Orthogonoid spaceship -- completed!

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
chris_c
Posts: 966
Joined: June 28th, 2014, 7:15 am

Re: Orthogonoid spaceship -- completed!

Post by chris_c » June 7th, 2017, 11:16 am

On the other thread calcyman wrote:Can anyone find a way to slow-salvo construct the following constellation (in such a way that it doesn't interfere with the eater)?

Code: Select all

x = 12, y = 7, rule = B3/S23
7bo$6bobo$6bobo$5b2ob3o$11bo$2o3b2ob3o$2o3b2obo!
The block can be made in two gliders from a beehive but I don't know if it will be easy to teach slmake about this kind of thing:

Code: Select all

x = 39, y = 40, rule = B3/S23
o14bo$3o11bobo$3bo10bobo$2b2o9b2ob3o$19bo$13b2ob3o$13b2obo3$bo$obo$obo
$bo2$5b3o$5bo$6bo21$36b3o$36bo$37bo!
Anyway, by flipping the G->MWSS vertically I came up with a cheaper 1-Snark Orthogonoid that has 367 cells and is HashLife friendly. Among similar 1-Snark Orhogonoids it should be difficult to beat but maybe the 2-Snark version is still better:

Code: Select all

x = 346, y = 297, rule = B3/S23
97b2o$97bobo$99bo4b2o$95b4ob2o2bo2bo$95bo2bobobobob2o$98bobobobo$99b2o
bobo$103bo2$89b2o$90bo7b2o$90bobo5b2o$91b2o2$74bo$72b3o$71bo$61b2o8b2o
47bo$62bo55b3o$62bobo36b2o14bo$63b2o36bo15b2o$77b2o23b3o$49b2o26b2o25b
o$50bo$19bo30bobo$18bobo7bo22b2o$19bo6b3o48b2o35b2o$25bo51b2o34bo2bo$
25b2o77bo9b2o$103bobo$103b2o2$53b2o$53b2o$5b2o25b2o$6bo25b2o$6bobo$7b
2o3$20b2o$20bobo6b2o$22bo6bo$22b2o6b3o$32bo$114b2o$59b2o53b2o$60bo$60b
obo$18b2o41b2o31bo$18bobo73b3o$20bo76bo$20b2o74b2o$61b2o$61b2o3$2b2o$b
obo$bo84b2o$2o84b2o$66b2o$60b2o3bo2bo$60b2o4b2o$123b2o$123b2o$83b2o32b
2o$10b2o71bo33b2o$10b2o7b2o63b3o$19bo41bo24bo$17bobo39b3o57b2o$17b2o4b
2o33bo53b2o5b2o$b2o20bo15bo18b2o7b2o3b2o38b2o$2bo18bobo15b3o25b2o3b2o$
2bobo16b2o19bo$3b2o36b2o$79b2o$79bo$77bobo$77b2o2$38b2o$38b2o4$9b2o63b
2o$5b2o2b2o63bo$4bobo38b2o28b3o$4bo40bo31bo$3b2o41b3o$48bo5$61b2o$61b
2o$69b2o$69bo$70b3o$72bo2$71bo$70bobo$70bobo$69b2ob3o$75bo$69b2ob3o$
69b2obo2$51b2o8b2o$51bobo7b2o$53bo$53bobo$54b2o4$74b2o$74b2o5$59bo$58b
obo$58bobo$59bo187b2o$56b3o187bobo$56bo183b2o4bo$238bo2bo2b2ob4o$238b
2obobobobo2bo$241bobobobo$241bobob2o$242bo2$255b2o$246b2o7bo$246b2o5bo
bo$253b2o2$271bo$271b3o$274bo$225bo47b2o8b2o$225b3o55bo$228bo14b2o36bo
bo$227b2o15bo36b2o$241b3o23b2o$241bo25b2o26b2o$295bo$293bobo30bo$293b
2o22bo7bobo$230b2o35b2o48b3o6bo$229bo2bo34b2o51bo$230b2o9bo77b2o$240bo
bo$241b2o2$12b2o277b2o$12b2o277b2o$312b2o25b2o$312b2o25bo$15b2o320bobo
$14bobo320b2o$12b3obobo$11bo5b2o$11b2o311b2o$315b2o6bobo$316bo6bo$313b
3o6b2o$313bo$230b2o$230b2o53b2o$285bo$283bobo$251bo31b2o41b2o$249b3o
73bobo$248bo76bo$248b2o74b2o$283b2o$283b2o3$342b2o$342bobo$258b2o84bo$
258b2o84b2o$278b2o$277bo2bo3b2o$278b2o4b2o$221b2o$221b2o$227b2o32b2o$
227b2o33bo71b2o$259b3o63b2o7b2o$259bo24bo41bo$225b2o57b3o39bobo$225b2o
5b2o53bo33b2o4b2o$232b2o38b2o3b2o7b2o18bo15bo20b2o$272b2o3b2o25b3o15bo
bo18bo$303bo19b2o16bobo$303b2o36b2o$265b2o$266bo$266bobo$267b2o2$306b
2o$306b2o4$270b2o63b2o$271bo63b2o2b2o$268b3o28b2o38bobo$268bo31bo40bo$
297b3o41b2o$297bo5$283b2o$283b2o$275b2o$276bo$273b3o$273bo2$274bo$273b
obo$273bobo$271b3ob2o$270bo$271b3ob2o$273bob2o2$283b2o8b2o$283b2o7bobo
$292bo$290bobo$290b2o4$270b2o$270b2o5$286bo$285bobo$285bobo$286bo$287b
3o$289bo28$315bo$316bo$311bo4bo15b2o$312b5o15b2o3$329b2o$329bobo$327bo
bob3o$327b2o5bo$333b2o!

chris_c
Posts: 966
Joined: June 28th, 2014, 7:15 am

Re: Orthogonoid working notes

Post by chris_c » June 7th, 2017, 11:28 am

dvgrn wrote:In the absence/presence of the key piece, it would all self-destruct without doing anything. The left-side construction arm ends up doing a complicated NOP operation, and the right-side arm gets the minor adjustment it needs.
I am thinking that the left-side construction arm builds:

1. A far away 180 degree reflector on the construction lane.
2. A 0 degree glider aiming at the the 180 degree reflector.
3. (Soon after 2) An eater on the construction lane.

Eventually the glider returns and destroys the eater. This gives a certain period of time where the gliders on the construction lane will be absorbed without effect.

On the right construction arm the presence of a key piece of junk prevents 3 from happening. In the meantime gliders that encode the adjustments to the hand and elbow as well as the building of the key piece of junk in the child pattern are sent.

Might this work? Any better ideas?

EDIT: Rather, the key piece of junk needs to prevent 3 from happening and make a usable mess near the construction lane instead.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 7th, 2017, 12:08 pm

chris_c wrote:I am thinking that the left-side construction arm builds:

1. A far away 180 degree reflector on the construction lane.
2. A 0 degree glider aiming at the the 180 degree reflector.
3. (Soon after 2) An eater on the construction lane.

Eventually the glider returns and destroys the eater. This gives a certain period of time where the gliders on the construction lane will be absorbed without effect.

On the right construction arm the presence of a key piece of junk prevents 3 from happening. In the meantime gliders that encode the adjustments to the hand and elbow as well as the building of the key piece of junk in the child pattern are sent.

Might this work?
Tricky! Yes, seems like that will work. The faraway one-time reflector can be as simple as a couple of blocks or a long boat. It may need to be pretty far away, though, so it might be necessary to use Calcyman's Cordership build/launch/shoot-down trick.

-- Come to think of it, is the range of 0-degree gliders wide enough now that the Cordership seed could be built directly on the construction arm? EDIT: Not quite -- somewhere around 136 lanes would be needed, and we "only" have 119. Of course we can build any missing ones if we want to, with an elbow-to-hand then converting the hand to a one-time turner.

EDIT2: But now that we have a 2-engine Cordership seed, it's really easily constructible with a 0-degree salvo!

Anyway, I guess that's not necessary -- the Cordership could be pointed diagonally backwards just as well. For some reason I was visualizing it as launching in the direction the construction arm is pointing.
chris_c wrote:EDIT: Rather, the key piece of junk needs to prevent 3 from happening and make a usable mess near the construction lane instead.
Also, when the reflected glider comes back, it can't just delete the eater, it has to leave some junk. Or if it does delete the eater, there has to be something behind it that can get turned into an elbow... and that absorbs gliders exactly the same as whatever is left behind after the hand&elbow-adjustment/key-junk-building recipe. So probably simplest if it's just a standard elbow.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 16th, 2017, 10:04 am

chris_c wrote:Anyway, by flipping the G->MWSS vertically I came up with a cheaper 1-Snark Orthogonoid that has 367 cells and is HashLife friendly. Among similar 1-Snark Orhogonoids it should be difficult to beat but maybe the 2-Snark version is still better...
No, I think I like this one the best out of the whole collection so far. I think it's time to get an Orthogonoid actually running. I'll probably compile Orthogonoid367 and Orthogonoid372 with slmake next -- see if the integral is really cheaper than two eaters.

Then --

What's the smallest number of slow SW gliders that can clean up an old Orthogonoid construction arm safely? At 128 spacing this design is just a little bit tight along the NW edge (see below). But it looks as if it will be easy to find cleanups. For example, here are two slow gliders that leave only one blinker just out of reach, to be cleaned up at some point, presumably by a stray NW glider or just a lucky spark:

Code: Select all

x = 212, y = 318, rule = LifeHistory
209.A$209.A.A$209.2A33$118.4B$119.4B$120.4B$121.4B$122.4B$123.4B$124.
4B$125.4B$126.4B$127.4B$128.4B$129.4B$130.4B$131.4B$132.4B$124.B.B.B.
B.5B21.B$122.17B18.2B$122.18B.B14.4B$120.21B2A12.4B$121.20B2A11.4B$
121.18B2.B11.4B$123.B.B.B.B.B.B.B2.2B12.4B$137.B2A11.4B$138.A.A9.4B$
136.A.A.3A6.4B$136.2A5.A4.4B$142.2A3.4B$146.4B$145.4B$144.4B$143.4B$
142.4B$141.4B$140.4B$139.4B$138.4B$137.4B$136.4B$135.4B$134.4B$133.4B
$132.4B2.A$131.4B3.A.A$130.4B4.2A$129.4B$128.4B$127.4B$126.4B$125.4B$
124.4B65$56.2A$55.A.A$49.2A4.A$47.A2.A2.2A.4A$47.2A.A.A.A.A2.A$50.A.A
BABAB$50.A.AB2AB$51.AB.2B$54.3B$54.4B6.2A$52.3B2AB6.A$52.3B2AB3.BA.A$
50.10B.B2A$49.13B$48.14B18.A$47.15B18.3A$46.4B2.8B23.A$34.A10.4B5.6B
22.2A8.2A61.4B$34.3A7.4B4.9B21.5B5.A61.4B$37.A5.4B5.2A4.4B22.4B.BA.A
60.4B$36.2A4.4B7.A5.4B14.B4.6B.B2A60.4B$36.9B5.3A7.4B12.2AB.10B61.4B$
38.6B6.A10.4B11.2A12B14.2A44.4B$37.6B19.4B11.B.11B14.A44.4B$37.6B20.
4B12.13B3.4B2.BA.A30.A12.4B$38.6B20.4B9.2B.12B2.5B2.B2A22.A7.A.A10.4B
$37.2B2A4B3.3B14.4B7.2A24B24.3A4.2BAB9.4B$36.2BA2BA3B.6B14.4B6.2A24B
27.A4.2B9.4B$35.4B2A9BA2B14.4B6.B.B.20B27.2A5.4B5.4B$.B.B.B.B.B.B.B.B
.B.B.B.B.B.B.B.B.16BABA16.4B8.20B2.B13.B.7B3.3B3.6B3.4B$50B2A17.4B6.
26B5.B.13B5.3B2.5B2.4B$51B19.4B4.67B$49B22.4B4.21B2A42B$50B22.4B3.21B
2A41B$50B23.4B3.41B2A20B5.2A$B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.B.16B24.
4B2.41B2A20B5.A$36.14B25.4B.29B2.2B3.27B2.BA.A$36.13B27.17B.7B2.4B10.
10B2.B3.B.9B.B2A$36.11B30.16B2.6B19.6B9.11B$35.13B30.4B.10B3.3B23.3B
10.11B$34.15B30.14B4.B26.B8.2AB.9B$33.16B31.12B32.2A6.A.AB2.7B$32.17B
32.11B33.A6.A5.8B$33.16B32.11B30.3A6.2A4.8B$34.13B35.9B31.A14.7B$34.
5B2A2B39.9B45.11B$36.3B2A2B39.9B3.2A41.11B$36.8B38.9B3.A42.11B$35.8B
40.9BA.A42.11B$35.8B17.A23.6B2.2A41.2AB2.8B$35.7B16.3A19.10B44.A.AB3.
7B$35.7B15.A21.11B44.A6.7B$36.6B15.2A20.11B.2B40.2A7.6B$36.6B13.4B19.
14B2A48.7B$37.5B12.3B5.B.7B7.12B.B2A48.8B$37.6B10.4B.13B4.B2.13B.B50.
8B$36.6B4.45B52.8B$36.7B2.45B52.6B2.B2A$37.6B2.45B52.7B.BA.A$37.7B.
22B2A21B53.6B4.A$36.31B2A22B52.6B4.2A$36.19B2.2B3.11B2.2B3.7B2A2B.2B
49.6B$35.17B11.10B8.B.3BA2BA3B2A47.8B$31.B3.15B16.6B13.2B2A2B.B2A46.
8B$30.2AB.15B19.3B14.6B2.B47.9B$30.2A18B20.B15.4B51.9B$31.B.3B2A12B
20.2A14.4B50.10B$34.2B2A11B22.A15.2B51.3B2A5B$35.2B2.10B19.3A63.2A3.
4B2A5B$34.2B3.6B.B21.A24.A41.A3.11B$33.B2AB2.4B50.3A39.A.A12B$34.2A3.
2B2AB52.A33.2A4.2A2.8B$41.2A38.2A3.2A7.2A18.A15.A9.7B4.2A$80.B2AB.B2A
B6.4B14.3A15.A.AB7.6B4.A$81.2B2.3B3.B5.3B12.A19.2AB.3B3.6B.BA.A$82.3B
.3B.4B3.4B11.2A20.14B.B2A$74.2A5.7B.13B11.B20.16B$75.A5.23B9.3B19.14B
$75.A.AB.19B.8B4.6B16.16B$76.2AB.29B2.10B11.18B$78.44B3.2B2.20B$78.
37B2A31B$78.37B2A22B.7B$79.60B2.6B$81.58B3.6B$79.59B6.4B$79.2A3.25B4.
13B.4B12.B2A2B$80.A3.20B4.B4.7B.B4.4B14.2A.B2A$77.3A6.15B7.2A15.4B18.
BA.A$77.A8.11B12.A14.4B22.A$85.13B8.3A14.4B23.2A$84.15B7.A15.4B$84.
16B21.4B$84.17B19.4B$84.16B19.4B$86.13B19.4B$86.3B.2B2A5B18.4B$84.4B
2.2B2A3B19.4B$84.2A3.8B18.4B$85.A4.8B16.4B$82.3A5.8B15.4B$82.A8.7B14.
4B$91.7B13.4B$83.A7.6B13.4B$82.A.A6.6B12.4B$82.A.A6.5B12.4B$80.3A.2A
4.6B11.4B$79.A4.B6.6B9.4B$80.3AB2AB3.7B8.4B$82.A.2AB.8B8.4B$86.10B8.
3B$86.6B2A3B5.2AB$86.6B2A2B5.A.AB$86.10B5.A$85.11B2.BA.A$85.12B.B2A$
84.15B$83.16B$80.2B.16B$79.2A18B$79.2AB.17B$80.B.4B.8B2.4B$87.7B4.4B$
88.6B5.4B$90.4B6.4B$92.3BA5.4B$93.BA.A5.4B$94.A.A6.4B$95.A8.4B$96.3A
6.4B$98.A7.4B$107.4B$108.4B$109.4B$110.4B$111.4B$112.4B$113.4B$114.4B
$115.4B$116.4B$117.4B$118.4B$119.4B$120.4B$121.4B$122.4B$123.4B$124.
4B$125.4B$126.4B$127.4B$128.4B$129.4B$130.4B$131.4B$132.4B$124.B.B.B.
B.5B$122.17B$122.18B.B$120.21B2A$121.20B2A$121.18B2.B$123.B.B.B.B.B.B
.B2.2B$137.B2A$138.A.A$136.A.A.3A$136.2A5.A$142.2A!
#C [[ STEP 50 ]]
In case it isn't clear, it seems like this would be a perfect occasion to use the new 0-degree Snarkmaker recipe to bend the construction arm around to do the destruction. The rectangular Orthogonoid will need different tricks, but I'll save that for later.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 21st, 2017, 8:52 am

dvgrn wrote:What's the smallest number of slow SW gliders that can clean up an old Orthogonoid construction arm safely?
The number is apparently less than or equal to 45 gliders:

