
24bo2b5o2b2o2b2o42bob3o4bob3obo$4o26b3ob2o2bobo3bo41bo3bo8b3o$2b2o28bo
3bo2bo6bo40b2obo11b3o29b3o$4b2o29b2obob4o2bo42bob2o6bo3b2o28b4obo$5bo
25b2o2b2o3bo2bo44b2o2bo10b4o26b2o2bo$4bobo31bobo47b2o3bo12bo26b2o4bo$
39b2obobo2bo41b5o12bo28bo5b2o$7b2o27b3ob2o4bo2bobo40bo16bo24bo4b2o$45b
o7bo37bo3b2o9bo3b2o24bobo$39bo8bo4bo39b3o11b4o27bo$39bo6bo3b4o39b3o13b
o27bo$39bob2obobo48bobo39bo$39bo2bo2b2o2bobobo42b2o13bobo$43b2obo9b2o
39b2o13bo$45bo2bo9bo38b3obo$45bo4bo6b2o43bo$45b3o3bo6b2o39bobo$48b3o
49b3o$51bo51bobo$105bo$106bo!
2c/4o B24/S34H:B2456/S34H
c/3o B24/S34H:B24/S34H
c/4o B24/S34H:B24/S34H
c/5o B24/S34H:B246/S34H
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 29th, 2022, 3:43 am

2 more B2H rulespaces without any spaceships:
3) B234/S0H:B23456/S023456H (2^7=128 rules)

Code: Select all

x = 29, y = 9, rule = B234/S0HHistory
9B11.9B$9B11.9B$9B5.F5.9B$9B6.F4.9B$9B3.5F3.9B$9B7.F3.9B$9B7.F3.9B$2B
2DCF3B11.9B$4.ADF2B15.DE3B!
Let lime cell be at the end of the boundary row of spaceship (backend). In generation 0 (left side), 3 red cells are forced to be dead to prevent birth of cells out of bounds. So white cell is alive (rules with S1H are immediately cut off). Regardless of the state of gray cells, yellow cell is alive, so pattern can't shrink. Q.E.D.
4) B23/S0234H:B2356/S023456H (2^4=16 rules)

Code: Select all

x = 76, y = 16, rule = B23/S0234HHistory
16B14.16B14.16B$16B14.16B14.16B$16B14.16B14.16B$16B14.16B14.16B$16B
14.16B14.16B$16B6.F7.16B6.F7.16B$16B7.F6.16B7.F6.16B$16B4.5F5.16B4.5F
5.16B$16B8.F5.16B8.F5.16B$16B8.F5.16B8.F5.16B$16B14.16B14.16B$16B14.
16B14.16B$16B14.16B14.16B$6B3F7B14.16B14.16B$5B2D2C2D5B14.7B2C7B14.
16B$7.ADC2D4B21.9D21.BE7B!
Let lime cell be at the end of the boundary row of spaceship (backend). Due to case 3, in generation 0 (left side), 3 white cells are forced to be alive. Regardless of the state of gray cells, white cells in generation 1 are alive, yellow cell is alive, so pattern can't permanently shrink. Q.E.D.
c/2 orthogonal spaceship, B24/S23H:B2456/S23H

Code: Select all

x = 12, y = 12, rule = B245/S23H
7bo$7b3o$5b2o$6bo4bo$6bo2b2o$2bo$2b3o3b3o$2o$bo4bo3bo$bo2bobo2bo$4bobo
bobo$3bo!
Updated db, 113 gliders:
hex-gliders.db.txt
113 hexagonal spaceships
(18.66 KiB) Downloaded 2 times
B2H map:

Code: Select all

>>>@v
           B B B B B B B B B B B B B B B B
           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                           3 3 3 3 3 3 3 3
                   4 4 4 4 4 4 4 4
               5 5 5 5         5 5 5 5
             6 6     6 6     6 6     6 6
          --------------------------------
S        : . . . . 1 1 1 1 . . . . 1 1 1 1
S      6 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     56 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     5  : . . . . 1 1 1 1 . . . . 1 1 1 1
S    45  : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    456 : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    4 6 : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    4   : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S   34   : 5 2 3 3 1 1 2 4 . . . . . . . .
S   34 6 : 4 2 3 3 . 1 . . . . . . . . . .
S   3456 : 2 1 3 3 . . . . . . . . . . . .
S   345  : 2 1 4 3 . . . . . . . . . . . .
S   3 5  : 2 1 2 2 1 . . . . . . . . . . .
S   3 56 : 2 1 2 2 . . . . . . . . . . . .
S   3  6 : 2 1 2 2 1 . . . . . . . . . . .
S   3    : 2 1 2 2 1 . . . . . . . . . . .
S  23    : 2 1 1 1 1 1 1 1 . . . . . . . .
S  23  6 : 2 1 . . . . 1 1 . . . . . . . .
S  23 56 : . . . . . . . . . . . . . . . .
S  23 5  : 1 1 . . . . 1 1 . . . . . . . .
S  2345  : . . . . . . . . . . . . . . . .
S  23456 : . . . . . . . . . . . . . . . .
S  234 6 : . . . . . . . . . . . . . . . .
S  234   : . . . . . . . . . . . . . . . .
S  2 4   : 3 3 1 1 1 1 2 1 . . . . . . . .
S  2 4 6 : 3 3 1 1 1 1 1 1 . . . . . . . .
S  2 456 : 7 3 2 1 1 1 1 1 . . . . . . . .
S  2 45  : 8 3 2 1 1 1 1 1 . . . . . . . .
S  2  5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S  2  56 : 1 1 1 2 1 1 1 1 . . . . . . . .
S  2   6 : 1 1 1 1 2 2 2 2 . . . . . . . .
S  2     : 1 2 1 1 2 2 2 3 . . . . . . . .
S 12     : . . . . . . . . . . . . . . . .
S 12   6 : . . . . . 1 . . . . . . . . . .
S 12  56 : . . 1 . . 1 . . . . . . . . . .
S 12  5  : . . 1 . . 1 . . . . . . . . . .
S 12 45  : . . . . . . . . . . . . . . . .
S 12 456 : . . . . . . . . . . . . . . . .
S 12 4 6 : . . . . . . . . . . . . . . . .
S 12 4   : . . . . . . . . . . . . . . . .
S 1234   : . . . . . . . . . . . . . . . .
S 1234 6 : . . . . . . . . . . . . . . . .
S 123456 : . . . . . . . . . . . . . . . .
S 12345  : . . . . . . . . . . . . . . . .
S 123 5  : . . . . . . . . . . . . . . . .
S 123 56 : . . . . . . . . . . . . . . . .
S 123  6 : . . . . . . . . . . . . . . . .
S 123    : . . . . . . . . . . . . . . . .
S 1 3    : 1 1 1 1 1 1 . . . . . . . . . .
S 1 3  6 : 1 1 1 1 1 1 . . . . . . . . . .
S 1 3 56 : . . . . . 1 1 . . . . . . . . .
S 1 3 5  : . . . . . 1 . . . . . . . . . .
S 1 345  : . . . . 1 1 1 1 . . . . . . . .
S 1 3456 : . . . . 1 1 1 1 . . . . . . . .
S 1 34 6 : . . . . 1 1 1 1 . . . . . . . .
S 1 34   : . . . . 1 1 1 1 . . . . . . . .
S 1  4   : . . . . . . . . . . . . . . . .
S 1  4 6 : . . . . . . . . . . . . . . . .
S 1  456 : . . . . . . . . . . . . . . . .
S 1  45  : . . . . . . . . . . . . . . . .
S 1   5  : . . . . . . . . . . . . . . . .
S 1   56 : . . . . . . . . . . . . . . . .
S 1    6 : . . . . . . . . . . . . . . . .
S 1      : . . . . . . . . . . . . . . . .
S01      : . . . . . . . .
S01    6 : . . . . . . . .
S01   56 : . . . . . . . .
S01   5  : . . . . . . . .
S01  45  : . . . . . . . .
S01  456 : . . . . . . . .
S01  4 6 : . . . . . . . .
S01  4   : . . . . 1 1 1 1
S01 34   : . . . . 1 1 . .
S01 34 6 : . . . . 1 1 . .
S01 3456 : . . . . . . . .
S01 345  : . . . . . . . .
S01 3 5  : . . . . . . . .
S01 3 56 : . . . . . . . .
S01 3  6 : . . . . . . . .
S01 3    : . . . . . . . .
S0123    :
S0123  6 :
S0123 56 :
S0123 5  :
S012345  :
S0123456 :
S01234 6 :
S01234   :
S012 4   :
S012 4 6 :
S012 456 :
S012 45  :
S012  5  :
S012  56 :
S012   6 :
S012     :
S0 2     : 1 1 1 1 1 1 1 1         . . . .
S0 2   6 : 1 1 1 1 1 1 1 1         . . . .
S0 2  56 : 1 1 1 1 1 1 1 1         . . . .
S0 2  5  : 1 1 1 1 1 1 1 1         . . . .
S0 2 45  : 1 1 1 1 1 1 1 1         . . . .
S0 2 456 : 1 1 1 1 1 1 1 1         . . . .
S0 2 4 6 : 2 1 1 1 1 1 1 1         . . . .
S0 2 4   : 3 1 1 1 1 1 1 1         . . . .
S0 234   : . . . . 1 1 1 1
S0 234 6 : . . . . 1 1 1 1
S0 23456 : . . . . 1 1 1 1
S0 2345  : . . . . 1 1 1 1
S0 23 5  : . . . . 1 1 1 1         . . . .
S0 23 56 : . . . . 1 1 1 1         . . . .
S0 23  6 : 1 1 . . 1 1 1 1         . . . .
S0 23    : 1 1 . . 1 1 1 1         . . . .
S0  3    : . . . . 1 1 1 1         . . . .
S0  3  6 : . . . . 1 1 1 1         . . . .
S0  3 56 : . . . . 1 1 1 1         . . . .
S0  3 5  : . . . . 1 1 1 1         . . . .
S0  345  : . . . . 1 1 1 1         . . . .
S0  3456 : . . . . 1 1 1 1         . . . .
S0  34 6 : . . . . 1 1 1 1         . . . .
S0  34   : . . . . 1 1 1 1         . . . .
S0   4   : . . . . . . . .         . . . .
S0   4 6 : . . . . . . . .         . . . .
S0   456 : . . . . . . . .         . . . .
S0   45  : . . . . . . . .         . . . .
S0    5  : . . . . . . . .         . . . .
S0    56 : . . . . . . . .         . . . .
S0     6 : . . . . . . . .         . . . .
S0       : . . . . . . . .         . . . .
B0H map:

Code: Select all

          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S     5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S    45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S   3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . .
S  2 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01   5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2  5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 . . . . . . . . . . . 1 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3 5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  345 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contributors:

Code: Select all

>>>a

All discoverers of gliders:

    Discoverer        Total   Partial

    May13             40      39.5
    AlephAlpha        36      35.5
    LaundryPizza03    17      17.0
    muzikbike         7       7.0
    John Cerkan       5       5.0
    wildmyron         3       3.0
    wwei47            2       2.0
    creeperman7002    2       2.0
    Hdjensofjfnen     1       1.0
    137ben            1       1.0

Total: 10 discoverers

B2H spaceships covers 368 rules out of (1664-128-16=)1520 (24.21%).
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
ihatecorderships
Posts: 295
Joined: April 11th, 2021, 12:54 pm
Location: Falls Church, VA

Re: Outer-totalistic hexagonal rules with spaceships

Post by ihatecorderships » April 29th, 2022, 8:38 am

How do I search for hexagonal ships in RLS?
For example, when I set the settings to
Rule= B245/S23H
Width=12
Height=12
Period=2
dx=0
dy=1
Diagonal width=0
Transformation=ld
Symmetry=D2|(c1 also doesn't work)
to try and find the c/2 orthogonal spaceship in the above post, RLS quickly returns, No more result.
However, when I increase the bounding box size to 20x20, the spaceship is found.
Another c/2 in the same rule:

Code: Select all

x = 20, y = 20, rule = B245/S23H
..o.................$
.ooo................$
..o.oo..............$
..o..oo.............$
.oo.ooo.oo..........$
....o.o..o..........$
.o...oo.o.o.oo......$
...oo..ooooooooo....$
.......oooooooooo...$
.....o.o..o....oo...$
......o.....o...o...$
.....oo.....o...oo..$
.......o.....o.oo...$
.....ooooo..o.......$
......ooooo.....o...$
......o..oo.........$
......o..oo.........$
..........oo........$
..........o.........$
....................!
Also, what is the difference between orthogonal and diagonal on a hexagonal grid?
-- Kalan Warusa
Notable Discoveries: none as of yet :(

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 29th, 2022, 9:28 am

ihatecorderships wrote:
April 29th, 2022, 8:38 am
Also, what is the difference between orthogonal and diagonal on a hexagonal grid?
See this post.
ihatecorderships wrote:
April 29th, 2022, 8:38 am
How do I search for hexagonal ships in RLS?
Most often for orthogonal ships I set dx=1 and dy=1 (or dx=2 and dy=2 for 2c/5 orthogonal). For diagonal spaceships, I set dx=1 and dy=2. Unfortunately, it's a bit tricky to search for symmetric diagonal spaceships. But if there was a script that translates hexagonal rules into MAP rulestring, it would be much easier to do such searches.
I discovered more spaceships. To save time, I'm just posting an updated db (122 gliders):
hex-gliders.db.txt
122 hexagonal spaceships
(20.59 KiB) Downloaded 3 times
If you are interested in c/2 orthogonal searches, here's B2H map for c/2 orthogonal:

Code: Select all

$ python new-glider.py
>>>@c/2o
           B B B B B B B B B B B B B B B B
           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                           3 3 3 3 3 3 3 3
                   4 4 4 4 4 4 4 4
               5 5 5 5         5 5 5 5
             6 6     6 6     6 6     6 6
          --------------------------------
S        : . . . . . . . . . . . . . . . .
S      6 : . . . . . . . . . . . . . . . .
S     56 : . . . . . . . . . . . . . . . .
S     5  : . . . . . . . . . . . . . . . .
S    45  : . . . . . . . . . . . . . . . .
S    456 : . . . . . . . . . . . . . . . .
S    4 6 : . . . . . . . . . . . . . . . .
S    4   : . . . . . . . . . . . . . . . .
S   34   : 2 2 2 2 1 1 1 1 . . . . . . . .
S   34 6 : 2 2 2 2 . . . . . . . . . . . .
S   3456 : . . . . . . . . . . . . . . . .
S   345  : . . . . . . . . . . . . . . . .
S   3 5  : . . . . . . . . . . . . . . . .
S   3 56 : . . . . . . . . . . . . . . . .
S   3  6 : . . . . . . . . . . . . . . . .
S   3    : . . . . . . . . . . . . . . . .
S  23    : 4 4 1 1 1 1 3 3 . . . . . . . .
S  23  6 : 2 2 . . . . 1 1 . . . . . . . .
S  23 56 : . . . . . . . . . . . . . . . .
S  23 5  : 1 1 . . . . 1 1 . . . . . . . .
S  2345  : . . . . . . . . . . . . . . . .
S  23456 : . . . . . . . . . . . . . . . .
S  234 6 : . . . . . . . . . . . . . . . .
S  234   : . . . . . . . . . . . . . . . .
S  2 4   : . . . . 1 2 1 1 . . . . . . . .
S  2 4 6 : . . . . 1 2 . . . . . . . . . .
S  2 456 : 1 . 1 . 1 2 2 1 . . . . . . . .
S  2 45  : 1 . 1 . 1 2 1 1 . . . . . . . .
S  2  5  : . . . . 2 2 2 2 . . . . . . . .
S  2  56 : . . . . 3 3 2 2 . . . . . . . .
S  2   6 : . . . . 1 2 1 1 . . . . . . . .
S  2     : . . . . 1 2 1 1 . . . . . . . .
S 12     : . . . . . . . . . . . . . . . .
S 12   6 : . . . . . 1 . . . . . . . . . .
S 12  56 : . . 1 . . 1 . . . . . . . . . .
S 12  5  : . . 1 . . 1 . . . . . . . . . .
S 12 45  : . . . . . . . . . . . . . . . .
S 12 456 : . . . . . . . . . . . . . . . .
S 12 4 6 : . . . . . . . . . . . . . . . .
S 12 4   : . . . . . . . . . . . . . . . .
S 1234   : . . . . . . . . . . . . . . . .
S 1234 6 : . . . . . . . . . . . . . . . .
S 123456 : . . . . . . . . . . . . . . . .
S 12345  : . . . . . . . . . . . . . . . .
S 123 5  : . . . . . . . . . . . . . . . .
S 123 56 : . . . . . . . . . . . . . . . .
S 123  6 : . . . . . . . . . . . . . . . .
S 123    : . . . . . . . . . . . . . . . .
S 1 3    : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3  6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3 56 : 2 2 1 1 1 2 2 1 . . . . . . . .
S 1 3 5  : 1 1 1 1 1 2 1 1 . . . . . . . .
S 1 345  : . . . . 1 1 1 1 . . . . . . . .
S 1 3456 : . . . . 1 1 1 1 . . . . . . . .
S 1 34 6 : . . . . 1 1 1 1 . . . . . . . .
S 1 34   : . . . . 1 1 1 1 . . . . . . . .
S 1  4   : . . . . . . . . . . . . . . . .
S 1  4 6 : . . . . . . . . . . . . . . . .
S 1  456 : . . . . . . . . . . . . . . . .
S 1  45  : . . . . . . . . . . . . . . . .
S 1   5  : . . . . . . . . . . . . . . . .
S 1   56 : . . . . . . . . . . . . . . . .
S 1    6 : . . . . . . . . . . . . . . . .
S 1      : . . . . . . . . . . . . . . . .
S01      : . . . . . . . .
S01    6 : . . . . . . . .
S01   56 : . . . . . . . .
S01   5  : . . . . . . . .
S01  45  : . . . . . . . .
S01  456 : . . . . . . . .
S01  4 6 : . . . . . . . .
S01  4   : . . . . 1 1 1 1
S01 34   : . . . . 1 1 . .
S01 34 6 : . . . . 1 1 . .
S01 3456 : . . . . . . . .
S01 345  : . . . . . . . .
S01 3 5  : . . . . . . . .
S01 3 56 : . . . . . . . .
S01 3  6 : . . . . . . . .
S01 3    : . . . . . . . .
S0123    :
S0123  6 :
S0123 56 :
S0123 5  :
S012345  :
S0123456 :
S01234 6 :
S01234   :
S012 4   :
S012 4 6 :
S012 456 :
S012 45  :
S012  5  :
S012  56 :
S012   6 :
S012     :
S0 2     : 1 1 1 1 1 1 1 1         . . . .
S0 2   6 : 1 1 1 1 1 1 1 1         . . . .
S0 2  56 : 1 1 1 1 1 1 1 1         . . . .
S0 2  5  : 1 1 1 1 1 1 1 1         . . . .
S0 2 45  : 1 1 2 1 1 2 1 1         . . . .
S0 2 456 : 1 1 2 1 1 2 1 1         . . . .
S0 2 4 6 : 1 1 1 2 1 1 1 1         . . . .
S0 2 4   : 1 1 1 1 1 1 1 1         . . . .
S0 234   : . . . . 1 1 1 1
S0 234 6 : . . . . 1 1 1 1
S0 23456 : . . . . 1 1 1 1
S0 2345  : . . . . 1 1 1 1
S0 23 5  : . . . . 1 1 1 1         . . . .
S0 23 56 : . . . . 1 1 1 1         . . . .
S0 23  6 : 1 1 . . 1 1 1 1         . . . .
S0 23    : 1 1 . . 1 1 1 1         . . . .
S0  3    : . . . . 1 1 1 1         . . . .
S0  3  6 : . . . . 1 1 1 1         . . . .
S0  3 56 : . . . . 2 2 2 2         . . . .
S0  3 5  : . . . . 2 2 2 2         . . . .
S0  345  : . . . . 2 2 2 2         . . . .
S0  3456 : . . . . 2 2 2 2         . . . .
S0  34 6 : . . . . 1 1 1 1         . . . .
S0  34   : . . . . 1 1 1 1         . . . .
S0   4   : . . . . . . . .         . . . .
S0   4 6 : . . . . . . . .         . . . .
S0   456 : . . . . . . . .         . . . .
S0   45  : . . . . . . . .         . . . .
S0    5  : . . . . . . . .         . . . .
S0    56 : . . . . . . . .         . . . .
S0     6 : . . . . . . . .         . . . .
S0       : . . . . . . . .         . . . .

