Making Cells Replicate/Move Randomly

For scripts to aid with computation or simulation in cellular automata.
Post Reply
thomast1120
Posts: 1
Joined: June 7th, 2016, 8:50 pm

Making Cells Replicate/Move Randomly

Post by thomast1120 » June 7th, 2016, 8:55 pm

Hello Golly community,
I was wondering if there was a script to alter the cells to replicate and move randomly instead of following the strict algorithms set in place currently. I would like to see what the cellular life would do and create out of that randomness. If there is such a script, could someone provide it (I don't know how to make scripts myself)? Thanks!

Gamedziner
Posts: 795
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

Re: Making Cells Replicate/Move Randomly

Post by Gamedziner » June 8th, 2016, 8:11 am

thomast1120 wrote:Hello Golly community,
I was wondering if there was a script to alter the cells to replicate and move randomly instead of following the strict algorithms set in place currently. I would like to see what the cellular life would do and create out of that randomness. If there is such a script, could someone provide it (I don't know how to make scripts myself)? Thanks!
If every cell replicated randomly, then you would simply have a soup being made every generation. "Movement" is really a result of the strict algorithms, and is therefore dependent upon those algorithms:

For example, a glider works in B3/S23:

Code: Select all

 x = 3, y = 3, rule = B3/S23
bo$2bo$3o!
But not in B8/S8:

Code: Select all

 x = 3, y = 3, rule = B8/S8
bo$2bo$3o!

Code: Select all

x = 81, y = 96, rule = LifeHistory
58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.
A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A
$4.2A18$4.2A$4.2A2.2A$8.2A!

User avatar
dvgrn
Moderator
Posts: 8005
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Making Cells Replicate/Move Randomly

Post by dvgrn » June 8th, 2016, 10:01 am

Gamedziner wrote:If every cell replicated randomly, then you would simply have a soup being made every generation. "Movement" is really a result of the strict algorithms, and is therefore dependent upon those algorithms...
All true enough. @thomast1120, it might be that what you're looking for is not so much cellular automata as some related field, like agent-based modeling. It's certainly possible to write a script to get Golly to do agent-based modeling, but in most cases the script will just be making inefficient use of Golly's universe to draw on. As soon as you introduce random choices of any kind, Golly's optimized CA simulation algorithms won't be any help at all.

Another way of saying this is that cellular automata are generally zero-player games, where the result is determined completely by the initial configuration. As soon as you add any randomness, the outcome is no longer pre-determined -- you might have to run the same experiment many times to find out what happens "on average", or something like that.

That just means that if you want to investigate this kind of thing, it might be better to start with some other simulation engine instead of Golly. I just went and looked for simulators that can handle agent-based models along the lines of A.K. Dewdney's Bugworld. Was surprised not to find any current software packages called "Bugworld", or any obvious Bugworld simulations available online. There's an old one called SimulatedEvolution, but it doesn't run well on any OS past Windows XP.

However, there's a nicely presented package called Gridworld, that came out late last year. I haven't tried it, but it looks very similar to BugWorld -- maybe minus the "Garden of Eden" idea that can be seen in SimulatedEvolution screenshots (meaning something completely different from Garden of Eden in a Conway's Life context, by the way.)

GridWorld's DNA might be implemented a little differently from Dewdney's design, which was originally published in a Scientific American article sometime in the previous millennium. But based on the video, the final outcomes are recognizably similar.

One interesting thing I remember from my own BugWorld implementation was that if you added a high-food-density Garden of Eden, the bugs that evolved might be equally likely to end up doing tight clockwise spirals, or tight counterclockwise spirals, but in the long run you'd never see both types in a single experiment (unless you had two separate Gardens, anyway). The odds were overwhelmingly against a perfect balance, so one species would inevitably out-compete the other.

User avatar
dvgrn
Moderator
Posts: 8005
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Making Cells Replicate/Move Randomly

Post by dvgrn » June 8th, 2016, 10:17 am

dvgrn wrote:That just means that if you want to investigate this kind of thing, it might be better to start with some other simulation engine instead of Golly...
That said -- it's certainly possible to set up rules in Golly that include pseudo-random behavior, and movement and competition between self-replicating agents.

A good example is pi_guy314's loop-rule experiments, which are certainly worth a look. There are also some much older EvoLoop sample patterns in Golly's pattern collection, if that line of research ends up looking interesting.

The most common pattern for loop rules is that smaller faster simpler mutations tend to win the replication race against larger more interesting-looking ones. So simulations often get kind of boring after a while as "biodiversity" decreases instead of increasing. But in pi_guy314's rule there seems to be at least some bias in favor of greater complexity.

User avatar
Kazyan
Posts: 1107
Joined: February 6th, 2014, 11:02 pm

Re: Making Cells Replicate/Move Randomly

Post by Kazyan » June 9th, 2016, 1:59 am

dvgrn wrote:That said -- it's certainly possible to set up rules in Golly that include pseudo-random behavior, and movement and competition between self-replicating agents.

A good example is pi_guy314's loop-rule experiments, which are certainly worth a look. There are also some much older EvoLoop sample patterns in Golly's pattern collection, if that line of research ends up looking interesting.

The most common pattern for loop rules is that smaller faster simpler mutations tend to win the replication race against larger more interesting-looking ones. So simulations often get kind of boring after a while as "biodiversity" decreases instead of increasing. But in pi_guy314's rule there seems to be at least some bias in favor of greater complexity.
A while back, I started working with the goal of creating a script for CAs with pseudorandom behavior. This thread inspired me to dig it up and demonstrate what I'm getting at:

Code: Select all

@RULE StochTest

@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

3,3,0,0,0,0,0,0,0,2
3,0,0,0,0,0,0,1,1,3
3,2,0,0,0,0,0,0,1,2
3,3,0,0,0,0,0,0,1,3
3,2,3,0,0,0,0,0,0,2
3,3,3,0,0,0,0,0,0,3
3,0,0,0,0,0,1,1,1,3
3,2,0,0,0,0,0,1,1,3
3,3,0,0,0,0,0,1,1,3
3,2,2,0,0,0,0,0,1,2
3,2,3,0,0,0,0,0,1,3
3,3,3,0,0,0,0,0,1,3
3,2,2,3,0,0,0,0,0,2
3,2,3,3,0,0,0,0,0,3
3,3,3,3,0,0,0,0,0,3
3,0,0,0,0,1,1,1,1,3
3,2,0,0,0,0,1,1,1,3
3,3,0,0,0,0,1,1,1,3
3,2,2,0,0,0,0,1,1,3
3,2,3,0,0,0,0,1,1,3
3,3,3,0,0,0,0,1,1,3
3,2,2,2,0,0,0,0,1,2
3,2,2,3,0,0,0,0,1,3
3,2,3,3,0,0,0,0,1,3
3,3,3,3,0,0,0,0,1,3
3,2,2,2,3,0,0,0,0,2
3,2,2,3,3,0,0,0,0,3
3,2,3,3,3,0,0,0,0,3
3,3,3,3,3,0,0,0,0,3
3,0,0,0,1,1,1,1,1,3
3,2,0,0,0,1,1,1,1,3
3,3,0,0,0,1,1,1,1,3
3,2,2,0,0,0,1,1,1,3
3,2,3,0,0,0,1,1,1,3
3,3,3,0,0,0,1,1,1,3
3,2,2,2,0,0,0,1,1,3
3,2,2,3,0,0,0,1,1,3
3,2,3,3,0,0,0,1,1,3
3,3,3,3,0,0,0,1,1,3
3,2,2,2,2,0,0,0,1,2
3,2,2,2,3,0,0,0,1,3
3,2,2,3,3,0,0,0,1,3
3,2,3,3,3,0,0,0,1,3
3,3,3,3,3,0,0,0,1,3
3,2,2,2,2,3,0,0,0,2
3,2,2,2,3,3,0,0,0,3
3,2,2,3,3,3,0,0,0,3
3,2,3,3,3,3,0,0,0,3
3,3,3,3,3,3,0,0,0,3
3,0,0,1,1,1,1,1,1,2
3,2,0,0,1,1,1,1,1,3
3,3,0,0,1,1,1,1,1,2
3,2,2,0,0,1,1,1,1,3
3,2,3,0,0,1,1,1,1,3
3,3,3,0,0,1,1,1,1,2
3,2,2,2,0,0,1,1,1,3
3,2,2,3,0,0,1,1,1,3
3,2,3,3,0,0,1,1,1,3
3,3,3,3,0,0,1,1,1,2
3,2,2,2,2,0,0,1,1,3
3,2,2,2,3,0,0,1,1,3
3,2,2,3,3,0,0,1,1,3
3,2,3,3,3,0,0,1,1,3
3,3,3,3,3,0,0,1,1,2
3,2,2,2,2,2,0,0,1,2
3,2,2,2,2,3,0,0,1,3
3,2,2,2,3,3,0,0,1,3
3,2,2,3,3,3,0,0,1,3
3,2,3,3,3,3,0,0,1,3
3,3,3,3,3,3,0,0,1,2
3,2,2,2,2,2,3,0,0,2
3,2,2,2,2,3,3,0,0,3
3,2,2,2,3,3,3,0,0,3
3,2,2,3,3,3,3,0,0,3
3,2,3,3,3,3,3,0,0,3
3,3,3,3,3,3,3,0,0,2
3,0,1,1,1,1,1,1,1,2
3,2,0,1,1,1,1,1,1,2
3,3,0,1,1,1,1,1,1,2
3,2,2,0,1,1,1,1,1,3
3,2,3,0,1,1,1,1,1,2
3,3,3,0,1,1,1,1,1,2
3,2,2,2,0,1,1,1,1,3
3,2,2,3,0,1,1,1,1,3
3,2,3,3,0,1,1,1,1,2
3,3,3,3,0,1,1,1,1,2
3,2,2,2,2,0,1,1,1,3
3,2,2,2,3,0,1,1,1,3
3,2,2,3,3,0,1,1,1,3
3,2,3,3,3,0,1,1,1,2
3,3,3,3,3,0,1,1,1,2
3,2,2,2,2,2,0,1,1,3
3,2,2,2,2,3,0,1,1,3
3,2,2,2,3,3,0,1,1,3
3,2,2,3,3,3,0,1,1,3
3,2,3,3,3,3,0,1,1,2
3,3,3,3,3,3,0,1,1,2
3,2,2,2,2,2,2,0,1,2
3,2,2,2,2,2,3,0,1,3
3,2,2,2,2,3,3,0,1,3
3,2,2,2,3,3,3,0,1,3
3,2,2,3,3,3,3,0,1,3
3,2,3,3,3,3,3,0,1,2
3,3,3,3,3,3,3,0,1,2
3,2,2,2,2,2,2,3,0,2
3,2,2,2,2,2,3,3,0,3
3,2,2,2,2,3,3,3,0,3
3,2,2,2,3,3,3,3,0,3
3,2,2,3,3,3,3,3,0,3
3,2,3,3,3,3,3,3,0,2
3,3,3,3,3,3,3,3,0,2
3,1,1,1,1,1,1,1,1,3
3,2,1,1,1,1,1,1,1,2
3,3,1,1,1,1,1,1,1,3
3,2,2,1,1,1,1,1,1,2
3,2,3,1,1,1,1,1,1,2
3,3,3,1,1,1,1,1,1,3
3,2,2,2,1,1,1,1,1,3
3,2,2,3,1,1,1,1,1,2
3,2,3,3,1,1,1,1,1,2
3,3,3,3,1,1,1,1,1,3
3,2,2,2,2,1,1,1,1,3
3,2,2,2,3,1,1,1,1,3
3,2,2,3,3,1,1,1,1,2
3,2,3,3,3,1,1,1,1,2
3,3,3,3,3,1,1,1,1,3
3,2,2,2,2,2,1,1,1,3
3,2,2,2,2,3,1,1,1,3
3,2,2,2,3,3,1,1,1,3