Code: Select all

x = 20705, y = 20719, rule = B3/S23
20703bo$20702bo$20702b3o498$20220bo$20219bo$20219b3o498$19724bo$19723b
o$19723b3o498$19130bo$19129bo$19129b3o498$18721bo$18720bo$18720b3o498$
18219bo$18218bo$18218b3o498$17603bo$17602bo$17602b3o498$17144bo$17143b
o$17143b3o498$16649bo$16648bo$16648b3o498$16165bo$16164bo$16164b3o498$
15588bo$15587bo$15587b3o498$15087bo$15086bo$15086b3o498$14599bo$14598b
o$14598b3o498$14100bo$14099bo$14099b3o498$13632bo$13631bo$13631b3o498$
13141bo$13140bo$13140b3o498$12694bo$12693bo$12693b3o498$12215bo$12214b
o$12214b3o498$11706bo$11705bo$11705b3o498$11177bo$11176bo$11176b3o498$
10730bo$10729bo$10729b3o498$10227bo$10226bo$10226b3o498$9616bo$9615bo$
9615b3o498$9201bo$9200bo$9200b3o498$8666bo$8665bo$8665b3o498$8117bo$
8116bo$8116b3o498$7700bo$7699bo$7699b3o498$7193bo$7192bo$7192b3o498$
6666bo$6665bo$6665b3o498$6172bo$6171bo$6171b3o498$5622bo$5621bo$5621b
3o498$5185bo$5184bo$5184b3o498$4640bo$4639bo$4639b3o498$4089bo$4088bo$
4088b3o498$3659bo$3658bo$3658b3o498$3121bo$3120bo$3120b3o498$2745bo$
2744bo$2744b3o498$2186bo$2184b2o$2185b2o498$1603bo$1602bo$1602b3o498$
1224bo$1223bo$1223b3o498$733bo$732bo$732b3o348$481bo$480bo$480b3o2$
241bo$240bo$240b3o42$187bo$186bo$186b3o32$166bo$165bo$165b3o20$111b2o$
111b2o3$108b2o$108bobo$106bobob3o$106b2o5bo$112b2o88$26b2o$25bobo$19b
2o4bo$17bo2bo2b2ob4o$17b2obobobobo2bo$20bobobobo$20bobob2o$21bo2$34b2o
$25b2o7bo$25b2o5bobo$32b2o2$50bo$50b3o$53bo$4bo47b2o8b2o$4b3o55bo$7bo
14b2o36bobo$6b2o15bo36b2o$20b3o23b2o$20bo25b2o26b2o$74bo$72bobo30bo$
72b2o22bo7bobo$9b2o35b2o48b3o6bo$8bo2bo34b2o51bo$9b2o9bo77b2o$19bobo$
20b2o2$70b2o$70b2o$91b2o25b2o$91b2o25bo$116bobo$116b2o3$103b2o$94b2o6b
obo$95bo6bo$92b3o6b2o$92bo$9b2o$9b2o53b2o$64bo$62bobo$30bo31b2o41b2o$
28b3o73bobo$27bo76bo$27b2o74b2o$62b2o$62b2o3$121b2o$121bobo$37b2o84bo$
37b2o84b2o$57b2o$56bo2bo3b2o$57b2o4b2o$2o$2o$6b2o32b2o$6b2o33bo71b2o$
38b3o63b2o7b2o$38bo24bo41bo$4b2o57b3o39bobo$4b2o5b2o53bo33b2o4b2o$11b
2o38b2o3b2o7b2o18bo15bo20b2o$51b2o3b2o25b3o15bobo18bo$82bo19b2o16bobo$
82b2o36b2o$44b2o$45bo$45bobo$46b2o2$85b2o$85b2o4$49b2o63b2o$50bo63b2o
2b2o$47b3o28b2o38bobo$47bo31bo40bo$76b3o41b2o$76bo5$62b2o$62b2o$54b2o$
55bo$52b3o$52bo2$53bo$52bobo$52bobo$50b3ob2o$49bo$50b3ob2o$52bob2o2$
62b2o8b2o$62b2o7bobo$71bo$69bobo$69b2o4$49b2o$49b2o5$65bo$64bobo$64bob
o$65bo$66b3o$68bo30$111b2o$111b2o3$108b2o$108bobo$106bobob3o$106b2o5bo
$112b2o!
#C [[ STEP 50 ]]
That was found with the dumbest possible greedy algorithm, so I'm sure it can be radically improved. If nothing else, the gliders badly need to be shuffled into a more sensible order, generally NW to SE.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 28th, 2017, 9:41 am

dvgrn wrote:
dvgrn wrote:What's the smallest number of slow SW gliders that can clean up an old Orthogonoid construction arm safely?
The number is apparently less than or equal to 45 gliders...
Last-minute circuitry adjustments are no fun at all. I had a nice 45-glider near-to-far slow salvo all compiled into single-channel form -- Calcyman explained that slmake will cheerfully produce a single-channel recipe if the infile.mc consists of a slow salvo of gliders aimed to miss an initial block.

But then it seemed like a good idea to get the output glider from earlier in the Herschel circuit, so that the Snark on the construction arm could be pre-built, and then removed by a Snark-destroy recipe when it was time to shoot down the parent constructor. So the Orthogonoid construction arm should look like this:

Code: Select all

x = 188, y = 279, rule = LifeHistory
100.4B$101.4B$102.4B$103.4B$101.B.5B$100.10B$100.11B.B$100.12B2A$100.
12B2A$100.10B2.B$100.B.B.B.B2.2B$108.B2A$109.A.A$107.A.A.3A$107.2A5.A
$113.2A36$79.2A$79.2A51$27.2A$26.A.A$20.2A4.A$18.A2.A2.2A.4A$18.2A.A.
A.A.A2.A$21.A.ABABAB$21.A.AB2AB$22.AB.2B$25.3B$25.4B6.2A$23.3B2AB6.A$
23.3B2AB3.BA.A$21.10B.B2A$20.13B$19.14B18.A$18.15B18.3A$17.4B2.8B23.A
$5.A10.4B5.6B22.2A8.2A$5.3A7.4B4.9B21.5B5.A$8.A5.4B5.2A4.4B22.4B.BA.A
$7.2A4.4B7.A5.4B14.B4.6B.B2A$7.9B5.3A7.4B12.2AB.10B$9.6B6.A10.4B11.2A
12B14.2A$8.6B19.4B11.B.11B14.A$8.6B20.4B12.13B3.4B2.BA.A30.A$9.6B20.
4B9.2B.12B2.5B2.B2A22.A7.A.A$8.2B2A4B3.3B14.4B7.2A24B24.3A4.2BAB$7.2B
A2BA3B.6B14.4B6.2A24B27.A4.2B10.A$6.4B2A9BA2B14.4B6.B.B.20B27.2A5.4B
5.3A$B.B.16BABA16.4B8.20B2.B13.B.7B3.3B3.6B3.A2B$21B2A17.4B6.26B5.B.
13B5.3B2.5B2.B2AB$22B19.4B4.67B$20B22.4B4.21B2A42B$21B22.4B3.21B2A41B
$21B23.4B3.41B2A20B5.2A$.B.B.16B24.4B2.41B2A20B5.A$7.14B25.4B.29B2.2B
3.27B2.BA.A$7.13B27.17B.7B2.4B10.10B2.B3.B.9B.B2A$7.11B30.16B2.6B19.
6B8.12B$6.13B30.4B.10B3.3B23.3B10.11B$5.15B30.14B4.B26.B8.2AB.9B$4.
16B31.12B32.2A6.A.AB2.7B$3.17B32.11B33.A6.A5.8B$4.16B32.11B30.3A6.2A
4.8B$5.13B35.9B31.A14.7B$5.5B2A2B39.9B45.11B$7.3B2A2B39.9B3.2A41.11B$
7.8B38.9B3.A42.11B$6.8B40.9BA.A42.11B$6.8B17.A23.6B2.2A41.2AB2.8B$6.
7B16.3A19.10B44.A.AB3.7B$6.7B15.A21.11B44.A6.7B$7.6B15.2A20.11B.2B40.
2A7.6B$7.6B13.4B19.14B2A48.7B$8.5B12.3B5.B.7B7.12B.B2A48.8B$8.6B10.4B
.13B4.B2.13B.B50.8B$7.6B4.45B52.8B$7.7B2.45B52.6B2.B$8.6B2.45B52.7B.B
$8.7B.22B2A21B53.6B$7.31B2A22B52.6B$7.19B2.2B3.11B2.2B3.7B2A2B.2B49.
6B$6.17B11.10B8.B.3BA2BA3B2A47.8B$2.B3.15B16.6B13.2B2A2B.B2A46.8B$.2A
B.15B19.3B14.6B2.B47.9B$.2A18B20.B15.4B51.9B49.2A$2.B.3B2A12B20.2A14.
4B50.10B49.2A$5.2B2A11B22.A15.2B51.3B2A5B$6.2B2.10B19.3A63.2A3.4B2A5B
$5.2B3.6B.B21.A24.A41.A3.11B$4.B2AB2.4B50.3A39.A.A12B$5.2A3.2B2AB52.A
33.2A4.2A2.8B$12.2A38.2A3.2A7.2A18.A15.A9.7B4.2A$51.B2AB.B2AB6.4B14.
3A15.A.AB7.6B4.A$52.2B2.3B3.B5.3B12.A19.2AB.3B3.6B.BA.A$53.3B.3B.4B3.
4B11.2A20.14B.B2A$45.2A5.7B.13B11.B20.16B$46.A5.23B9.3B19.14B34.A$46.
A.AB.19B.8B4.6B16.16B31.3A$47.2AB.29B2.10B11.18B30.A$49.44B3.2B2.20B
31.2A$49.37B2A31B$49.37B2A22B.7B$50.60B2.6B$52.58B3.6B$50.59B6.4B$50.
2A3.25B4.13B.4B12.B2A2B$51.A3.20B4.B4.7B.B4.4B14.2A.B2A20.2A$48.3A6.
15B7.2A15.4B18.BA.A18.A.A5.2A$48.A8.11B12.A14.B2AB22.A18.A7.2A$56.13B
8.3A14.3BA23.2A16.2A$55.15B7.A16.3A$55.16B23.AB57.A$55.17B22.B54.2A.A
.A$55.16B77.A.A.A.A$57.13B75.A2.A.A.A.A.2A$57.3B.2B2A5B75.4A.2A2.A2.A
$55.4B2.2B2A3B81.A4.2A$55.2A3.8B79.A.A$56.A4.8B78.2A$53.3A5.8B$53.A8.
7B$62.7B$54.A7.6B$53.A.A6.6B$53.A.A6.5B$51.3A.2A4.6B$50.A4.B6.6B$51.
3AB2AB3.7B$53.A.2AB.8B$57.10B$57.6B2A3B$57.6B2A2B5.2A$57.10B5.A$56.
11B2.BA.A$56.12B.B2A$55.15B$54.16B$51.2B.16B$50.2A18B$50.2AB.17B$51.B
.4B.8B2.4B$58.7B4.4B$59.6B5.4B$61.4B6.4B$63.3BA5.4B$64.BA.A5.4B$65.A.
A6.4B$66.A8.4B$67.3A6.4B$69.A7.4B$78.4B$79.4B$80.4B$81.4B$82.4B$83.4B
$84.4B$85.4B$86.4B$87.4B$88.4B$89.4B$90.4B$91.4B$92.4B$93.4B$94.4B$
95.4B$96.4B$97.4B$98.4B$99.4B$100.4B$101.4B$102.4B$103.4B$83.B.B.B.B.
B.B.B.B.B.B.5B$83.27B$83.12B5A11B.B$83.11BA4BA12B2A$83.16BA12B2A$83.
11BA3BA11B2.B$84.B.B.B.B.B.B.A.B.B.B.B.B2.2B$108.B2A$109.A.A$107.A.A.
3A$107.2A5.A$113.2A!
#C [[ THUMBNAIL THUMBSIZE 2 ZOOM 3 Y 50 HEIGHT 600 ]]
Just one eater had to move, but of course it was one that participated in a big explosive reduction in the early part of the last cleanup recipe. So my mediocre greedy destruction script only seems to be able to manage 52 gliders now.

Anyway, when the circuitry gets retired, what's left to be destroyed will look like this:

Code: Select all

x = 6709, y = 6594, rule = B3/S23
6706bo$6706bobo$6706b2o46$6577bo$6577bobo$6577b2o116$6448bo$6448bobo$
6448b2o126$6319bo$6319bobo$6319b2o117$6190bo$6190bobo$6190b2o126$6061b
o$6061bobo$6061b2o127$5932bo$5932bobo$5932b2o120$5803bo$5803bobo$5803b
2o122$5674bo$5674bobo$5674b2o122$5545bo$5545bobo$5545b2o130$5416bo$
5416bobo$5416b2o132$5287bo$5287bobo$5287b2o128$5158bo$5158bobo$5158b2o
109$5029bo$5029bobo$5029b2o120$4900bo$4900bobo$4900b2o131$4771bo$4771b
obo$4771b2o125$4642bo$4642bobo$4642b2o118$4513bo$4513bobo$4513b2o123$
4384bo$4384bobo$4384b2o123$4255bo$4255bobo$4255b2o129$4126bo$4126bobo$
4126b2o100$3999bo$3997b2o$3998b2o133$3870bo$3868b2o$3869b2o118$3741bo$
3739b2o$3740b2o145$3610bo$3610bobo$3610b2o130$3481bo$3481bobo$3481b2o
127$3352bo$3352bobo$3352b2o127$3223bo$3223bobo$3223b2o117$3094bo$3094b
obo$3094b2o127$2965bo$2965bobo$2965b2o119$2836bo$2836bobo$2836b2o123$
2707bo$2707bobo$2707b2o126$2578bo$2578bobo$2578b2o121$2449bo$2449bobo$
2449b2o113$2320bo$2320bobo$2320b2o125$2191bo$2191bobo$2191b2o101$2062b
o$2062bobo$2062b2o119$1933bo$1933bobo$1933b2o130$1804bo$1804bobo$1804b
2o115$1675bo$1675bobo$1675b2o130$1546bo$1546bobo$1546b2o128$1417bo$
1417bobo$1417b2o155$1288bo$1288bobo$1288b2o151$1159bo$1159bobo$1159b2o
109$1030bo$1030bobo$1030b2o122$901bo$901bobo$901b2o131$772bo$772bobo$
772b2o95$643bo$643bobo$643b2o141$514bo$514bobo$514b2o119$385bo$385bobo
$385b2o117$256bo$256bobo$256b2o123$111b2o$111b2o3$108b2o$108bobo$106bo
bob3o$106b2o5bo$112b2o9$127bo$127bobo$127b2o77$26b2o$25bobo$19b2o4bo$
17bo2bo2b2ob4o$17b2obobobobo2bo$20bobobobo$20bobob2o$21bo2$34b2o$25b2o
7bo$25b2o5bobo$32b2o2$50bo$50b3o$53bo$4bo47b2o8b2o$4b3o55bo$7bo14b2o
36bobo$6b2o15bo36b2o$20b3o23b2o$20bo25b2o26b2o$74bo$72bobo30bo$72b2o
22bo7bobo$9b2o35b2o48b3o6bo$8bo2bo34b2o51bo16bo$9b2o9bo77b2o14b3o$19bo
bo91bo$20b2o91b2o2$70b2o$70b2o$91b2o25b2o$91b2o25bo$116bobo$116b2o3$
103b2o$94b2o6bobo$95bo6bo$92b3o6b2o$92bo$9b2o$9b2o53b2o$64bo$62bobo$
30bo31b2o41b2o$28b3o73bobo$27bo76bo$27b2o74b2o$62b2o$62b2o5$37b2o$37b
2o$57b2o$56bo2bo3b2o$57b2o4b2o$2o$2o$6b2o32b2o$6b2o33bo71b2o$38b3o63b
2o7b2o$38bo24bo41bo$4b2o57b3o39bobo$4b2o5b2o53bo33b2o4b2o$11b2o38b2o3b
2o7b2o18bo15bo20b2o$51b2o3b2o25b3o15bobo18bo$82bo19b2o16bobo$82b2o36b
2o$44b2o$45bo$45bobo$46b2o2$85b2o$85b2o4$49b2o63b2o$50bo63b2o2b2o$47b
3o28b2o38bobo$47bo31bo40bo$76b3o15b2o24b2o$76bo18bo$92b3o$92bo3$62b2o$
62b2o$54b2o$55bo$52b3o$52bo2$53bo$52bobo$52bobo$50b3ob2o$49bo$50b3ob2o
$52bob2o2$62b2o$62b2o7b2o$71bo$69bobo$69b2o4$49b2o$49b2o5$65bo$64bobo$
64bobo$65bo$66b3o$68bo30$111b2o$111b2o3$108b2o$108bobo$106bobob3o$106b
2o5bo$112b2o!
#C [[ X -3300 Y 3200 ZOOM 1.4 STEP 50 AUTOSTART ]]
Can somebody write a better meteor-shower search utility, or should I just leave it as it is? It probably won't make any difference to the size of the Orthogonoid, because it will be adjusted to a power-of-two period anyway, and the population increase will be a fraction of a percent... but this cleanup recipe just seems excessive somehow.

