Help with symmetries

For general discussion about Conway's Game of Life.
Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Help with symmetries

I need help with soup symmetries, I know that C1 means no symmetry, but what do the other symmetries mean? (e.g. D4_x4, C2_2, D8 x4)
Airy Clave White It Nay

Code: Select all

``````x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
``````
(Check gen 2)

biggiemac
Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: Help with symmetries

So the names are tied to group theory, and refer to the set of things you can do that make the soup look like it started. C1 is the trivial group, the only thing you can do is nothing. C2 and C4 are groups with 2 and 4 steps, rotations by a half or quarter circle (C means cyclic). So a C2 soup looks the same when rotated 180 degrees. A C4 soup looks the same when rotated 90 degrees. But because we are on a grid, there are three different alignments of the 180 degree rotated piece. The extra number tells that: for C2_2 a cell and its rotated image are in corners of a odd by even rectangle, C2_4 an even by even, and C2_1 an odd by odd.

The D is for the dihedral group. It's like the cyclic group but with reflections too. D2 is like C1 with a mirror down the middle, and again there is a choice of even or odd. There is an additional choice though, of whether the mirror is vertical/horizontal or diagonal. If the mirror is vertical/horizontal, it is +, for diagonal it is x. So D2 +2 refers to a soup that can be made to look like it started either by doing nothing or by reflecting along a horizontal line with an even distance between similar cells. Similarly, D4 resembles C2, but with the reflections too, and now there are 2 independent parities, one for the spin and one for the flip. Thus with D4, 1 means odd odd, 2 odd even, and 4 even even. So D4 soups look the same if you do nothing, if you spin 180, if you mirror appropriately or if you mirror and spin (4 possible operations, so the group is D4, which is the method behind identifying the number immediately following the letter).

D8 has the most options, it refers to soups that are identical if rotated by any multiple of 90 degrees or if flipped appropriately about any axis. A flip about a horizontal axis followed by a 90 degree rotation is the same as a flip about a diagonal axis so there's no + vs x in D8, only the even or odd.

You can tell the symmetry of an object with the same group theory. If some ash object can be mirrored about a line with an odd distance between neighbors (e.g., MWSS on MWSS 1), then it is probably more common from soups with D2_1 symmetry (which includes D4_1, D4_2, and D8_1 but not D4_4). 28p7.2, for another example, has C2_2 symmetry, so our best bet for finding a p7 from a soup would be to modify apgnano to support C2_2 -nudge nudge-.

Hope this helps! I started by writing from memory but I went and checked with catagolue and found I had a number of things wrong with the parity numbers, so I edited that all up and now it's fixed. Hopefully nobody saw it while it was still wrong..
Physics: sophistication from simplicity.

Saka
Posts: 3138
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Help with symmetries

I think I got it, but I'm not sure, I prefer pictures
Airy Clave White It Nay

Code: Select all

``````x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o\$11b4obo\$2bob3o2bo2b3o\$bo3b2o4b2o\$o2bo2bob2o3b4o\$bob2obo5b
o2b2o\$2b2o4bobo2b3o\$bo3b5ob2obobo\$2bo5bob2o\$4bob2o2bobobo!
``````
(Check gen 2)

SuperSupermario24
Posts: 120
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Help with symmetries

Speaking of symmetries, I have a couple questions about rule table symmetries:
-What does the "permute" symmetry mean?
-What is "rotate8"? How would that work with a Moore neighborhood?

Code: Select all

``bobo2b3o2b2o2bo3bobo\$obobobo3bo2bobo3bobo\$obobob2o2bo2bobo3bobo\$o3bobo3bo2bobobobo\$o3bob3o2b2o3bobo2bo!``

danieldb
Posts: 163
Joined: July 15th, 2015, 4:27 pm
Location: Right behind you holding a knife
Contact:

Re: Help with symmetries

SuperSupermario24 wrote:Speaking of symmetries, I have a couple questions about rule table symmetries:
-What does the "permute" symmetry mean?
-What is "rotate8"? How would that work with a Moore neighborhood?
Permute means that for

Code: Select all

``1,1,1,1,0,0,0,0,0,1``
All S3 coditions are set
moved to drc

SuperSupermario24
Posts: 120
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Help with symmetries

danieldb wrote:Permute means that for

Code: Select all

``1,1,1,1,0,0,0,0,0,1``
All S3 coditions are set
Oh, that's useful. Thanks.