3,2,2,3,3,3,1,1,1,2
3,2,3,3,3,3,1,1,1,2
3,3,3,3,3,3,1,1,1,3
3,2,2,2,2,2,2,1,1,3
3,2,2,2,2,2,3,1,1,3
3,2,2,2,2,3,3,1,1,3
3,2,2,2,3,3,3,1,1,3
3,2,2,3,3,3,3,1,1,2
3,2,3,3,3,3,3,1,1,2
3,3,3,3,3,3,3,1,1,3
3,2,2,2,2,2,2,2,1,2
3,2,2,2,2,2,2,3,1,3
3,2,2,2,2,2,3,3,1,3
3,2,2,2,2,3,3,3,1,3
3,2,2,2,3,3,3,3,1,3
3,2,2,3,3,3,3,3,1,2
3,2,3,3,3,3,3,3,1,2
3,3,3,3,3,3,3,3,1,3
3,2,2,2,2,2,2,2,3,2
3,2,2,2,2,2,2,3,3,3
3,2,2,2,2,2,3,3,3,3
3,2,2,2,2,3,3,3,3,3
3,2,2,2,3,3,3,3,3,3
3,2,2,3,3,3,3,3,3,2
3,2,3,3,3,3,3,3,3,2
3,3,3,3,3,3,3,3,3,3
2,0,0,0,0,0,0,0,1,2
2,3,0,0,0,0,0,0,0,2
2,0,0,0,0,0,0,1,1,2
2,2,0,0,0,0,0,0,1,2
2,3,0,0,0,0,0,0,1,2
2,2,3,0,0,0,0,0,0,2
2,3,3,0,0,0,0,0,0,2
2,0,0,0,0,0,1,1,1,2
2,2,0,0,0,0,0,1,1,2
2,3,0,0,0,0,0,1,1,2
2,2,2,0,0,0,0,0,1,2
2,2,3,0,0,0,0,0,1,2
2,3,3,0,0,0,0,0,1,2
2,2,2,3,0,0,0,0,0,2
2,2,3,3,0,0,0,0,0,2
2,3,3,3,0,0,0,0,0,2
2,0,0,0,0,1,1,1,1,3
2,2,0,0,0,0,1,1,1,2
2,3,0,0,0,0,1,1,1,3
2,2,2,0,0,0,0,1,1,2
2,2,3,0,0,0,0,1,1,2
2,3,3,0,0,0,0,1,1,3
2,2,2,2,0,0,0,0,1,2
2,2,2,3,0,0,0,0,1,2
2,2,3,3,0,0,0,0,1,2
2,3,3,3,0,0,0,0,1,3
2,2,2,2,3,0,0,0,0,2
2,2,2,3,3,0,0,0,0,2
2,2,3,3,3,0,0,0,0,2
2,3,3,3,3,0,0,0,0,3
2,0,0,0,1,1,1,1,1,3
2,2,0,0,0,1,1,1,1,3
2,3,0,0,0,1,1,1,1,3
2,2,2,0,0,0,1,1,1,2
2,2,3,0,0,0,1,1,1,3
2,3,3,0,0,0,1,1,1,3
2,2,2,2,0,0,0,1,1,2
2,2,2,3,0,0,0,1,1,2
2,2,3,3,0,0,0,1,1,3
2,3,3,3,0,0,0,1,1,3
2,2,2,2,2,0,0,0,1,2
2,2,2,2,3,0,0,0,1,2
2,2,2,3,3,0,0,0,1,2
2,2,3,3,3,0,0,0,1,3
2,3,3,3,3,0,0,0,1,3
2,2,2,2,2,3,0,0,0,2
2,2,2,2,3,3,0,0,0,2
2,2,2,3,3,3,0,0,0,2
2,2,3,3,3,3,0,0,0,3
2,3,3,3,3,3,0,0,0,3
2,0,0,1,1,1,1,1,1,2
2,2,0,0,1,1,1,1,1,3
2,3,0,0,1,1,1,1,1,2
2,2,2,0,0,1,1,1,1,3
2,2,3,0,0,1,1,1,1,3
2,3,3,0,0,1,1,1,1,2
2,2,2,2,0,0,1,1,1,2
2,2,2,3,0,0,1,1,1,3
2,2,3,3,0,0,1,1,1,3
2,3,3,3,0,0,1,1,1,2
2,2,2,2,2,0,0,1,1,2
2,2,2,2,3,0,0,1,1,2
2,2,2,3,3,0,0,1,1,3
2,2,3,3,3,0,0,1,1,3
2,3,3,3,3,0,0,1,1,2
2,2,2,2,2,2,0,0,1,2
2,2,2,2,2,3,0,0,1,2
2,2,2,2,3,3,0,0,1,2
2,2,2,3,3,3,0,0,1,3
2,2,3,3,3,3,0,0,1,3
2,3,3,3,3,3,0,0,1,2
2,2,2,2,2,2,3,0,0,2
2,2,2,2,2,3,3,0,0,2
2,2,2,2,3,3,3,0,0,2
2,2,2,3,3,3,3,0,0,3
2,2,3,3,3,3,3,0,0,3
2,3,3,3,3,3,3,0,0,2
2,0,1,1,1,1,1,1,1,3
2,2,0,1,1,1,1,1,1,2
2,3,0,1,1,1,1,1,1,3
2,2,2,0,1,1,1,1,1,3
2,2,3,0,1,1,1,1,1,2
2,3,3,0,1,1,1,1,1,3
2,2,2,2,0,1,1,1,1,3
2,2,2,3,0,1,1,1,1,3
2,2,3,3,0,1,1,1,1,2
2,3,3,3,0,1,1,1,1,3
2,2,2,2,2,0,1,1,1,2
2,2,2,2,3,0,1,1,1,3
2,2,2,3,3,0,1,1,1,3
2,2,3,3,3,0,1,1,1,2
2,3,3,3,3,0,1,1,1,3
2,2,2,2,2,2,0,1,1,2
2,2,2,2,2,3,0,1,1,2
2,2,2,2,3,3,0,1,1,3
2,2,2,3,3,3,0,1,1,3
2,2,3,3,3,3,0,1,1,2
2,3,3,3,3,3,0,1,1,3
2,2,2,2,2,2,2,0,1,2
2,2,2,2,2,2,3,0,1,2
2,2,2,2,2,3,3,0,1,2
2,2,2,2,3,3,3,0,1,3
2,2,2,3,3,3,3,0,1,3
2,2,3,3,3,3,3,0,1,2
2,3,3,3,3,3,3,0,1,3
2,2,2,2,2,2,2,3,0,2
2,2,2,2,2,2,3,3,0,2
2,2,2,2,2,3,3,3,0,2