simeks
Posts: 429
Joined: March 11th, 2015, 12:03 pm
Location: Sweden

Re: Orthogonoid working notes

Post by simeks » June 28th, 2017, 5:51 pm

dvgrn wrote:Can somebody write a better meteor-shower search utility, or should I just leave it as it is? It probably won't make any difference to the size of the Orthogonoid, because it will be adjusted to a power-of-two period anyway, and the population increase will be a fraction of a percent...
I thought it could be nice to have a utility for this, so I'm working on one...
Here's a sample result using 36 gliders in a 32 lanes wide firing window:

Code: Select all

x = 3498, y = 3383, rule = LifeHistory
3495.A.A$3495.2A$3496.A13$3400.A$3398.2A$3399.2A89$3297.A.A$3297.2A$
3298.A88$3197.A$3195.2A$3196.2A94$3099.A.A$3099.2A$3100.A80$3028.A$
3026.2A$3027.2A90$2923.A.A$2923.2A$2924.A89$2822.A.A$2822.2A$2823.A
96$2729.A$2729.A.A$2729.2A89$2629.A$2627.2A$2628.2A90$2529.A$2527.2A$
2528.2A90$2427.A.A$2427.2A$2428.A89$2342.A.A$2342.2A$2343.A90$2249.A.
A$2249.2A$2250.A78$2139.A$2137.2A$2138.2A81$2030.A$2028.2A$2029.2A
105$1943.A.A$1943.2A$1944.A79$1832.A.A$1832.2A$1833.A94$1737.A$1737.A
.A$1737.2A103$1649.A.A$1649.2A$1650.A96$1557.A$1555.2A$1556.2A83$
1448.A.A$1448.2A$1449.A105$1363.A.A$1363.2A$1364.A75$1248.A.A$1248.2A
$1249.A99$1157.A.A$1157.2A$1158.A94$1063.A$1061.2A$1062.2A89$962.A$
960.2A$961.2A93$863.A.A$863.2A$864.A98$771.A.A$771.2A$772.A83$666.A$
664.2A$665.2A76$550.A.A$550.2A$551.A100$460.A.A$460.2A$461.A98$370.A$
368.2A$369.2A95$275.A$273.2A$274.2A83$168.A$166.2A$167.2A102$80.A$78.
2A$79.2A46$26.2A$25.A.A$19.2A4.A$17.A2.A2.2A.4A$17.2A.A.A.A.A2.A$20.A
.A.A.A$20.A.A.2A$21.A2$34.2A$25.2A7.A$25.2A5.A.A$32.2A2$50.A$50.3A$
53.A$4.A47.2A8.2A$4.3A55.A$7.A14.2A36.A.A$6.2A15.A36.2A$20.3A23.2A$
20.A25.2A26.2A$74.A$72.A.A30.A$72.2A22.A7.A.A$9.2A35.2A48.3A6.A$8.A2.
A34.2A51.A16.A$9.2A9.A77.2A14.3A$19.A.A91.A$20.2A91.2A2$70.2A$70.2A$
91.2A25.2A$91.2A25.A$116.A.A$116.2A3$103.2A$94.2A6.A.A$95.A6.A$92.3A
6.2A$92.A$9.2A$9.2A53.2A$64.A$62.A.A$30.A31.2A41.2A$28.3A73.A.A$27.A
76.A$27.2A74.2A$62.2A$62.2A5$37.2A$37.2A$57.2A$56.A2.A3.2A$57.2A4.2A$
2A$2A$6.2A32.2A$6.2A33.A71.2A$38.3A63.2A7.2A$38.A24.A41.A$4.2A57.3A
39.A.A$4.2A5.2A53.A33.2A4.2A$11.2A38.2A3.2A7.2A18.A15.A20.2A$51.2A3.
2A25.3A15.A.A18.A$82.A19.2A16.A.A$82.2A36.2A$44.2A$45.A$45.A.A$46.2A
2$85.2A$85.2A4$49.2A63.2A$50.A63.2A2.2A$47.3A28.2A38.A.A$47.A31.A40.A
$76.3A15.2A24.2A$76.A18.A$92.3A$92.A3$62.2A$62.2A$54.2A$55.A$52.3A$
52.A2$53.A$52.A.A$52.A.A$50.3A.2A$49.A$50.3A.2A$52.A.2A2$62.2A$62.2A
7.2A$71.A$69.A.A$69.2A4$49.2A$49.2A5$65.A$64.A.A$64.A.A$65.A$66.3A$
68.A30$111.2A$111.2A3$108.2A$108.A.A$106.A.A.3A$106.2A5.A$112.2A!

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 28th, 2017, 10:02 pm

simeks wrote:
dvgrn wrote:I thought it could be nice to have a utility for this, so I'm working on one...
Here's a sample result using 36 gliders in a 32 lanes wide firing window...
Looks good! In practice a different window will be needed, though -- my last pattern included the eater-tie-eater/block constellation in the right position to mark the allowable edge of the firing range.

The Orthogonoid is working as a puffer now -- should be all done pretty soon. I'll probably just compile the meteor shower recipe I have, since it won't make any difference to the period of the (Hashlife-friendly) spaceship.
Orthogonoid-twotothetwentytwo.mc.gz
Orthogonoid puffer, no cleanup yet -- period 2^22 ticks
(118.05 KiB) Downloaded 1058 times
EDIT: Looks like it will take something over 6GB of RAM for Golly to be able to "run away" with this one -- lots of different hash tiles with the signals going back and forth next to each other, as usual. Does anyone have a test system with some unreasonable number of gigs of RAM available? Golly's memory use should stabilize at some point, but I have no idea when -- my best system has only 8GB available.

I'm hopeful that it will be a much more reasonable number of gigabytes for Scorbie's new Demonoid...!

User avatar
biggiemac
Posts: 515
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: Orthogonoid working notes

Post by biggiemac » June 29th, 2017, 1:28 am

I'm giving golly 10GB of my RAM and still getting 99% garbage collections when trying to run at 2^18.

Edit: Pushed it to 13 GB and still got 99% GCs so probably my 16GB laptop can't run away either.
Physics: sophistication from simplicity.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 29th, 2017, 3:01 am

biggiemac wrote:I'm giving golly 10GB of my RAM and still getting 99% garbage collections when trying to run at 2^18.

Edit: Pushed it to 13 GB and still got 99% GCs so probably my 16GB laptop can't run away either.
Hmm. Not too surprised -- this is an ambitious amount of circuitry, and all the different ways the recipe can fold over on itself add up to a lot of hashtiles. The fact that you were testing the puffer rather than the spaceship would have added a few tiles, though probably not a significant number.

Here's a completed period 2^23 Orthogonoid spaceship to try -- it should have fewer hashtiles than a 2^22 model, though again probably not enough fewer to make any difference.
Orthogonoid-p2^23.mc.gz
Double-wide Orthogonoid, speed c/32768 (allows the recipe to straighten out twice per period)
(110.61 KiB) Downloaded 1072 times
My laptop's too slow to run these things through several cycles tonight, but things are looking promising:

Code: Select all

Compare: (<)Orthogonoid-2^23.rle (953750 bytes)
   with: (>)Orthogonoid-2^23+4194304-reflected.rle (953750 bytes)

The files are identical
Looks like this one will fit in a 2096822x565 rectangle a lot of the time. That's less than half of the size of the Demonoid if we go by bounding box -- 1,184,704,430 cells in this bounding box versus 3,023,569,640 for the Demonoid.

... Which just goes to show what a silly measurement the bounding box is. The Orthogonoid is much bigger by any other metric, and correspondingly slower.

We can cut the bounding box more or less in half by moving the two halves 2^20 cells closer together, and still have a theoretically Hashlife-friendly Orthogonoid -- it's easy to do, just wait until the recipe is maximally folded over, then move the empty half. But just like the maximally folded linear propagator, it runs slower all the time, because the recipe is always folded:
Orthogonoid-p2^22.mc.gz
Smallest Hashlife-friendly Orthogonoid (until someone does a *lot* of recipe optimization) -- speed c/16384
(106.91 KiB) Downloaded 1116 times
I think the minimum period for this particular stream of MWSSes is something like 3,476,016. Technically an Orthogonoid can be squeezed a little smaller than that, because the component recipes actually aren't quite packed as tight as they could be.

Then someone could spend approximately a lifetime figuring out how to improve on slmake's compiled recipes. You can see here and there where the algorithm could be a little more efficient. Of course a better meteor-shower cleanup salvo would shorten things up a little more. Really there are possible improvements to be made all over the place, but even all together I don't think they'll add up to a power of two improvement any time soon.

Anyway, no more optimization for me! I'll probably try taking this recipe minus the cleanup, and see if I can write code to fold it successfully into a square Orthogonoid puffer. Have to re-do the cleanup using self-destruct circuits to get an actual square spaceship. It will have a much higher speed; no idea if that will translate into enough fewer hashtiles to make Golly happy.

EDIT: Since it looks like it won't matter much to Golly anyway, here's a copy of the Orthogonoid adjusted down to minimum period, p3476016. Not sure what the phase with the smallest bounding box or population is yet, but it's around 868,750 by 800, and 469,000 ON cells.
Orthogonoid-p3476016.mc.gz
Minimum adjustment without obsessive optimization -- period 3,476,016
(105.27 KiB) Downloaded 1111 times

simeks
Posts: 429
Joined: March 11th, 2015, 12:03 pm
Location: Sweden

Re: Orthogonoid working notes

Post by simeks » June 29th, 2017, 5:22 pm

dvgrn wrote:In practice a different window will be needed, though -- my last pattern included the eater-tie-eater/block constellation in the right position to mark the allowable edge of the firing range.
Here's a solution with 32 gliders that saves the MWSS-to-G converter:

Code: Select all

x = 2639, y = 2543, rule = LifeHistory
2564.A$2562.2A$2563.2A16$2638.A$2636.2A$2637.2A3$2537.A.A$2537.2A$
2538.A26$2488.A.A$2488.2A$2489.A10$2463.A$2461.2A$2462.2A23$2431.A$
2429.2A$2430.2A107$2348.A$2348.A.A$2348.2A32$2312.A$2311.A$2311.3A19$
2278.A$2277.A$2277.3A18$2256.A$2254.2A$2255.2A22$2242.A$2241.A$2241.
3A143$2103.A$2101.2A$2102.2A38$2035.A$2033.2A$2034.2A35$1975.A$1974.A
$1974.3A69$1912.A$1912.A.A$1912.2A30$1896.A$1895.A$1895.3A34$1865.A$
1863.2A$1864.2A208$1610.A$1608.2A$1609.2A89$1537.A$1535.2A$1536.2A37$
1507.A.A$1507.2A$1508.A49$1436.A$1434.2A$1435.2A78$1328.A.A$1328.2A$
1329.A87$1219.A$1217.2A$1218.2A87$1147.A$1145.2A$1146.2A72$1066.A.A$
1066.2A$1067.A122$924.A$922.2A$923.2A78$839.A$837.2A$838.2A171$666.A$
664.2A$665.2A92$572.A$571.A$571.3A80$492.A$490.2A$491.2A101$389.A$
387.2A$388.2A105$281.A$279.2A$280.2A133$111.2A$111.2A3$108.2A$108.A.A
$106.A.A.3A$106.2A5.A$112.2A88$26.2A$25.A.A$19.2A4.A$17.A2.A2.2A.4A$
17.2A.A.A.A.A2.A$20.A.A.A.A$20.A.A.2A$21.A2$34.2A$25.2A7.A$25.2A5.A.A
$32.2A2$50.A$50.3A$53.A$4.A47.2A8.2A$4.3A55.A$7.A14.2A36.A.A$6.2A15.A
36.2A$20.3A23.2A$20.A25.2A26.2A$74.A$72.A.A30.A$72.2A22.A7.A.A$9.2A
35.2A48.3A6.A$8.A2.A34.2A51.A16.A$9.2A9.A77.2A14.3A$19.A.A91.A$20.2A
91.2A2$70.2A$70.2A$91.2A25.2A$91.2A25.A$116.A.A$116.2A3$103.2A$94.2A
6.A.A$95.A6.A$92.3A6.2A$92.A$9.2A$9.2A53.2A$64.A$62.A.A$30.A31.2A41.
2A$28.3A73.A.A$27.A76.A$27.2A74.2A$62.2A$62.2A5$37.2A$37.2A$57.2A$56.
A2.A3.2A$57.2A4.2A$2A$2A$6.2A32.2A$6.2A33.A71.2A$38.3A63.2A7.2A$38.A
24.A41.A$4.2A57.3A39.A.A$4.2A5.2A53.A33.2A4.2A$11.2A38.2A3.2A7.2A18.A
15.A20.2A$51.2A3.2A25.3A15.A.A18.A$82.A19.2A16.A.A$82.2A36.2A$44.2A$
45.A$45.A.A$46.2A2$85.2A$85.2A4$49.2A63.2A$50.A63.2A2.2A$47.3A28.2A
38.A.A$47.A31.A40.A$76.3A15.2A24.2A$76.A18.A$92.3A$92.A3$62.2A$62.2A$
54.2A$55.A$52.3A$52.A2$53.A$52.A.A$52.A.A$50.3A.2A$49.A$50.3A.2A$52.A
.2A2$62.2A$62.2A7.2A$71.A$69.A.A$69.2A4$49.2A$49.2A5$65.A$64.A.A$64.A
.A$65.A$66.3A$68.A30$111.2A$111.2A3$108.2A$108.A.A$106.A.A.3A$106.2A
5.A$112.2A!

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » June 29th, 2017, 10:46 pm

simeks wrote:Here's a solution with 32 gliders that saves the MWSS-to-G converter...
Yeah, that looks a lot more professional than my pretty much one glider per still life solution. I'll get around to recompiling and incorporating this eventually, if no 31- or 30-glider solutions come along in the meantime.

Luckily the destruction happens after the construction is already done, so this can't be used to reduce the period of existing Orthogonoids. The minimum period will still be 3,476,016 until someone gets around to writing an optimizer that can squeeze the last one or two or three ticks out of all those component elbow operations... or until we replace all those recipes with shorter ones that allow glider triplets, quadruplets, etc. That last might actually allow the Orthogonoid's period to drop below 2^21, I suppose.

EDIT: Statistics for the statistics-minded: minimum bounding box for the p3476016 Orthogonoid is 868,856 by 707, at T=219704 from the posted pattern. Minimum population is 467,746 at T=198169. Of course each minimum happens twice per period, 1738008 ticks apart.

Hooloovoo
Posts: 38
Joined: July 11th, 2015, 8:59 pm

Re: Orthogonoid working notes

Post by Hooloovoo » July 1st, 2017, 5:25 pm

dvgrn wrote:Does anyone have a test system with some unreasonable number of gigs of RAM available? Golly's memory use should stabilize at some point, but I have no idea when -- my best system has only 8GB available.

I'm hopeful that it will be a much more reasonable number of gigabytes for Scorbie's new Demonoid...!
I ran the period 2^23 orthogonoid through Golly on my biggest machine at a step size of 2^12. It stabilized at about 35G of RAM and took about a minute to run through the full period.
Last edited by Hooloovoo on July 1st, 2017, 6:41 pm, edited 1 time in total.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » July 1st, 2017, 5:50 pm

Hooloovoo wrote:I ran the period 2^23 orthoganoid through Golly on my biggest machine at a step size of 2^12. It stabilized at about 35G of RAM and took about a minute to run through the full period.
Thanks! That gives me a good data point for designing a Geminoid variant that Golly can handle with just a gigabyte or two of RAM. Basically it should be okay as long as there aren't any of those deadly back-and-forth streams of data.

User avatar
simsim314
Posts: 1824
Joined: February 10th, 2014, 1:27 pm

Re: Orthogonoid working notes

Post by simsim314 » July 2nd, 2017, 1:28 am

Hey dvgrn Congrats! I was thinking to finish this project myself using calcyman script - but I see you've managed to finish it all by yourself (no surprise).