>>>
Edit: c/4 and c/5 diagonal spaceships, currently trying to reduce:

Code: Select all

x = 61, y = 61, rule = B24/S3H
2bo$2bo$2o2b2o$5b2o2bo$2bob2ob3obo$2b3obobobo$3bobo4b3o$4bo4bo2bob2o$
4b2o3bobob2o$3b2o2b2obob2obobo$5b2o2bo6b2o$4bobobo6b3o$6b2obo7bobo$8b
2o7bob3o$7b2o10bo$7bobobo7bo$10b2o4bo2b4o$9b5o3bo3b2o$18bo$12b5o2b2obo
bo$13bo2bo2bobo$13bo2b2o2bo2bobo$16b2obo6bob2o$21bo2bobobo$19bo3bo4bo$
21bo4bo2bo$22b2ob2ob2o$27b2o4bo$22b3ob2o2b2obobo$22bo2b2o3bob4o$28b2o
2b2o2b2o$28bo4b4o$29b2ob2o3bo$27b6obo3b2o$29bobobobo2b3o$28b2obo2bo5b
3o$30b2o6bob2o$30bobo7bob2o$33b2obobo2b3o$33b2o4b4o4bo$34b4obo4bobo$
35b2ob2o2bo2bob2obo$35bob3obo$37b2o10bo$40bo3b2ob2obo5bo$41bo2bo6bob4o
$40bo5b3obo4bobo$39bobo2bobo2bo7b2o$41bo2bobobo10b2o$43bo3bobo$41bo2bo
bo$45bo2$45bo$45bo$45b2o$44b2o$46b2o$47bo$48bo$48bo!

Code: Select all

x = 91, y = 91, rule = B24/S3456H
6bo$8bo$4b4obo2bo$6bo5bobo$2bo3b2o4b2o$2bo8bo4bo$ob3o8bo$2bobo7b2o$bo
12b2o$2bo9bo3bo$11b2o2bo$5bo4bo4bo3bo$2b3o2bob2obob2o3bobo$4bob2o5bob
2o2b2o$3bo4bo3bo2bo5bo$8bob5o3b2o2bobo$5bo3bo3bo10bobo$20b3o2bo$15bo
12bo$11b3obo$13bo3bo3b2obobo$12bobo2bo2b2o6bo$15bobo2bobo3bo2$15b2o3bo
5bobo$17bo8bobob2ob2o$16bo3bobob2ob3obo2bo$26bo4bo2b2o$18bo2bo2b3obobo
2bo$26bo6b3o$25bo2bobo$25b3o10bo$36b2o2bo$25bo2b2o8bo3bo$25b3obo7b2o2b
obo$27bobo9bo3b3o$32bo6bobo$32bobo9bo$31bob2o$35b2o8bo$32bo12bo3bo$34b
obo10b2o$33bo$34b2o13b2o$35bobo13bo$35bo3b2o9bob2o$55bo$41bo9bo2b2o$
41bo8bo2b2o$40bo2bo8b2o$43bobo2bo3bo2b4o$44bo2bo6bob3o$45bo3b2o3b3o$
45bo2b2o9bo$47b2o2b2o4bo2bo$46b2o2bobo6bo3bo$50b3o8b2ob2o$50b2o2bo6bob
2o$50b2o9bo3b2o$53bobo8bo$54bo11bo$56b3o$56bo7bo$55bobo7bo$56b2obo2bo
2bo2bo$56bobo4b2ob2o$58bobo4bo3bo$65bo5bo3b2o$64bo5bob3o$66bo9bo$68bo
2b2o5bo2bo$67bo2bo4bobo2bo$68bobo3bo6b2o$68bo6bo$68bo3bo2b2o6bo$67bo3b
ob3o7bo$67bobo4bo10bo$71bo5b2o6b2o$70bo6bo2bo6b2o$86b2o$71bo6bo9bo$70b
obo13bo$72bo15b3o$74b2o10b2obo$86bobo$76b2o10bo$77bobobob2o$78b2o3bo$
78bobobob2o$82b2o$82bo!
Edit 2: reduction of c/5 orthogonal spaceship:

Code: Select all

x = 87, y = 87, rule = B24/S3456H
6bo$8bo$4b4obo2bo$6bo5bobo$2bo3b2o4b2o$2bo8bo4bo$ob3o8bo$2bobo7b2o$bo
12b2o$2bo9bo3bo$11b2o2bo$5bo4bo4bo3bo$2b3o2bob2obob2o3bobo$4bob2o5bob
2o2b2o$3bo4bo3bo2bo5bo$8bob5o3b2o2bobo$5bo3bo3bo10bobo$20b3o2bo$15bo
12bo$11b3obo$13bo3bo3b2obobo$12bobo2bo2b2o6bo$15bobo2bobo3bo2$15b2o3bo
5bobo$17bo8bobob2ob2o$16bo3bobob2ob3obo2bo$26bo4bo2b2o$18bo2bo2b3obobo
2bo$26bo6b3o$25bo2bobo$25b3o10bo$36b2o2bo$25bo2b2o8bo3bo$25b3obo7b2o2b
obo$27bobo9bo3b3o$32bo6bobo$32bobo9bo$31bob2o$35b2o8bo$32bo12bo3bo$34b
obo10b2o$33bo$34b2o13b2o$35bobo13bo$35bo3b2o9bob2o$55bo$41bo9bo2b2o$
41bo8bo2b2o$40bo2bo8b2o$43bobo2bo3bo2b4o$44bo2bo6bob3o$45bo3b2o3b3o$
45bo2b2o9bo$47b2o2b2o4bo2bo$46b2o2bobo6bo3bo$50b3o8b2ob2o$50b2o2bo6bob
2o$50b2o9bo3b2o$53bobo8bo$54bo11bo$56b3o$56bo7bo$55bobo7bo$56b2obo2bo
2bo2bo$56bobo4b2ob2o$58bobo4bo4bo$65bo4bo2bo$64bo7bo$72bob2o$66b2o6bo
4bo$76b2o2bo$68b2o6bo2bobo$67bo9bo3b3o$69b2o5b2o5bo$69bo8bobo$71b2obo
3b2o$71bob2o5bobobo$75b2o$70bobo3bo6b4o$71bo3bobo3bobo2bo$72b2o6bo2bo$
73bo3bo4bo$73b2o4b3o$77bobo$79bo$79b2o!
Edit 3: 129 gliders:
hex-gliders.db.txt
129 hexagonal spaceships
(23.28 KiB) Downloaded 2 times
New B2H c/2o map:

Code: Select all

>>>@c/2o
           B B B B B B B B B B B B B B B B
           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                           3 3 3 3 3 3 3 3
                   4 4 4 4 4 4 4 4
               5 5 5 5         5 5 5 5
             6 6     6 6     6 6     6 6
          --------------------------------
S        : . . . . . . . . . . . . . . . .
S      6 : . . . . . . . . . . . . . . . .
S     56 : . . . . . . . . . . . . . . . .
S     5  : . . . . . . . . . . . . . . . .
S    45  : . . . . . . . . . . . . . . . .
S    456 : . . . . . . . . . . . . . . . .
S    4 6 : . . . . . . . . . . . . . . . .
S    4   : . . . . . . . . . . . . . . . .
S   34   : 2 2 2 2 1 1 1 1 . . . . . . . .
S   34 6 : 2 2 2 2 . . . . . . . . . . . .
S   3456 : . . . . . . . . . . . . . . . .
S   345  : . . . . . . . . . . . . . . . .
S   3 5  : . . . . . . . . . . . . . . . .
S   3 56 : . . . . . . . . . . . . . . . .
S   3  6 : . . . . . . . . . . . . . . . .
S   3    : . . . . . . . . . . . . . . . .
S  23    : 4 4 1 1 1 1 3 3 . . . . . . . .
S  23  6 : 2 2 . . . . 1 1 . . . . . . . .
S  23 56 : . . . . . . . . . . . . . . . .
S  23 5  : 1 1 . . . . 1 1 . . . . . . . .
S  2345  : . . . . . . . . . . . . . . . .
S  23456 : . . . . . . . . . . . . . . . .
S  234 6 : . . . . . . . . . . . . . . . .
S  234   : . . . . . . . . . . . . . . . .
S  2 4   : . . . . 1 2 1 1 . . . . . . . .
S  2 4 6 : . . . . 1 2 . . . . . . . . . .
S  2 456 : 1 . 1 . 1 2 2 1 . . . . . . . .
S  2 45  : 1 . 1 . 1 2 1 1 . . . . . . . .
S  2  5  : . . . . 2 2 2 2 . . . . . . . .
S  2  56 : . . . . 3 3 2 2 . . . . . . . .
S  2   6 : . . . . 1 2 1 1 . . . . . . . .
S  2     : . . . . 1 2 1 1 . . . . . . . .
S 12     : . . 1 1 1 1 . . . . . . . . . .
S 12   6 : . . 1 1 1 2 . . . . . . . . . .
S 12  56 : . . 2 1 1 2 . . . . . . . . . .
S 12  5  : . . 2 1 2 2 . . . . . . . . . .
S 12 45  : . . . . . . . . . . . . . . . .
S 12 456 : . . . . . . . . . . . . . . . .
S 12 4 6 : . . . . . . . . . . . . . . . .
S 12 4   : . . . . . . . . . . . . . . . .
S 1234   : . . . . . . . . . . . . . . . .
S 1234 6 : . . . . . . . . . . . . . . . .
S 123456 : . . . . . . . . . . . . . . . .
S 12345  : . . . . . . . . . . . . . . . .
S 123 5  : . . . . . . . . . . . . . . . .
S 123 56 : . . . . . . . . . . . . . . . .
S 123  6 : . . . . . . . . . . . . . . . .
S 123    : . . . . . . . . . . . . . . . .
S 1 3    : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3  6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3 56 : 2 2 1 1 1 2 2 1 . . . . . . . .
S 1 3 5  : 1 1 1 1 1 2 1 1 . . . . . . . .
S 1 345  : . . . . 1 1 1 1 . . . . . . . .
S 1 3456 : . . . . 1 1 1 1 . . . . . . . .
S 1 34 6 : . . . . 1 1 1 1 . . . . . . . .
S 1 34   : . . . . 1 1 1 1 . . . . . . . .
S 1  4   : . . . . . . . . . . . . . . . .
S 1  4 6 : . . . . . . . . . . . . . . . .
S 1  456 : . . . . . . . . . . . . . . . .
S 1  45  : . . . . . . . . . . . . . . . .
S 1   5  : . . . . . . . . . . . . . . . .
S 1   56 : . . . . . . . . . . . . . . . .
S 1    6 : . . . . . . . . . . . . . . . .
S 1      : . . . . . . . . . . . . . . . .
S01      : . . . . . . . .
S01    6 : . . . . . . . .
S01   56 : . . . . . . . .
S01   5  : . . . . . . . .
S01  45  : . . . . . . . .
S01  456 : . . . . . . . .
S01  4 6 : . . . . . . . .
S01  4   : . . . . 1 1 1 1
S01 34   : . . . . 1 1 . .
S01 34 6 : . . . . 1 1 . .
S01 3456 : . . . . . . . .
S01 345  : . . . . . . . .
S01 3 5  : . . . . . . . .
S01 3 56 : . . . . . . . .
S01 3  6 : . . . . . . . .
S01 3    : . . . . . . . .
S0123    :
S0123  6 :
S0123 56 :
S0123 5  :
S012345  :
S0123456 :
S01234 6 :
S01234   :
S012 4   :
S012 4 6 :
S012 456 :
S012 45  :
S012  5  :
S012  56 :
S012   6 :
S012     :
S0 2     : 1 1 1 1 1 1 1 1         . . . .
S0 2   6 : 1 1 1 1 1 1 1 1         . . . .
S0 2  56 : 1 1 1 1 1 1 1 1         . . . .
S0 2  5  : 1 1 1 1 1 1 1 1         . . . .
S0 2 45  : 1 1 2 1 1 2 1 1         . . . .
S0 2 456 : 1 1 2 1 1 2 1 1         . . . .
S0 2 4 6 : 1 1 1 2 1 1 1 1         . . . .
S0 2 4   : 1 1 1 1 1 1 1 1         . . . .
S0 234   : . . . . 1 1 1 1
S0 234 6 : . . . . 1 1 1 1
S0 23456 : . . . . 1 1 1 1
S0 2345  : . . . . 1 1 1 1
S0 23 5  : . . . . 1 1 1 1         . . . .
S0 23 56 : . . . . 1 1 1 1         . . . .
S0 23  6 : 1 1 . . 1 1 1 1         . . . .
S0 23    : 1 1 . . 1 1 1 1         . . . .
S0  3    : . . . . 1 1 1 1         . . . .
S0  3  6 : . . . . 1 1 1 1         . . . .
S0  3 56 : . . . . 2 2 2 2         . . . .
S0  3 5  : . . . . 2 2 2 2         . . . .
S0  345  : . . . . 2 2 2 2         . . . .
S0  3456 : . . . . 2 2 2 2         . . . .
S0  34 6 : . . . . 1 1 1 1         . . . .
S0  34   : . . . . 1 1 1 1         . . . .
S0   4   : . . . . . . . .         . . . .
S0   4 6 : . . . . . . . .         . . . .
S0   456 : . . . . . . . .         . . . .
S0   45  : . . . . . . . .         . . . .
S0    5  : . . . . . . . .         . . . .
S0    56 : . . . . . . . .         . . . .
S0     6 : . . . . . . . .         . . . .
S0       : . . . . . . . .         . . . .
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
ihatecorderships
Posts: 295
Joined: April 11th, 2021, 12:54 pm
Location: Falls Church, VA

Re: Outer-totalistic hexagonal rules with spaceships

Post by ihatecorderships » April 29th, 2022, 1:21 pm

c/2d in B245(6)/S1456:

Code: Select all

x = 26, y = 22, rule = B245/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b11o
$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2obo$
6b4o2bob3o4bo$6b11obo3bo$8b10ob4o$10b9o3bo$12b8o2bobo$14b5o2bob2o$16b
3o2bo3bo$18bo$21bo!
Edit: c/2d in B24(6)/S1456

Code: Select all

x = 19, y = 19, rule = B246/S1456H
9bo$8bob2o$6b3o$6b5ob2o$4b2ob4o3bobo$3bob7obo$2b2ob2ob7o$bo3b3ob5obo$
2b4ob8ob2o$7obo3b3obo$ob6o3b2o$2bob5o6bo2bo$bobob4obo2bo$3b7o$4bob4ob
o$3b2o$4bobobobo$9bo$8bobo!
-- Kalan Warusa
Notable Discoveries: none as of yet :(

ZackBuildit777
Posts: 55
Joined: September 26th, 2021, 9:22 pm
Location: tennessee

Re: Outer-totalistic hexagonal rules with spaceships

Post by ZackBuildit777 » April 29th, 2022, 3:42 pm

ihatecorderships wrote:
April 29th, 2022, 1:21 pm
c/2d in B245(6)/S1456:

Code: Select all

x = 26, y = 22, rule = B245/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b11o
$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2obo$
6b4o2bob3o4bo$6b11obo3bo$8b10ob4o$10b9o3bo$12b8o2bobo$14b5o2bob2o$16b
3o2bo3bo$18bo$21bo!
Edit: c/2d in B24(6)/S1456

Code: Select all

x = 19, y = 19, rule = B246/S1456H
9bo$8bob2o$6b3o$6b5ob2o$4b2ob4o3bobo$3bob7obo$2b2ob2ob7o$bo3b3ob5obo$
2b4ob8ob2o$7obo3b3obo$ob6o3b2o$2bob5o6bo2bo$bobob4obo2bo$3b7o$4bob4ob
o$3b2o$4bobobobo$9bo$8bobo!
those are both c/2o orthogonal ships, not diagonal

Code: Select all

x = 67, y = 31, rule = B246/S1456HHistory
4D.3D.4D.D2.D.4D14.3D.4D2.4D.4D$D2.D.D2.D2.D2.D2.D.D2.D14.D2.D2.D3.D2.
D.D$D2.D.4D2.D2.4D.D2.D14.D2.D2.D3.4D.D.2D$D2.D.D.D3.D2.D2.D.D2.D14.D
.2D2.D3.D2.D.D2.D$4D.D2.D2.D2.D2.D.4D14.3D2.4D.D2.D2.3D7$9.D$10.D9.A31.
D$11.D7.A.2A29.2D$12.D4.3A33.D$13.D3.5A.2A28.2D$14.D2A.4A3.A.A26.D$14.
AD7A.A29.2D$13.2A.CA.7A29.D$12.A3.ACA.5A.A28.2D$13.4A.C7A.2A27.D$11.7A
.C3.3A.A28.2D$11.A.6A.D.2A33.D$13.A.5A.D4.A2.A27.2D$12.A.A.4A.AD.A33.
D$14.7A2.D34.2D$15.A.4A.A.D34.D$14.2A$15.A.A.A.A44.C$20.A$19.A.A!
contact me if ya want help in designing any sort of really weird uncommon types of rules that most people don't like/work with, I'd love to help.