2,2,2,2,3,3,3,3,0,3
2,2,2,3,3,3,3,3,0,3
2,2,3,3,3,3,3,3,0,2
2,3,3,3,3,3,3,3,0,3
2,1,1,1,1,1,1,1,1,2
2,2,1,1,1,1,1,1,1,3
2,3,1,1,1,1,1,1,1,2
2,2,2,1,1,1,1,1,1,2
2,2,3,1,1,1,1,1,1,3
2,3,3,1,1,1,1,1,1,2
2,2,2,2,1,1,1,1,1,3
2,2,2,3,1,1,1,1,1,2
2,2,3,3,1,1,1,1,1,3
2,3,3,3,1,1,1,1,1,2
2,2,2,2,2,1,1,1,1,3
2,2,2,2,3,1,1,1,1,3
2,2,2,3,3,1,1,1,1,2
2,2,3,3,3,1,1,1,1,3
2,3,3,3,3,1,1,1,1,2
2,2,2,2,2,2,1,1,1,2
2,2,2,2,2,3,1,1,1,3
2,2,2,2,3,3,1,1,1,3
2,2,2,3,3,3,1,1,1,2
2,2,3,3,3,3,1,1,1,3
2,3,3,3,3,3,1,1,1,2
2,2,2,2,2,2,2,1,1,2
2,2,2,2,2,2,3,1,1,2
2,2,2,2,2,3,3,1,1,3
2,2,2,2,3,3,3,1,1,3
2,2,2,3,3,3,3,1,1,2
2,2,3,3,3,3,3,1,1,3
2,3,3,3,3,3,3,1,1,2
2,2,2,2,2,2,2,2,1,2
2,2,2,2,2,2,2,3,1,2
2,2,2,2,2,2,3,3,1,2
2,2,2,2,2,3,3,3,1,3
2,2,2,2,3,3,3,3,1,3
2,2,2,3,3,3,3,3,1,2
2,2,3,3,3,3,3,3,1,3
2,3,3,3,3,3,3,3,1,2
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,0
2,2,2,2,2,2,3,3,3,0
2,2,2,2,2,3,3,3,3,1
2,2,2,2,3,3,3,3,3,1
2,2,2,3,3,3,3,3,3,0
2,2,3,3,3,3,3,3,3,1
2,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,1,0
1,3,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,1,1
1,2,0,0,0,0,0,0,1,0
1,3,0,0,0,0,0,0,1,1
1,2,3,0,0,0,0,0,0,0
1,3,3,0,0,0,0,0,0,1
1,0,0,0,0,0,1,1,1,1
1,2,0,0,0,0,0,1,1,1
1,3,0,0,0,0,0,1,1,1
1,2,2,0,0,0,0,0,1,0
1,2,3,0,0,0,0,0,1,1
1,3,3,0,0,0,0,0,1,1
1,2,2,3,0,0,0,0,0,0
1,2,3,3,0,0,0,0,0,1
1,3,3,3,0,0,0,0,0,1
1,0,0,0,0,1,1,1,1,1
1,2,0,0,0,0,1,1,1,1
1,3,0,0,0,0,1,1,1,1
1,2,2,0,0,0,0,1,1,1
1,2,3,0,0,0,0,1,1,1
1,3,3,0,0,0,0,1,1,1
1,2,2,2,0,0,0,0,1,0
1,2,2,3,0,0,0,0,1,1
1,2,3,3,0,0,0,0,1,1
1,3,3,3,0,0,0,0,1,1
1,2,2,2,3,0,0,0,0,0
1,2,2,3,3,0,0,0,0,1
1,2,3,3,3,0,0,0,0,1
1,3,3,3,3,0,0,0,0,1
1,0,0,0,1,1,1,1,1,1
1,2,0,0,0,1,1,1,1,1
1,3,0,0,0,1,1,1,1,1
1,2,2,0,0,0,1,1,1,1
1,2,3,0,0,0,1,1,1,1
1,3,3,0,0,0,1,1,1,1
1,2,2,2,0,0,0,1,1,1
1,2,2,3,0,0,0,1,1,1
1,2,3,3,0,0,0,1,1,1
1,3,3,3,0,0,0,1,1,1
1,2,2,2,2,0,0,0,1,0
1,2,2,2,3,0,0,0,1,1
1,2,2,3,3,0,0,0,1,1
1,2,3,3,3,0,0,0,1,1
1,3,3,3,3,0,0,0,1,1
1,2,2,2,2,3,0,0,0,0
1,2,2,2,3,3,0,0,0,1
1,2,2,3,3,3,0,0,0,1
1,2,3,3,3,3,0,0,0,1
1,3,3,3,3,3,0,0,0,1
1,0,0,1,1,1,1,1,1,0
1,2,0,0,1,1,1,1,1,1
1,3,0,0,1,1,1,1,1,0
1,2,2,0,0,1,1,1,1,1
1,2,3,0,0,1,1,1,1,1
1,3,3,0,0,1,1,1,1,0
1,2,2,2,0,0,1,1,1,1
1,2,2,3,0,0,1,1,1,1
1,2,3,3,0,0,1,1,1,1
1,3,3,3,0,0,1,1,1,0
1,2,2,2,2,0,0,1,1,1
1,2,2,2,3,0,0,1,1,1
1,2,2,3,3,0,0,1,1,1
1,2,3,3,3,0,0,1,1,1
1,3,3,3,3,0,0,1,1,0
1,2,2,2,2,2,0,0,1,0
1,2,2,2,2,3,0,0,1,1
1,2,2,2,3,3,0,0,1,1
1,2,2,3,3,3,0,0,1,1
1,2,3,3,3,3,0,0,1,1
1,3,3,3,3,3,0,0,1,0
1,2,2,2,2,2,3,0,0,0
1,2,2,2,2,3,3,0,0,1
1,2,2,2,3,3,3,0,0,1
1,2,2,3,3,3,3,0,0,1
1,2,3,3,3,3,3,0,0,1
1,3,3,3,3,3,3,0,0,0
1,0,1,1,1,1,1,1,1,0
1,2,0,1,1,1,1,1,1,0
1,3,0,1,1,1,1,1,1,0
1,2,2,0,1,1,1,1,1,1
1,2,3,0,1,1,1,1,1,0
1,3,3,0,1,1,1,1,1,0