Have you modified something in calcyman code or maybe you used some additional scripts? If so can you please post them as well?

PS. Maybe you should add the "completed" to the topic name - so people that are not following every message could congrat, and be aware this project is done.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » July 2nd, 2017, 9:43 am

simsim314 wrote:Hey dvgrn Congrats! I was thinking to finish this project myself using calcyman script - but I see you've managed to finish it all by yourself (no surprise).
Yes, the Orthogonoid was one of the really easy projects to finish. Haven't really gotten going on the multi-folded rectangular Orthogonoid yet -- that one will run even slower in Golly than the original. I seem to be putting off the more painful design problems, like a diamond-shaped self-constructor that will actually run well in Hashlife.

If somebody wants to tackle a self-constructor with a 2D loop, it looks like it might work to launch Corderships simultaneously in two directions, and then stop them with following gliders. Corderships are so slow that (if my math is right) you can't easily use them to make a recipe loop that has just two 180-degree reflectors. A 1D loop will end up being only just big enough for the gap between the Cordership-launching trigger glider and the Cordership-stopping following glider, leaving no room for the rest of the recipe unless you add extra one-time switching tricks...!

Until then, the true-period knightship might be an obvious next step, unless someone wants to try out Scorbie's new minimal Hashlife-friendly Demonoid. Or maybe Scorbie's constructor/reflector could be adapted for use in the oblique Geminoid blueprint, to get something more Hashlife-friendly with an adjustable width, with about the same population.
simsim314 wrote:Have you modified something in calcyman code or maybe you used some additional scripts? If so can you please post them as well?
Yes, everything I've been using is organized fairly well in the same thread where the slmake beta is posted. There are a few helper scripts a couple of posts down.

It might make sense to post a patched version of slmake in a new thread, to save people that editing step. Not sure when the next official release might appear -- I'm hoping for one that automatically compiles two single-channel recipes, one for each color for the first output glider, written to singlechannelA.txt and singlechannelB.txt instead of just being dumped to stdout. And there are rumors of other possible improvements.

wwei23

Re: Orthogonoid spaceship -- completed!

Post by wwei23 » August 10th, 2017, 11:27 am

If you got rid of the deletion tape, would you get a puffer?

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid working notes

Post by dvgrn » August 21st, 2017, 9:45 am

simeks wrote:Here's a solution with 32 gliders that saves the MWSS-to-G converter...
Is there an easy way to apply your searcher to the much smaller new Demonoid cleanup problem? I'd really like to see that thing running...!
wwei23 wrote:If you got rid of the deletion tape, would you get a puffer?
Of course. You don't need to ask questions like this, you can just try it yourself. For example, delete a few MWSSes randomly from the end of the recipe stream and see what happens. Or watch the very end of the cleanup process, and figure out exactly which MWSSes you should delete to get the behavior you want.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid spaceship -- completed!

Post by dvgrn » December 30th, 2017, 5:43 pm

Here's a highly suboptimal but relatively easy glider synthesis for an Orthogonoid spaceship, with 103,853 gliders, along the same lines as the 0hd Demonoid synthesis:
Orthogonoid_23_synth.mc.gz
103853-glider synthesis of a period 2^23 Orthogonoid spaceship
(365.62 KiB) Downloaded 984 times
I believe this completes the spaceship table in Glider synthesis as of the end of 2017, unless someone comes up with another synthesis in a hurry.

It's kind of funny how fast HashLife can build the first half of the Orthogonoid spaceship with this recipe, running at 2^16 or above, considering how slowly it builds the second half and how slow it runs the actual spaceship.

-- But all it will take to fix that is a HashLife algorithm with hyperspace-bypass support.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid spaceship -- completed!

Post by dvgrn » February 3rd, 2018, 10:39 am

dvgrn wrote:Here's a highly suboptimal but relatively easy glider synthesis for an Orthogonoid spaceship, with 103,853 gliders...
Okay, that was a little oversized, and furthermore didn't allow for easy adjustability to build different Orthogonoid periods. Here's a script that builds any p3476016+8N period Orthogonoid that you might want, by producing the appropriate glider synthesis recipe. Yes, I know I should have written it in Lua -- if anyone needs Lua practice, please post a translation:
Orthogonoid-builder.zip
Python build script for any possible Orthogonoid period
(348.89 KiB) Downloaded 993 times
The total cost turns out to be 37,625 gliders. That could be cut down quite a bit more if someone wanted to come up with a multidirectional synthesis for the circuitry. I changed the starting location and target but otherwise just used the same recipe that slmake came up with, with one slight difference on the east side that I'll leave for the enterprising reader to find.

35,870 of the 37,625 gliders are the recipe stream. 1749 gliders (the Hardy-Ramanujan number plus 20! I should have worked just a little harder on optimization...) sneak in in advance of the recipe and construct the initial pair of constructor arms, and the remaining six suppress the trailing cleanup recipe until actual old Orthogonoid circuits are there to be cleaned up.

For the minimal (p3476016) Orthogonoid, construction is almost all done at T=5,408,624, but there's one out-of-place block until T=7,147,114. So technically the total construction time is over 7 million ticks.

For the 2^23-tick (p8388608) Orthogonoid the construction time is 12082234 ticks, and so on.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid spaceship -- completed!

Post by dvgrn » May 31st, 2018, 1:30 am

Okay, here's the beginning of the recipe for a square Orthogonoid. I never noticed before that if you use boats as the initial elbow targets, they conveniently point in the direction of the turn.