Code: Select all

``bobo2b3o2b2o2bo3bobo\$obobobo3bo2bobo3bobo\$obobob2o2bo2bobo3bobo\$o3bobo3bo2bobobobo\$o3bob3o2b2o3bobo2bo!``

Alexey_Nigin
Posts: 323
Joined: August 4th, 2014, 12:33 pm
Location: Ann Arbor, MI
Contact:

Re: Help with symmetries

Saka wrote:I think I got it, but I'm not sure, I prefer pictures
OK, here they are:

Code: Select all

``````#C [[ VIEWONLY TITLE "C1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 16, y = 16, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$16o
!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "C2_1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 31, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$31o
\$15bo14bo\$15bo14bo\$15bo9b2o3bo\$15bo8b4o2bo\$15bo8b4o2bo\$15bo2b10o2bo\$
15bo14bo\$15bo14bo\$15bo3b2o4b2o3bo\$15bo2bo2bo2bo2bo2bo\$15bo2bo2bo2bo2bo
2bo\$15bo3b2o4b2o3bo\$15bo14bo\$15bo14bo\$15b16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "C2_2" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 32, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$16o
\$15b16o\$15bo14bo\$15bo14bo\$15bo9b2o3bo\$15bo8b4o2bo\$15bo8b4o2bo\$15bo2b
10o2bo\$15bo14bo\$15bo14bo\$15bo3b2o4b2o3bo\$15bo2bo2bo2bo2bo2bo\$15bo2bo2b
o2bo2bo2bo\$15bo3b2o4b2o3bo\$15bo14bo\$15bo14bo\$15b16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "C2_4" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 32, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$16o
\$16b16o\$16bo14bo\$16bo14bo\$16bo9b2o3bo\$16bo8b4o2bo\$16bo8b4o2bo\$16bo2b
10o2bo\$16bo14bo\$16bo14bo\$16bo3b2o4b2o3bo\$16bo2bo2bo2bo2bo2bo\$16bo2bo2b
o2bo2bo2bo\$16bo3b2o4b2o3bo\$16bo14bo\$16bo14bo\$16b16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "C4_1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 31, rule = B3/S23
31o\$o14bo14bo\$o14bo14bo\$o3b2o4b2o3bo3b3o3b2o3bo\$o2bo2bo2bo2bo2bo2b4o2b
o2bo2bo\$o2bo2bo2bo2bo2bo2b4o2bo2bo2bo\$o3b2o4b2o3bo3b3o3b2o3bo\$o14bo5bo
8bo\$o14bo5bo8bo\$o2b10o2bo5bo3b2o3bo\$o2b4o8bo5bo2bo2bo2bo\$o2b4o8bo5bo2b
o2bo2bo\$o3b2o9bo5bo3b2o3bo\$o14bo14bo\$o14bo14bo\$31o\$o14bo14bo\$o14bo14bo
\$o3b2o3bo5bo9b2o3bo\$o2bo2bo2bo5bo8b4o2bo\$o2bo2bo2bo5bo8b4o2bo\$o3b2o3bo
5bo2b10o2bo\$o8bo5bo14bo\$o8bo5bo14bo\$o3b2o3b3o3bo3b2o4b2o3bo\$o2bo2bo2b
4o2bo2bo2bo2bo2bo2bo\$o2bo2bo2b4o2bo2bo2bo2bo2bo2bo\$o3b2o3b3o3bo3b2o4b
2o3bo\$o14bo14bo\$o14bo14bo\$31o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "C4_4" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 32, rule = B3/S23
32o\$o14b2o14bo\$o14b2o14bo\$o3b2o4b2o3b2o3b3o3b2o3bo\$o2bo2bo2bo2bo2b2o2b
4o2bo2bo2bo\$o2bo2bo2bo2bo2b2o2b4o2bo2bo2bo\$o3b2o4b2o3b2o3b3o3b2o3bo\$o
14b2o5bo8bo\$o14b2o5bo8bo\$o2b10o2b2o5bo3b2o3bo\$o2b4o8b2o5bo2bo2bo2bo\$o
2b4o8b2o5bo2bo2bo2bo\$o3b2o9b2o5bo3b2o3bo\$o14b2o14bo\$o14b2o14bo\$32o\$32o