1,2,2,2,0,1,1,1,1,1
1,2,2,3,0,1,1,1,1,1
1,2,3,3,0,1,1,1,1,0
1,3,3,3,0,1,1,1,1,0
1,2,2,2,2,0,1,1,1,1
1,2,2,2,3,0,1,1,1,1
1,2,2,3,3,0,1,1,1,1
1,2,3,3,3,0,1,1,1,0
1,3,3,3,3,0,1,1,1,0
1,2,2,2,2,2,0,1,1,1
1,2,2,2,2,3,0,1,1,1
1,2,2,2,3,3,0,1,1,1
1,2,2,3,3,3,0,1,1,1
1,2,3,3,3,3,0,1,1,0
1,3,3,3,3,3,0,1,1,0
1,2,2,2,2,2,2,0,1,0
1,2,2,2,2,2,3,0,1,1
1,2,2,2,2,3,3,0,1,1
1,2,2,2,3,3,3,0,1,1
1,2,2,3,3,3,3,0,1,1
1,2,3,3,3,3,3,0,1,0
1,3,3,3,3,3,3,0,1,0
1,2,2,2,2,2,2,3,0,0
1,2,2,2,2,2,3,3,0,1
1,2,2,2,2,3,3,3,0,1
1,2,2,2,3,3,3,3,0,1
1,2,2,3,3,3,3,3,0,1
1,2,3,3,3,3,3,3,0,0
1,3,3,3,3,3,3,3,0,0
1,1,1,1,1,1,1,1,1,1
1,2,1,1,1,1,1,1,1,0
1,3,1,1,1,1,1,1,1,1
1,2,2,1,1,1,1,1,1,0
1,2,3,1,1,1,1,1,1,0
1,3,3,1,1,1,1,1,1,1
1,2,2,2,1,1,1,1,1,1
1,2,2,3,1,1,1,1,1,0
1,2,3,3,1,1,1,1,1,0
1,3,3,3,1,1,1,1,1,1
1,2,2,2,2,1,1,1,1,1
1,2,2,2,3,1,1,1,1,1
1,2,2,3,3,1,1,1,1,0
1,2,3,3,3,1,1,1,1,0
1,3,3,3,3,1,1,1,1,1
1,2,2,2,2,2,1,1,1,1
1,2,2,2,2,3,1,1,1,1
1,2,2,2,3,3,1,1,1,1
1,2,2,3,3,3,1,1,1,0
1,2,3,3,3,3,1,1,1,0
1,3,3,3,3,3,1,1,1,1
1,2,2,2,2,2,2,1,1,1
1,2,2,2,2,2,3,1,1,1
1,2,2,2,2,3,3,1,1,1
1,2,2,2,3,3,3,1,1,1
1,2,2,3,3,3,3,1,1,0
1,2,3,3,3,3,3,1,1,0
1,3,3,3,3,3,3,1,1,1
1,2,2,2,2,2,2,2,1,0
1,2,2,2,2,2,2,3,1,1
1,2,2,2,2,2,3,3,1,1
1,2,2,2,2,3,3,3,1,1
1,2,2,2,3,3,3,3,1,1
1,2,2,3,3,3,3,3,1,0
1,2,3,3,3,3,3,3,1,0
1,3,3,3,3,3,3,3,1,1
1,2,2,2,2,2,2,2,3,2
1,2,2,2,2,2,2,3,3,3
1,2,2,2,2,2,3,3,3,3
1,2,2,2,2,3,3,3,3,3
1,2,2,2,3,3,3,3,3,3
1,2,2,3,3,3,3,3,3,2
1,2,3,3,3,3,3,3,3,2
1,3,3,3,3,3,3,3,3,3
0,0,0,0,0,0,0,0,1,0
0,3,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,1,0
0,2,0,0,0,0,0,0,1,0
0,3,0,0,0,0,0,0,1,0
0,2,3,0,0,0,0,0,0,0
0,3,3,0,0,0,0,0,0,0
0,0,0,0,0,0,1,1,1,0
0,2,0,0,0,0,0,1,1,0
0,3,0,0,0,0,0,1,1,0
0,2,2,0,0,0,0,0,1,0
0,2,3,0,0,0,0,0,1,0
0,3,3,0,0,0,0,0,1,0
0,2,2,3,0,0,0,0,0,0
0,2,3,3,0,0,0,0,0,0
0,3,3,3,0,0,0,0,0,0
0,0,0,0,0,1,1,1,1,1
0,2,0,0,0,0,1,1,1,0
0,3,0,0,0,0,1,1,1,1
0,2,2,0,0,0,0,1,1,0
0,2,3,0,0,0,0,1,1,0
0,3,3,0,0,0,0,1,1,1
0,2,2,2,0,0,0,0,1,0
0,2,2,3,0,0,0,0,1,0
0,2,3,3,0,0,0,0,1,0
0,3,3,3,0,0,0,0,1,1
0,2,2,2,3,0,0,0,0,0
0,2,2,3,3,0,0,0,0,0
0,2,3,3,3,0,0,0,0,0
0,3,3,3,3,0,0,0,0,1
0,0,0,0,1,1,1,1,1,1
0,2,0,0,0,1,1,1,1,1
0,3,0,0,0,1,1,1,1,1
0,2,2,0,0,0,1,1,1,0
0,2,3,0,0,0,1,1,1,1
0,3,3,0,0,0,1,1,1,1
0,2,2,2,0,0,0,1,1,0
0,2,2,3,0,0,0,1,1,0
0,2,3,3,0,0,0,1,1,1
0,3,3,3,0,0,0,1,1,1
0,2,2,2,2,0,0,0,1,0
0,2,2,2,3,0,0,0,1,0
0,2,2,3,3,0,0,0,1,0
0,2,3,3,3,0,0,0,1,1
0,3,3,3,3,0,0,0,1,1
0,2,2,2,2,3,0,0,0,0
0,2,2,2,3,3,0,0,0,0
0,2,2,3,3,3,0,0,0,0
0,2,3,3,3,3,0,0,0,1
0,3,3,3,3,3,0,0,0,1
0,0,0,1,1,1,1,1,1,0
0,2,0,0,1,1,1,1,1,1
0,3,0,0,1,1,1,1,1,0
0,2,2,0,0,1,1,1,1,1
0,2,3,0,0,1,1,1,1,1
0,3,3,0,0,1,1,1,1,0
0,2,2,2,0,0,1,1,1,0
0,2,2,3,0,0,1,1,1,1
0,2,3,3,0,0,1,1,1,1