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 29th, 2022, 8:29 pm

ihatecorderships wrote:
April 29th, 2022, 1:21 pm
c/2d in B245(6)/S1456:

Code: Select all

x = 26, y = 22, rule = B245/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b11o
$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2obo$
6b4o2bob3o4bo$6b11obo3bo$8b10ob4o$10b9o3bo$12b8o2bobo$14b5o2bob2o$16b
3o2bo3bo$18bo$21bo!
Interestingly, this spaceship does not quite work in B2456/S1456, it just turns into another spaceship:

Code: Select all

x = 56, y = 37, rule = B2456/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b
11o$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2ob
o$6b4o2bob3o4bo$6b11obo3bo$8b10ob4o12bo$10b9o3bo11b2obo$12b8o2bobo13b
3o$14b5o2bob2o8b2o3b3obo$16b3o2bo3bo8b2ob5ob2o$18bo13bo2b9o2bo$21bo9bo
2bo2b10o$30bobo2bo3b11o$34bo6b7o2bo$34b2ob2o4b5o$33b3ob3o5b3o2b2o$34bo
2b5o5b5o$34bo2b4o2bo5b2obo$36b7ob3o4bo$36b11obo3bo$38b10ob4o$40b9o3bo$
42b8o2bobo$44b5o2bob2o$46b3o2bo3bo$48bo$51bo!
Also, as ZackBuildit777 said, these spaceships are orthogonal.
I found missing c/2 orthogonal spaceships for all rules from B2/S1H:B2456/S1456H. Collection (20 spaceships):

Code: Select all

:Kalan Warusa, 2022:B245/S1456H:B2456/S1456H:2:0:1:26:21:5b2o$4bo2bobo$3b3o2b2obo$5bo2b5o$3b4ob5ob2o$bobo2b11o$2ob2o3b11o$2b2obo4b8o2bo$6b2o4b6o2bo$4bo4bo4b5o2bo$4bob4o6b3o$7b6o5b4o$4bo2b5obobo4b3o$7b5ob3obo$7b12ob2o$9b10o4bo$11b8ob2o$13b6ob2ob2o$15b4o2bo$17b3ob2o2bo$19bobo!
:Kalan Warusa, 2022:B24/S1456H:B246/S1456H:2/2:-1:1:19:19:9bo$8bob2o$6b3o$6b5ob2o$4b2ob4o3bobo$3bob7obo$2b2ob2ob7o$bo3b3ob5obo$2b4ob8ob2o$7obo3b3obo$ob6o3b2o$2bob5o6bo2bo$bobob4obo2bo$3b7o$4bob4obo$3b2o$4bobobobo$9bo$8bobo!
:May13, 2022:B2/S1H:B26/S1456H:2/2:-1:1:15:14:9b2o$7bobo2bo$7bo2b2o$6b2o2bo3bo$5bo3b2obo$4bo3bo$2bob2o4bo$2bo$b3o$o4bobo$bo$bobo$3b2o$3bo!
:May13, 2022:B25/S14H:B256/S146H:2:-1:1:17:19:4bo$4bo2b2o$3b2o2bo2bo$2bo3b2obo$3o4bobo2bo$8bo$3bo2b2o$b4obob2obo$bo3bobo2bo2bo$3b2o2b3o$2bo6b3obo$8bob4o$4bo11bo$15bo$12bo3bo$13bo$13bobo$15b2o$15bo!
:May13, 2022:B25/S1H:B256/S16H:2:-1:1:12:12:4bo$4bo2b2o$3b2o2bo2bo$2bo3b4o$3o4bo2bo$8b4o$3bo2b3obo$b4ob2o$bobob2o$3bobo$2bob3o$5bo!
:May13, 2022:B25/S145H:B256/S1456H:2/2:-1:1:24:24:4b2obob2o2bo$4bo3bo2b2ob2o$6b3o2bo2bo$bo3b2o5bo$ob2o2bo3bo5bo$bo4b2o2bo2bo$bo3bob2o3b2o$bo4b4o2bo$4bob3o3bo2bo$6obo4b2o3bo$5b2o8bo$4bo3b2o4b5o$b2ob2o7bo5b2o$bobob2o5bo3bo2b2o$3bo3b2obob2o6bo$2bobo5bo9bo2bo$9b2o8bo$13bo6bo2bo$11bo8b2o$13bo2b2obo$14bobo4bo$14b3obo2$17bo!
:May13, 2022:B25/S15H:B256/S156H:2:-1:1:21:21:13bo$13bo2b2o$12b2o2bo2bo$11bo3b4o$12bo3bo2bo$12b3o2b4o$7bo3bob2ob2obo$6bob2ob2ob2obo$7bo7b4o$7bo4bo4b2o$19bo$3bo2b2o$2bob2obobo$3o2b2o$5b3o$3bo3b2o$b4obobo$bobob5o$3bobo2b2o$2bob3o3bo$5bo!
:May13, 2022:B24/S14H:B246/S146H:2:-1:1:26:26:7b2obo$7bo3b2o$5b2ob2obo$4bobo3bo$3b2ob2o4b4o$2bo2bobo4bo2bo$2b3obobo7bo$2o2b2obobobo$obo3bobo7bo$2bo4bobo8bo$o2bo6bo3b2obo$b2o4bo3b2obo2bob3o$bo2b2o5bo3b3ob3o$4bo8bobobo2bo$4bo5b2o3bo2bob2o$4b2o4bob3o4b2obobo$6bobo3bo5bob2o$10b4o$9bo4bobo5bobo$11b2o2bo7bo$11b6o6bo$11b2obobo8bo$15bo2bo4b2o$19b2obo2bo$15bo2bo3bo$21bobo!
:May13, 2022:B245/S14H:B2456/S146H:2/2:-1:1:29:27:12b2o$14b3o$11b2o2b2o$9bob2o$9bo2b3o4bo$8b3ob2obo3b2obo$7bo5bo3bobobob2o$6bo3bo2bo2b2obo2b2o$4bob2o7b2obo2bobo$4bo7bo2bo2b2o2bobo$3b2o8bob2o2bo$2bo3bo2bo5bobobo2b5o$3o7b2obo5bob2ob2o$4b3obob4obo8b2o$3bo2b2o2bob2o7b2o2bo$b2o2b3o4b2obo6b2o4bo$4bob2o2bobo9bobo$3bo3bob4o12bo$5b2obo4bo$8bo4bo13bo$5bobobobo2bo$9b2o2bo$6b2ob2o5b2o$13b3obo$7bo2bobo2b2obo$13b2o2b2o$12bob2o3bo!
:May13, 2022:B24/S1H:B246/S16H:4:-2:2:22:22:6bobo$6bo2$6b4o$6bobobo$6b2o2b2o$2ob4o2bob3o$3bobobo3bo2b3o$o2b2o6bo3bo2bo$3bo2bo7b2o$4b2o4b2o5b2o$5b4ob4o$6bo4bo4b2ob2o$6bo4bo3b2o3b2o$7bobo4bob2o$7b3o3bobo3bo$7bo4b3o3bo$10bobobo$8bobo5bo$12bo2bo$12b2o$13bo!
:May13, 2022:B245/S1H:B2456/S16H:4/2:-2:2:17:16:3bobo$3bo$6bo$obo3bo$o3b2o$3bobob2o$6b2ob2o$8bobobo$5b3o2bobo$9b2o3bo$7bo2b2o$7b3o6bo$9bo2bo$7bo2bo$10bo$10b2o!
:May13, 2022:B24/S15H:B246/S15H:4:-2:2:18:18:3bo$3bobobo$5bobo$2o7bo$5b3o$b2obobo$4b4o$b2obobo$8bo$3bo7b2o$10bobo$9bo3bo$9b2o2bo$11b2obo$13bo2bo2$14bob2o$16bo!
:May13, 2022:B24/S156H:B246/S156H:4/2:-2:2:47:48:4bobo$4bo4b2o$7bo$9bo3bo$obo5b4o$o4b2o2b3o$3bo6b2o$5bo5b5o$4b4obobo$b2o2b3obo4bo$6b2obobo7bo$bo8bo3bo6bo$3bobo2bo10b3o$8bobo6b2o3bo$8bo9b2o2b2o$8bo9b3obo$7bobo5b5o$9bo6b3obo4bo$12b3o4bob2o$12bo2b2obo2bo2bo$11b2obo2b2ob2ob3o$13bo2b3o2bob3o$11bo3bob2ob2o2bobo$13b2o2b2o2b2o$23b2o3bo2bo$19b2o2bobo4b2obo$21b2o9b4o$27bo4bo$23b2o7bo2bo$24bo$34b2o$27bo6b4o$24b2o3bo$25b2obo4bo2b2o$31bobob3o$34b2o$30b2o7bo2bo$31b2o3b3obo3b2o$33b2o8b4o$35bobobo$36bo3bo4bo2$37bo4bo$39bo$36bo$37bobo$37b2o$39bo!
:May13, 2022:B24/S145H:B246/S1456H:2/2:-1:1:30:29:8b2o$6bobo2bo$5bob4o$3b3ob3ob2obo$6b2ob2o2b3o$2b2obo3bob2o$2b2o3bobo2bo2bo$b3o7b4o$o2b2o2b2obo2b3o$bob3ob4o4bo3bo$bo4bo2bo2bo3bobob2o$3bobob3o2b5obo$3bobob2o3b2o2bo4bo2bo$4bob3o3b3o3b5obo$7bobobobo12bo$4bo6bo6bobob4o$21bo3bobobo$14bo5bob2ob3o$10b3ob2o7bobo2bo$10bobo3b2o$12bo3bo$11bo$13bob3obo$13b2o$13b2o2bo$17bobo2$16b2o$17bobo!
:May13, 2022:B245/S15H:B245/S15H:4/2:-2:2:48:48:7b3o$8b4o$11bobo$14b2o$10bobob3o$11b4o$8bobo5bo$3o5b3o2bo2bobo$b4o3b2obobo3bo$5bob3o4bobo$4b3o2bobo6bo$4bo4bo3b2o3bo$3bo2bo8bobo$3b2ob5o4bo2bo$6bo2bo3bo5bo$7bo3b2obo5bo$12b2o2bo3b4o$19bo2b5o$14b4o3b6o$11bo3bobobobo2b2o$15b2ob4o2bobo2bo$16b4obo$18bob4o2bobo$18bo4bo2bo$18b2obo2bobobobobobo$21bobo4bo2b2o$19bo5b2o3bo4bo$21bo3bobo2bo2bobo$24bo3bob6o$27bobob2ob2o$27bob4o2bobo2bo$25bo6b2obo2bo$25bob3ob2ob2o2b4o$27bo2bo3bo2b2ob2o$27b2ob3o2bo2b2o3bo$29bo3bo2bo4b2obo2bo$30b3obo2bob2o3b2o$30bob2obo3b5o$32b2o5b3o3bobo$36b3o2bo2bo$35bo2bob3o3bo$41bo$36bo$35bo2b2o$37bo$36b6o$38b2ob2o$40b2o!
:May13, 2022:B2456/S15H:B2456/S15H:4:-2:2:28:28:7b3o$8b4o$9b2o$6bobobo$6bo2bo2bo$8b3o$3b2o6bobo$o9bo$2obobo2bo$3ob2o6bo$b3obobo3b2o$bo4bo3bo2bo4b2o$4bo4b2o2b6o2bo$6bo4b3o2bobo$12bo3bo2b2o$12bo4bo5bobo$12b3o2bobobobo$12bo2b2obo3bob2o$11b3o3bo2b2o3b3o$11bo2bobo4bo2bo2bo$14bo3bo3bo3bo$12bo3bob2o5bobo$17bo2bo2bobo$15b2o5bob3o$17bobo3b3o$15bob2o2b5o$18bobo2bo2bo$18b2obo!
:May13, 2022:B245/S145H:B245/S145H:2:-1:1:29:29:7b2o$5bobo2bo$4bob2o2b4obo$4b5o2b2o3b2o$2b2obo2b2obo4bo$bob2obob3obo2bo$2b2ob2o2bobo4b2obo$4o3bo2bo2b5o$o2b3o6b2o2b4obo$4b3o5b2o3b4o$b2o2bobo3bobo2bo3b2o$2b3obo3b2ob4o2bo$2b2obo2b2o2bobob4obo$2bo4b5obobob5o$7bo3b2obobo2b4o$2bo2bobo3bobobob5obob2o$3b2ob3ob3obob5o2bobo2bo$3bo2b4o2b2ob6o2b2ob2o$8b2o2b2ob3ob2obobo3bo$6bob2ob8ob2obobo$9b2o2b8o$8bobob4o3bo$14bo3bo$15b3obo$17b2o$15b2o2bo$15bobo$17bo$16bobo!
:May13, 2022:B2456/S145H:B2456/S145H:2/2:-1:1:40:40:10b2obo$7b2obo3b2o$9b2o3bo3bo$7b2o2b5obob3o$6bo6bobo4bo2bo$5bo3b2o5bo4b2o$4bo2b2obo3bobo3bo2bo$b2ob2o2b2obo4bo2b2o2bo$3b2obo3b2o2b4o3b4o$b2obo2bo3bobo2bob2ob3obobo$o7bo2b7o3b2obo$bobo6bo4b4o3b4o$bobo6bob2ob3o4bobo2bo$bo4bo2bo4b3o3b3o2bobobo$4b3o2b7o3b2ob2ob3o$2b2o4bob5o4b2obob2o$3b2o4b3obo9bob2o$3bo3bo2b3o8bo2b6o2bo$3bo10b2o4b2ob3obo2b2ob3o$5bo2b4obo5bo2bob4o2bo6bo$3bo3bobobobo5b3obob2o2bobo3b2o$4b2ob4o4bob2obobob3o4bobob3o$4bo2bob4ob2ob3obob3o2bo2bo4b4o$9b5o2bobobob3o3bobobo2bo$10bobo2bob7o6bo8bo$9b2o2bo2b4ob2o7b2o5bo$10bobobob6o$13bo2bobo$13bobobo3bob2o$19b2o2b2o$21bob2o$18b3o6bo$18bo2bo2bo2$18bo2b3o$19b2o$19bo4b2o$22b3o2$23bo!
:May13, 2022:B245/S156H:B245/S156H:4/2:-2:2:47:46:9bo$4b2o3bobo$7bo3b2o$4bo3bobobo$b2o3b2o4bobo$8bobobo$2b3o2b2ob2o$3bob2o3b2o$4bo3bo2bo2bo$obo2b4ob4o$o3bob2obo$3b2obo4bobo$bobo3b5obobo$10bobo3bo2bob3o$6bo7b4obo3b2o$9bo3bo4b2obo$14bob3o2bo$14bo5b4o$16b2o2b4o$13bo4bo5bo$13bob5obo2b2o$15bo6b2o$12bo6bo3bobo2bo$13bobo3bo7b2o$13b2o3b2o3bo4b2o$15bo4b2o2bob2o2b3o$23b2o2bo3bo2bo$23bobo2bo7bo$23b2ob3ob2obo2bo2bo$27bo2b2o2b2o$26b2o8bobo$31bo2bo$25b2o2bo5b2obo$29bo5bo$31bo3b4o2bo$26bob2o2b3o2b2o3bo$27b4obobo3b2o$27bo2bo3bob2obo$28bo3bob2obob2o4bo$30bo2b3ob4o$40b2o$35bo7bo$34bo5bo2bo$37bo3b2obo$36bo4b2ob3o$45bo!
:May13, 2022:B2456/S156H:B2456/S156H:4/2:-2:2:33:35:9bo$4b2o3bobo$7bo3b2o$4bo3bobobo$b2o3b2o4bobo$8bobobo$2b3o2b2ob2o$3bob2o3b2o$4bo3bo2bo2bo$obo2b4obob2o2bo$o3bob2o7bo$3b2obob2o4bo2bo$bobo3b2o7b2o2bo$10bo$6bo11bo$9b2o5bobo2bobo$13bo7bo$10bo4b3o3bo3bo$11bob2o3bob4o$17bo4bo$14b2o6bob2o$15bo2bo4b2o$15bob5o$22bo2bo$16bo4b3obo$22bo5bo$22b2ob2o4bo$28bobo$26bo3b3o$26bob4o$26bo3bo2$29bo2$29bo!
So I have 149 gliders in my current copy of db.
Edit: I discovered 8 more spaceships today. Here's updated db:
hex-gliders.db.txt
157 hexagonal spaceships
(32.89 KiB) Downloaded 5 times
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

Naszvadi
Posts: 1000
Joined: May 7th, 2016, 8:53 am
Contact:

Re: Outer-totalistic hexagonal rules with spaceships

Post by Naszvadi » April 30th, 2022, 8:25 am

May13 wrote:
April 29th, 2022, 8:29 pm
ihatecorderships wrote:
April 29th, 2022, 1:21 pm
c/2d in B245(6)/S1456:

Code: Select all

x = 26, y = 22, rule = B245/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b11o
$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2obo$
6b4o2bob3o4bo$6b11obo3bo$8b10ob4o$10b9o3bo$12b8o2bobo$14b5o2bob2o$16b
3o2bo3bo$18bo$21bo!
Interestingly, this spaceship does not quite work in B2456/S1456, it just turns into another spaceship:

Code: Select all

x = 56, y = 37, rule = B2456/S1456H
5bo$4b2obo$8b3o$3b2o3b3obo$4b2ob5ob2o$2bo2b9o2bo$bo2bo2b10o$obo2bo3b
11o$4bo6b7o2bo$4b2ob2o4b5o$3b3ob3o5b3o2b2o$4bo2b5o5b5o$4bo2b4o2bo5b2ob
o$6b4o2bob3o4bo$6b11obo3bo$8b10ob4o12bo$10b9o3bo11b2obo$12b8o2bobo13b
3o$14b5o2bob2o8b2o3b3obo$16b3o2bo3bo8b2ob5ob2o$18bo13bo2b9o2bo$21bo9bo
2bo2b10o$30bobo2bo3b11o$34bo6b7o2bo$34b2ob2o4b5o$33b3ob3o5b3o2b2o$34bo
2b5o5b5o$34bo2b4o2bo5b2obo$36b7ob3o4bo$36b11obo3bo$38b10ob4o$40b9o3bo$
42b8o2bobo$44b5o2bob2o$46b3o2bo3bo$48bo$51bo!
Also, as ZackBuildit777 said, these spaceships are orthogonal.
I found missing c/2 orthogonal spaceships for all rules from B2/S1H:B2456/S1456H. Collection (20 spaceships):