Code: Select all

x = 37554, y = 37549, rule = LifeHistory
.2C$C.C$.C3$9.3A$9.A$10.A25$37.2A$36.2A$38.A20$60.A$59.2A$59.A.A22$
82.3A$82.A$83.A20$106.A$105.2A$105.A.A21$128.2A$127.2A$129.A22$151.3A
$151.A$152.A20$175.A$174.2A$174.A.A21$197.2A$197.A.A$197.A33$231.3A$
231.A$232.A37$271.2A$270.2A$272.A22$295.2A$294.2A$296.A20$318.A$317.
2A$317.A.A28$348.A$347.2A$347.A.A21$370.2A$370.A.A$370.A22$395.A$394.
2A$394.A.A25$421.2A$421.A.A$421.A21$443.3A$443.A$444.A20$466.2A$466.A
.A$466.A21$490.A$489.2A$489.A.A45$537.A$536.2A$536.A.A26$563.3A$563.A
$564.A20$586.2A$586.A.A$586.A21$610.A$609.2A$609.A.A21$632.2A$632.A.A
$632.A21$654.3A$654.A$655.A21$679.A$678.2A$678.A.A21$701.2A$701.A.A$
701.A21$724.2A$723.2A$725.A32$759.A$758.2A$758.A.A38$797.3A$797.A$
798.A22$821.3A$821.A$822.A20$844.2A$844.A.A$844.A28$874.2A$874.A.A$
874.A21$897.2A$896.2A$898.A22$921.2A$921.A.A$921.A25$948.2A$947.2A$
949.A20$971.A$970.2A$970.A.A21$993.2A$992.2A$994.A21$1016.2A$1016.A.A
$1016.A45$1063.2A$1063.A.A$1063.A25$1091.A$1090.2A$1090.A.A21$1113.2A
$1112.2A$1114.A21$1136.2A$1136.A.A$1136.A21$1159.2A$1158.2A$1160.A20$
1182.A$1181.2A$1181.A.A22$1205.2A$1205.A.A$1205.A21$1228.2A$1227.2A$
1229.A21$1250.3A$1250.A$1251.A32$1285.2A$1285.A.A$1285.A37$1325.A$
1324.2A$1324.A.A22$1349.A$1348.2A$1348.A.A21$1371.2A$1370.2A$1372.A
28$1401.2A$1400.2A$1402.A21$1423.3A$1423.A$1424.A22$1448.2A$1447.2A$
1449.A25$1474.3A$1474.A$1475.A20$1497.2A$1497.A.A$1497.A21$1519.3A$
1519.A$1520.A21$1543.2A$1542.2A$1544.A45$1590.2A$1589.2A$1591.A25$
1617.2A$1617.A.A$1617.A21$1639.3A$1639.A$1640.A21$1663.2A$1662.2A$
1664.A21$1685.3A$1685.A$1686.A20$1708.2A$1708.A.A$1708.A22$1732.2A$
1731.2A$1733.A21$1754.3A$1754.A$1755.A20$1778.A$1777.2A$1777.A.A33$
1812.2A$1811.2A$1813.A37$1851.2A$1851.A.A$1851.A22$1875.2A$1875.A.A$
1875.A21$1897.3A$1897.A$1898.A28$1927.3A$1927.A$1928.A20$1951.A$1950.
2A$1950.A.A23$1974.3A$1974.A$1975.A24$2002.A$2001.2A$2001.A.A21$2024.
2A$2023.2A$2025.A20$2047.A$2046.2A$2046.A.A22$2069.3A$2069.A$2070.A
45$2116.3A$2116.A$2117.A25$2144.2A$2143.2A$2145.A20$2167.A$2166.2A$
2166.A.A22$2189.3A$2189.A$2190.A20$2213.A$2212.2A$2212.A.A21$2235.2A$
2234.2A$2236.A22$2258.3A$2258.A$2259.A20$2282.A$2281.2A$2281.A.A21$
2304.2A$2304.A.A$2304.A33$2338.3A$2338.A$2339.A37$2378.2A$2377.2A$
2379.A22$2402.2A$2401.2A$2403.A20$2425.A$2424.2A$2424.A.A28$2455.A$
2454.2A$2454.A.A21$2477.2A$2477.A.A$2477.A22$2502.A$2501.2A$2501.A.A
25$2528.2A$2528.A.A$2528.A21$2550.3A$2550.A$2551.A20$2573.2A$2573.A.A
$2573.A21$2597.A$2596.2A$2596.A.A45$2644.A$2643.2A$2643.A.A26$2670.3A
$2670.A$2671.A20$2693.2A$2693.A.A$2693.A21$2717.A$2716.2A$2716.A.A21$
2739.2A$2739.A.A$2739.A21$2761.3A$2761.A$2762.A21$2786.A$2785.2A$
2785.A.A21$2808.2A$2808.A.A$2808.A21$2831.2A$2830.2A$2832.A32$2866.A$
2865.2A$2865.A.A38$2904.3A$2904.A$2905.A22$2928.3A$2928.A$2929.A20$
2951.2A$2951.A.A$2951.A28$2981.2A$2981.A.A$2981.A21$3004.2A$3003.2A$
3005.A22$3028.2A$3028.A.A$3028.A25$3055.2A$3054.2A$3056.A20$3078.A$
3077.2A$3077.A.A21$3100.2A$3099.2A$3101.A21$3123.2A$3123.A.A$3123.A
45$3170.2A$3170.A.A$3170.A25$3198.A$3197.2A$3197.A.A21$3220.2A$3220.A
.A$3220.A21$3244.A$3243.2A$3243.A.A21$3266.2A$3266.A.A$3266.A34$3303.
A$3302.2A$3302.A.A52$3356.2A$3356.A.A$3356.A24$3382.2A$3382.A.A$3382.
A21$3404.3A$3404.A$3405.A20$3427.2A$3427.A.A$3427.A21$3449.3A$3449.A$
3450.A20$3472.2A$3472.A.A$3472.A21$3494.3A$3494.A$3495.A23$3520.2A$
3520.A.A$3520.A21$3543.2A$3543.A.A$3543.A21$3565.3A$3565.A$3566.A20$
3588.2A$3588.A.A$3588.A21$3610.3A$3610.A$3611.A24$3637.2A$3637.A.A$
3637.A37$3676.2A$3675.2A$3677.A35$3714.A$3713.2A$3713.A.A21$3736.2A$
3735.2A$3737.A25$3763.2A$3763.A.A$3763.A21$3786.2A$3785.2A$3787.A21$
3809.2A$3809.A.A$3809.A21$3831.3A$3831.A$3832.A31$3864.3A$3864.A$
3865.A26$3894.A$3893.2A$3893.A.A30$3925.2A$3925.A.A$3925.A21$3948.2A$
3947.2A$3949.A20$3971.A$3970.2A$3970.A.A21$3993.2A$3993.A.A$3993.A22$
4017.2A$4016.2A$4018.A20$4040.A$4039.2A$4039.A.A27$4068.2A$4067.2A$
4069.A38$4109.A$4108.2A$4108.A.A57$4166.3A$4166.A$4167.A37$4207.A$
4206.2A$4206.A.A21$4229.2A$4228.2A$4230.A37$4267.3A$4267.A$4268.A29$
4299.2A$4299.A.A$4299.A21$4323.A$4322.2A$4322.A.A28$4352.2A$4351.2A$
4353.A20$4375.A$4374.2A$4374.A.A21$4397.2A$4397.A.A$4397.A21$4419.3A$
4419.A$4420.A20$4442.2A$4442.A.A$4442.A25$4470.A$4469.2A$4469.A.A21$
4492.2A$4492.A.A$4492.A22$4515.3A$4515.A$4516.A20$4539.A$4538.2A$
4538.A.A21$4561.2A$4561.A.A$4561.A21$4584.2A$4584.A.A$4584.A21$4606.
3A$4606.A$4607.A27$4637.A$4636.2A$4636.A.A21$4659.2A$4658.2A$4660.A
20$4682.A$4681.2A$4681.A.A26$4708.3A$4708.A$4709.A20$4732.A$4731.2A$
4731.A.A22$4754.3A$4754.A$4755.A20$4778.A$4777.2A$4777.A.A37$4817.A$
4816.2A$4816.A.A21$4839.2A$4839.A.A$4839.A21$4862.2A$4861.2A$4863.A
29$4894.A$4893.2A$4893.A.A21$4916.2A$4915.2A$4917.A21$4938.3A$4938.A$
4939.A20$4962.A$4961.2A$4961.A.A21$4984.2A$4984.A.A$4984.A35$5021.2A$
5020.2A$5022.A20$5044.A$5043.2A$5043.A.A27$5071.3A$5071.A$5072.A20$
5094.2A$5094.A.A$5094.A24$5119.3A$5119.A$5120.A20$5142.2A$5142.A.A$
5142.A21$5165.2A$5164.2A$5166.A20$5188.A$5187.2A$5187.A.A26$5214.3A$
5214.A$5215.A20$5238.A$5237.2A$5237.A.A22$5261.2A$5260.2A$5262.A21$
5283.3A$5283.A$5284.A20$5307.A$5306.2A$5306.A.A21$5330.A$5329.2A$
5329.A.A21$5352.2A$5351.2A$5353.A22$5376.2A$5376.A.A$5376.A21$5399.2A
$5398.2A$5400.A20$5422.A$5421.2A$5421.A.A21$5444.2A$5444.A.A$5444.A
21$5466.3A$5466.A$5467.A38$5507.2A$5506.2A$5508.A21$5529.3A$5529.A$
5530.A20$5553.A$5552.2A$5552.A.A21$5575.2A$5575.A.A$5575.A21$5598.2A$
5597.2A$5599.A21$5620.3A$5620.A$5621.A23$5647.A$5646.2A$5646.A.A31$
5679.2A$5678.2A$5680.A25$5706.2A$5706.A.A$5706.A21$5729.2A$5728.2A$
5730.A21$5753.A$5752.2A$5752.A.A21$5775.2A$5775.A.A$5775.A21$5798.2A$
5797.2A$5799.A43$5842.3A$5842.A$5843.A20$5865.2A$5865.A.A$5865.A21$
5888.2A$5887.2A$5889.A21$5912.A$5911.2A$5911.A.A21$5934.2A$5934.A.A$
5934.A24$5959.3A$5959.A$5960.A20$5983.A$5982.2A$5982.A.A41$6025.2A$
6025.A.A$6025.A21$6048.2A$6047.2A$6049.A25$6076.A$6075.2A$6075.A.A21$
6098.2A$6098.A.A$6098.A37$6137.2A$6137.A.A$6137.A21$6159.3A$6159.A$
6160.A27$6190.A$6189.2A$6189.A.A21$6212.2A$6211.2A$6213.A20$6235.A$
6234.2A$6234.A.A21$6257.2A$6256.2A$6258.A20$6280.A$6279.2A$6279.A.A
21$6302.2A$6302.A.A$6302.A21$6324.3A$6324.A$6325.A25$6352.2A$6351.2A$
6353.A21$6374.3A$6374.A$6375.A21$6398.2A$6397.2A$6399.A21$6420.3A$
6420.A$6421.A36$6460.A$6459.2A$6459.A.A25$6486.2A$6485.2A$6487.A21$
6508.3A$6508.A$6509.A20$6531.2A$6531.A.A$6531.A33$6566.2A$6565.2A$
6567.A21$6588.3A$6588.A$6589.A24$6614.3A$6614.A$6615.A20$6638.A$6637.
2A$6637.A.A21$6660.2A$6659.2A$6661.A21$6683.2A$6683.A.A$6683.A24$
6709.2A$6709.A.A$6709.A21$6732.2A$6731.2A$6733.A21$6754.3A$6754.A$
6755.A33$6791.A$6790.2A$6790.A.A21$6813.2A$6813.A.A$6813.A26$6840.3A$
6840.A$6841.A36$6879.2A$6878.2A$6880.A38$6920.A$6919.2A$6919.A.A21$
6942.2A$6941.2A$6943.A21$6964.3A$6964.A$6965.A21$6988.2A$6987.2A$
6989.A39$7028.3A$7028.A$7029.A25$7056.2A$7055.2A$7057.A20$7079.A$
7078.2A$7078.A.A22$7102.2A$7102.A.A$7102.A59$7164.A$7163.2A$7163.A.A
21$7186.2A$7185.2A$7187.A29$7218.A$7217.2A$7217.A.A50$7270.A$7269.2A$
7269.A.A30$7302.A$7301.2A$7301.A.A21$7324.2A$7323.2A$7325.A22$7348.2A
$7347.2A$7349.A21$7370.3A$7370.A$7371.A20$7393.2A$7393.A.A$7393.A21$
7415.3A$7415.A$7416.A20$7439.A$7438.2A$7438.A.A21$7461.2A$7461.A.A$
7461.A21$7484.2A$7483.2A$7485.A21$7506.3A$7506.A$7507.A23$7531.3A$
7531.A$7532.A20$7554.2A$7554.A.A$7554.A21$7576.3A$7576.A$7577.A20$
7599.2A$7599.A.A$7599.A25$7627.A$7626.2A$7626.A.A21$7649.2A$7648.2A$
7650.A22$7672.3A$7672.A$7673.A59$7734.2A$7733.2A$7735.A20$7757.A$
7756.2A$7756.A.A30$7788.2A$7787.2A$7789.A50$7840.2A$7839.2A$7841.A30$
7872.2A$7871.2A$7873.A20$7895.A$7894.2A$7894.A.A22$7919.A$7918.2A$
7918.A.A21$7941.2A$7941.A.A$7941.A21$7963.3A$7963.A$7964.A20$7986.2A$
7986.A.A$7986.A21$8009.2A$8008.2A$8010.A21$8031.3A$8031.A$8032.A20$
8055.A$8054.2A$8054.A.A21$8077.2A$8077.A.A$8077.A23$8102.2A$8102.A.A$
8102.A21$8124.3A$8124.A$8125.A20$8147.2A$8147.A.A$8147.A21$8170.2A$
8169.2A$8171.A25$8197.2A$8197.A.A$8197.A21$8220.2A$8219.2A$8221.A21$
8244.A$8243.2A$8243.A.A21$8266.2A$8266.A.A$8266.A21$8289.2A$8288.2A$
8290.A21$8312.2A$8311.2A$8313.A20$8335.A$8334.2A$8334.A.A23$8358.3A$
8358.A$8359.A20$8382.A$8381.2A$8381.A.A21$8404.2A$8403.2A$8405.A21$
8426.3A$8426.A$8427.A20$8449.2A$8449.A.A$8449.A38$8490.A$8489.2A$
8489.A.A21$8512.2A$8512.A.A$8512.A21$8535.2A$8534.2A$8536.A21$8557.3A
$8557.A$8558.A20$8581.A$8580.2A$8580.A.A21$8603.2A$8603.A.A$8603.A24$
8629.2A$8628.2A$8630.A30$8662.A$8661.2A$8661.A.A26$8688.3A$8688.A$
8689.A20$8712.A$8711.2A$8711.A.A22$8735.2A$8734.2A$8736.A21$8757.3A$
8757.A$8758.A20$8781.A$8780.2A$8780.A.A32$8815.A$8814.2A$8814.A.A21$
8837.2A$8837.A.A$8837.A21$8859.3A$8859.A$8860.A20$8883.A$8882.2A$
8882.A.A33$8917.2A$8917.A.A$8917.A23$8941.3A$8941.A$8942.A20$8964.2A$
8964.A.A$8964.A37$9003.2A$9003.A.A$9003.A32$9036.3A$9036.A$9037.A25$
9064.2A$9063.2A$9065.A21$9086.3A$9086.A$9087.A21$9110.2A$9110.A.A$
9110.A21$9133.2A$9132.2A$9134.A21$9155.3A$9155.A$9156.A21$9178.3A$
9178.A$9179.A20$9201.2A$9201.A.A$9201.A22$9226.A$9225.2A$9225.A.A21$
9248.2A$9248.A.A$9248.A21$9270.3A$9270.A$9271.A20$9294.A$9293.2A$
9293.A.A21$9316.2A$9315.2A$9317.A38$9356.2A$9356.A.A$9356.A21$9379.2A
$9378.2A$9380.A21$9401.3A$9401.A$9402.A20$9425.A$9424.2A$9424.A.A21$
9447.2A$9447.A.A$9447.A21$9470.2A$9469.2A$9471.A24$9495.3A$9495.A$
9496.A30$9528.2A$9528.A.A$9528.A25$9556.A$9555.2A$9555.A.A21$9578.2A$
9578.A.A$9578.A21$9602.A$9601.2A$9601.A.A21$9624.2A$9624.A.A$9624.A
22$9649.A$9648.2A$9648.A.A21$9671.2A$9670.2A$9672.A20$9694.A$9693.2A$
9693.A.A29$9724.2A$9723.2A$9725.A21$9746.3A$9746.A$9747.A31$9779.3A$
9779.A$9780.A20$9802.2A$9802.A.A$9802.A23$9826.3A$9826.A$9827.A20$
9850.A$9849.2A$9849.A.A21$9872.2A$9872.A.A$9872.A24$9899.A$9898.2A$
9898.A.A21$9921.2A$9921.A.A$9921.A21$9943.3A$9943.A$9944.A27$9972.3A$
9972.A$9973.A20$9995.2A$9995.A.A$9995.A26$10023.2A$10023.A.A$10023.A
21$10046.2A$10045.2A$10047.A25$10073.2A$10073.A.A$10073.A21$10095.3A$
10095.A$10096.A21$10119.2A$10118.2A$10120.A21$10141.3A$10141.A$10142.
A20$10165.A$10164.2A$10164.A.A32$10198.2A$10198.A.A$10198.A21$10221.
2A$10220.2A$10222.A34$10257.2A$10256.2A$10258.A20$10280.A$10279.2A$
10279.A.A21$10302.2A$10301.2A$10303.A29$10332.3A$10332.A$10333.A20$
10356.A$10355.2A$10355.A.A21$10378.2A$10377.2A$10379.A28$10408.2A$
10407.2A$10409.A20$10431.A$10430.2A$10430.A.A21$10453.2A$10453.A.A$
10453.A21$10476.2A$10475.2A$10477.A21$10498.3A$10498.A$10499.A38$
10540.A$10539.2A$10539.A.A21$10562.2A$10561.2A$10563.A22$10585.3A$
10585.A$10586.A20$10609.A$10608.2A$10608.A.A32$10642.2A$10641.2A$
10643.A21$10664.3A$10664.A$10665.A25$10692.2A$10691.2A$10693.A21$
10714.3A$10714.A$10715.A21$10738.2A$10738.A.A$10738.A21$10761.2A$
10760.2A$10762.A21$10783.3A$10783.A$10784.A32$10817.3A$10817.A$10818.
A20$10841.A$10840.2A$10840.A.A21$10863.2A$10862.2A$10864.A21$10885.3A
$10885.A$10886.A32$10921.A$10920.2A$10920.A.A23$10945.2A$10944.2A$
10946.A20$10968.A$10967.2A$10967.A.A22$10991.2A$10990.2A$10992.A20$
11014.A$11013.2A$11013.A.A22$11037.2A$11037.A.A$11037.A21$11059.3A$
11059.A$11060.A20$11083.A$11082.2A$11082.A.A28$11112.2A$11111.2A$
11113.A50$11163.3A$11163.A$11164.A21$11187.2A$11186.2A$11188.A20$
11210.A$11209.2A$11209.A.A26$11236.3A$11236.A$11237.A20$11260.A$
11259.2A$11259.A.A22$11282.3A$11282.A$11283.A20$11306.A$11305.2A$
11305.A.A30$11337.2A$11337.A.A$11337.A21$11360.2A$11359.2A$11361.A20$
11383.A$11382.2A$11382.A.A27$11410.3A$11410.A$11411.A20$11433.2A$
11433.A.A$11433.A21$11455.3A$11455.A$11456.A26$11485.A$11484.2A$
11484.A.A21$11507.2A$11506.2A$11508.A35$11544.2A$11544.A.A$11544.A21$
11566.3A$11566.A$11567.A22$11591.2A$11591.A.A$11591.A21$11613.3A$
11613.A$11614.A20$11637.A$11636.2A$11636.A.A24$11662.2A$11662.A.A$
11662.A21$11684.3A$11684.A$11685.A20$11707.2A$11707.A.A$11707.A32$
11741.2A$11740.2A$11742.A31$11775.A$11774.2A$11774.A.A21$11797.2A$
11796.2A$11798.A20$11820.A$11819.2A$11819.A.A22$11842.3A$11842.A$
11843.A20$11865.2A$11865.A.A$11865.A25$11893.A$11892.2A$11892.A.A21$
11915.2A$11915.A.A$11915.A22$11938.3A$11938.A$11939.A20$11962.A$
11961.2A$11961.A.A21$11984.2A$11984.A.A$11984.A21$12007.2A$12007.A.A$
12007.A21$12029.3A$12029.A$12030.A22$12054.2A$12053.2A$12055.A21$
12076.3A$12076.A$12077.A20$12099.2A$12099.A.A$12099.A21$12122.2A$
12121.2A$12123.A20$12145.A$12144.2A$12144.A.A39$12184.3A$12184.A$
12185.A20$12208.A$12207.2A$12207.A.A21$12230.2A$12230.A.A$12230.A21$
12253.2A$12252.2A$12254.A21$12275.3A$12275.A$12276.A20$12299.A$12298.
2A$12298.A.A24$12324.2A$12324.A.A$12324.A31$12356.3A$12356.A$12357.A
25$12384.2A$12383.2A$12385.A20$12407.A$12406.2A$12406.A.A22$12429.3A$
12429.A$12430.A20$12453.A$12452.2A$12452.A.A21$12475.2A$12475.A.A$
12475.A21$12498.2A$12498.A.A$12498.A21$12520.3A$12520.A$12521.A20$
12543.2A$12543.A.A$12543.A21$12566.2A$12565.2A$12567.A20$12589.A$
12588.2A$12588.A.A26$12616.2A$12615.2A$12617.A20$12639.A$12638.2A$
12638.A.A21$12661.2A$12660.2A$12662.A21$12683.3A$12683.A$12684.A29$
12714.3A$12714.A$12715.A31$12748.2A$12747.2A$12749.A20$12771.A$12770.
2A$12770.A.A21$12793.2A$12793.A.A$12793.A26$12822.A$12821.2A$12821.A.
A21$12844.2A$12843.2A$12845.A20$12867.A$12866.2A$12866.A.A21$12889.2A
$12889.A.A$12889.A25$12917.A$12916.2A$12916.A.A21$12939.2A$12939.A.A$
12939.A22$12962.3A$12962.A$12963.A20$12986.A$12985.2A$12985.A.A21$
13008.2A$13008.A.A$13008.A43$13053.2A$13052.2A$13054.A20$13076.A$
13075.2A$13075.A.A21$13098.2A$13098.A.A$13098.A22$13121.3A$13121.A$
13122.A20$13145.A$13144.2A$13144.A.A24$13170.2A$13169.2A$13171.A21$
13192.3A$13192.A$13193.A40$13236.A$13235.2A$13235.A.A21$13258.2A$
13258.A.A$13258.A26$13285.3A$13285.A$13286.A20$13309.A$13308.2A$
13308.A.A37$13348.A$13347.2A$13347.A.A21$13370.2A$13369.2A$13371.A28$
13399.3A$13399.A$13400.A20$13422.2A$13422.A.A$13422.A21$13444.3A$
13444.A$13445.A20$13467.2A$13467.A.A$13467.A21$13489.3A$13489.A$