0,3,3,3,0,0,1,1,1,0
0,2,2,2,2,0,0,1,1,0
0,2,2,2,3,0,0,1,1,0
0,2,2,3,3,0,0,1,1,1
0,2,3,3,3,0,0,1,1,1
0,3,3,3,3,0,0,1,1,0
0,2,2,2,2,2,0,0,1,0
0,2,2,2,2,3,0,0,1,0
0,2,2,2,3,3,0,0,1,0
0,2,2,3,3,3,0,0,1,1
0,2,3,3,3,3,0,0,1,1
0,3,3,3,3,3,0,0,1,0
0,2,2,2,2,2,3,0,0,0
0,2,2,2,2,3,3,0,0,0
0,2,2,2,3,3,3,0,0,0
0,2,2,3,3,3,3,0,0,1
0,2,3,3,3,3,3,0,0,1
0,3,3,3,3,3,3,0,0,0
0,0,1,1,1,1,1,1,1,1
0,2,0,1,1,1,1,1,1,0
0,3,0,1,1,1,1,1,1,1
0,2,2,0,1,1,1,1,1,1
0,2,3,0,1,1,1,1,1,0
0,3,3,0,1,1,1,1,1,1
0,2,2,2,0,1,1,1,1,1
0,2,2,3,0,1,1,1,1,1
0,2,3,3,0,1,1,1,1,0
0,3,3,3,0,1,1,1,1,1
0,2,2,2,2,0,1,1,1,0
0,2,2,2,3,0,1,1,1,1
0,2,2,3,3,0,1,1,1,1
0,2,3,3,3,0,1,1,1,0
0,3,3,3,3,0,1,1,1,1
0,2,2,2,2,2,0,1,1,0
0,2,2,2,2,3,0,1,1,0
0,2,2,2,3,3,0,1,1,1
0,2,2,3,3,3,0,1,1,1
0,2,3,3,3,3,0,1,1,0
0,3,3,3,3,3,0,1,1,1
0,2,2,2,2,2,2,0,1,0
0,2,2,2,2,2,3,0,1,0
0,2,2,2,2,3,3,0,1,0
0,2,2,2,3,3,3,0,1,1
0,2,2,3,3,3,3,0,1,1
0,2,3,3,3,3,3,0,1,0
0,3,3,3,3,3,3,0,1,1
0,2,2,2,2,2,2,3,0,0
0,2,2,2,2,2,3,3,0,0
0,2,2,2,2,3,3,3,0,0
0,2,2,2,3,3,3,3,0,1
0,2,2,3,3,3,3,3,0,1
0,2,3,3,3,3,3,3,0,0
0,3,3,3,3,3,3,3,0,1
0,1,1,1,1,1,1,1,1,0
0,2,1,1,1,1,1,1,1,1
0,3,1,1,1,1,1,1,1,0
0,2,2,1,1,1,1,1,1,0
0,2,3,1,1,1,1,1,1,1
0,3,3,1,1,1,1,1,1,0
0,2,2,2,1,1,1,1,1,1
0,2,2,3,1,1,1,1,1,0
0,2,3,3,1,1,1,1,1,1
0,3,3,3,1,1,1,1,1,0
0,2,2,2,2,1,1,1,1,1
0,2,2,2,3,1,1,1,1,1
0,2,2,3,3,1,1,1,1,0
0,2,3,3,3,1,1,1,1,1
0,3,3,3,3,1,1,1,1,0
0,2,2,2,2,2,1,1,1,0
0,2,2,2,2,3,1,1,1,1
0,2,2,2,3,3,1,1,1,1
0,2,2,3,3,3,1,1,1,0
0,2,3,3,3,3,1,1,1,1
0,3,3,3,3,3,1,1,1,0
0,2,2,2,2,2,2,1,1,0
0,2,2,2,2,2,3,1,1,0
0,2,2,2,2,3,3,1,1,1
0,2,2,2,3,3,3,1,1,1
0,2,2,3,3,3,3,1,1,0
0,2,3,3,3,3,3,1,1,1
0,3,3,3,3,3,3,1,1,0
0,2,2,2,2,2,2,2,1,0
0,2,2,2,2,2,2,3,1,0
0,2,2,2,2,2,3,3,1,0
0,2,2,2,2,3,3,3,1,1
0,2,2,2,3,3,3,3,1,1
0,2,2,3,3,3,3,3,1,0
0,2,3,3,3,3,3,3,1,1
0,3,3,3,3,3,3,3,1,0
0,2,2,2,2,2,2,2,3,2
0,2,2,2,2,2,2,3,3,2
0,2,2,2,2,2,3,3,3,2
0,2,2,2,2,3,3,3,3,3
0,2,2,2,3,3,3,3,3,3
0,2,2,3,3,3,3,3,3,2
0,2,3,3,3,3,3,3,3,3
0,3,3,3,3,3,3,3,3,2
0,0,0,0,0,0,0,0,0,0
0,2,0,0,0,0,0,0,0,0
0,2,2,0,0,0,0,0,0,0
0,2,2,2,0,0,0,0,0,0
0,2,2,2,2,0,0,0,0,0
0,2,2,2,2,2,0,0,0,0
0,2,2,2,2,2,2,0,0,0
0,2,2,2,2,2,2,2,0,0
0,2,2,2,2,2,2,2,2,2
2,0,0,0,0,0,0,0,0,2
2,2,0,0,0,0,0,0,0,2
2,2,2,0,0,0,0,0,0,2
2,2,2,2,0,0,0,0,0,2
2,2,2,2,2,0,0,0,0,2
2,2,2,2,2,2,0,0,0,2
2,2,2,2,2,2,2,0,0,2
2,2,2,2,2,2,2,2,0,2
2,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,1
1,2,0,0,0,0,0,0,0,1
1,2,2,0,0,0,0,0,0,1
1,2,2,2,0,0,0,0,0,1
1,2,2,2,2,0,0,0,0,1
1,2,2,2,2,2,0,0,0,1
1,2,2,2,2,2,2,0,0,1
1,2,2,2,2,2,2,2,0,1
1,2,2,2,2,2,2,2,2,1
3,0,0,0,0,0,0,0,0,3
3,2,0,0,0,0,0,0,0,3
3,2,2,0,0,0,0,0,0,3
3,2,2,2,0,0,0,0,0,3
3,2,2,2,2,0,0,0,0,3
3,2,2,2,2,2,0,0,0,3
3,2,2,2,2,2,2,0,0,3
3,2,2,2,2,2,2,2,0,3
3,2,2,2,2,2,2,2,2,3