\$o14b2o14bo\$o14b2o14bo\$o3b2o3bo5b2o9b2o3bo\$o2bo2bo2bo5b2o8b4o2bo\$o2bo
2bo2bo5b2o8b4o2bo\$o3b2o3bo5b2o2b10o2bo\$o8bo5b2o14bo\$o8bo5b2o14bo\$o3b2o
3b3o3b2o3b2o4b2o3bo\$o2bo2bo2b4o2b2o2bo2bo2bo2bo2bo\$o2bo2bo2b4o2b2o2bo
2bo2bo2bo2bo\$o3b2o3b3o3b2o3b2o4b2o3bo\$o14b2o14bo\$o14b2o14bo\$32o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D2_+1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 16, y = 31, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$16o
\$o14bo\$o14bo\$o3b2o9bo\$o2b4o8bo\$o2b4o8bo\$o2b10o2bo\$o14bo\$o14bo\$o3b2o4b
2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b2o3bo\$o14bo\$o14bo\$16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D2_+2" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 16, y = 32, rule = B3/S23
16o\$o14bo\$o14bo\$o3b2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b
2o3bo\$o14bo\$o14bo\$o2b10o2bo\$o2b4o8bo\$o2b4o8bo\$o3b2o9bo\$o14bo\$o14bo\$16o
\$16o\$o14bo\$o14bo\$o3b2o9bo\$o2b4o8bo\$o2b4o8bo\$o2b10o2bo\$o14bo\$o14bo\$o3b
2o4b2o3bo\$o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2bo\$o3b2o4b2o3bo\$o14bo\$o14bo\$
16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D2_x" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 16, y = 16, rule = B3/S23
16o\$o14bo\$o14bo\$o7bo6bo\$o6bobo5bo\$o7bo3bo2bo\$o11bo2bo\$o3bo7bo2bo\$o2bob
o6bo2bo\$o3bo6bo3bo\$o9bo4bo\$o8bo5bo\$o4b4o6bo\$o14bo\$o14bo\$16o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D4_+1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 31, rule = B3/S23
31o\$o14bo14bo\$o14bo14bo\$o3b2o4b2o3bo3b2o4b2o3bo\$o2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo\$o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo\$o3b2o4b2o3bo3b2o4b2o3bo\$o14b
o14bo\$o14bo14bo\$o2b10o2bo2b10o2bo\$o2b4o8bo8b4o2bo\$o2b4o8bo8b4o2bo\$o3b
2o9bo9b2o3bo\$o14bo14bo\$o14bo14bo\$31o\$o14bo14bo\$o14bo14bo\$o3b2o9bo9b2o
3bo\$o2b4o8bo8b4o2bo\$o2b4o8bo8b4o2bo\$o2b10o2bo2b10o2bo\$o14bo14bo\$o14bo
14bo\$o3b2o4b2o3bo3b2o4b2o3bo\$o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo\$o2bo2bo2b
o2bo2bo2bo2bo2bo2bo2bo\$o3b2o4b2o3bo3b2o4b2o3bo\$o14bo14bo\$o14bo14bo\$31o
!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D4_+2" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 31, rule = B3/S23
32o\$o14b2o14bo\$o14b2o14bo\$o3b2o4b2o3b2o3b2o4b2o3bo\$o2bo2bo2bo2bo2b2o2b
o2bo2bo2bo2bo\$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo\$o3b2o4b2o3b2o3b2o4b2o3b
o\$o14b2o14bo\$o14b2o14bo\$o2b10o2b2o2b10o2bo\$o2b4o8b2o8b4o2bo\$o2b4o8b2o
8b4o2bo\$o3b2o9b2o9b2o3bo\$o14b2o14bo\$o14b2o14bo\$32o\$o14b2o14bo\$o14b2o
14bo\$o3b2o9b2o9b2o3bo\$o2b4o8b2o8b4o2bo\$o2b4o8b2o8b4o2bo\$o2b10o2b2o2b
10o2bo\$o14b2o14bo\$o14b2o14bo\$o3b2o4b2o3b2o3b2o4b2o3bo\$o2bo2bo2bo2bo2b