Code: Select all

:Kalan Warusa, 2022:B245/S1456H:B2456/S1456H:2:0:1:26:21:5b2o$4bo2bobo$3b3o2b2obo$5bo2b5o$3b4ob5ob2o$bobo2b11o$2ob2o3b11o$2b2obo4b8o2bo$6b2o4b6o2bo$4bo4bo4b5o2bo$4bob4o6b3o$7b6o5b4o$4bo2b5obobo4b3o$7b5ob3obo$7b12ob2o$9b10o4bo$11b8ob2o$13b6ob2ob2o$15b4o2bo$17b3ob2o2bo$19bobo!
:Kalan Warusa, 2022:B24/S1456H:B246/S1456H:2/2:-1:1:19:19:9bo$8bob2o$6b3o$6b5ob2o$4b2ob4o3bobo$3bob7obo$2b2ob2ob7o$bo3b3ob5obo$2b4ob8ob2o$7obo3b3obo$ob6o3b2o$2bob5o6bo2bo$bobob4obo2bo$3b7o$4bob4obo$3b2o$4bobobobo$9bo$8bobo!
:May13, 2022:B2/S1H:B26/S1456H:2/2:-1:1:15:14:9b2o$7bobo2bo$7bo2b2o$6b2o2bo3bo$5bo3b2obo$4bo3bo$2bob2o4bo$2bo$b3o$o4bobo$bo$bobo$3b2o$3bo!
:May13, 2022:B25/S14H:B256/S146H:2:-1:1:17:19:4bo$4bo2b2o$3b2o2bo2bo$2bo3b2obo$3o4bobo2bo$8bo$3bo2b2o$b4obob2obo$bo3bobo2bo2bo$3b2o2b3o$2bo6b3obo$8bob4o$4bo11bo$15bo$12bo3bo$13bo$13bobo$15b2o$15bo!
:May13, 2022:B25/S1H:B256/S16H:2:-1:1:12:12:4bo$4bo2b2o$3b2o2bo2bo$2bo3b4o$3o4bo2bo$8b4o$3bo2b3obo$b4ob2o$bobob2o$3bobo$2bob3o$5bo!
:May13, 2022:B25/S145H:B256/S1456H:2/2:-1:1:24:24:4b2obob2o2bo$4bo3bo2b2ob2o$6b3o2bo2bo$bo3b2o5bo$ob2o2bo3bo5bo$bo4b2o2bo2bo$bo3bob2o3b2o$bo4b4o2bo$4bob3o3bo2bo$6obo4b2o3bo$5b2o8bo$4bo3b2o4b5o$b2ob2o7bo5b2o$bobob2o5bo3bo2b2o$3bo3b2obob2o6bo$2bobo5bo9bo2bo$9b2o8bo$13bo6bo2bo$11bo8b2o$13bo2b2obo$14bobo4bo$14b3obo2$17bo!
:May13, 2022:B25/S15H:B256/S156H:2:-1:1:21:21:13bo$13bo2b2o$12b2o2bo2bo$11bo3b4o$12bo3bo2bo$12b3o2b4o$7bo3bob2ob2obo$6bob2ob2ob2obo$7bo7b4o$7bo4bo4b2o$19bo$3bo2b2o$2bob2obobo$3o2b2o$5b3o$3bo3b2o$b4obobo$bobob5o$3bobo2b2o$2bob3o3bo$5bo!
:May13, 2022:B24/S14H:B246/S146H:2:-1:1:26:26:7b2obo$7bo3b2o$5b2ob2obo$4bobo3bo$3b2ob2o4b4o$2bo2bobo4bo2bo$2b3obobo7bo$2o2b2obobobo$obo3bobo7bo$2bo4bobo8bo$o2bo6bo3b2obo$b2o4bo3b2obo2bob3o$bo2b2o5bo3b3ob3o$4bo8bobobo2bo$4bo5b2o3bo2bob2o$4b2o4bob3o4b2obobo$6bobo3bo5bob2o$10b4o$9bo4bobo5bobo$11b2o2bo7bo$11b6o6bo$11b2obobo8bo$15bo2bo4b2o$19b2obo2bo$15bo2bo3bo$21bobo!
:May13, 2022:B245/S14H:B2456/S146H:2/2:-1:1:29:27:12b2o$14b3o$11b2o2b2o$9bob2o$9bo2b3o4bo$8b3ob2obo3b2obo$7bo5bo3bobobob2o$6bo3bo2bo2b2obo2b2o$4bob2o7b2obo2bobo$4bo7bo2bo2b2o2bobo$3b2o8bob2o2bo$2bo3bo2bo5bobobo2b5o$3o7b2obo5bob2ob2o$4b3obob4obo8b2o$3bo2b2o2bob2o7b2o2bo$b2o2b3o4b2obo6b2o4bo$4bob2o2bobo9bobo$3bo3bob4o12bo$5b2obo4bo$8bo4bo13bo$5bobobobo2bo$9b2o2bo$6b2ob2o5b2o$13b3obo$7bo2bobo2b2obo$13b2o2b2o$12bob2o3bo!
:May13, 2022:B24/S1H:B246/S16H:4:-2:2:22:22:6bobo$6bo2$6b4o$6bobobo$6b2o2b2o$2ob4o2bob3o$3bobobo3bo2b3o$o2b2o6bo3bo2bo$3bo2bo7b2o$4b2o4b2o5b2o$5b4ob4o$6bo4bo4b2ob2o$6bo4bo3b2o3b2o$7bobo4bob2o$7b3o3bobo3bo$7bo4b3o3bo$10bobobo$8bobo5bo$12bo2bo$12b2o$13bo!
:May13, 2022:B245/S1H:B2456/S16H:4/2:-2:2:17:16:3bobo$3bo$6bo$obo3bo$o3b2o$3bobob2o$6b2ob2o$8bobobo$5b3o2bobo$9b2o3bo$7bo2b2o$7b3o6bo$9bo2bo$7bo2bo$10bo$10b2o!
:May13, 2022:B24/S15H:B246/S15H:4:-2:2:18:18:3bo$3bobobo$5bobo$2o7bo$5b3o$b2obobo$4b4o$b2obobo$8bo$3bo7b2o$10bobo$9bo3bo$9b2o2bo$11b2obo$13bo2bo2$14bob2o$16bo!
:May13, 2022:B24/S156H:B246/S156H:4/2:-2:2:47:48:4bobo$4bo4b2o$7bo$9bo3bo$obo5b4o$o4b2o2b3o$3bo6b2o$5bo5b5o$4b4obobo$b2o2b3obo4bo$6b2obobo7bo$bo8bo3bo6bo$3bobo2bo10b3o$8bobo6b2o3bo$8bo9b2o2b2o$8bo9b3obo$7bobo5b5o$9bo6b3obo4bo$12b3o4bob2o$12bo2b2obo2bo2bo$11b2obo2b2ob2ob3o$13bo2b3o2bob3o$11bo3bob2ob2o2bobo$13b2o2b2o2b2o$23b2o3bo2bo$19b2o2bobo4b2obo$21b2o9b4o$27bo4bo$23b2o7bo2bo$24bo$34b2o$27bo6b4o$24b2o3bo$25b2obo4bo2b2o$31bobob3o$34b2o$30b2o7bo2bo$31b2o3b3obo3b2o$33b2o8b4o$35bobobo$36bo3bo4bo2$37bo4bo$39bo$36bo$37bobo$37b2o$39bo!
:May13, 2022:B24/S145H:B246/S1456H:2/2:-1:1:30:29:8b2o$6bobo2bo$5bob4o$3b3ob3ob2obo$6b2ob2o2b3o$2b2obo3bob2o$2b2o3bobo2bo2bo$b3o7b4o$o2b2o2b2obo2b3o$bob3ob4o4bo3bo$bo4bo2bo2bo3bobob2o$3bobob3o2b5obo$3bobob2o3b2o2bo4bo2bo$4bob3o3b3o3b5obo$7bobobobo12bo$4bo6bo6bobob4o$21bo3bobobo$14bo5bob2ob3o$10b3ob2o7bobo2bo$10bobo3b2o$12bo3bo$11bo$13bob3obo$13b2o$13b2o2bo$17bobo2$16b2o$17bobo!
:May13, 2022:B245/S15H:B245/S15H:4/2:-2:2:48:48:7b3o$8b4o$11bobo$14b2o$10bobob3o$11b4o$8bobo5bo$3o5b3o2bo2bobo$b4o3b2obobo3bo$5bob3o4bobo$4b3o2bobo6bo$4bo4bo3b2o3bo$3bo2bo8bobo$3b2ob5o4bo2bo$6bo2bo3bo5bo$7bo3b2obo5bo$12b2o2bo3b4o$19bo2b5o$14b4o3b6o$11bo3bobobobo2b2o$15b2ob4o2bobo2bo$16b4obo$18bob4o2bobo$18bo4bo2bo$18b2obo2bobobobobobo$21bobo4bo2b2o$19bo5b2o3bo4bo$21bo3bobo2bo2bobo$24bo3bob6o$27bobob2ob2o$27bob4o2bobo2bo$25bo6b2obo2bo$25bob3ob2ob2o2b4o$27bo2bo3bo2b2ob2o$27b2ob3o2bo2b2o3bo$29bo3bo2bo4b2obo2bo$30b3obo2bob2o3b2o$30bob2obo3b5o$32b2o5b3o3bobo$36b3o2bo2bo$35bo2bob3o3bo$41bo$36bo$35bo2b2o$37bo$36b6o$38b2ob2o$40b2o!
:May13, 2022:B2456/S15H:B2456/S15H:4:-2:2:28:28:7b3o$8b4o$9b2o$6bobobo$6bo2bo2bo$8b3o$3b2o6bobo$o9bo$2obobo2bo$3ob2o6bo$b3obobo3b2o$bo4bo3bo2bo4b2o$4bo4b2o2b6o2bo$6bo4b3o2bobo$12bo3bo2b2o$12bo4bo5bobo$12b3o2bobobobo$12bo2b2obo3bob2o$11b3o3bo2b2o3b3o$11bo2bobo4bo2bo2bo$14bo3bo3bo3bo$12bo3bob2o5bobo$17bo2bo2bobo$15b2o5bob3o$17bobo3b3o$15bob2o2b5o$18bobo2bo2bo$18b2obo!
:May13, 2022:B245/S145H:B245/S145H:2:-1:1:29:29:7b2o$5bobo2bo$4bob2o2b4obo$4b5o2b2o3b2o$2b2obo2b2obo4bo$bob2obob3obo2bo$2b2ob2o2bobo4b2obo$4o3bo2bo2b5o$o2b3o6b2o2b4obo$4b3o5b2o3b4o$b2o2bobo3bobo2bo3b2o$2b3obo3b2ob4o2bo$2b2obo2b2o2bobob4obo$2bo4b5obobob5o$7bo3b2obobo2b4o$2bo2bobo3bobobob5obob2o$3b2ob3ob3obob5o2bobo2bo$3bo2b4o2b2ob6o2b2ob2o$8b2o2b2ob3ob2obobo3bo$6bob2ob8ob2obobo$9b2o2b8o$8bobob4o3bo$14bo3bo$15b3obo$17b2o$15b2o2bo$15bobo$17bo$16bobo!
:May13, 2022:B2456/S145H:B2456/S145H:2/2:-1:1:40:40:10b2obo$7b2obo3b2o$9b2o3bo3bo$7b2o2b5obob3o$6bo6bobo4bo2bo$5bo3b2o5bo4b2o$4bo2b2obo3bobo3bo2bo$b2ob2o2b2obo4bo2b2o2bo$3b2obo3b2o2b4o3b4o$b2obo2bo3bobo2bob2ob3obobo$o7bo2b7o3b2obo$bobo6bo4b4o3b4o$bobo6bob2ob3o4bobo2bo$bo4bo2bo4b3o3b3o2bobobo$4b3o2b7o3b2ob2ob3o$2b2o4bob5o4b2obob2o$3b2o4b3obo9bob2o$3bo3bo2b3o8bo2b6o2bo$3bo10b2o4b2ob3obo2b2ob3o$5bo2b4obo5bo2bob4o2bo6bo$3bo3bobobobo5b3obob2o2bobo3b2o$4b2ob4o4bob2obobob3o4bobob3o$4bo2bob4ob2ob3obob3o2bo2bo4b4o$9b5o2bobobob3o3bobobo2bo$10bobo2bob7o6bo8bo$9b2o2bo2b4ob2o7b2o5bo$10bobobob6o$13bo2bobo$13bobobo3bob2o$19b2o2b2o$21bob2o$18b3o6bo$18bo2bo2bo2$18bo2b3o$19b2o$19bo4b2o$22b3o2$23bo!
:May13, 2022:B245/S156H:B245/S156H:4/2:-2:2:47:46:9bo$4b2o3bobo$7bo3b2o$4bo3bobobo$b2o3b2o4bobo$8bobobo$2b3o2b2ob2o$3bob2o3b2o$4bo3bo2bo2bo$obo2b4ob4o$o3bob2obo$3b2obo4bobo$bobo3b5obobo$10bobo3bo2bob3o$6bo7b4obo3b2o$9bo3bo4b2obo$14bob3o2bo$14bo5b4o$16b2o2b4o$13bo4bo5bo$13bob5obo2b2o$15bo6b2o$12bo6bo3bobo2bo$13bobo3bo7b2o$13b2o3b2o3bo4b2o$15bo4b2o2bob2o2b3o$23b2o2bo3bo2bo$23bobo2bo7bo$23b2ob3ob2obo2bo2bo$27bo2b2o2b2o$26b2o8bobo$31bo2bo$25b2o2bo5b2obo$29bo5bo$31bo3b4o2bo$26bob2o2b3o2b2o3bo$27b4obobo3b2o$27bo2bo3bob2obo$28bo3bob2obob2o4bo$30bo2b3ob4o$40b2o$35bo7bo$34bo5bo2bo$37bo3b2obo$36bo4b2ob3o$45bo!
:May13, 2022:B2456/S156H:B2456/S156H:4/2:-2:2:33:35:9bo$4b2o3bobo$7bo3b2o$4bo3bobobo$b2o3b2o4bobo$8bobobo$2b3o2b2ob2o$3bob2o3b2o$4bo3bo2bo2bo$obo2b4obob2o2bo$o3bob2o7bo$3b2obob2o4bo2bo$bobo3b2o7b2o2bo$10bo$6bo11bo$9b2o5bobo2bobo$13bo7bo$10bo4b3o3bo3bo$11bob2o3bob4o$17bo4bo$14b2o6bob2o$15bo2bo4b2o$15bob5o$22bo2bo$16bo4b3obo$22bo5bo$22b2ob2o4bo$28bobo$26bo3b3o$26bob4o$26bo3bo2$29bo2$29bo!
So I have 149 gliders in my current copy of db.
Edit: I discovered 8 more spaceships today. Here's updated db:
hex-gliders.db.txt
A tiny sanity checker oneliner perl script for the audience:

Code: Select all

grep . hexgliders.db  | \
   perl -pe 's/^[^:]*:[^:]*:(B(01?2?|2)3?4?5?6?\/S0?1?2?3?4?5?6?H:){2}\d+(\/\d+)?:-?\d+:-?\d+:\d+:\d+:(\d*[bo\$])+!\n*$//'
Simply filters out correctly formatted rows and prints only the faulty ones.
My assumptions were:
  • 10 columns total, no newline in a row, delimiter is the colon, so it is a CSV file without quote characters and : separators
  • first two columns are arbitrary (name, author)
  • next two columns are minrule, maxrule respectively, assuming that B2 or B0 needs in rulestring
  • fifth column is the period (with optional flipping notation)
  • two columns: movement
  • two columns: bounding box size
  • last column: pattern data in RLE format
Note that in Windows environment, one might add \r "carriage return" removal to the replace operator's regexp!