13490.A20$13513.A$13512.2A$13512.A.A21$13535.2A$13534.2A$13536.A25$
13562.2A$13562.A.A$13562.A21$13584.3A$13584.A$13585.A21$13608.2A$
13607.2A$13609.A21$13630.3A$13630.A$13631.A20$13654.A$13653.2A$13653.
A.A21$13677.A$13676.2A$13676.A.A21$13699.2A$13698.2A$13700.A20$13722.
A$13721.2A$13721.A.A21$13744.2A$13744.A.A$13744.A21$13766.3A$13766.A$
13767.A25$13794.2A$13794.A.A$13794.A21$13816.3A$13816.A$13817.A20$
13839.2A$13839.A.A$13839.A21$13862.2A$13861.2A$13863.A29$13893.2A$
13892.2A$13894.A31$13926.2A$13926.A.A$13926.A21$13948.3A$13948.A$
13949.A20$13972.A$13971.2A$13971.A.A27$13999.3A$13999.A$14000.A20$
14022.2A$14022.A.A$14022.A21$14044.3A$14044.A$14045.A20$14068.A$
14067.2A$14067.A.A26$14094.3A$14094.A$14095.A20$14118.A$14117.2A$
14117.A.A22$14140.3A$14140.A$14141.A20$14164.A$14163.2A$14163.A.A31$
14195.3A$14195.A$14196.A35$14233.2A$14232.2A$14234.A21$14255.3A$
14255.A$14256.A20$14278.2A$14278.A.A$14278.A21$14300.3A$14300.A$
14301.A24$14327.2A$14326.2A$14328.A20$14350.A$14349.2A$14349.A.A21$
14372.2A$14371.2A$14373.A20$14395.A$14394.2A$14394.A.A21$14417.2A$
14416.2A$14418.A26$14446.A$14445.2A$14445.A.A21$14468.2A$14468.A.A$
14468.A23$14493.2A$14493.A.A$14493.A21$14515.3A$14515.A$14516.A20$
14538.2A$14538.A.A$14538.A25$14566.A$14565.2A$14565.A.A21$14588.2A$
14588.A.A$14588.A21$14612.A$14611.2A$14611.A.A21$14634.2A$14634.A.A$
14634.A30$14666.2A$14665.2A$14667.A21$14688.3A$14688.A$14689.A20$
14711.2A$14711.A.A$14711.A34$14748.A$14747.2A$14747.A.A21$14770.2A$
14770.A.A$14770.A21$14792.3A$14792.A$14793.A20$14815.2A$14815.A.A$
14815.A41$14858.2A$14858.A.A$14858.A26$14885.3A$14885.A$14886.A21$
14908.3A$14908.A$14909.A20$14931.2A$14931.A.A$14931.A25$14958.2A$
14957.2A$14959.A20$14981.A$14980.2A$14980.A.A21$15003.2A$15002.2A$
15004.A21$15025.3A$15025.A$15026.A25$15053.2A$15052.2A$15054.A21$
15075.3A$15075.A$15076.A21$15099.2A$15098.2A$15100.A21$15121.3A$
15121.A$15122.A36$15161.A$15160.2A$15160.A.A25$15187.2A$15186.2A$
15188.A21$15209.3A$15209.A$15210.A20$15232.2A$15232.A.A$15232.A33$
15267.2A$15266.2A$15268.A21$15289.3A$15289.A$15290.A24$15315.3A$
15315.A$15316.A20$15339.A$15338.2A$15338.A.A21$15361.2A$15360.2A$
15362.A21$15384.2A$15384.A.A$15384.A24$15410.2A$15410.A.A$15410.A21$
15433.2A$15432.2A$15434.A21$15455.3A$15455.A$15456.A33$15492.A$15491.
2A$15491.A.A21$15514.2A$15514.A.A$15514.A26$15541.3A$15541.A$15542.A
36$15580.2A$15579.2A$15581.A38$15621.A$15620.2A$15620.A.A21$15643.2A$
15642.2A$15644.A21$15665.3A$15665.A$15666.A21$15689.2A$15688.2A$
15690.A39$15729.3A$15729.A$15730.A25$15757.2A$15756.2A$15758.A20$
15780.A$15779.2A$15779.A.A22$15802.3A$15802.A$15803.A20$15826.A$
15825.2A$15825.A.A21$15848.2A$15848.A.A$15848.A21$15870.3A$15870.A$
15871.A20$15893.2A$15893.A.A$15893.A23$15918.2A$15918.A.A$15918.A21$
15940.3A$15940.A$15941.A20$15963.2A$15963.A.A$15963.A35$15999.3A$
15999.A$16000.A22$16023.3A$16023.A$16024.A20$16046.2A$16046.A.A$
16046.A21$16068.3A$16068.A$16069.A22$16094.A$16093.2A$16093.A.A40$
16134.3A$16134.A$16135.A20$16157.2A$16157.A.A$16157.A21$16179.3A$
16179.A$16180.A20$16203.A$16202.2A$16202.A.A21$16225.2A$16225.A.A$
16225.A21$16247.3A$16247.A$16248.A20$16271.A$16270.2A$16270.A.A21$
16293.2A$16292.2A$16294.A20$16316.A$16315.2A$16315.A.A21$16338.2A$
16338.A.A$16338.A21$16361.2A$16360.2A$16362.A25$16388.2A$16388.A.A$
16388.A21$16411.2A$16410.2A$16412.A21$16434.2A$16434.A.A$16434.A21$
16457.2A$16456.2A$16458.A34$16493.2A$16493.A.A$16493.A52$16547.2A$
16546.2A$16548.A24$16574.A$16573.2A$16573.A.A21$16596.2A$16595.2A$
16597.A20$16619.A$16618.2A$16618.A.A21$16641.2A$16641.A.A$16641.A21$
16664.2A$16663.2A$16665.A41$16708.A$16707.2A$16707.A.A21$16730.2A$
16729.2A$16731.A37$16770.A$16769.2A$16769.A.A21$16792.2A$16791.2A$
16793.A20$16815.A$16814.2A$16814.A.A21$16837.2A$16836.2A$16838.A21$
16859.3A$16859.A$16860.A32$16894.2A$16893.2A$16895.A20$16917.A$16916.
2A$16916.A.A21$16939.2A$16939.A.A$16939.A30$16971.2A$16970.2A$16972.A
20$16994.A$16993.2A$16993.A.A26$17020.3A$17020.A$17021.A20$17044.A$
17043.2A$17043.A.A22$17066.3A$17066.A$17067.A20$17089.2A$17089.A.A$
17089.A29$17120.2A$17119.2A$17121.A20$17143.A$17142.2A$17142.A.A25$
17168.3A$17168.A$17169.A20$17191.2A$17191.A.A$17191.A21$17213.3A$
17213.A$17214.A25$17242.A$17241.2A$17241.A.A21$17264.2A$17263.2A$
17265.A26$17292.2A$17291.2A$17293.A21$17314.3A$17314.A$17315.A20$
17337.2A$17337.A.A$17337.A23$17361.3A$17361.A$17362.A20$17384.2A$
17384.A.A$17384.A22$17408.2A$17408.A.A$17408.A24$17434.2A$17434.A.A$
17434.A21$17457.2A$17456.2A$17458.A21$17479.3A$17479.A$17480.A20$
17502.2A$17502.A.A$17502.A25$17529.2A$17528.2A$17530.A43$17575.A$
17574.2A$17574.A.A26$17601.3A$17601.A$17602.A20$17625.A$17624.2A$
17624.A.A22$17647.3A$17647.A$17648.A20$17671.A$17670.2A$17670.A.A30$
17702.2A$17702.A.A$17702.A21$17725.2A$17724.2A$17726.A20$17748.A$
17747.2A$17747.A.A27$17775.3A$17775.A$17776.A20$17798.2A$17798.A.A$
17798.A21$17820.3A$17820.A$17821.A26$17850.A$17849.2A$17849.A.A21$
17872.2A$17871.2A$17873.A35$17909.2A$17909.A.A$17909.A21$17931.3A$
17931.A$17932.A22$17956.2A$17956.A.A$17956.A21$17978.3A$17978.A$
17979.A20$18002.A$18001.2A$18001.A.A24$18027.2A$18027.A.A$18027.A21$
18049.3A$18049.A$18050.A20$18072.2A$18072.A.A$18072.A32$18106.2A$
18105.2A$18107.A31$18140.A$18139.2A$18139.A.A21$18162.2A$18161.2A$
18163.A20$18185.A$18184.2A$18184.A.A22$18207.3A$18207.A$18208.A20$
18230.2A$18230.A.A$18230.A25$18258.A$18257.2A$18257.A.A21$18280.2A$
18280.A.A$18280.A22$18303.3A$18303.A$18304.A20$18327.A$18326.2A$
18326.A.A21$18349.2A$18349.A.A$18349.A21$18372.2A$18372.A.A$18372.A
21$18394.3A$18394.A$18395.A22$18419.2A$18418.2A$18420.A21$18441.3A$
18441.A$18442.A20$18464.2A$18464.A.A$18464.A21$18487.2A$18486.2A$
18488.A20$18510.A$18509.2A$18509.A.A39$18549.3A$18549.A$18550.A20$
18573.A$18572.2A$18572.A.A21$18595.2A$18595.A.A$18595.A21$18618.2A$
18617.2A$18619.A21$18640.3A$18640.A$18641.A20$18664.A$18663.2A$18663.
A.A24$18689.2A$18689.A.A$18689.A31$18721.3A$18721.A$18722.A25$18749.
2A$18748.2A$18750.A20$18772.A$18771.2A$18771.A.A22$18794.3A$18794.A$
18795.A20$18818.A$18817.2A$18817.A.A21$18840.2A$18840.A.A$18840.A21$
18863.2A$18863.A.A$18863.A21$18885.3A$18885.A$18886.A20$18908.2A$
18908.A.A$18908.A21$18931.2A$18930.2A$18932.A20$18954.A$18953.2A$
18953.A.A26$18981.2A$18980.2A$18982.A20$19004.A$19003.2A$19003.A.A21$
19026.2A$19025.2A$19027.A21$19048.3A$19048.A$19049.A29$19079.3A$
19079.A$19080.A31$19113.2A$19112.2A$19114.A20$19136.A$19135.2A$19135.
A.A21$19158.2A$19158.A.A$19158.A26$19187.A$19186.2A$19186.A.A21$
19209.2A$19208.2A$19210.A20$19232.A$19231.2A$19231.A.A21$19254.2A$
19254.A.A$19254.A25$19282.A$19281.2A$19281.A.A21$19304.2A$19304.A.A$
19304.A22$19327.3A$19327.A$19328.A20$19351.A$19350.2A$19350.A.A21$
19373.2A$19373.A.A$19373.A43$19418.2A$19417.2A$19419.A20$19441.A$
19440.2A$19440.A.A21$19463.2A$19463.A.A$19463.A22$19486.3A$19486.A$
19487.A20$19510.A$19509.2A$19509.A.A24$19535.2A$19534.2A$19536.A21$
19557.3A$19557.A$19558.A40$19601.A$19600.2A$19600.A.A21$19623.2A$
19623.A.A$19623.A26$19650.3A$19650.A$19651.A20$19674.A$19673.2A$
19673.A.A37$19713.A$19712.2A$19712.A.A21$19735.2A$19734.2A$19736.A28$
19764.3A$19764.A$19765.A20$19787.2A$19787.A.A$19787.A21$19809.3A$
19809.A$19810.A20$19832.2A$19832.A.A$19832.A21$19854.3A$19854.A$
19855.A20$19878.A$19877.2A$19877.A.A21$19900.2A$19899.2A$19901.A25$
19927.2A$19927.A.A$19927.A21$19949.3A$19949.A$19950.A21$19973.2A$
19972.2A$19974.A21$19995.3A$19995.A$19996.A20$20019.A$20018.2A$20018.
A.A21$20042.A$20041.2A$20041.A.A21$20064.2A$20063.2A$20065.A20$20087.
A$20086.2A$20086.A.A21$20109.2A$20109.A.A$20109.A21$20131.3A$20131.A$
20132.A25$20159.2A$20159.A.A$20159.A21$20181.3A$20181.A$20182.A20$
20204.2A$20204.A.A$20204.A21$20227.2A$20226.2A$20228.A29$20258.2A$
20257.2A$20259.A31$20291.2A$20291.A.A$20291.A21$20313.3A$20313.A$
20314.A20$20337.A$20336.2A$20336.A.A27$20364.3A$20364.A$20365.A20$
20387.2A$20387.A.A$20387.A21$20409.3A$20409.A$20410.A20$20433.A$
20432.2A$20432.A.A26$20459.3A$20459.A$20460.A20$20483.A$20482.2A$
20482.A.A22$20505.3A$20505.A$20506.A20$20529.A$20528.2A$20528.A.A31$
20560.3A$20560.A$20561.A35$20598.2A$20597.2A$20599.A21$20620.3A$
20620.A$20621.A20$20643.2A$20643.A.A$20643.A21$20665.3A$20665.A$
20666.A24$20692.2A$20691.2A$20693.A20$20715.A$20714.2A$20714.A.A21$
20737.2A$20736.2A$20738.A20$20760.A$20759.2A$20759.A.A21$20782.2A$
20781.2A$20783.A26$20811.A$20810.2A$20810.A.A21$20833.2A$20833.A.A$
20833.A23$20858.2A$20858.A.A$20858.A21$20880.3A$20880.A$20881.A20$
20903.2A$20903.A.A$20903.A25$20931.A$20930.2A$20930.A.A21$20953.2A$
20953.A.A$20953.A21$20977.A$20976.2A$20976.A.A21$20999.2A$20999.A.A$
20999.A30$21031.2A$21030.2A$21032.A21$21053.3A$21053.A$21054.A20$
21076.2A$21076.A.A$21076.A34$21113.A$21112.2A$21112.A.A21$21135.2A$
21135.A.A$21135.A21$21157.3A$21157.A$21158.A20$21180.2A$21180.A.A$
21180.A41$21223.2A$21223.A.A$21223.A26$21250.3A$21250.A$21251.A21$
21273.3A$21273.A$21274.A20$21296.2A$21296.A.A$21296.A25$21323.2A$
21322.2A$21324.A20$21346.A$21345.2A$21345.A.A21$21368.2A$21367.2A$
21369.A20$21391.A$21390.2A$21390.A.A26$21417.3A$21417.A$21418.A20$
21441.A$21440.2A$21440.A.A22$21463.3A$21463.A$21464.A20$21487.A$
21486.2A$21486.A.A37$21525.2A$21525.A.A$21525.A25$21551.3A$21551.A$
21552.A20$21575.A$21574.2A$21574.A.A21$21597.2A$21596.2A$21598.A33$
21631.3A$21631.A$21632.A20$21655.A$21654.2A$21654.A.A24$21681.A$
21680.2A$21680.A.A21$21703.2A$21703.A.A$21703.A21$21725.3A$21725.A$
21726.A21$21749.2A$21748.2A$21750.A24$21775.2A$21774.2A$21776.A21$
21797.3A$21797.A$21798.A20$21821.A$21820.2A$21820.A.A34$21856.2A$
21856.A.A$21856.A21$21879.2A$21878.2A$21880.A25$21907.A$21906.2A$
21906.A.A37$21944.3A$21944.A$21945.A38$21985.2A$21985.A.A$21985.A21$
22007.3A$22007.A$22008.A20$22031.A$22030.2A$22030.A.A22$22053.3A$
22053.A$22054.A38$22095.A$22094.2A$22094.A.A26$22121.3A$22121.A$
22122.A20$22144.2A$22144.A.A$22144.A21$22168.A$22167.2A$22167.A.A21$
22190.2A$22190.A.A$22190.A21$22213.2A$22212.2A$22214.A20$22236.A$
22235.2A$22235.A.A21$22258.2A$22257.2A$22259.A23$22283.2A$22282.2A$
22284.A20$22306.A$22305.2A$22305.A.A21$22328.2A$22327.2A$22329.A34$
22365.A$22364.2A$22364.A.A22$22389.A$22388.2A$22388.A.A21$22411.2A$
22410.2A$22412.A20$22434.A$22433.2A$22433.A.A23$22458.2A$22458.A.A$
22458.A39$22500.A$22499.2A$22499.A.A21$22522.2A$22521.2A$22523.A20$
22545.A$22544.2A$22544.A.A21$22567.2A$22567.A.A$22567.A21$22590.2A$
22589.2A$22591.A20$22613.A$22612.2A$22612.A.A21$22635.2A$22635.A.A$
22635.A21$22657.3A$22657.A$22658.A20$22680.2A$22680.A.A$22680.A21$
22703.2A$22702.2A$22704.A21$22725.3A$22725.A$22726.A25$22753.2A$
22752.2A$22754.A21$22775.3A$22775.A$22776.A21$22799.2A$22798.2A$
22800.A21$22821.3A$22821.A$22822.A34$22858.2A$22857.2A$22859.A52$
22911.3A$22911.A$22912.A24$22938.2A$22938.A.A$22938.A21$22960.3A$
22960.A$22961.A20$22983.2A$22983.A.A$22983.A21$23006.2A$23005.2A$
23007.A21$23028.3A$23028.A$23029.A41$23072.2A$23072.A.A$23072.A21$
23094.3A$23094.A$23095.A37$23134.2A$23134.A.A$23134.A21$23156.3A$
23156.A$23157.A20$23179.2A$23179.A.A$23179.A21$23201.3A$23201.A$
23202.A20$23225.A$23224.2A$23224.A.A33$23258.3A$23258.A$23259.A20$
23281.2A$23281.A.A$23281.A21$23304.2A$23303.2A$23305.A30$23335.3A$
23335.A$23336.A20$23358.2A$23358.A.A$23358.A25$23386.A$23385.2A$
23385.A.A21$23408.2A$23407.2A$23409.A21$23431.2A$23431.A.A$23431.A21$
23454.2A$23453.2A$23455.A21$23476.3A$23476.A$23477.A31$23511.A$23510.
2A$23510.A.A21$23533.2A$23533.A.A$23533.A34$23569.2A$23569.A.A$23569.
A21$23591.3A$23591.A$23592.A20$23614.2A$23614.A.A$23614.A29$23645.2A$
23644.2A$23646.A21$23667.3A$23667.A$23668.A20$23690.2A$23690.A.A$
23690.A28$23720.2A$23720.A.A$23720.A21$23742.3A$23742.A$23743.A20$
23766.A$23765.2A$23765.A.A21$23788.2A$23788.A.A$23788.A21$23811.2A$
23810.2A$23812.A39$23851.3A$23851.A$23852.A20$23874.2A$23874.A.A$
23874.A22$23898.2A$23897.2A$23899.A21$23920.3A$23920.A$23921.A31$
23954.2A$23954.A.A$23954.A21$23977.2A$23976.2A$23978.A25$24004.2A$
24004.A.A$24004.A21$24027.2A$24026.2A$24028.A21$24050.2A$24050.A.A$
24050.A21$24072.3A$24072.A$24073.A41$24116.2A$24115.2A$24117.A20$
24139.A$24138.2A$24138.A.A21$24161.2A$24160.2A$24162.A20$24184.A$
24183.2A$24183.A.A21$24206.2A$24205.2A$24207.A20$24229.A$24228.2A$
24228.A.A34$24263.3A$24263.A$24264.A20$24286.2A$24286.A.A$24286.A21$
24308.3A$24308.A$24309.A22$24332.3A$24332.A$24333.A20$24356.A$24355.
2A$24355.A.A31$24389.A$24388.2A$24388.A.A21$24411.2A$24410.2A$24412.A
23$24436.2A$24435.2A$24437.A20$24459.A$24458.2A$24458.A.A21$24481.2A$
24481.A.A$24481.A28$24511.2A$24510.2A$24512.A20$24534.A$24533.2A$
24533.A.A21$24556.2A$24555.2A$24557.A21$24578.3A$24578.A$24579.A25$
24606.2A$24605.2A$24607.A21$24628.3A$24628.A$24629.A21$24652.2A$
24652.A.A$24652.A21$24675.2A$24674.2A$24676.A21$24697.3A$24697.A$
24698.A32$24731.3A$24731.A$24732.A20$24755.A$24754.2A$24754.A.A21$
24777.2A$24776.2A$24778.A21$24799.3A$24799.A$24800.A33$24834.3A$
24834.A$24835.A21$24858.2A$24858.A.A$24858.A26$24886.2A$24886.A.A$
24886.A21$24909.2A$24908.2A$24910.A30$24941.2A$24941.A.A$24941.A21$
24963.3A$24963.A$24964.A20$24986.2A$24986.A.A$24986.A21$25009.2A$
25009.A.A$25009.A21$25031.3A$25031.A$25032.A23$25056.3A$25056.A$
25057.A20$25079.2A$25079.A.A$25079.A27$25108.2A$25107.2A$25109.A21$
25130.3A$25130.A$25131.A20$25154.A$25153.2A$25153.A.A22$25176.3A$
25176.A$25177.A20$25200.A$25199.2A$25199.A.A26$25226.3A$25226.A$
25227.A20$25250.A$25249.2A$25249.A.A22$25272.3A$25272.A$25273.A20$
25296.A$25295.2A$25295.A.A30$25327.2A$25327.A.A$25327.A21$25350.2A$
25349.2A$25351.A20$25373.A$25372.2A$25372.A.A27$25400.3A$25400.A$
25401.A20$25423.2A$25423.A.A$25423.A21$25445.3A$25445.A$25446.A26$
25475.A$25474.2A$25474.A.A21$25497.2A$25496.2A$25498.A35$25534.2A$
25534.A.A$25534.A21$25556.3A$25556.A$25557.A22$25581.2A$25581.A.A$
25581.A21$25603.3A$25603.A$25604.A20$25627.A$25626.2A$25626.A.A24$