2o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo\$o3b2o4b2o3b2o3b2o4b
2o3bo\$o14b2o14bo\$o14b2o14bo\$32o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D4_+4" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 32, rule = B3/S23
32o\$o14b2o14bo\$o14b2o14bo\$o3b2o4b2o3b2o3b2o4b2o3bo\$o2bo2bo2bo2bo2b2o2b
o2bo2bo2bo2bo\$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo\$o3b2o4b2o3b2o3b2o4b2o3b
o\$o14b2o14bo\$o14b2o14bo\$o2b10o2b2o2b10o2bo\$o2b4o8b2o8b4o2bo\$o2b4o8b2o
8b4o2bo\$o3b2o9b2o9b2o3bo\$o14b2o14bo\$o14b2o14bo\$32o\$32o\$o14b2o14bo\$o14b
2o14bo\$o3b2o9b2o9b2o3bo\$o2b4o8b2o8b4o2bo\$o2b4o8b2o8b4o2bo\$o2b10o2b2o2b
10o2bo\$o14b2o14bo\$o14b2o14bo\$o3b2o4b2o3b2o3b2o4b2o3bo\$o2bo2bo2bo2bo2b
2o2bo2bo2bo2bo2bo\$o2bo2bo2bo2bo2b2o2bo2bo2bo2bo2bo\$o3b2o4b2o3b2o3b2o4b
2o3bo\$o14b2o14bo\$o14b2o14bo\$32o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D4_x1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 31, rule = B3/S23
31o\$o14bo14bo\$o14bo14bo\$o7bo6bo5b3o6bo\$o6bobo5bo5bobo6bo\$o7bo3bo2bo2bo
2b3o6bo\$o11bo2bo2b2o10bo\$o3bo7bo2bo2b2o5b3o2bo\$o2bobo6bo2bo2b3o4bobo2b
o\$o3bo6bo3bo3b2o4b3o2bo\$o9bo4bo3b4o7bo\$o8bo5bo4b5o5bo\$o4b4o6bo6b4o4bo\$
o14bo14bo\$o14bo14bo\$31o\$o14bo14bo\$o14bo14bo\$o4b4o6bo6b4o4bo\$o5b5o4bo5b
o8bo\$o7b4o3bo4bo9bo\$o2b3o4b2o3bo3bo6bo3bo\$o2bobo4b3o2bo2bo6bobo2bo\$o2b
3o5b2o2bo2bo7bo3bo\$o10b2o2bo2bo11bo\$o6b3o2bo2bo2bo3bo7bo\$o6bobo5bo5bob
o6bo\$o6b3o5bo6bo7bo\$o14bo14bo\$o14bo14bo\$31o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D4_x4" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 32, rule = B3/S23
32o\$o14b2o14bo\$o14b2o14bo\$o7bo6b2o5b3o6bo\$o6bobo5b2o5bobo6bo\$o7bo3bo2b
2o2bo2b3o6bo\$o11bo2b2o2b2o10bo\$o3bo7bo2b2o2b2o5b3o2bo\$o2bobo6bo2b2o2b
3o4bobo2bo\$o3bo6bo3b2o3b2o4b3o2bo\$o9bo4b2o3b4o7bo\$o8bo5b2o4b5o5bo\$o4b
4o6b2o6b4o4bo\$o14b2o14bo\$o14b2o14bo\$32o\$32o\$o14b2o14bo\$o14b2o14bo\$o4b
4o6b2o6b4o4bo\$o5b5o4b2o5bo8bo\$o7b4o3b2o4bo9bo\$o2b3o4b2o3b2o3bo6bo3bo\$o
2bobo4b3o2b2o2bo6bobo2bo\$o2b3o5b2o2b2o2bo7bo3bo\$o10b2o2b2o2bo11bo\$o6b
3o2bo2b2o2bo3bo7bo\$o6bobo5b2o5bobo6bo\$o6b3o5b2o6bo7bo\$o14b2o14bo\$o14b
2o14bo\$32o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D8_1" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 31, y = 31, rule = B3/S23
31o\$o14bo14bo\$o14bo14bo\$o7bo6bo6bo7bo\$o6bobo5bo5bobo6bo\$o7bo3bo2bo2bo
3bo7bo\$o11bo2bo2bo11bo\$o3bo7bo2bo2bo7bo3bo\$o2bobo6bo2bo2bo6bobo2bo\$o3b
o6bo3bo3bo6bo3bo\$o9bo4bo4bo9bo\$o8bo5bo5bo8bo\$o4b4o6bo6b4o4bo\$o14bo14bo
\$o14bo14bo\$31o\$o14bo14bo\$o14bo14bo\$o4b4o6bo6b4o4bo\$o8bo5bo5bo8bo\$o9bo
4bo4bo9bo\$o3bo6bo3bo3bo6bo3bo\$o2bobo6bo2bo2bo6bobo2bo\$o3bo7bo2bo2bo7bo
3bo\$o11bo2bo2bo11bo\$o7bo3bo2bo2bo3bo7bo\$o6bobo5bo5bobo6bo\$o7bo6bo6bo7b
o\$o14bo14bo\$o14bo14bo\$31o!``````

Code: Select all