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » April 30th, 2022, 9:59 am

May13 wrote:
April 29th, 2022, 9:28 am
Unfortunately, it's a bit tricky to search for symmetric diagonal spaceships. But if there was a script that translates hexagonal rules into MAP rulestring, it would be much easier to do such searches.
It's not a problem anymore! I made this script:

Code: Select all

br,sr=input("Enter range-1 outer-totalistic hexagonal rule: ").replace("H","").split("/")
b0=["000000000"]
b1=["100000000","010000000","000100000","000001000","000000010","000000001"]
b2=["110000000","100100000","100001000","100000010","100000001","010100000","010001000","010000010","010000001","000101000","000100010","000100001","000001010","000001001","000000011"]
b3=["110100000","110001000","110000010","110000001","100101000","100100010","100100001","100001010","100001001","100000011","010101000","010100010","010100001","010001010","010001001","010000011","000101010","000101001","000100011","000001011"]
b4=["".join("1" if i[j]=="0" and not j in [2,4,6] else "0" for j in range(9)) for i in b2[:]]
b5=["".join("1" if i[j]=="0" and not j in [2,4,6] else "0" for j in range(9)) for i in b1]
b6=["110101011"]
s0=["".join("1" if j==4 else i[j] for j in range(9)) for i in b0]
s1=["".join("1" if j==4 else i[j] for j in range(9)) for i in b1]
s2=["".join("1" if j==4 else i[j] for j in range(9)) for i in b2[:]]
s3=["".join("1" if j==4 else i[j] for j in range(9)) for i in b3]
s4=["".join("1" if j==4 else i[j] for j in range(9)) for i in b4]
s5=["".join("1" if j==4 else i[j] for j in range(9)) for i in b5]
s6=["".join("1" if j==4 else i[j] for j in range(9)) for i in b6]
b=[b0,b1[:],b2[:],b3[:],b4[:],b5[:],b6[:]]
s=[s0,s1,s2,s3,s4,s5,s6]
m=""
d="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
for i in range(512):
	bi=bin(i)[2:]
	bi="0"*(9-len(bi))+bi
	bi="".join("0" if j in [2,6] else bi[j] for j in range(9))
	for j in range(7):
		if (str(j) in br and bi in b[j]) or (str(j) in sr and bi in s[j]):
			m+="1"
			break
	else: m+="0"
m+="0000"
ma="MAP"
for i in range(86):
	m1=m[6*i:6*i+6]
	n=0
	for j in range(6):
		if m1[-j-1]=="1": n+=2**j
	ma+=d[n]
print(ma)
To rotate MAP, you can use MAP_rotate.py (warning: need to replace xrange with range). So it's possible to search for symmetric diagonal spaceships using RLS.
Here's surprisingly small c/6 diagonal spaceship (B2/S245H:B26/S2456H):

Code: Select all

x = 4, y = 6, rule = B2/S245H
o$3o$3o$bo2$3bo!
Edit: c/5 diagonal, endemic:

Code: Select all

x = 68, y = 68, rule = B2/S245H
53bob3o$54b2o2b3o$57b3obo$59bo4bo$56b2o5bo$53bo3bo3b2o$53bob2o3bobo2bo
$50bobo5bob2o4bo$50b2o12b3o$44bo5bobob2o2bobo4b2o$43b2o2bo5b5o4b2obobo
$44bo2bobobo4b2o3bobo3bo$44b2ob2o3bob2ob2o2bo4b2o$40b2o2bob2o2bo2b3ob
2o7bo$39bo2bo4b3o2bobo2bo3b2o4bo$38b2obobo2b2o2bob2obo2bobo$40b2ob2obo
2b2o5bo2bo$40bo4bo4b3obo3b3o$43bo3b2o2bobo2bo$45b5o3bobo$42b2obob3o2b
6o$40b3obo3bo2b2obo$45bob2obo4bo$34bo7bobobo4bo2b5o$36bo3bo6bobob2o4bo
$35bob2o2bo2bob2o5bo$34bob2obo2bo3bo4b2obo$37b2obo2bo2bo3b2o2bo$33bo7b
o10b2o$32b2obob2obobo9bo$28bo3b2obob2ob3o$24bo2bobobobo2bo4bobo$23b3o
2bo2bobo3b2o3bo$22b2o6bo2bo7bo2bo$18bo2b3ob2o2b2ob8o$16b2obo3b2o3bo2bo
bo3b2o$21bo5b3ob2o2b2o$20bo2bobo2b3o2b2o$19bo4b3o3b2obo2bo$19b2o3b3obo
b3o2bobo$13bo7bobobo5bo4bo$11bob4o3bobobobob2o3bo$13bobo2bobobo2bob4o
2bobo$13b3o2b2ob2obobob2o2bo2b2o$18bobo2bo3bo2bob4o$8bobo4bo2b3obob3o
6b2o$6bo2b4o8bo2bo2bo3bobo$8bobo3bo2b4ob2ob2obobo$2bo3bobo3b2obobob2ob
obo3b2o2bo$obo3b2o4b2o2bo3bob4o7bo$2bob2obo2bo4bo3b2o11bo$o6bobo2b2ob
2obo7bo5bo$7b4obob4obo2bob3o$4b2o3b3o2b2o4bo3bobo$2b2o2bob2o6bob2o4b4o
$11bo3b2ob2obo$2bobobo4b2obo6bo4bo$4bobob2o4b2obo2b3o$2b2o2b2ob2o2b4o
4bo$8bobo2bobo3b2obo$6bo2bo5b4o$7bob3obo4b2obo$14bo2bo$10b2o2bo2bo$9bo
3bo$9bobobo3b3o2$16bobo!
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » May 1st, 2022, 3:06 am

I found an interesting non-explosive B0H rule. This rule appears to be friendly to slow speeds.
c/4, c/6, c/8 and c/12 orthogonal:

Code: Select all

x = 84, y = 27, rule = B01234/S024H
bo19b2o18bo19bo$4o16b4o16b4o16b4o$4o17b4o16b4o16b3o$b3o17bob3o17b3o15b
6o$23b5o16b2o18b3o$23b6o15b3o17b3o$26b4o15bobo18b3o$27b4o17b3o15b3obo$
27b5o15bob3o15b6o$28b4o16b5o15b5o$bo27b2o18b4o15b6o$4o45b5o16b6o$4o46b
3o17b6o$b3o47b2o18b7o$2bo49bo18b7o$71b8o$73bob4o$76b4o$77b3o$78b4o$bo
77b4o$4o77b3o$4o78b2o$b3o79bo$3b3o$3b3o$5bo!
Other common objects:

Code: Select all

x = 59, y = 9, rule = B01234/S024H
5o26bo19bobo$6o6bo17b3o17b6o$7o4b4o16b5o15b5o$b6o5b4o15b6o13b8o$2b5o5b
5o15b5o14b7o$3b4o6b4o18b3o13b8o$4b3o7b4o18bo16b5o$16bo36b6o$55bobo!
5 rulespaces where patterns cannot shrink:
B(3456)/S0123(456)H
B2(456)/S012(3456)H
B23(456)/S01(23456)H
B234(56)/S0(23456)H
B1(23456)/S(0123456)H
I combined these rulespaces to get B0H rules without spaceships:

Code: Select all

1)B(3456)/S0123(45)6H|B(12)/S(0123)456H
1.1)B3456/S0123456H|B/S0123456H=B0123456/SH
1.2)B(3)/S012356H|B2/S012(3)456H=B012(3)456/S4H
1.3)-
1.4)-
1.5)B(3456)/S0123(4)6H|B1(2)/S(0123)456H=B012(3456)/S(4)5H

2)B2(456)/S012(345)6H|B(123)/S(012)356H
2.2)B2/S012356H|B2/S012356H=B013456/S4
2.3)B2(4)/S01256H|B23/S01(2)356H=B013(4)56/S34H
2.4)-
2.5)B2(456)/S012(34)6H|B1(23)/S(012)356H=B013(456)/S(34)5H

3)B23(456)/S01(2345)6H|B(1234)/S(012)56H
3.3)-
3.4)-
3.5)B23(456)/S01(234)6H|B1(234)/S(012)56H=B01(456)/S(234)5H

4)B234(56)/S0(2345)6H|B(1234)5/S(01)56H
4.4)B234(5)/S056H|B2345/S0(1)56H=B01(5)6/S1234H
4.5)B234(56)/S0(234)6H|B1(234)5/S(01)56H=B01(56)/S1(234)5H

5)B1(23456)/S(012345)6H|B(123456)/S(01234)6H
5.5)B1(23456)/S(01234)6H|B1(23456)/S(01234)6H=B0(23456)/S(01234)5H
B0H map:

Code: Select all

$ python new-glider.py
>>>)v
          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . .   . . . . . . . . . . . . . . . . . . . . .
S     5 :
S    45 :
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . .   . . . . . . . . . .   . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . .   . . . . . . . . . .
S   345 :                                                                 . . . . . . . . . . . . . . . .
S   3 5 :                                                                 . . . . . . . . . . . . . . . .
S   3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 4 4 1 1 . . . . . . . . . . . . . . . . . . . .
S  2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . 1 . . . . . . . . . . . . . .
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     .
S 12345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01   5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . . . . .
S012 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 4 4 1 1 . . . . . . . 1 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B2H map:

Code: Select all

>>>@v
           B B B B B B B B B B B B B B B B
           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                           3 3 3 3 3 3 3 3
                   4 4 4 4 4 4 4 4
               5 5 5 5         5 5 5 5
             6 6     6 6     6 6     6 6
          --------------------------------
S        : . . . . 1 1 1 1 . . . . 1 1 1 1
S      6 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     56 : . . . . 1 1 1 1 . . . . 1 1 1 1
S     5  : . . . . 1 1 1 1 . . . . 1 1 1 1
S    45  : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    456 : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    4 6 : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S    4   : . . 1 1 1 1 1 1 . . . . 1 1 1 1
S   34   : 5 2 3 3 2 2 3 4 . . . . . . . .
S   34 6 : 4 2 3 3 1 2 1 1 . . . . . . . .
S   3456 : 2 1 3 3 1 1 1 1 . . . . . . . .
S   345  : 2 1 4 3 1 1 1 1 . . . . . . . .
S   3 5  : 2 1 2 2 1 . . . . . . . . . . .
S   3 56 : 2 1 2 2 . . . . . . . . . . . .
S   3  6 : 2 1 2 2 1 . . . . . . . . . . 1
S   3    : 2 1 2 2 1 . . 1 . . . . . . 1 1
S  23    : 2 1 1 1 1 1 1 1 . . . . . . . .
S  23  6 : 2 1 1 1 1 1 1 1 . . . . . . . .
S  23 56 : . . 1 1 1 1 1 1 . . . . . . . .
S  23 5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S  2345  : . . . . . . . . . . . . . . . .
S  23456 : . . . . . . . . . . . . . . . .
S  234 6 : . . . . . . . . . . . . . . . .
S  234   : . . . . . . . . . . . . . . . .
S  2 4   : 3 3 1 1 1 1 2 1 . . . . . . . .
S  2 4 6 : 3 3 1 1 1 1 1 1 . . . . . . . .
S  2 456 : 8 4 2 1 1 1 1 1 . . . . . . . .
S  2 45  : a 4 2 1 1 1 1 1 . . . . . . . .
S  2  5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S  2  56 : 1 1 1 2 1 1 1 1 . . . . . . . .
S  2   6 : 1 1 1 1 2 2 2 2 . . . . . . . .
S  2     : 1 2 1 1 2 2 2 3 . . . . . . . .
S 12     : . . 1 1 1 1 . . . . . . . . . .
S 12   6 : . . 1 1 1 1 . . . . . . . . . .
S 12  56 : . . 1 1 1 1 . . . . . . . . . .
S 12  5  : . . 1 1 1 1 . . . . . . . . . .
S 12 45  : . . . . . . . . . . . . . . . .
S 12 456 : . . . . . . . . . . . . . . . .
S 12 4 6 : . . . . . . . . . . . . . . . .
S 12 4   : . . . . . . . . . . . . . . . .
S 1234   : . . . . . . . . . . . . . . . .
S 1234 6 : . . . . . . . . . . . . . . . .
S 123456 :
S 12345  :
S 123 5  : . . . . . . . . . . . . . . . .
S 123 56 : . . . . . . . . . . . . . . . .
S 123  6 : . . . . . . . . . . . . . . . .
S 123    : . . . . . . . . . . . . . . . .
S 1 3    : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3  6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3 56 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 3 5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1 345  : . . . . 1 1 1 1 . . . . . . . .
S 1 3456 : . . . . 1 1 1 1 . . . . . . . .
S 1 34 6 : . . . . 1 1 1 1 . . . . . . . .
S 1 34   : . . 1 1 1 1 1 1 . . . . . . . .
S 1  4   : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1  4 6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1  456 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1  45  : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1   5  : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1   56 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1    6 : 1 1 1 1 1 1 1 1 . . . . . . . .
S 1      : 1 1 1 1 1 1 1 1 . . . . . . . .
S01      : . . . . . . . .
S01    6 : . . . . . . . .
S01   56 : . . . . . . . .
S01   5  : . . . . . . . .
S01  45  : . . . . . . . .
S01  456 : . . . . . . . .
S01  4 6 : . . . . . . . .
S01  4   : . . . . 1 1 1 1
S01 34   : . . . . 1 1 . .
S01 34 6 : . . . . 1 1 . .
S01 3456 : . . . . . . . .
S01 345  : . . . . . . . .
S01 3 5  : . . . . . . . .
S01 3 56 : . . . . . . . .
S01 3  6 : . . . . . . . .
S01 3    : . . . . . . . .
S0123    :
S0123  6 :
S0123 56 :
S0123 5  :
S012345  :
S0123456 :
S01234 6 :
S01234   :
S012 4   :
S012 4 6 :
S012 456 :
S012 45  :
S012  5  :
S012  56 :
S012   6 :
S012     :
S0 2     : 1 1 1 1 1 1 1 1         . . . .
S0 2   6 : 1 1 1 1 1 1 1 1         . . . .
S0 2  56 : 1 1 1 1 1 1 1 1         . . . .
S0 2  5  : 1 1 1 1 1 1 1 1         . . . .
S0 2 45  : 1 1 1 1 1 1 1 1         . . . .
S0 2 456 : 1 1 1 1 1 1 1 1         . . . .
S0 2 4 6 : 2 1 1 1 1 1 1 1         . . . .
S0 2 4   : 3 1 1 1 1 1 1 1         . . . .
S0 234   : . . . . 1 1 1 1
S0 234 6 : . . . . 1 1 1 1
S0 23456 : . . . . 1 1 1 1
S0 2345  : . . . . 1 1 1 1
S0 23 5  : 1 1 1 1 1 1 1 1         . . . .
S0 23 56 : . 1 1 1 1 1 1 1         . . . .
S0 23  6 : 1 1 1 1 1 1 1 1         . . . .
S0 23    : 1 1 1 1 1 1 1 1         . . . .
S0  3    : . . . . 1 1 1 1         . . . .
S0  3  6 : . . . . 1 1 1 1         . . . .
S0  3 56 : . . . . 1 1 1 1         . . . .
S0  3 5  : . . . . 1 1 1 1         . . . .
S0  345  : . . . . 1 1 1 1         . . . .
S0  3456 : . . . . 1 1 1 1         . . . .
S0  34 6 : . . . . 1 1 1 1         . . . .
S0  34   : . . . . 1 1 1 1         . . . .
S0   4   : . . . . . . . .         . . . .
S0   4 6 : . . . . . . . .         . . . .
S0   456 : . . . . . . . .         . . . .
S0   45  : . . . . . . . .         . . . .
S0    5  : . . . . . . . .         . . . .
S0    56 : . . . . . . . .         . . . .
S0     6 : . . . . . . . .         . . . .
S0       : . . . . . . . .         . . . .
Challenge: formulate a proof that connected patterns cannot shrink in B2(3456)/S123456 (or even B2(3456)/S12345(6)).
Updated db, 181 gliders:
hex-gliders.db.txt
181 hexagonal spaceships
(39.58 KiB) Downloaded 4 times
Edit: tiny ships in B013/S124H: c/2o, 2c/4o, 2c/6o, c/4o

Code: Select all

x = 63, y = 9, rule = B013/S124H
4bo17bo21bo15bo$3bo17bo20bo3bo15bo$2bob3o13bobo18bo2bobo15bo$bob2o17b
2o20bobobo$ob3obo15bo17bob4o$2bo2b2o37bo$2bob2o35b3o2$43bo!
Edit 2: c/2o

Code: Select all

x = 5, y = 5, rule = B0136/S1234H
2b2o$bobo$obobo$2obo$2bobo!
Database entries:

Code: Select all

:May13, 2022:B013/S124H:B0136/S124H:4/2:-2:2:4:5:2bo$bo$obo$2b2o$2bo!
:May13, 2022:B013/S124H:B013/S124H:2:-1:1:7:7:4bo$3bo$2bob3o$bob2o$ob3obo$2bo2b2o$2bob2o!
:May13, 2022:B013/S124H:B013/S124H:6:-2:2:7:7:bo$ob4o$b4obo$b3o2bo$b2o$bo$2b2o!
:May13, 2022:B013/S14H:B0134/S1234H:4/2:-1:1:3:3:o$2bo$2bo!
:May13, 2022:B0136/S1234H:B0136/S01234H:2:-1:1:5:5:2b2o$bobo$obobo$2obo$2bobo!
Edit 3: Asymmetric c/10 orthogonal spaceship!

Code: Select all

x = 89, y = 86, rule = B01234/S024H
bo$4o$b4o$3b2o$3b5o$4b4o$6b3o$6b5o$6b5o$8b3o$9b4o$9b4o$12b3o$12b3o$14b
3o$14b3o$14b5o$17b4o$17b5o$19b3o$18b3o$19b3o$21b4o$21b5o$22b4o$23b4o$
24b6o$26b4o$26b4o$28b3o$29b2o2bo$31b3o$32b3o$33b2o$34b4o$36b2o$35b3o$
36b3o$38b4o$38b5o$39b5o$41b3o$42b2o$42b4o$43b3obo$43b6o$46b3o$47b3o$
47b3o$49b2o$49b3obo$52b3o$53b2o$54b3o$54b4o$55b3o$55b6o$55bo2b3o$58b4o
$60b4o$59b5o$61b3o$62b3o$64b4o$64b5o$65b5o$67b4o$67b5o$69b4o$71b3o$72b
2o$72b3o$73b2o$74b2o$74b4o$75b3o$75b3o$76b3obo$76b2o2bo$77bo$81bobo$
82b3o$81b5o$82b5o$84b4o$86b3o!
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
yujh
Posts: 2913
Joined: February 27th, 2020, 11:23 pm
Location: I'm not sure where I am, so please tell me if you know
Contact:

Re: Outer-totalistic hexagonal rules with spaceships

Post by yujh » May 1st, 2022, 9:14 am

Very neat!
Just a reminder that these ships are actually diagonal instead of orthogonal. (Life viewer says yes)

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » May 1st, 2022, 10:24 am

yujh wrote:
May 1st, 2022, 9:14 am
Just a reminder that these ships are actually diagonal instead of orthogonal. (Life viewer says yes)
Partially true. When viewed on a square grid, these spaceships are diagonal. But in hexagonal grid, these spaceships are orthogonal.
Reasons:
1) See this and this posts.
2) See this pattern:

Code: Select all

x = 98, y = 56, rule = B01234/S024H
16b3o60b3o4b3o4bo$16bo2bo62bo10b2o$16bo3bo59bo2bo4bo4bobo$13bo3bo2bo
62bo9b4o$14bo3b3o60b3o4b3o2bo3bo$11bo3bo$12bobobo$13bo3bo$8b3o3bo$8b2o
5bo$8bobo$11bo73bo$4b3o5bo13bo$4bobo79bo$4b5o5bo11bo$5bo75bo5bo5bo$3o
3bo9bo9bo56bo8bo$o2bo81bo2bo2bo$o3bo13bo7bo60bo2bo$bo2bo84bo$2b3o15bo
5bo61bo2bo$87bo2bo2bo$22bo3bo59bo8bo$85bo5bo5bo$24bobo$92bo$12bobobobo
bobobobobobobobobobobo$93bo$26bobo2$26bo3bo2$26bo6bo$32b4o$26bo6b3o$
33b6o$26bo9b3o$36b3o$26bo11b3o$38b3obo$26bo12b6o$40b5o$40b6o$42b6o$42b
6o$43b7o$43b7o$43b8o$45bob4o$48b4o$49b3o$50b4o$51b4o$53b3o$54b2o$55bo!
3) Compare these spaceships in LifeViewer and Golly:

Code: Select all

x = 29, y = 29, rule = B2/S245H
2bo$bo$ob3o$2bo3bo$2bo2bo$4b2o$3bo5b2o$7bo3bo2bo$10bobobo$6bo3b2obo$6b
ob2o2b2obo$7bobo2bobobo$8bob2obobo$9b2obobobo2bo$7b2o2bob3obo$10bobobo
2b3o$11bobo3bo$14b3o3b2ob2obo$15bo3b2o4bo$13bobo2bobobobo3bo$17b3o$17b
o5bo2bo$19bo$17bo3bob2o3bo$17bobo3bob2obo$18bo5bo$17bo3bo2bobo2$19bo3b
2o!