25652.2A$25652.A.A$25652.A21$25674.3A$25674.A$25675.A20$25697.2A$
25697.A.A$25697.A32$25731.2A$25730.2A$25732.A31$25765.A$25764.2A$
25764.A.A21$25787.2A$25786.2A$25788.A20$25810.A$25809.2A$25809.A.A22$
25832.3A$25832.A$25833.A20$25855.2A$25855.A.A$25855.A25$25883.A$
25882.2A$25882.A.A21$25905.2A$25905.A.A$25905.A21$25929.A$25928.2A$
25928.A.A21$25951.2A$25951.A.A$25951.A34$25988.A$25987.2A$25987.A.A
52$26041.2A$26041.A.A$26041.A25$26067.3A$26067.A$26068.A20$26090.2A$
26090.A.A$26090.A21$26112.3A$26112.A$26113.A20$26136.A$26135.2A$
26135.A.A21$26158.2A$26158.A.A$26158.A42$26201.3A$26201.A$26202.A20$
26224.2A$26224.A.A$26224.A38$26263.3A$26263.A$26264.A20$26286.2A$
26286.A.A$26286.A21$26308.3A$26308.A$26309.A20$26331.2A$26331.A.A$
26331.A21$26354.2A$26353.2A$26355.A32$26388.2A$26388.A.A$26388.A21$
26410.3A$26410.A$26411.A20$26434.A$26433.2A$26433.A.A30$26465.2A$
26465.A.A$26465.A21$26487.3A$26487.A$26488.A25$26515.2A$26514.2A$
26516.A20$26538.A$26537.2A$26537.A.A22$26560.3A$26560.A$26561.A20$
26584.A$26583.2A$26583.A.A21$26606.2A$26606.A.A$26606.A32$26640.2A$
26639.2A$26641.A21$26662.3A$26662.A$26663.A34$26698.3A$26698.A$26699.
A20$26721.2A$26721.A.A$26721.A21$26743.3A$26743.A$26744.A28$26775.A$
26774.2A$26774.A.A21$26797.2A$26797.A.A$26797.A21$26819.3A$26819.A$
26820.A28$26849.3A$26849.A$26850.A20$26872.2A$26872.A.A$26872.A21$
26895.2A$26894.2A$26896.A21$26917.3A$26917.A$26918.A20$26941.A$26940.
2A$26940.A.A39$26981.2A$26981.A.A$26981.A21$27003.3A$27003.A$27004.A
21$27028.A$27027.2A$27027.A.A21$27050.2A$27050.A.A$27050.A32$27083.3A
$27083.A$27084.A20$27106.2A$27106.A.A$27106.A25$27134.A$27133.2A$
27133.A.A21$27156.2A$27156.A.A$27156.A21$27180.A$27179.2A$27179.A.A
21$27202.2A$27202.A.A$27202.A42$27245.3A$27245.A$27246.A20$27268.2A$
27268.A.A$27268.A21$27291.2A$27290.2A$27292.A20$27314.A$27313.2A$
27313.A.A35$27351.A$27350.2A$27350.A.A21$27373.2A$27372.2A$27374.A23$
27398.2A$27398.A.A$27398.A39$27439.2A$27438.2A$27440.A34$27476.A$
27475.2A$27475.A.A21$27498.2A$27497.2A$27499.A34$27533.3A$27533.A$
27534.A20$27557.A$27556.2A$27556.A.A21$27579.2A$27579.A.A$27579.A21$
27601.3A$27601.A$27602.A28$27633.A$27632.2A$27632.A.A21$27655.2A$
27654.2A$27656.A21$27677.3A$27677.A$27678.A31$27710.3A$27710.A$27711.
A22$27736.A$27735.2A$27735.A.A26$27762.3A$27762.A$27763.A20$27785.2A$
27785.A.A$27785.A21$27809.A$27808.2A$27808.A.A21$27831.2A$27831.A.A$
27831.A21$27854.2A$27853.2A$27855.A33$27890.A$27889.2A$27889.A.A21$
27912.2A$27912.A.A$27912.A25$27940.A$27939.2A$27939.A.A21$27962.2A$
27961.2A$27963.A21$27985.2A$27984.2A$27986.A20$28008.A$28007.2A$
28007.A.A23$28033.A$28032.2A$28032.A.A21$28055.2A$28054.2A$28056.A20$
28078.A$28077.2A$28077.A.A39$28118.2A$28118.A.A$28118.A42$28163.A$
28162.2A$28162.A.A21$28185.2A$28184.2A$28186.A20$28208.A$28207.2A$
28207.A.A21$28230.2A$28229.2A$28231.A28$28260.2A$28260.A.A$28260.A21$
28283.2A$28282.2A$28284.A21$28305.3A$28305.A$28306.A22$28329.3A$
28329.A$28330.A20$28353.A$28352.2A$28352.A.A34$28388.2A$28388.A.A$
28388.A21$28410.3A$28410.A$28411.A25$28438.2A$28437.2A$28439.A21$
28460.3A$28460.A$28461.A21$28484.2A$28483.2A$28485.A21$28506.3A$
28506.A$28507.A34$28543.2A$28542.2A$28544.A52$28596.3A$28596.A$28597.
A24$28623.2A$28623.A.A$28623.A21$28645.3A$28645.A$28646.A20$28668.2A$
28668.A.A$28668.A21$28691.2A$28690.2A$28692.A21$28713.3A$28713.A$
28714.A41$28757.2A$28757.A.A$28757.A21$28779.3A$28779.A$28780.A37$
28819.2A$28819.A.A$28819.A21$28841.3A$28841.A$28842.A20$28864.2A$
28864.A.A$28864.A21$28886.3A$28886.A$28887.A20$28910.A$28909.2A$
28909.A.A33$28943.3A$28943.A$28944.A20$28966.2A$28966.A.A$28966.A21$
28989.2A$28988.2A$28990.A30$29020.3A$29020.A$29021.A20$29043.2A$
29043.A.A$29043.A25$29071.A$29070.2A$29070.A.A21$29093.2A$29093.A.A$
29093.A21$29117.A$29116.2A$29116.A.A21$29139.2A$29138.2A$29140.A29$
29169.3A$29169.A$29170.A20$29192.2A$29192.A.A$29192.A24$29219.A$
29218.2A$29218.A.A21$29241.2A$29240.2A$29242.A20$29264.A$29263.2A$
29263.A.A26$29291.2A$29291.A.A$29291.A21$29313.3A$29313.A$29314.A26$
29341.3A$29341.A$29342.A20$29365.A$29364.2A$29364.A.A21$29387.2A$
29386.2A$29388.A22$29412.A$29411.2A$29411.A.A21$29434.2A$29433.2A$
29435.A22$29458.2A$29457.2A$29459.A24$29484.2A$29483.2A$29485.A21$
29506.3A$29506.A$29507.A20$29530.A$29529.2A$29529.A.A21$29552.2A$
29551.2A$29553.A25$29578.3A$29578.A$29579.A43$29624.2A$29624.A.A$
29624.A25$29652.A$29651.2A$29651.A.A21$29674.2A$29674.A.A$29674.A22$
29697.3A$29697.A$29698.A20$29721.A$29720.2A$29720.A.A21$29743.2A$
29743.A.A$29743.A21$29766.2A$29766.A.A$29766.A21$29788.3A$29788.A$
29789.A22$29813.2A$29812.2A$29814.A21$29835.3A$29835.A$29836.A20$
29858.2A$29858.A.A$29858.A21$29881.2A$29880.2A$29882.A20$29904.A$
29903.2A$29903.A.A39$29943.3A$29943.A$29944.A20$29967.A$29966.2A$
29966.A.A21$29989.2A$29989.A.A$29989.A21$30012.2A$30011.2A$30013.A21$
30034.3A$30034.A$30035.A20$30058.A$30057.2A$30057.A.A24$30083.2A$
30083.A.A$30083.A31$30115.3A$30115.A$30116.A25$30143.2A$30142.2A$
30144.A20$30166.A$30165.2A$30165.A.A22$30188.3A$30188.A$30189.A20$
30212.A$30211.2A$30211.A.A21$30234.2A$30234.A.A$30234.A21$30257.2A$
30257.A.A$30257.A21$30279.3A$30279.A$30280.A20$30302.2A$30302.A.A$
30302.A21$30325.2A$30324.2A$30326.A20$30348.A$30347.2A$30347.A.A26$
30375.2A$30374.2A$30376.A20$30398.A$30397.2A$30397.A.A21$30420.2A$
30419.2A$30421.A21$30442.3A$30442.A$30443.A29$30473.3A$30473.A$30474.
A31$30507.2A$30506.2A$30508.A20$30530.A$30529.2A$30529.A.A21$30552.2A
$30552.A.A$30552.A26$30581.A$30580.2A$30580.A.A21$30603.2A$30602.2A$
30604.A20$30626.A$30625.2A$30625.A.A21$30648.2A$30648.A.A$30648.A25$
30676.A$30675.2A$30675.A.A21$30698.2A$30698.A.A$30698.A22$30721.3A$
30721.A$30722.A20$30745.A$30744.2A$30744.A.A21$30767.2A$30767.A.A$
30767.A43$30812.2A$30811.2A$30813.A20$30835.A$30834.2A$30834.A.A21$
30857.2A$30857.A.A$30857.A22$30880.3A$30880.A$30881.A20$30904.A$
30903.2A$30903.A.A24$30929.2A$30928.2A$30930.A21$30951.3A$30951.A$
30952.A40$30995.A$30994.2A$30994.A.A21$31017.2A$31017.A.A$31017.A26$
31044.3A$31044.A$31045.A20$31068.A$31067.2A$31067.A.A37$31107.A$
31106.2A$31106.A.A21$31129.2A$31128.2A$31130.A28$31158.3A$31158.A$
31159.A20$31181.2A$31181.A.A$31181.A21$31203.3A$31203.A$31204.A20$
31226.2A$31226.A.A$31226.A21$31248.3A$31248.A$31249.A20$31272.A$
31271.2A$31271.A.A21$31294.2A$31293.2A$31295.A25$31321.2A$31321.A.A$
31321.A21$31343.3A$31343.A$31344.A21$31367.2A$31366.2A$31368.A21$
31389.3A$31389.A$31390.A20$31413.A$31412.2A$31412.A.A21$31436.A$
31435.2A$31435.A.A21$31458.2A$31457.2A$31459.A20$31481.A$31480.2A$
31480.A.A21$31503.2A$31503.A.A$31503.A21$31525.3A$31525.A$31526.A25$
31553.2A$31553.A.A$31553.A21$31575.3A$31575.A$31576.A20$31598.2A$
31598.A.A$31598.A21$31621.2A$31620.2A$31622.A29$31652.2A$31651.2A$
31653.A31$31685.2A$31685.A.A$31685.A21$31707.3A$31707.A$31708.A20$
31731.A$31730.2A$31730.A.A27$31758.3A$31758.A$31759.A20$31781.2A$
31781.A.A$31781.A21$31803.3A$31803.A$31804.A20$31827.A$31826.2A$
31826.A.A26$31853.3A$31853.A$31854.A20$31877.A$31876.2A$31876.A.A22$
31899.3A$31899.A$31900.A20$31923.A$31922.2A$31922.A.A31$31954.3A$
31954.A$31955.A35$31992.2A$31991.2A$31993.A21$32014.3A$32014.A$32015.
A20$32037.2A$32037.A.A$32037.A21$32059.3A$32059.A$32060.A24$32086.2A$
32085.2A$32087.A20$32109.A$32108.2A$32108.A.A21$32131.2A$32130.2A$
32132.A20$32154.A$32153.2A$32153.A.A21$32176.2A$32175.2A$32177.A26$
32205.A$32204.2A$32204.A.A21$32227.2A$32227.A.A$32227.A23$32252.2A$
32252.A.A$32252.A21$32274.3A$32274.A$32275.A20$32297.2A$32297.A.A$
32297.A25$32325.A$32324.2A$32324.A.A21$32347.2A$32347.A.A$32347.A21$
32371.A$32370.2A$32370.A.A21$32393.2A$32393.A.A$32393.A30$32425.2A$
32424.2A$32426.A21$32447.3A$32447.A$32448.A20$32470.2A$32470.A.A$
32470.A34$32507.A$32506.2A$32506.A.A21$32529.2A$32529.A.A$32529.A21$
32551.3A$32551.A$32552.A20$32574.2A$32574.A.A$32574.A41$32617.2A$
32617.A.A$32617.A26$32644.3A$32644.A$32645.A21$32667.3A$32667.A$
32668.A20$32690.2A$32690.A.A$32690.A25$32717.2A$32716.2A$32718.A20$
32740.A$32739.2A$32739.A.A21$32762.2A$32761.2A$32763.A21$32784.3A$
32784.A$32785.A25$32812.2A$32811.2A$32813.A21$32834.3A$32834.A$32835.
A21$32858.2A$32857.2A$32859.A21$32880.3A$32880.A$32881.A36$32920.A$
32919.2A$32919.A.A25$32946.2A$32945.2A$32947.A21$32968.3A$32968.A$
32969.A20$32991.2A$32991.A.A$32991.A33$33026.2A$33025.2A$33027.A21$
33048.3A$33048.A$33049.A24$33074.3A$33074.A$33075.A20$33098.A$33097.
2A$33097.A.A21$33120.2A$33119.2A$33121.A21$33143.2A$33143.A.A$33143.A
24$33169.2A$33169.A.A$33169.A21$33192.2A$33191.2A$33193.A21$33214.3A$
33214.A$33215.A33$33251.A$33250.2A$33250.A.A21$33273.2A$33273.A.A$
33273.A26$33300.3A$33300.A$33301.A36$33339.2A$33338.2A$33340.A38$
33380.A$33379.2A$33379.A.A21$33402.2A$33401.2A$33403.A21$33424.3A$
33424.A$33425.A21$33448.2A$33447.2A$33449.A39$33488.3A$33488.A$33489.
A25$33516.2A$33515.2A$33517.A20$33539.A$33538.2A$33538.A.A22$33561.3A
$33561.A$33562.A20$33585.A$33584.2A$33584.A.A21$33607.2A$33607.A.A$
33607.A21$33629.3A$33629.A$33630.A20$33652.2A$33652.A.A$33652.A23$
33677.2A$33677.A.A$33677.A21$33699.3A$33699.A$33700.A20$33722.2A$
33722.A.A$33722.A35$33758.3A$33758.A$33759.A22$33782.3A$33782.A$
33783.A20$33805.2A$33805.A.A$33805.A21$33827.3A$33827.A$33828.A22$
33853.A$33852.2A$33852.A.A40$33893.3A$33893.A$33894.A20$33916.2A$
33916.A.A$33916.A21$33938.3A$33938.A$33939.A20$33962.A$33961.2A$
33961.A.A21$33984.2A$33984.A.A$33984.A21$34006.3A$34006.A$34007.A20$
34030.A$34029.2A$34029.A.A21$34052.2A$34051.2A$34053.A20$34075.A$
34074.2A$34074.A.A21$34097.2A$34097.A.A$34097.A21$34119.3A$34119.A$
34120.A25$34147.2A$34146.2A$34148.A21$34169.3A$34169.A$34170.A21$
34193.2A$34192.2A$34194.A21$34215.3A$34215.A$34216.A34$34252.2A$
34251.2A$34253.A52$34305.3A$34305.A$34306.A24$34332.2A$34332.A.A$
34332.A21$34354.3A$34354.A$34355.A20$34377.2A$34377.A.A$34377.A21$
34400.2A$34399.2A$34401.A21$34422.3A$34422.A$34423.A41$34466.2A$
34466.A.A$34466.A21$34488.3A$34488.A$34489.A37$34528.2A$34528.A.A$
34528.A21$34550.3A$34550.A$34551.A20$34573.2A$34573.A.A$34573.A21$
34595.3A$34595.A$34596.A20$34619.A$34618.2A$34618.A.A33$34652.3A$
34652.A$34653.A20$34675.2A$34675.A.A$34675.A21$34698.2A$34697.2A$
34699.A30$34729.3A$34729.A$34730.A20$34752.2A$34752.A.A$34752.A25$
34780.A$34779.2A$34779.A.A21$34802.2A$34802.A.A$34802.A22$34825.3A$
34825.A$34826.A20$34849.A$34848.2A$34848.A.A21$34871.2A$34871.A.A$
34871.A32$34905.2A$34905.A.A$34905.A21$34928.2A$34927.2A$34929.A20$
34951.A$34950.2A$34950.A.A21$34973.2A$34973.A.A$34973.A24$34999.2A$
34999.A.A$34999.A21$35021.3A$35021.A$35022.A20$35044.2A$35044.A.A$
35044.A21$35066.3A$35066.A$35067.A25$35094.2A$35094.A.A$35094.A21$
35116.3A$35116.A$35117.A20$35139.2A$35139.A.A$35139.A23$35163.3A$
35163.A$35164.A20$35186.2A$35186.A.A$35186.A25$35214.A$35213.2A$
35213.A.A21$35236.2A$35236.A.A$35236.A22$35259.3A$35259.A$35260.A20$
35283.A$35282.2A$35282.A.A21$35305.2A$35305.A.A$35305.A21$35328.2A$
35328.A.A$35328.A21$35350.3A$35350.A$35351.A22$35375.2A$35374.2A$
35376.A21$35397.3A$35397.A$35398.A20$35420.2A$35420.A.A$35420.A21$
35443.2A$35442.2A$35444.A20$35466.A$35465.2A$35465.A.A39$35505.3A$
35505.A$35506.A20$35529.A$35528.2A$35528.A.A21$35551.2A$35551.A.A$
35551.A21$35574.2A$35573.2A$35575.A21$35596.3A$35596.A$35597.A20$
35620.A$35619.2A$35619.A.A24$35645.2A$35645.A.A$35645.A31$35677.3A$
35677.A$35678.A25$35705.2A$35704.2A$35706.A21$35727.3A$35727.A$35728.
A21$35751.2A$35750.2A$35752.A20$35774.A$35773.2A$35773.A.A42$35816.3A
$35816.A$35817.A20$35839.2A$35839.A.A$35839.A21$35861.3A$35861.A$
35862.A20$35884.2A$35884.A.A$35884.A21$35906.3A$35906.A$35907.A20$
35929.2A$35929.A.A$35929.A33$35965.A$35964.2A$35964.A.A21$35987.2A$
35986.2A$35988.A20$36010.A$36009.2A$36009.A.A22$36034.A$36033.2A$
36033.A.A21$36056.2A$36056.A.A$36056.A31$36089.2A$36089.A.A$36089.A
21$36111.3A$36111.A$36112.A23$36136.3A$36136.A$36137.A20$36159.2A$
36159.A.A$36159.A21$36182.2A$36181.2A$36183.A28$36211.3A$36211.A$
36212.A20$36234.2A$36234.A.A$36234.A21$36256.3A$36256.A$36257.A20$
36279.2A$36279.A.A$36279.A25$36307.A$36306.2A$36306.A.A21$36329.2A$
36329.A.A$36329.A21$36353.A$36352.2A$36352.A.A21$36375.2A$36375.A.A$
36375.A37$36414.2A$36413.2A$36415.A24$36441.A$36440.2A$36440.A.A21$
36463.2A$36463.A.A$36463.A21$36485.3A$36485.A$36486.A32$36521.A$
36520.2A$36520.A.A21$36543.2A$36543.A.A$36543.A24$36569.2A$36569.A.A$
36569.A21$36592.2A$36591.2A$36593.A20$36615.A$36614.2A$36614.A.A22$
36637.3A$36637.A$36638.A24$36663.3A$36663.A$36664.A20$36687.A$36686.
2A$36686.A.A21$36709.2A$36709.A.A$36709.A34$36745.2A$36744.2A$36746.A
21$36767.3A$36767.A$36768.A25$36795.2A$36795.A.A$36795.A36$36834.A$
36833.2A$36833.A.A39$36874.2A$36873.2A$36875.A20$36897.A$36896.2A$
36896.A.A21$36919.2A$36919.A.A$36919.A21$36943.A$36942.2A$36942.A.A
39$36983.2A$36983.A.A$36983.A25$37011.A$37010.2A$37010.A.A21$37033.2A
$37032.2A$37034.A21$37056.2A$37056.A.A$37056.A21$37079.2A$37078.2A$
37080.A21$37101.3A$37101.A$37102.A20$37124.2A$37124.A.A$37124.A21$
37146.3A$37146.A$37147.A21$37171.A$37170.2A$37170.A.A21$37193.2A$
37193.A.A$37193.A21$37215.3A$37215.A$37216.A20$37239.A$37238.2A$
37238.A.A29$37269.2A$37269.A.A$37269.A21$37291.3A$37291.A$37292.A20$
37314.2A$37314.A.A$37314.A21$37336.3A$37336.A$37337.A20$37359.2A$
37359.A.A$37359.A27$37389.A$37388.2A$37388.A.A21$37411.2A$37411.A.A$
37411.A21$37433.3A$37433.A$37434.A20$37456.2A$37456.A.A$37456.A21$
37479.2A$37478.2A$37480.A21$37501.3A$37501.A$37502.A20$37525.A$37524.
2A$37524.A.A25$37552.A$37551.2A$37551.A.A!
This is the minimum recipe that has to be completed before the streams can start to cross each other: the topmost elbow block has to generate another elbow block before it does anything else. That way when the initial recipe doubles back through the topmost completed Orthogonoid constructor-arm unit, it will find an elbow waiting for it to work with.