``````#C [[ VIEWONLY TITLE "D8_4" GRID ]]
#C [[ COLOR BACKGROUND 48 48 48 COLOR ALIVE 255 255 255 ]]
x = 32, y = 32, rule = B3/S23
32o\$o14b2o14bo\$o14b2o14bo\$o7bo6b2o6bo7bo\$o6bobo5b2o5bobo6bo\$o7bo3bo2b
2o2bo3bo7bo\$o11bo2b2o2bo11bo\$o3bo7bo2b2o2bo7bo3bo\$o2bobo6bo2b2o2bo6bob
o2bo\$o3bo6bo3b2o3bo6bo3bo\$o9bo4b2o4bo9bo\$o8bo5b2o5bo8bo\$o4b4o6b2o6b4o
4bo\$o14b2o14bo\$o14b2o14bo\$32o\$32o\$o14b2o14bo\$o14b2o14bo\$o4b4o6b2o6b4o
4bo\$o8bo5b2o5bo8bo\$o9bo4b2o4bo9bo\$o3bo6bo3b2o3bo6bo3bo\$o2bobo6bo2b2o2b
o6bobo2bo\$o3bo7bo2b2o2bo7bo3bo\$o11bo2b2o2bo11bo\$o7bo3bo2b2o2bo3bo7bo\$o
6bobo5b2o5bobo6bo\$o7bo6b2o6bo7bo\$o14b2o14bo\$o14b2o14bo\$32o!``````
There are 10 types of people in the world: those who understand binary and those who don't.

muzik
Posts: 3772
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Help with symmetries

Now that apgsearch has the ability to search hexagonal rules, and that corresponding symmetries for the hexagonal grid will likely eventually be supported, can examples of such symmetries be provided? It'd be helpful to have these documented on the wiki.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!