Code: Select all

x = 68, y = 68, rule = B2/S245H
53bob3o$54b2o2b3o$57b3obo$59bo4bo$56b2o5bo$53bo3bo3b2o$53bob2o3bobo2bo
$50bobo5bob2o4bo$50b2o12b3o$44bo5bobob2o2bobo4b2o$43b2o2bo5b5o4b2obobo
$44bo2bobobo4b2o3bobo3bo$44b2ob2o3bob2ob2o2bo4b2o$40b2o2bob2o2bo2b3ob
2o7bo$39bo2bo4b3o2bobo2bo3b2o4bo$38b2obobo2b2o2bob2obo2bobo$40b2ob2obo
2b2o5bo2bo$40bo4bo4b3obo3b3o$43bo3b2o2bobo2bo$45b5o3bobo$42b2obob3o2b
6o$40b3obo3bo2b2obo$45bob2obo4bo$34bo7bobobo4bo2b5o$36bo3bo6bobob2o4bo
$35bob2o2bo2bob2o5bo$34bob2obo2bo3bo4b2obo$37b2obo2bo2bo3b2o2bo$33bo7b
o10b2o$32b2obob2obobo9bo$28bo3b2obob2ob3o$24bo2bobobobo2bo4bobo$23b3o
2bo2bobo3b2o3bo$22b2o6bo2bo7bo2bo$18bo2b3ob2o2b2ob8o$16b2obo3b2o3bo2bo
bo3b2o$21bo5b3ob2o2b2o$20bo2bobo2b3o2b2o$19bo4b3o3b2obo2bo$19b2o3b3obo
b3o2bobo$13bo7bobobo5bo4bo$11bob4o3bobobobob2o3bo$13bobo2bobobo2bob4o
2bobo$13b3o2b2ob2obobob2o2bo2b2o$18bobo2bo3bo2bob4o$8bobo4bo2b3obob3o
6b2o$6bo2b4o8bo2bo2bo3bobo$8bobo3bo2b4ob2ob2obobo$2bo3bobo3b2obobob2ob
obo3b2o2bo$obo3b2o4b2o2bo3bob4o7bo$2bob2obo2bo4bo3b2o11bo$o6bobo2b2ob
2obo7bo5bo$7b4obob4obo2bob3o$4b2o3b3o2b2o4bo3bobo$2b2o2bob2o6bob2o4b4o
$11bo3b2ob2obo$2bobobo4b2obo6bo4bo$4bobob2o4b2obo2b3o$2b2o2b2ob2o2b4o
4bo$8bobo2bobo3b2obo$6bo2bo5b4o$7bob3obo4b2obo$14bo2bo$10b2o2bo2bo$9bo
3bo$9bobobo3b3o2$16bobo!
These spaceships both looks like c/5 diagonal, but the first one isn't diagonal.
4) The orthogonal line crosses sides of cells, while the diagonal line crosses vertices of cells.
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » May 2nd, 2022, 8:15 am

201 gliders:
hex-gliders.db.txt
201 hexagonal spaceships
(44.34 KiB) Downloaded 3 times
I have a problem with B0H rules. While searching for spaceships in B0136/S0124H, I found spaceships that works in B013/S124H as well (but advanced/delayed by 1 generation). How to handle pairs like B0136/S0124H=B013/S124H?
As far as I understand, these pairs works like this:

Code: Select all

B01 3  6/S012 4  H=B01 3   /S 12 4  H
 ABcDefG  HIJkLmn   NMlKjih  gFEdCba
Therefore B01234/S024H is dual to B0135/S01. If B0 rule is dual to itself, it emulates self-complementary non-B0 rule.
Which rules should be written to the database? This is very important because duplicated gliders are possible.
Edit: huge endemic c/3 orthogonal spaceship:

Code: Select all

x = 159, y = 159, rule = B2/S02H
7bo$5bo3bo$3b2obob2o$2b2o4bo6bo$2bobo3b2obo3bo$bo3bo4bobo$2bo11bobo$o
11bo2b3o$2b3o8bo7b2o$b2obo6bo2b2o2b3ob4o$5bo5b4o2bo2bob3o$4bo4b2o4bob
2o$5bobo2bo4bobo5b2o$8bobo4bo5b4o$6bo2b2o12b3o$3b2o2bobob3o10b2o$6b2o
19bo2b2o$7bo2b3o15bo$9bobo13b2o3b2o$9bo17bo3b2o$9b2o16bo4bo$8bo4bo13bo
b2o2bo$8b3o2bo16bo2bo$9b2ob3o17bobo$9b2ob4o11b2o3b2obo$9bo4b2o2bo11bob
o$18bo13b2obo$16bo2b3o2bo6bo4bobo$17bo6bo9bob3o$21bo18bo$16bobo2b2o2bo
9bobo3bo$16bob2o7bo6bobo4bo$19b2o2b4o13b2o$21b2obobo13bo$23bo4bo2bo8bo
2bobo$24bobo3bo13b2o$27b2o2bo4b2obo5bobo$28bobo5b2obo$27b2o11b2obo$36b
2o7bo2bo$29bo2b3o3bo2bo2bo2bo$30b3o5bob2o6bo$42bobo$34bo3bo4bo$35bo4bo
bo2b3o2bo$34b3o2bo4b2o3b4o$44bobobo$36bo3bo3bo2bo5bo2bobo$39bobo4bo9bo
2b3o$45bo3bo10bo$44b2o8bobo3bo$45bo6b2obobo$45bo5b2o2bo3bobo$47bo3bobo
2bobo2b2o$50bo3b7o$51b2obo2bobob2o$47b2obo2b2o2bobo2b2o$51bo2b3o3b3ob
3obo$47bo5b2o7bobobo$48bo3bob3o4bo3bo$48b3o3bo2bo4b3o2bo$48bo3b2obobob
o6bo4bo$53bob4obo10bo$56bo3bo$57b2obo4bob4obo$57bobo4bob2obob2o2bo2bo$
57b2o2bo3b2obo6bo2bo2bo$60bo3b2o2bo4bob2o$57bo6bob3o2bo3bo$64b2o4bo2bo
b3ob3o$64bo4b2o3bo4b3obo2bo$61b2o2bo2bo8bo2bo3bo$64b2o11bob2o$67bobo7b
o3b2obobo$70bo10b2o4b3o$65b5o13b3ob2o$67bobo12bo2bob2o$69bob3o10bo2b3o
$65b2o17bo$69b2obo16bo2bo$69b4o16b2obo$66bo2b2o2b2o13b2obobo$73b2obo
14b2o$70bo4bo17bo$71bobobob2o10bo3bo$75b2o15bob2o$70bo2bo$74b4o$74b4o
3bo12b2o$74bo2bob3o2bo15bo$80bo15b3obo$81b2o16bo$79b2obo2bo15bo$81bob
2o16b2o$85bo2bo13bo$85bo2bo15bo$90bo$90bo12bo$90bo15b2o$91bo16bo$89b2o
16bo$92b2o16b2o$93b2o$97bo$95bo14b2o2bo$113b2o2bo$98bo15bo$98bobo$99bo
13b5o$113bob3o$101bo2bo14bo$101bo2bo12bo$118bo3bo$105bo2b2o10bo$104b3o
bo9bob2o$108b2o6b2obob5obo$108b2o5b2o7bo3b3o$105bo2b2obo3bobo5bo5bo$
112bobo3bo6bo3bo4bo$110bo4bo8bo2bob2o3bo$113b2o11bo2b2obo$114b2o10bo3b
2o3bo$112bo2bo15bob2obo$115bobo12b3obo$115b2o2bo6b2ob2o3bo$115bo2bo7bo
4bo2bobo$120b2o2b2o10b3o$115bo3bo4bo2b2o10bo$116bo10bo$116b5o3bo14bob
2o$116bo2b3ob2o13bobo$121b3obo13bobo$120bo2bo16bo3bo$122bo17bo$118b2o
2b4o19b2o3b2o$121bo27b2o$122bo2b2o16b3o3b2ob2o$126bo20b2o3bo$126bo3bo
15b6obo$127bobobo15bob5o$130bob2o11b3obo4bo$129bobo15b3o5bo$129bo23b3o
2bo$136bo12bo5bo$132bo3bo$134bobo3bo$134bo3bobo$137b5o$137b2o2bo$135b
2ob4obo$134b3ob2o$134bo3b2o$136b2obo$136bob2o2bo$140bobo$141b3o3$142bo
!
Also, I'm testing some modifications to new-gliders.py related with B0H problem. Turns out that one of B0 spaceships works in non-B0 rule:

Code: Select all

x = 4, y = 5, rule = B245/S0356H
2bo$bo$obo$2b2o$2bo!
Edit 2: I checked c/2, c/3, c/4, c/5, c/6, c/8, c/10, c/12 orthogonal and c/8 diagonal for duplicates (in B0H rulespace). Fortunately, no duplicated gliders found.
Edit 3: My current solution to B0H problem is to show spaceship in both rules. B0H map (note that the script counts spaceships in self-complementary rules twice):

Code: Select all

          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . .   . . . . . 2 2 6 7 . . . . . . . . . . . .
S     5 :
S    45 :
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . .   . . . . . 1 1 . . .   . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . .   . . . . . . . . . .
S   345 :                                                                 . . . . . . . . . . . . . . . .
S   3 5 :                                                                 . . . . . . . . . . . . . . . .
S   3   : . . . . . . . . . . . . . . . . 2 1 . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  23 5 :                                                                 . . . . . . . . 2 2 1 2 . . . . . . . . . . . .
S  2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 6 4 6 3 . . . . . . . . . . . . . . . . . . . .
S  2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 12  5 :                                                                 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . .
S 12 45 :                                                                 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 . . . . 3 1 . . . 1 . 1 . . . . . . 1 1
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . 1 . . . . .     .
S 12345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 :                                                                 . . . . 1 1 . . 1 1 1 1 . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . .
S 1 3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . .
S 1  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 2 1 2 . . . . . . . . . . . . . . . . 2 2 4 4 . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . 2 2 6 6 . . . . . . . . . . . .
S01   5 :                                                                 . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . .
S01  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . 1 . . 1 . . . . 1 .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0123 5 :                                                                 . . . . 1 1 . . 1 2 1 1 . . . . . . . . . . . . . . . . . . . .
S012345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 . . . . . 3 . . . 1 1 . . 1 . . . . 1 .
S012 45 :                                                                 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .
S012  5 :                                                                 . . . . . 2 . . 1 1 . . 1 2 1 1 . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 1 1 1 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 4 7 3 . . . . . . . 1 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 :                                                                 . . . . . . . . 2 2 1 2 . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  3 5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 1 . . . . . . . . . . . . . . . . 2 2 3 3 . . . . . . . . . . . .
Edit 4: 2 small c/2 orthogonal spaceships in B023/S02H (or B01235/S0125H):

Code: Select all

x = 16, y = 6, rule = B023/S02H
o9bo$b2obo6b2o$bob3o5bobo$2bo9bo$b2o8b2o2bo$2bo9bo!
Edit 5: c/4 and c/6 orthogonal:

Code: Select all

x = 45, y = 27, rule = B0236/S012H
20bo6bo$23bo3b2o$22bo4b3o$21bo7b2o$26bo3b2o$26b2o2bobo$24b6obobo$20b3o
2b3obo3b2o$21b2o3bo2b2o3b2o$22b2o2b6o3b2o$23b3o2b2o2bob2obo$24bobo2bob
2o3bobo$25bo4b2o5b3o$26b2o5bo2bobobo$27b2obo4bo2b4o$28b3o3b4o4bo$29bob
obob2ob2o$30bobo2bo2b2o$31b4ob2o6bo$32bobob2o$b2o2bo27b2o$7o27bo$b6o
28bo$bobobobo$2bobo3bo29bo$b2obo2bo$2b2o!
Edit 6: 220 gliders:
hex-gliders.db.txt
220 hexagonal spaceships
(49.74 KiB) Downloaded 3 times
Rules with B012 and without S456 can't have spaceships, because B012(3456)/S(0123)H=B(3456)/S(0123)456|B(3456)/S(0123)456 (due to lack of B1H and B2H, patterns can't escape bounding orthogonal hexagon (sides of hexagon are orthogonal)).
B0H map (numbers of known speeds):

Code: Select all

>>>)v
          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1                                 2 2 6 7 . . 1 1 . . . . . . . .
S     5 :
S    45 :
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . .   . . . . . 1 1 . . .   . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . .   . . . . . . . . . .
S   345 :                                                                 . . . . . . . . . . . . . . . .
S   3 5 :                                                                 . . . . . . . . . 1 1 . . . . .
S   3   : . . . . . . . . . . . . . . . . 2 1 . . . . . . . . . . . . 1 1                                 . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . 2 . . 1 . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S  23 5 :                                                                 . . . . . . . . 2 2 1 2 . . . . . . . . . . . .
S  2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 6 4 6 3 . . . . . . . . . . . . . . . . . . . .
S  2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . 1 1 2 1 . . . . . 1 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 12  5 :                                                                 . . . . . 1 . . . . . . 1 1 . 2 . . . . . . . . . . . .
S 12 45 :                                                                 . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 . . . . 3 1 . . . 1 . 1 . . . . . . 1 1
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . 1 . . . . .     .
S 12345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 :                                                                 . . . . 1 1 . . 1 1 1 1 . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . 1 2 . . . . . . . . . . . .
S 1 3 5 :                                                                 . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . .
S 1 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . 1 . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . 1 . . . . . . 1 . . . . . . . .
S 1  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . 1 . . . . . . . 2 1 1 1 2 2 1 2                                 2 2 4 4 . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . 1 . . . . . . . 1 1 . . 2 2 1 1                                 2 2 6 6 . . . . . . . . . . . .
S01   5 :                                                                 . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . .
S01  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . . . . . 1 . . . . 1 1 1 1 . . . . 1 .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .
S01 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 :                                                                 . . . . . . . . 1 2 1 . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . 1 4 . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0123 5 :                                                                 . . . . 1 1 . . 1 2 1 1 . . . . . . . . . . . . . . . . . . . .
S012345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 . . . . . 3 . . . 1 1 . . 1 . . . . 1 .
S012 45 :                                                                 . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . .
S012  5 :                                                                 . . 2 1 . 2 . . 1 1 . . 2 2 1 1 . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 1 2 . . . . . 1 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 1 1 2 1 . . . . . 1 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0 2  5 :                                                                 . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 6 4 7 3 . . . . . . . 1 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 :                                                                 . . . . . . . . 2 2 1 2 . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . 1 . . 1 . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1                                 . . . . . . . . . . . . . . . .
S0  3 5 :                                                                 . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . .
S0  345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 2 2 1 1                                 2 2 3 3 . . 1 1 . . . . . . . .
Maximal known simplified period:

Code: Select all

>>>)i
          B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
                                          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
                          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
                  4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4                 4 4 4 4 4 4 4 4
              5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5         5 5 5 5
            6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6     6 6
         --------------------------------------------------------------------------------------------------------------------------------
S       : . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 4 4 4 4                                 8 8 c c . . 4 4 . . . . . . . .
S     5 :
S    45 :
S    4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . .   . . . . . 2 2 . . .   . . . . . . . . . .
S   34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . .   . . . . . . . . . .
S   345 :                                                                 . . . . . . . . . . . . . . . .
S   3 5 :                                                                 . . . . . . . . . 2 2 . . . . .
S   3   : . . . . . . . . . . . . . . . . 4 2 . . . . . . . . . . . . 4 4                                 . . . . . . . . . . . . . . . .
S  23   : . . . . . . . . . . . . . . . . 4 . . 2 . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S  23 5 :                                                                 . . . . . . . . 4 4 4 4 . . . . . . . . . . . .
S  2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S  2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 c c c 8 . . . . . . . . . . . . . . . . . . . .
S  2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2  5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . .
S  2    : . . . . . . . . . . . . . . 2 2 4 2 . . . . . 4 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 12    : . . . . . . . . . . . . . . . . 4 . . . . . . 4 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 12  5 :                                                                 . . . . . 2 . . . . . . 2 2 . 6 . . . . . . . . . . . .
S 12 45 :                                                                 . . . . . . . . . . . . 2 2 . . . . . . . . . . . . . .
S 12 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 8 8 . . . . 4 2 . . . 2 . 4 . . . . . . 2 2
S 1234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 . . . . . 4 . . . . .     .
S 12345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 123 5 :                                                                 . . . . 4 4 . . 4 4 4 4 . . . . . . . . . . . . . . . .
S 123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S 1 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . 2 4 . . . . . . . . . . . .
S 1 3 5 :                                                                 . . . . . . . . 2 2 2 2 . . . . . . . . . . . . . . . .
S 1 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . 4 . . . . . . . .
S 1  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 . . . . 4 . . . . . . 4 . . . . . . . .
S 1  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1   5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S 1     : . . . . . . . . . . . . . . . . 4 . . . . . . . 4 2 2 2 4 4 4 6                                 8 8 c c . . . . . . . . . . . .
S01     : . . . . . . . . . . . . . . . . 4 . . . . . . . 2 2 . . 4 4 4 4                                 8 8 c c . . . . . . . . . . . .
S01   5 :                                                                 . . . . . . . . . . . . 4 4 4 4 . . . . . . . . . . . . . . . .
S01  45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01  4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 . . . . . 4 . . . . 4 2 4 4 . . . . 4 .
S01 34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . .
S01 345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01 3 5 :                                                                 . . . . . . . . 2 4 2 . . . . . . . . . . . . . . . . . . . . .
S01 3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . 2 c . . . . . . . . . . . .
S0123   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0123 5 :                                                                 . . . . 4 4 . . 4 6 4 4 . . . . . . . . . . . . . . . . . . . .
S012345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S01234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . .
S012 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 8 8 . . . . . 4 . . . 2 4 . . 4 . . . . 4 .
S012 45 :                                                                 . . . . . . . . . . . . 2 2 . . . . . . . . . . . . . . . . . .
S012  5 :                                                                 . . 4 2 . 4 . . 4 4 . . 4 4 4 4 . . . . . . . . . . . . . . . .
S012    : . . . . . . . . . . . . . . . . 4 6 . . . . . 4 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0 2    : . . . . . . . . . . . . . . 2 2 4 2 . . . . . 4 . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0 2  5 :                                                                 . . 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2 4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 c c c c 8 . . . . . . . 2 . . . . . . . . . . . .
S0 234  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 2345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0 23 5 :                                                                 . . . . . . . . 4 4 4 4 . . . . . . . . . . . . . . . . . . . .
S0 23   : . . . . . . . . . . . . . . . . 2 . . 2 . . . . . . . . . . . .                                 . . . . . . . . . . . . . . . .
S0  3   : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4                                 . . . . . . . . . . . . . . . .
S0  3 5 :                                                                 . . . . . . . . . 2 2 . . . . . . . . . . . . . . . . . . . . .
S0  345 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0  34  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   4  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0   45 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0    5 :                                                                 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S0      : . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . 4 4 4 4                                 8 8 8 8 . . 4 4 . . . . . . . .
Edit 7: c/6 orthogonal spaceship:

Code: Select all

x = 36, y = 36, rule = B023/S23H
3b2o2$2bo2b3o$o3bo2b2o$o2bob6o$2bob2obobo$2bobo2b3obo$2b7ob4o$3b2ob2ob
6o$4b3obobo2b2o$4bo2b6o2b2o$6b3ob3o2b3o$7b2ob2obobo2bo$7b3o2bobobob2o$
8b2o3bob3obo$10b3obob2obo$10b2ob7o$11bo2b5o$12b2o2b2o$13b4o2bo$20b3o$
20b5o$20b3ob2o$21bob4o$21b6obo$22b7o$23b5obo$25b4o$24b2obo$26bo5bobo$
31bo2bo$30bo2b3o$29bo2b4o$31b2ob2o$29b5obo$31b5o!
DB entry:

Code: Select all

:May13, 2022:B023/S23H:B023/S23H:6:-1:1:36:36:3b2o2$2bo2b3o$o3bo2b2o$o2bob6o$2bob2obobo$2bobo2b3obo$2b7ob4o$3b2ob2ob6o$4b3obobo2b2o$4bo2b6o2b2o$6b3ob3o2b3o$7b2ob2obobo2bo$7b3o2bobobob2o$8b2o3bob3obo$10b3obob2obo$10b2ob7o$11bo2b5o$12b2o2b2o$13b4o2bo$20b3o$20b5o$20b3ob2o$21bob4o$21b6obo$22b7o$23b5obo$25b4o$24b2obo$26bo5bobo$31bo2bo$30bo2b3o$29bo2b4o$31b2ob2o$29b5obo$31b5o!
Edit 8: c/2 diagonal spaceship!

Code: Select all

#C Glider 222, c/2 diagonal
#C Discovered by May13, 2022
#C
#C B0123456 S0123456 H
#C  X-X-X--  ---XX--
#C
x = 34, y = 34, rule = B024/S34H
8b3o$8b2o$8b2o$8b2obobo$4b3ob2o2b5o$4b2obob6obo$4bobobob2ob2o$4bo2bob2ob
2o2b8o$3ob5obo3b5o$2o2b2o4b5o2b2o3b2o$2o2bo3bo2b2obob3o2bo2bobo$2ob2o2b
2ob2ob3obob3o2bobo$2o2bobo3bobob2o2b6o2bo$2obo4bob4obo2b5o3bo$2o6b5ob4ob
4o3bo$2ob7ob2o3b2o2b2ob4o$bo2bob3ob2ob4ob2o2b5o$2b4obob2ob4ob3o3bob2ob2o
$3bo4bobo3bob2ob4o2bo3bo$4b5o2b7obob5ob3o$3b12ob2o2bobobob5o$3b2ob4ob4ob
ob4ob2obob2o$3bo2bobob5o2b4ob3o2b2obo$3b2obobo2bobob3ob4ob5o4bo$4b2o3bo
2b2o2bob2o6bob6o$5bo2bob6ob4ob2obobob5o$6b2o4b3ob3o3bo2b2obo$7bo2b5o2b2o
2bo3bobobo$8b2o3b2obobo5b2o2b2o$9b2ob3ob3o2b9o$10b4ob2obobobo$16bo8bo$
17b9o$18b8o!
DB entry:

Code: Select all

:May13, 2022:B024/S34H:B024/S34H:2:1:1:34:34:8b3o$8b2o$8b2o$8b2obobo$4b3ob2o2b5o$4b2obob6obo$4bobobob2ob2o$4bo2bob2ob2o2b8o$3ob5obo3b5o$2o2b2o4b5o2b2o3b2o$2o2bo3bo2b2obob3o2bo2bobo$2ob2o2b2ob2ob3obob3o2bobo$2o2bobo3bobob2o2b6o2bo$2obo4bob4obo2b5o3bo$2o6b5ob4ob4o3bo$2ob7ob2o3b2o2b2ob4o$bo2bob3ob2ob4ob2o2b5o$2b4obob2ob4ob3o3bob2ob2o$3bo4bobo3bob2ob4o2bo3bo$4b5o2b7obob5ob3o$3b12ob2o2bobobob5o$3b2ob4ob4obob4ob2obob2o$3bo2bobob5o2b4ob3o2b2obo$3b2obobo2bobob3ob4ob5o4bo$4b2o3bo2b2o2bob2o6bob6o$5bo2bob6ob4ob2obobob5o$6b2o4b3ob3o3bo2b2obo$7bo2b5o2b2o2bo3bobobo$8b2o3b2obobo5b2o2b2o$9b2ob3ob3o2b9o$10b4ob2obobobo$16bo8bo$17b9o$18b8o!
Edit 9: c/4 orthogonal and diagonal:

Code: Select all

x = 50, y = 31, rule = B01246/S0125H
3b2o28bo2b5o$4bo2bo28b3ob2o$4b2o2bo24bob3obo2bo$o4b3obo25bobo4bo$3obob
2o2bo23bobo2bo2bobo$2b2o4bobo21b2o2bo3b4obo$3b2o3b2o21bobo2bo2b8o$bob
2o26b3ob3o2b5o2bo$2bo2b2o26b2o5b4o3bo$3bo2bo22bobobobo2b2o7bobo$4b2o
23bo2bo3b2o3b3o3b2o$29bobo2bobo7bo3bo$27bo2bo2bo6b2ob3obo$30b2ob2ob2ob
2obobob3o$27bobobobobo3b5o2b2obo$24bo2bo2b4o7b2o5bo$23bob4o2b4obobo2bo
3bobo$19bob2o2b3ob8obo$21bob2ob2obo3b6ob2obo$21bo6bobo4b2o$17bo2b3ob3o
2bo6bob2o$17bobobob3ob2o2b2obob2o$18bo3bo4bob5o$25bo2b6o$22bobo2b6o$
25b3o3bo2bo$27b2o2b2o$28b3o$28b4o$26bobo3bo$27b3o2bo!
DB entries:

Code: Select all

:May13, 2022:B0124/S0125H:B01246/S0125H:4:-1:1:11:11:3b2o$4bo2bo$4b2o2bo$o4b3obo$3obob2o2bo$2b2o4bobo$3b2o3b2o$bob2o$2bo2b2o$3bo2bo$4b2o!
:May13, 2022:B01246/S0125H:B01246/S0125H:4/2:1:1:33:31:16bo2b5o$19b3ob2o$16bob3obo2bo$18bobo4bo$17bobo2bo2bobo$15b2o2bo3b4obo$14bobo2bo2b8o$14b3ob3o2b5o2bo$16b2o5b4o3bo$12bobobobo2b2o7bobo$12bo2bo3b2o3b3o3b2o$12bobo2bobo7bo3bo$10bo2bo2bo6b2ob3obo$13b2ob2ob2ob2obobob3o$10bobobobobo3b5o2b2obo$7bo2bo2b4o7b2o5bo$6bob4o2b4obobo2bo3bobo$2bob2o2b3ob8obo$4bob2ob2obo3b6ob2obo$4bo6bobo4b2o$o2b3ob3o2bo6bob2o$obobob3ob2o2b2obob2o$bo3bo4bob5o$8bo2b6o$5bobo2b6o$8b3o3bo2bo$10b2o2b2o$11b3o$11b4o$9bobo3bo$10b3o2bo!
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
LaundryPizza03
Posts: 1886
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Outer-totalistic hexagonal rules with spaceships

Post by LaundryPizza03 » May 3rd, 2022, 8:01 pm

Without either B1 or B2, spaceships are impossible because patterns cannot escape their bounding box. Let Y be the maximum y-value (on the square grid) of any live cell in a pattern. Then a cell at (x,Y+1) will have at most two live neighbors. Similarly, spaceships cannot exist in B0 rules with B12 and none of S45.

Code: Select all

x = 10, y = 6, rule = B3456/S0123456HHistory
4.D$4B2C4B$10B$10B$10B$10B!
Similarly, B0 rules with none of B23456/S2345 cannot support spaceships. In the left diagram below, let (x,Y) be the white cell in generation 0. We want at least one of the red cells live in generation 2. In generation 1 (right), the white cells have at most four dead neighbors, while the red cell has at most two. Thus, in order for at least one of the white cells to be live in generation 2, at least one of B23456/S2345 must be live, while the red cell requires at least one of B456/S45.

Code: Select all

x = 30, y = 7, rule = B/S0123456HHistory
3.D19.D$3.2D15.3E2C5E$2B2AC2A3B10.10E$3B4A3B10.10E$10B10.10E$10B10.
10E$10B10.10E!
Several new c/5o spaceships:

Code: Select all

:LaundryPizza03, 2022:B2/S3H:B26/S36H:5:-1:0:20:8:9bo$9bo2b2o$3bobobob2obo4bo$o14bo3bo$o3b3o2bob2o5bo$o3bo2bobo6bo2bo$3b2o3bo8bo$bobo!
:LaundryPizza03, 2022:B2/S3H:B26/S356H:5:-1:0:38:8:2bobo3b2o8bo3bo$bo2b2obo12bo3bobo$4b3o11bob2o5bo2bo$o2bo4bo4bobo2bobo7bobo$o4bobobo3bo3bo4bo7b2o5bo$obobo6bo2bobo2bo3b2o5bobo4bo$o14b2o9bo5bobobo$bobo15bobo13bo!
:LaundryPizza03, 2022:B24/S3H:B24/S3H:5:-1:0:38:9:2bobo$b2o3bobobobo8bo8bo$4o4b3o3bo10bo3bo2bo$bob3o2bobo7bo3b3obo4bobobo$b2o6bo5bo3bo6bobobo4bo$2b5o2b3o4b2obo12bo4bo$3bo2bobobob3obobo4b2o5b2o$2b3o3bo2b2obobobobobo2bo4bob2o$4bo6bobobo4bobobo!
:LaundryPizza03, 2022:B24/S3H:B24/S36H:5:-1:0:50:9:14bo21bobo$5bo10bo2bo11bo4b3o2bo5bo$4bo11b2o3bobobobo3b3o2bo3bo5bo$obobob2obob2o3bobobo2b5obo10bo5b4o$4bo4bo3b3o4bobo2bo4bobo4bo2bobo3b2o$bobo4bob5ob3o2bobob3obo2bo5bo5b2ob2o$4bo5bobo3b2obo7bobo10bo7bo$7bo4bo5bo5bobo3bobo15b2o$5bobobo3bobobo7bobo20bo!
:LaundryPizza03, 2022:B246/S3H:B246/S36H:5:-1:0:27:9:3bo8bobo6bobo2bo$2ob3o5bob2o3bob2o4bo$b2obo6b3o4bo3bobo$b2o10bo10bo$bobobo2bob3o9bo$4bo8bo2b2obo4bo$2bo3bo2bobo7bo$3bo4bo3b4o$5bo8bo!
:LaundryPizza03, 2022:B246/S3H:B246/S36H:5:1-:0:25:9:5bobobo6bo$5bobo3bo2bobo3bo2bo$2bo3b2o3bo4b2obo4bo$b3obo4b3obob2obo2bobo$bo6bo6b2ob2o$bo6bo2bobobo3b2o3bo$3o9bo9bo$2bo3bo4bo3bo4bo$5bobobobo2bobobobo!
:LaundryPizza03, 2022:B24/S35H:B24/S356H:5:-1:0:29:9:10bobo7bo$10bo3bobo3b2o$obo5b2obo5bo3bobo$2b4o5bo6bo4bo$bob2ob2obo3bobobo5bo3bo$3b2obo3bo6bo3b3o4bo$2bobobo4bobo6bo3bo$5b3obo5bo5b2o3bo$6bo!
:LaundryPizza03, 2022:B246/S35H:B246/S356H:5:-1:0:18:8:obo$10bo3bo$o2bobobo3bobobo$ob3o2bobo7bo$2b2ob3o4bo$2b5o4b2o$3bobo6bobo$4b2o10bo!
:LaundryPiza03, 2022:B245/S3H:B2456/S3H:5:-1:0:17:7:2bo3bo$3b2obobobobo2bo$2b2ob2obo2b3o2bo$bobo3bo4b2ob2o$3ob2obob3o2bo$3bob3obobobo$b2o!
:LaundryPizza03, 2022:B245/S3H:B2456/S356H:5:-1:0:25:9:4bo$3bob2o11bo$2b2obob2o9bo$4b3o5b2obob3o$obo2bo2bo3bo2bo3bo$3bo15bobo$bo3bo4b2o2bo3bo2bobo$4bobo3bobobobo3bo3bo$2bo3bobo!
:LaundryPizza03, 2022:B013/S0124H:B013/S024H:10:-2:0:25:9:4bo$3bob2o11bo$2b2obob2o9bo$4b3o5b2obob3o$obo2bo2bo3bo2bo3bo$3bo15bobo$bo3bo4b2o2bo3bo2bobo$4bobo3bobobobo3bo3bo$2bo3bobo!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 35296 spaceships and 1451 oscillators from outer-totalistic rules. You are invited to help!

HotWheels9232
Posts: 423
Joined: May 25th, 2022, 9:10 pm
Location: Help! I got dragged away into the middle of nowhere by a LWSS which suddenly launched from a soup

Re: Outer-totalistic hexagonal rules with spaceships

Post by HotWheels9232 » May 28th, 2022, 11:25 pm

May 16:

Code: Select all

x = 4, y = 4, rule = B2/S2H
2o$bo$o2bo$bobo!
2c/3?
My rules:
B34q/S23-k(ObliquePufferLife) and
B2n3-n4c5c/S234cz5c

Code: Select all

x = 21, y = 32, rule = B3/S23
b3o11b3o$o2bo10bo2bo$3bo4b3o6bo$3bo4bo2bo5bo$obo4bo3bo2bobo$6bobo2b2o$
10bo$6bob2o$7b3o$7b3o3$8b2o8b3o$8b2o7bo2bo$20bo$16bo3bo$20bo$17bobo9$
14bo$13b3o3$13b3o$14bo!
PM me to get some help on making rules!

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » May 29th, 2022, 12:11 am

Updated database, 246 gliders:
hex-gliders.db.txt
246 hexagonal spaceships
(55.65 KiB) Downloaded 1 time
HotWheels9232 wrote:
May 28th, 2022, 11:25 pm
May 16:

Code: Select all

x = 4, y = 4, rule = B2/S2H
2o$bo$o2bo$bobo!
2c/3?
No, this spaceship is c/3 diagonal. Also, it's already a member of hex-gliders.db:

Code: Select all

#C Glider 4, c/3 diagonal
#C Discovered by 137ben, 2010
#C
#C B0123456 S0123456 H
#C  --X--    --X--
#C
x = 4, y = 4, rule = B2/S2H
obo$ob2o2$2b2o!
Edit: this post shows what is orthogonal or diagonal in hexagonal grid.
Last edited by May13 on May 29th, 2022, 12:31 am, edited 1 time in total.
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

HotWheels9232
Posts: 423
Joined: May 25th, 2022, 9:10 pm
Location: Help! I got dragged away into the middle of nowhere by a LWSS which suddenly launched from a soup

Re: Outer-totalistic hexagonal rules with spaceships

Post by HotWheels9232 » May 29th, 2022, 12:24 am

May13 wrote:
May 29th, 2022, 12:11 am
Updated database, 246 gliders:
hex-gliders.db.txt
HotWheels9232 wrote:
May 28th, 2022, 11:25 pm
May 16:

Code: Select all

x = 4, y = 4, rule = B2/S2H
2o$bo$o2bo$bobo!
2c/3?
No, this spaceship is c/3 diagonal. Also, it's already a member of hex-gliders.db:

Code: Select all

#C Glider 4, c/3 diagonal
#C Discovered by 137ben, 2010
#C
#C B0123456 S0123456 H
#C  --X--    --X--
#C
x = 4, y = 4, rule = B2/S2H
obo$ob2o2$2b2o!
I think it is just rotated by 6o degrees so it looks like it is traveling diagonally
My rules:
B34q/S23-k(ObliquePufferLife) and
B2n3-n4c5c/S234cz5c

Code: Select all

x = 21, y = 32, rule = B3/S23
b3o11b3o$o2bo10bo2bo$3bo4b3o6bo$3bo4bo2bo5bo$obo4bo3bo2bobo$6bobo2b2o$
10bo$6bob2o$7b3o$7b3o3$8b2o8b3o$8b2o7bo2bo$20bo$16bo3bo$20bo$17bobo9$
14bo$13b3o3$13b3o$14bo!
PM me to get some help on making rules!