@COLORS

0 0 0 0
1 0 25 25
2 225 225 225
3 225 255 255
This rule runs S023458/B457 and S0123467{8}/B8 at the same time, overlapping. These two universes never interact, except for the condition in braces. If the cell is alive in Universe 1, it will follow the S8 condition in Universe 2. If it is not alive, then it won't.

Code: Select all

x = 71, y = 71, rule = StochTest
71A$A5.A2.A.A.2A4.2A.A.A2.A.2A3.2A3.A.2A.4A.2A2.5A.A.2A3.A.3A$3A2.4A
2.5A2.7A2.3A5.2A.2A7.3A4.7A.4A.4A$3A3.A.A3.2A.A4.A2.A5.3A4.A.A2.2A2.
3A2.A2.8A.2A3.2A.A$6A2.2A.3A.2A2.6A2.3A.A3.2A2.4A.A3.A2.2A7.6A.2A.A$
2A2.2A.3A2.7A.4A2.10A7.2A2.A2.4A3.A2.9A.A$A.2A4.2A3.2A.2A.2A.3A.A2.4A
.A5.A2.2A2.5A.2A3.5A4.4A$7A.A.13A2.2A2.2A.7A4.2A.A7.A3.A2.A2.A3.A.A$
2A3.7A.A.2A.4A.A.8A.A2.2A8.A6.A3.4A2.A3.3A$2A3.7A3.A.3A2.A.7A.9A3.2A.
A6.2A.A.4A.2A.4A$A3.3A3.6A.A.8A.2A.A.A.5A.4A.3A3.3A4.A2.A.4A2.A$A3.2A
3.5A.12A.2A.A.2A.A3.2A.2A.A.2A.2A.3A2.A2.5A2.2A$2A.3A2.2A2.2A2.2A.4A.
3A.4A.A.A3.A.4A.3A.5A.A2.3A2.A.A.3A$A.2A.11A.A3.4A.2A.3A.A.13A.2A2.4A
.5A.4A2.A$A.8A.2A2.A.2A.A5.2A.A.A2.2A4.A2.9A.2A.A2.A.A.A2.3A.A$A2.2A.
3A2.A4.5A6.A.2A.3A6.A2.A.5A.A.3A.5A3.3A.A$A.3A6.A4.3A.A3.2A2.2A4.5A3.
3A.4A2.A.5A.3A2.A.2A.A$A.4A4.2A.2A.A2.2A5.A.3A2.2A.A2.A2.A3.5A3.4A.8A
3.A$A.8A.2A3.A2.A6.A.2A.4A.A3.3A2.A.2A2.3A.A2.A2.6A3.A$4A2.2A2.5A2.3A
.2A3.2A.A.2A2.A2.A5.5A3.2A.2A.5A3.2A2.A$A.2A3.A4.6A2.3B.3BABCB.2CBAB
2CAC2B.3CAC2B2A.9A7.A$A2.2A.A2.3A.5A2.BCB.B.B.2CBA3B.CBC.C.B.3CA3C3.A
3.3A2.A2.3A.A$A4.2A2.2A2.5A2.3CABCB.B2C.3B.B2C.BCBA2BCAC2B3.3A2.A4.A
5.A$A10.A.13A6.A3.A.2A.2A.5A4.7A3.A4.A.A$A.A3.7A2.2A.2ACBCA3CA3BACBCA
2BCA2CBAB2CA3C9A3.2A2.4A$2A.A2.11A3.CBCACACA2CBA3CA2BCA3C.C2B.C.B13A
2.3A.A$2A.3A4.4A2.A.2A3B.3CAB2CABCB.B2CAC2BA2BCA3C2A2.4A.3A2.4A.A$4A
2.A.5A4.3A2.5A2.5A2.5A2.4A.A2.2A2.2A2.A5.2A2.2A$5A3.6A3.A2.BCBA3CAB2C
A3CA2BCA3C.3CAB2C4A.3A6.2A.A.A$6A2.2A.8A.BCB.2BC.3C.3CA3CA3CA3C.B2C2.
A.5A2.A2.6A$2A.2A2.A.9A2.C2B.BCB.BCBAB2CA2BC.B2CA2CB.2BC.5A3.A.2A2.2A
.2A$6A.A2.A.6A3.2A3.A2.A.A.A2.3A3.6A3.6A4.A2.3A2.2A$A.3A2.2A5.A2.A2.
2BC.CBC.BCB.BCB.B2C.B2CA3BA2BC.10A.A.6A$2A.A8.2A.2A3.B.CA2BC.BCBA2CB.
B.CAB.C.B.B.3C2A.A.A2.5A3.A2.A$4A.A.A5.2A.4A3CA3C.2CBA2CBA3CA2BC.2BC.
CBC3A3.4A.2A2.5A$4A3.3A3.2A2.A.4A2.A2.A2.3A4.2A3.A.2A.2A3.A.3A.A3.A.A
3.2A$A.10A4.A3.B2CA3CAC2B.C2BAB2CA3BABCB.3C3.4A.10A.A$A.3A.3A.2A4.2A
2.3CA3CAC.BAB2C.2BCAB.CAC.B.CABA2.A.2A2.2A2.A3.A.A$6A.2A3.A2.3A.ACBCA
3BA3CA2CB.2BC.2BCAC2BA2CB2.A3.A2.2A2.2A.2A.A$A.A.2A.6A2.A3.A7.2A.3A4.
A4.3A2.A.A3.2A2.2A.2A.8A$A.6A.2A4.A2.A.3BACBC.3B.C2B.BCB.B2C.3BABCB3.
2A.14A$4A4.A.3A2.A.2A.B.CA3C.3B.BCBAB2CA3C.B2C.BAC3.A.A2.3A.A.3A.2A$A
.A2.3A2.5A.3A.B2C.B2CAC2BACBCA3BA3CA3C.B2CA2.3A2.2A.3A2.A.2A$A.A2.4A
3.6A2.A.9A3.3A2.2A.26A.2A$3A2.A3.3A.4A3.2CBA3CA2CB.B2CAC2B.3CAB2C.3CA
4.A.A3.3A2.2A.A$A.A3.4A.3A.2A2.AC2B.C.BACAB.3CAC2B.CACA2BC.2CB4.A2.A
3.3A3.3A$2A5.2A3.2A2.A2.A3CA3C.3CACBCA3CA2CBA3BACBCA.A.A2.A.3A7.A$A7.
A4.A.A2.4A4.A6.A.A2.7A3.A.7A2.4A.3A3.A$A4.A.2A3.2A.A3.A3CA2BC.B2CA2BC
.3BACBCA2CB.B2CA.4A3.2A3.A.A2.A$A3.6A.5A4.C.CAC2BA3CA3BAC.BA3C.B2C.2B
CA2.2A2.A.2A2.4A2.A$A3.3A.4A.3A4.B2C.BCBA2BCA3CA2CBA3C.2BC.CBCA2.A2.A
.A.A.A.A.4A$A3.4A.2A3.A7.A2.6A.A.5A2.2A3.A2.8A.3A2.A.6A$A3.2A3.7A5.5A
.A2.A.2A3.2A2.2A2.9A.A3.A2.A4.2A.A$2A.7A.12A2.3A3.4A2.2A2.4A.4A.2A.2A
2.3A.3A.3A.A$A.3A.2A3.6A.3A2.A.A.A3.4A2.2A2.2A.5A3.4A3.3A3.A4.A$A2.A
3.3A2.3A2.A.9A.2A.3A.3A3.7A.4A.4A2.2A3.3A.A$4A3.A4.4A.6A2.2A3.A3.2A.A
3.2A.4A.3A.3A4.5A.A.A.A$A2.A3.19A3.4A.2A.2A.4A.2A2.A.4A4.6A.5A$A2.6A
4.A3.3A.7A.6A4.A4.3A3.2A.2A3.A2.4A2.4A$A3.3A5.3A2.A3.2A.A2.2A.A.A2.3A
2.2A.2A2.A4.4A2.A.4A.A.4A$2A.A2.A5.A.2A.A3.A2.4A.2A.4A2.2A.A4.3A3.2A.
A2.2A2.4A.4A$4A.5A.8A.2A.A.2A2.2A.2A.A3.2A.9A.2A3.2A.A2.2A4.2A$3A2.6A
.A.3A2.3A8.2A.7A2.12A.4A.5A3.3A$2A.5A.A.A.4A2.3A.A.3A4.3A3.3A.2A2.6A
2.A.7A.3A.3A$3A2.6A3.2A2.A.4A.6A.4A.A.4A3.4A2.A.A2.6A5.3A$A.A3.3A.A2.
A.A2.A3.A.3A2.5A.2A5.A2.2A4.3A3.A2.3A6.2A$A.2A.3A3.A.A4.A3.3A.2A.3A2.
3A.A2.5A.2A2.A2.2A.6A.5A.A$3A.3A3.A4.3A.A2.A12.4A.3A5.A2.A3.A.A4.2A2.
A.3A$3A2.2A2.2A2.2A.4A2.A3.A2.A.A6.A.A2.2A.6A4.2A.3A.A2.3A.A$3A.A.3A.
A2.3A3.3A4.A3.A.A5.A.5A.A.A2.2A.4A5.3A.2A.A$71A!
S023458/B457 was selected as the "background noise" because it will not leave its bounding box, does not crystallize within it, and is the closest to 50/50 randomness that I could find for cells on the individual level. It has a habit of creating sizable voids sometimes, but it's the most well-behaved Life-like rule I found for this purpose.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook. Now on Amazon.