User avatar
LaundryPizza03
Posts: 1886
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Outer-totalistic hexagonal rules with spaceships

Post by LaundryPizza03 » May 29th, 2022, 12:54 am

Oops, I fogot to share these 3 ships I found shortly after the one in B024/S34H:

Code: Select all

:LaundryPizza03, 2022:B024/S034H:B024/S034H:2:-1:-1:54:54:7o$3obob2o$o3bo2b2o$3bo2bob2o$5bobo2bo$3b2obo3b2o$6ob3obo$4ob3o3bo$o2bo2bob4o$5b4o2bo$3bo2b2ob3o$8b4o$3bo2bob3o$3b3o2bob2ob3o$6bobo4b4o$10bob2o3bo$10b6ob2o$9b6ob2obo$15b2ob3o$13b3ob2o2bo$14b4obob2o$14bo2b3ob3o$14b2ob2ob2o2bo$17b2obobob2o$17b2ob3ob3o$17bobo2b3o2bo$17bo4b2obob2o$19b3obobob3o$19b2ob2ob3o2bo$19b3o2bo3bob2o$19b3o3b4ob3o$25bob4o2bo$23b2obo2bobob2o$23b4o2b3ob3o$23b4obo3b2o2bo$29b4obob2o$27b8ob3o$33bob2o2bo$31bob3obob2o$31b4ob2ob2o$34bob5o$36b3o$36b2o2bob7o$36b3ob4obo2b2o$36bo4b3obobo2bo$39b4ob2obo2b2o$43b2ob2obob2o$39bobob4obobob2o$40bo3bob2obo3bo$40bo6b2o2b3o$40b2obob4obo2bo$46b2o4b2o$46b2o4b2o$45b3o3b3o!
:LaundryPizza03, 2022:B0245/S34H:B0245/S34H:2:-1:-1:48:48:10o$6obob2o$o8bobo$3bobo2bo2b2o$5b2o3b4o$3bob2o2bo4bo$4b4obobo2b2o$4bobo8bo$4bo3bob2o2b2o$4b2obo2bo2bobo$10b2ob3o$9bob2ob2o$11bobo2b5o$9bo2bo2b2obob2o$9b4ob5o3bo$13bobob3o2b2o$14b5o2bob2o$14bo2bobob5o$14bobo2b2ob2o2bo$14bobob3obo2b3o$17b2obo2bobob2o$19b2o3bobob2o$17b2ob3o2bob2obo$22b3obo3b2o$21b4o2bob4o$21b5o2b3ob2o$21b3obo4b2o2bo$25b5o4b2o$26bob3obo2bo$25bob2o2b5o$25bobo2b4obo$28b2obob3o$31b4ob6o$28b4obo2b2obob2o$32bo2bob2o4bo$33b2obo6b2o$33bob3obobob3o$33bo3b3o3bo2bo$33b2obo4b2o2b3o$39bo4bo2bo$38bo2bo4b2o$40b4o3bo$38bo2b4ob2o$38b4o4b2o$42bobob2o$46b2o$46b2o$45b3o!
:LaundryPizza03, 2022:B0245/S034H:B0245/S034H:2:-1:-1:57:57:8o$4obob2o$o2bo4b2o$10bo$3bo3bob3o$6b3o2bo$3bo2b2o2b2o$3bo3b2ob2o$4b6obo$4bo2b2o2bo$4bobo2b4o$4bobobo4bo$4bo2b2obo2b2o$4bo2b5o2bo$6b2o2b5o$6bo2b3ob2o$6bo2bo2b3o$6b2ob4o2b2o$10b2o2bob2o$13bobob2o$12bob2o2bo$12bobo2b2o$12bo2bob2o$12bo2b2obo$14b2o2bo$14bo2b3o$14bo2bo2bo$14b2ob5o$18b2o2bo$19bo2b2o$19bobob2o$19bo2bob2o$19b2obo2b2o$26b2o$24b2ob2o$26bo2bo$24bo4b2o$24b6obo$28b2ob7o$29b3o2b2ob2o$33bo4b2o$29bo2b3ob2obo$29b4o2b2obob5o$37bo2b3ob2o$33b4o2b2obo3bo$38b2ob3o2b7o$38b2ob4obo2b2ob2o$39b3obo2bobo3bobo$43b3ob3obo2b2o$39bo2b3o2b6o2b2o$39b4o2b2obob2o4bo$48bo6b2o$43b6o7bo$49b2obob3o$55b2o$55b2o$54b3o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 35296 spaceships and 1451 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1886
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Outer-totalistic hexagonal rules with spaceships

Post by LaundryPizza03 » May 29th, 2022, 12:57 am

May13 wrote:
May 29th, 2022, 12:11 am
Updated database, 246 gliders:
hex-gliders.db.txt
Can you reconcile the differences between this one and my version of the DB?
hex-gliders.db.txt
238 gliders
(55.37 KiB) Downloaded 4 times

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 35296 spaceships and 1451 oscillators from outer-totalistic rules. You are invited to help!

User avatar
May13
Posts: 426
Joined: March 11th, 2021, 8:33 am

Re: Outer-totalistic hexagonal rules with spaceships

Post by May13 » May 29th, 2022, 1:28 am

LaundryPizza03 wrote:
May 29th, 2022, 12:57 am
May13 wrote:
May 29th, 2022, 12:11 am
Updated database, 246 gliders:
hex-gliders.db.txt
Can you reconcile the differences between this one and my version of the DB?
hex-gliders.db.txt
It seems that the only difference is group of my unpublished spaceships:

Code: Select all

$ python check.py
@@@@@in 1.txt
:May13, 2022:B01234/S24H:B01234/S024H:10:-1:1:89:86:bo$4o$b4o$3b2o$3b5o$4b4o$6b3o$6b5o$6b5o$8b3o$9b4o$9b4o$12b3o$12b3o$14b3o$14b3o$14b5o$17b4o$17b5o$19b3o$18b3o$19b3o$21b4o$21b5o$22b4o$23b4o$24b6o$26b4o$26b4o$28b3o$29b2o2bo$31b3o$32b3o$33b2o$34b4o$36b2o$35b3o$36b3o$38b4o$38b5o$39b5o$41b3o$42b2o$42b4o$43b3obo$43b6o$46b3o$47b3o$47b3o$49b2o$49b3obo$52b3o$53b2o$54b3o$54b4o$55b3o$55b6o$55bo2b3o$58b4o$60b4o$59b5o$61b3o$62b3o$64b4o$64b5o$65b5o$67b4o$67b5o$69b4o$71b3o$72b2o$72b3o$73b2o$74b2o$74b4o$75b3o$75b3o$76b3obo$76b2o2bo$77bo$81bobo$82b3o$81b5o$82b5o$84b4o$86b3o!
:LaundryPizza03, 2022:B24/S3H:B24/S3H:5:-1:0:38:9:2bobo$b2o3bobobobo8bo8bo$4o4b3o3bo10bo3bo2bo$bob3o2bobo7bo3b3obo4bobobo$b2o6bo5bo3bo6bobobo4bo$2b5o2b3o4b2obo12bo4bo$3bo2bobobob3obobo4b2o5b2o$2b3o3bo2b2obobobobobo2bo4bob2o$4bo6bobobo4bobobo!
:LaundryPizza03, 2022:B24/S3H:B24/S36H:5:-1:0:50:9:14bo21bobo$5bo10bo2bo11bo4b3o2bo5bo$4bo11b2o3bobobobo3b3o2bo3bo5bo$obobob2obob2o3bobobo2b5obo10bo5b4o$4bo4bo3b3o4bobo2bo4bobo4bo2bobo3b2o$bobo4bob5ob3o2bobob3obo2bo5bo5b2ob2o$4bo5bobo3b2obo7bobo10bo7bo$7bo4bo5bo5bobo3bobo15b2o$5bobobo3bobobo7bobo20bo!
:LaundryPizza03, 2022:B246/S3H:B246/S36H:5:1-:0:25:9:5bobobo6bo$5bobo3bo2bobo3bo2bo$2bo3b2o3bo4b2obo4bo$b3obo4b3obob2obo2bobo$bo6bo6b2ob2o$bo6bo2bobobo3b2o3bo$3o9bo9bo$2bo3bo4bo3bo4bo$5bobobobo2bobobobo!
:LaundryPizza03, 2022:B24/S35H:B24/S356H:5:-1:0:29:9:10bobo7bo$10bo3bobo3b2o$obo5b2obo5bo3bobo$2b4o5bo6bo4bo$bob2ob2obo3bobobo5bo3bo$3b2obo3bo6bo3b3o4bo$2bobobo4bobo6bo3bo$5b3obo5bo5b2o3bo$6bo!
:LaundryPizza03, 2022:B245/S3H:B2456/S356H:5:-1:0:25:9:4bo$3bob2o11bo$2b2obob2o9bo$4b3o5b2obob3o$obo2bo2bo3bo2bo3bo$3bo15bobo$bo3bo4b2o2bo3bo2bobo$4bobo3bobobobo3bo3bo$2bo3bobo!
:LaundryPizza03, 2022:B013/S0124H:B013/S024H:10:-2:0:25:9:4bo$3bob2o11bo$2b2obob2o9bo$4b3o5b2obob3o$obo2bo2bo3bo2bo3bo$3bo15bobo$bo3bo4b2o2bo3bo2bobo$4bobo3bobobobo3bo3bo$2bo3bobo!
@@@@@in 2.txt
:May13, 2022:B01234/S24H:B01234/S024H:10:-1:1:88:86:b2o$5o$b4o$2b3o$3b3o$3b5o$6b3o$7b3o$7b3o$8b4o$9b4o$11b3o$11b4o$12b4o$13b4o$14b3o$15b4o$16b6o$18b4o$18b5o$19b2o$19b3o$20b6o$21b5o$23b4o$24b3o$24b5o$26b4o$26b5o$28b3o$30b2o$30bobobo$32b3o$34b2o$34b2o$34b4o$36b2o$36b3o$37b4o$38b5o$38b5o$40b4o$41b4o$42b3o$42b5o$45b4o$46b3o$47b3o$47b4o$48b2o$50bo2bo$51b4o$53b3o$53b5o$54b4o$55b3o$54b5o$56b5o$59b3o$58b5o$60b3o$62b2o$62b3o$63b4o$64b4o$64b6o$67b4o$67b5o$68b4o$70b4o$71b3o$72b3o$73b3o$73b3o$74b3o$75b2o$75b3o$76b4o$81bo$80b2o$82bo$81b4o$81b5o$82b5o$84b3o$86b2o!
:LaundryPizza03, 2022:B24/S3H:B24/S3H:5:-1:0:36:8:4bobobobo12bo6bobo$2b2o6b2o2bo7bo4bobo2bo$2b3o3bob4o8bo10b2o$obo13bo2b2obo3bo3bo2bobo$3b2o2bob2obo6bob2obo3bobo2bobo$bo3bo2b2obob2o4bo11bo$3bo7b3o2bobobo2bo6bo$4bo6bobo6bo3bo7bo!
:LaundryPizza03, 2022:B24/S3H:B24/S36H:5:-1:0:47:9:14bo17bobo$bo12bo2bo11bo4b2o3bo3bobo$2bo5bo5bobobo6bobo3bob3ob2o3bo$obo4bobobobobo2bo3b2o2b2o8bo3b2obobo$o7b3o2bob3o3bo3bobo2b2o2b2ob2obo2bo$o5bobob2o2bo2bob2ob2o3bo8b2o4bob2o$o2bo2bob2ob3ob4o3b2o4b2obo4bo5bob3o$bobobob2o2b4o6bob2o3bobo13bo$5bo3bobobobobo28bo!
:LaundryPizza03, 2022:B246/S3H:B246/S36H:5:-1:0:25:9:5bobobo6bo$5bobo3bo2bobo3bo2bo$2bo3b2o3bo4b2obo4bo$b3obo4b3obob2obo2bobo$bo6bo6b2ob2o$bo6bo2bobobo3b2o3bo$3o9bo9bo$2bo3bo4bo3bo4bo$5bobobobo2bobobobo!
:LaundryPizza03, 2022:B24/S35H:B24/S356H:5:-1:0:28:9:8bobo7bo$9b2o2b2o5bobo$obo3bo2bo5b2o4bo$4obo3bo4bo4b3o$o6bo3bobo3bo3bo3bobo$b2o5bo3bo5b3o2bob2o$3bobo3bo3b2o2bo3bo2b2o$2b3o2bo11b2o$4bo16bo!
:LaundryPizza03, 2022:B245/S3H:B2456/S356H:5:-1:0:25:8:3bob2o11bo$2bo8bo5bobo$bob2o2bo4b2obob2o$2b2o4b2o2b2obobobo$b6o4bo3bobobobobo$3o2bobo2bo2bo4b5o$3bo6bo3bo5bobobo$2bo3bo!
:LaundryPizza03, 2022:B013/S0124H:B013/S0124H:10:-2:0:25:8:3bob2o11bo$2bo8bo5bobo$bob2o2bo4b2obob2o$2b2o4b2o2b2obobobo$b6o4bo3bobobobobo$3o2bobo2bo2bo4b5o$3bo6bo3bo5bobobo$2bo3bo!
:May13, 2022:B0135/S124H:B0135/S0124H:2:-1:1:5:5:b2o$3o$2ob2o$2b2o$2bobo!
:May13, 2022:B023/S03H:B0236/S03H:2:-1:1:8:8:2bo$3bo$o2b2o$b2o$2bo2bo$4b2o2$7bo!
:May13, 2022:B023/S03H:B023/S03H:4/2:-1:1:17:17:obo$3ob2o$2b4o$b4o$2b3obo$3b3o2bo$6b6o$5b2o3b3o$6bo5bo2bo$14b3o$15bo$7bo4bo$8bo2bo$9b3o$8bo2bo$9b3o$10bo!
:May13, 2022:B013/S012H:B013/S012H:4/2:-1:1:18:17:3o$4o$b3o2b2o$2bo3b3o$2bo3b3o$4bo3bo$3b3ob3o$3b3obobo$4b9o$6bob6o$8b3o2b2o$8b2o5b2o$9b2o4bo$9b2o6bo$10b3o$12b2o$13bo!
:May13, 2022:B013/S12H:B0136/S12H:4/2:-1:1:19:18:5b3o$5b4o$6b3o2b2o$7bo3b3o$7bo3b3o$3o5bo4bo$4o2b3o3b2obo$b3o2b6o$2bo4b7o2bo$2bo5b8o$4bo3b8obo$3b3o2b9o$3b5ob9o$4b3o3b8o$6bo4b8o$10b8o$8bob7o$12b2o3bo!
:May13, 2022:B0136/S012H:B0136/S012H:4:-1:1:16:18:3o$4o$b3o2bo$2b4obo$2bobob3o$4bob4o$3bo4bobo$4bo5bo$3b3o4bobo$3b3o4b3obo$4b3o6b3o$7b2o2bo$8b4o$10b3o$10b3o$10b3o$11bobo$13bo!
:May13, 2022:B01346/S134H:B01346/S0134H:2:-1:1:15:15:2o$4o$b3o$b3obo$4b2o$3b4o$5b2o$7bo$8b2o$8bob2o$9bo2b3o$9bob3o$10b3o$10b2o$10bo!
:May13, 2022:B24/S24H:B24/S24H:3:1:1:25:25:8bo$9bo4bo$7bo2bo2b3o$6bobo2b2obo$7b2ob3obo$9bo$11b2o3b3o$11bo5b2o$7bobobo6bo$3obo5bob3o7bo$2bob2o2bo4bobo4b4o$8b2o2b4o6bo$bo2b2o2bo2b3obo2bob2o$5bobo3b2o3b3ob2o$15bo4bobo$3bobo7bo2bo2bo3bo$12b3o5b2o2bo$11bo4bo3bobo$21bo$9bob2obo$12bob2o$9bo$14b2o$12bo2bo$15bo!
:May13, 2022:B246/S24H:B246/S24H:3:1:1:34:37:28bo$27b3o$28bo$22b2ob2obo$21bo2b2ob2o$20b2o3bobob2ob2o$22bob3ob3ob2o$20bobob2o2b3obo$21bobo6b2o$15b3o4bobo$17bo3bobo$12b2ob2o3b2obo$12bob4obobo$10bo3bobo2bob3o$9bo2bobo7bo$11b2o9bo$9b2o2b2obo4bo$12b2o2b2o3b3o$14b3o5b3o$9b4obob2o3bobobo$2o5bo2b3o2b3obobo3bo$obo7b2o2bo2bobo$2b2o6b2o3bo$2bo6b5o5bo$3b2o4b2obo7bo$3b2o7b3o3bobo$o2bobo4b2ob2o5b2o$bobo2bo3b3o2bo4bo$o3bobob2ob4o$5b4ob2obo$4bo2bobobobo$7b5o2bo$7bobo4bo$o2bobob2o$6b3o$2b2ob2o2bo$4bobobo!
:May13, 2022:B24/S24H:B24/S24H:3:-1:1:21:21:3bo$3b3o$3bob2o$4o$bo2b2obo$b2obobob2o$2bo2bo$4bo2b2o2bo$5bob2ob2o$5bo5b2o$8bobobo3bo$7b3o2bob2o2bo$9b3o3bob2o$13bo2bo$11bo$11b2o$10bo2bo4b2o$12bo$11b2o3bo2bo$16bobo$20bo!
:May13, 2022:B24/S24H:B246/S24H:4/2:-1:1:26:26:3b2o$5bo2$4b3o$ob3obo$2o$6bobo2bo$bo4b2o2bob2o$8bobo2bo$6bob2o3b2o$5bo4b3ob2o$8bobo4bo$7bob2o4bo$7bo3b3o2bo$8b3ob2ob2o$8bo2bob2ob2o$10bobo4bo2bo$10bo3b2obobob2o$14b5ob2obo$16bo2b3o$18bo2bo$17b6o$17b4o2bo$16b6obo$19b2o$24b2o!
1.txt is your edition, 2.txt is edition with 249 gliders (added c/2 diagonal spaceships):
hex-gliders.db.txt
249 hexagonal spaceships
(57.58 KiB) Downloaded 4 times
I used this Python script:

Code: Select all

f=open("1.txt")
l1=f.read()
f.close()
f=open("2.txt")
l2=f.read()
f.close()
l1=l1.replace("\n","").split("!")
l2=l2.replace("\n","").split("!")
print("@@@@@in 1.txt")
for i in l1:
	if not i in l2: print(i+"!")
print("@@@@@in 2.txt")
for i in l2:
	if not i in l1: print(i+"!")
Can we complete 14-in-9 (Completed by me and Kazyan in 2022) and 15-in-10 (9 still lifes left) in CGoL?

The latest version of hex-gliders.db have 249 spaceships from OT hexagonal rules.

My CA

User avatar
breaker's glider gun
Posts: 372
Joined: May 23rd, 2021, 10:26 am
Location: the inside of a stuffed anaconda or maybe [click to not expand]

Re: Outer-totalistic hexagonal rules with spaceships

Post by breaker's glider gun » June 1st, 2022, 2:00 pm

Dying seirpinski from the first rule:

Code: Select all

x = 960, y = 33, rule = B2/S3H
23b2o16$960o16$39b2o!
Someone who forgets to attribute things rightly a lot. :P

Post Reply