wildmyron
Posts: 1519
Joined: August 9th, 2013, 12:45 am
Location: Western Australia

Re: Making Cells Replicate/Move Randomly

Post by wildmyron » June 9th, 2016, 11:29 am

There was a genetic evolution project called LifeGenes which was introduced on this forum: GoL cells with genetic traits. It does something like you describe in that each cell has an "agent" phase where cells can move and evolve, and then a GoL phase where all cells obey B3/S23 rules for one gen. It was developed in Python as a Golly script and ran rather slowly. As dvgrn mentioned, this kind of simulation is probably better run on an agent based modelling platform.

It would be fairly straightforward to create a script which introduced some randomness into the life universe. It could do this by randomly filling a small field every N generations and running life as per usual in the intervening time. The small field would be like a font of randomness in the regular Game of Life universe. It could be interesting to see how this randomness propagates through the usual ash left behind by other patterns.

There's almost certainly something like this been done already, and it might be better to use a cellular automata simulator which has this type of feature built-in. There was another project introduced here which allowed every cell in the CA field to run it's own rule - with many specialised cell types with all manner of different behaviour (such as random cells, permanent cells, escalator cells, teleport cells and more). I can't remember the name right now but it was described here in this forum.

Here is a proof of concept script for the idea above:

Code: Select all

# RandomnessFountain.py
import golly as g
import random

period = 4
width = 3
height = 2

rect = [0, 0, width, height]
ii = 0

g.show("Press 'Esc' to stop the fountain.")

while True:
    g.run(1)
    ii = ii + 1
    if ii == period:
        g.select(rect)
        p = 10 * random.randint(3,8)
        g.randfill(p)
        g.select([])
        ii = 0
    g.update()
You can see how inefficient Golly is when running something like this, but it works.

Alternatively a script could give each On cell a small probability of turning Off after each generation. This would probably be much slower in Golly but could also show some interesting behaviour - especially with large engineered patterns it would be obvious how "fragile" they are.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

Currently nactive here due to a severe case of LWTDS.

wildmyron
Posts: 1519
Joined: August 9th, 2013, 12:45 am
Location: Western Australia

Re: Making Cells Replicate/Move Randomly

Post by wildmyron » June 13th, 2016, 3:30 am

wildmyron wrote:There was another project introduced here which allowed every cell in the CA field to run it's own rule - with many specialised cell types with all manner of different behaviour (such as random cells, permanent cells, escalator cells, teleport cells and more). I can't remember the name right now but it was described here in this forum.
Found it: Cellular Explorer. I was mistaken about teleport cells and escalator cells are called conveyer cells, but it does also support a range of cell types which can take an integer value.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

Currently nactive here due to a severe case of LWTDS.

Post Reply