I think this means that the narrowest possible Orthogonoid, for the moment, is about 50,000 to 60,000 cells wide -- basically, as wide as this MWSS recipe doubled over, with some room on the edges for the overlapping construction arms:

Code: Select all

x = 75090, y = 7, rule = B3/S23
58bo181bo285bo47bo857bo345bo101bo89bo239bo91bo137bo285bo59bo93bo189bo
93bo145bo137bo159bo423bo239bo181bo285bo47bo857bo345bo101bo89bo1151bo
119bo99bo323bo137bo101bo321bo245bo613bo405bo107bo209bo287bo191bo181bo
93bo215bo181bo161bo99bo137bo179bo319bo327bo89bo189bo91bo175bo159bo187b
o143bo293bo125bo91bo135bo259bo275bo47bo271bo329bo169bo107bo103bo63bo
273bo321bo99bo137bo45bo183bo261bo187bo211bo657bo137bo365bo125bo181bo
401bo105bo643bo145bo203bo71bo89bo151bo59bo135bo171bo159bo99bo137bo203b
o163bo91bo241bo149bo345bo293bo467bo111bo513bo135bo261bo261bo363bo99bo
89bo173bo191bo417bo233bo399bo329bo145bo181bo325bo61bo679bo187bo89bo89b
o497bo583bo89bo99bo91bo175bo159bo187bo143bo293bo125bo91bo135bo1071bo
135bo99bo91bo179bo97bo135bo131bo123bo89bo113bo153bo297bo287bo55bo329bo
143bo391bo293bo467bo111bo513bo135bo261bo261bo363bo99bo89bo173bo191bo
417bo233bo399bo329bo145bo181bo325bo61bo679bo187bo89bo89bo497bo583bo89b
o457bo303bo51bo207bo667bo89bo49bo89bo165bo221bo135bo225bo99bo91bo117bo
295bo595bo207bo91bo381bo331bo173bo157bo99bo177bo89bo89bo409bo49bo149bo
89bo99bo137bo203bo263bo397bo483bo293bo467bo111bo1133bo321bo249bo509bo
791bo163bo131bo117bo313bo397bo215bo45bo139bo259bo89bo105bo309bo91bo
117bo295bo595bo299bo203bo291bo93bo47bo51bo135bo521bo135bo261bo261bo
363bo99bo89bo173bo191bo417bo233bo399bo329bo145bo181bo325bo61bo679bo
187bo89bo89bo497bo583bo89bo99bo91bo175bo159bo187bo143bo293bo125bo91bo
135bo1071bo189bo91bo117bo295bo595bo459bo893bo135bo261bo261bo91bo471bo
389bo463bo355bo305bo257bo317bo91bo799bo$56bo3bo177bo3bo134b3o144bo3bo
43bo3bo146b3o99b3o87b3o237b3o89b3o135b3o42bo3bo236b3o57b3o42bo3bo44b3o
50bo3bo85bo3bo42b3o91b3o96bo3bo42b3o42bo3bo88b3o42bo3bo110b3o168bo3bo
55bo3bo89bo3bo94b3o88bo3bo89bo3bo50b3o88bo3bo86b3o44bo3bo155bo3bo74b3o
45b3o294bo3bo235bo3bo177bo3bo134b3o144bo3bo43bo3bo146b3o99b3o87b3o237b
3o89b3o135b3o42bo3bo236b3o57b3o42bo3bo44b3o50bo3bo85bo3bo42b3o91b3o97b
3o89b3o177b3o49b3o87b3o87b3o93b3o43b3o87b3o95b3o74bo3bo115bo3bo50b3o
42bo3bo42b3o229b3o42bo3bo86b3o44bo3bo97bo3bo317bo3bo136b3o102bo3bo86b
3o87b3o97b3o135b3o43b3o146bo3bo356b3o42bo3bo103bo3bo132b3o70bo3bo142b
3o93b3o42bo3bo187bo3bo177bo3bo44b3o42bo3bo86b3o122bo3bo132b3o42bo3bo
157bo3bo50b3o42bo3bo88b3o42bo3bo130b3o42bo3bo88b3o179b3o42bo3bo96b3o
75b3o146bo3bo85bo3bo86b3o96bo3bo87bo3bo171bo3bo86b3o66bo3bo183bo3bo42b
3o49b3o42bo3bo158b3o128bo3bo121bo3bo87bo3bo131bo3bo88b3o164bo3bo271bo
3bo43bo3bo86b3o133b3o42bo3bo136b3o87b3o96bo3bo165bo3bo103bo3bo99bo3bo
59bo3bo134b3o87b3o42bo3bo132b3o47b3o87b3o42bo3bo50b3o42bo3bo88b3o42bo
3bo41bo3bo179bo3bo86b3o123b3o42bo3bo132b3o48bo3bo207bo3bo200b3o157b3o
91b3o75b3o118bo3bo88b3o42bo3bo132b3o91b3o132bo3bo76b3o42bo3bo132b3o42b
o3bo112b3o97b3o89b3o90bo3bo101bo3bo152b3o137b3o95b3o145b3o53b3o42bo3bo
50b3o88bo3bo154b3o42bo3bo67bo3bo85bo3bo147bo3bo55bo3bo86b3o42bo3bo167b
o3bo155bo3bo95bo3bo88b3o42bo3bo199bo3bo159bo3bo87bo3bo88b3o146bo3bo
145bo3bo296b3o42bo3bo142b3o144bo3bo70b3o91b3o139b3o87b3o64bo3bo107bo3b
o132b3o97b3o135b3o43b3o90bo3bo86b3o42bo3bo212b3o42bo3bo138b3o116bo3bo
178b3o43b3o87b3o42bo3bo95bo3bo85bo3bo169bo3bo86b3o98bo3bo86b3o97b3o
135b3o86bo3bo86b3o140bo3bo172b3o220bo3bo100b3o87b3o132bo3bo50b3o88bo3b
o177bo3bo86b3o97b3o87b3o42bo3bo57bo3bo62b3o189b3o418bo3bo86b3o94bo3bo
85bo3bo85bo3bo98b3o47b3o87b3o97b3o89b3o60bo3bo86b3o115b3o87b3o83b3o
143b3o50bo3bo85bo3bo95bo3bo87bo3bo171bo3bo86b3o66bo3bo183bo3bo42b3o49b
3o42bo3bo158b3o128bo3bo121bo3bo87bo3bo131bo3bo178b3o87b3o47b3o87b3o
163b3o219b3o133b3o132bo3bo86b3o42bo3bo50b3o42bo3bo42b3o42bo3bo68b3o
104bo3bo93bo3bo86b3o42bo3bo127bo3bo119bo3bo85bo3bo109bo3bo86b3o60bo3bo
232b3o58bo3bo138b3o142bo3bo51bo3bo86b3o91b3o45b3o49b3o42bo3bo86b3o50bo
3bo342b3o42bo3bo142b3o144bo3bo70b3o91b3o139b3o87b3o64bo3bo107bo3bo132b
3o97b3o135b3o43b3o90bo3bo86b3o42bo3bo212b3o42bo3bo138b3o116bo3bo178b3o
43b3o87b3o42bo3bo95bo3bo85bo3bo169bo3bo86b3o98bo3bo86b3o97b3o135b3o86b
o3bo86b3o140bo3bo172b3o220bo3bo100b3o87b3o132bo3bo50b3o88bo3bo177bo3bo
86b3o97b3o87b3o42bo3bo57bo3bo62b3o189b3o418bo3bo86b3o94bo3bo85bo3bo85b
o3bo98b3o47b3o87b3o97b3o89b3o60bo3bo86b3o115b3o87b3o83b3o143b3o50bo3bo
85bo3bo310b3o140bo3bo208b3o88bo3bo47bo3bo158b3o42bo3bo208b3o315b3o89b
3o42bo3bo85bo3bo45bo3bo85bo3bo161bo3bo90b3o124bo3bo86b3o42bo3bo86b3o
87b3o42bo3bo95bo3bo87bo3bo113bo3bo156b3o87b3o42bo3bo128b3o121b3o87b3o
201b3o42bo3bo104b3o96bo3bo42b3o42bo3bo154b3o69b3o87b3o58bo3bo86b3o57b
3o133b3o42bo3bo122b3o44bo3bo108b3o42bo3bo50b3o42bo3bo42b3o128bo3bo85bo
3bo85bo3bo156b3o246bo3bo45bo3bo86b3o56bo3bo85bo3bo95bo3bo88b3o42bo3bo
199bo3bo158b3o53b3o42bo3bo60b3o87b3o43b3o137b3o54bo3bo434b3o42bo3bo
142b3o144bo3bo70b3o91b3o139b3o87b3o64bo3bo107bo3bo132b3o97b3o89b3o177b
3o95b3o133b3o129b3o121b3o87b3o42bo3bo64b3o151b3o96bo3bo178b3o64bo3bo
158b3o149b3o147b3o42bo3bo168b3o135b3o109b3o97b3o89b3o129b3o42bo3bo159b
o3bo46b3o78bo3bo113bo3bo158b3o148bo3bo256b3o89b3o42bo3bo112b3o96bo3bo
41bo3bo135bo3bo122b3o130bo3bo85bo3bo56b3o42bo3bo206b3o96bo3bo87bo3bo
113bo3bo156b3o87b3o42bo3bo128b3o121b3o87b3o201b3o42bo3bo104b3o97b3o88b
o3bo102b3o94bo3bo96b3o188bo3bo89bo3bo43bo3bo47bo3bo131bo3bo140b3o97b3o
135b3o43b3o90bo3bo86b3o42bo3bo212b3o42bo3bo138b3o116bo3bo178b3o43b3o
87b3o42bo3bo95bo3bo85bo3bo169bo3bo86b3o98bo3bo86b3o97b3o135b3o86bo3bo
86b3o140bo3bo172b3o220bo3bo100b3o87b3o132bo3bo50b3o88bo3bo177bo3bo86b
3o97b3o87b3o42bo3bo57bo3bo62b3o189b3o418bo3bo86b3o94bo3bo85bo3bo85bo3b
o98b3o47b3o87b3o97b3o89b3o60bo3bo86b3o115b3o87b3o83b3o143b3o50bo3bo85b
o3bo95bo3bo87bo3bo171bo3bo86b3o66bo3bo183bo3bo42b3o49b3o42bo3bo158b3o
128bo3bo121bo3bo87bo3bo131bo3bo178b3o87b3o47b3o87b3o163b3o219b3o133b3o
132bo3bo86b3o96bo3bo87bo3bo113bo3bo156b3o87b3o42bo3bo128b3o121b3o87b3o
201b3o42bo3bo104b3o97b3o135b3o65b3o42bo3bo86b3o49b3o87b3o97b3o87b3o91b
3o97b3o135b3o43b3o90bo3bo86b3o42bo3bo212b3o42bo3bo138b3o116bo3bo87bo3b
o172b3o87b3o87b3o112bo3bo134b3o63b3o137b3o42bo3bo100b3o87b3o97b3o89b3o
74bo3bo94b3o157b3o49b3o42bo3bo230b3o68bo3bo96b3o154bo3bo86b3o125b3o96b
o3bo42b3o42bo3bo86b3o135b3o149b3o87b3o87b3o101b3o87b3o42bo3bo$b2o52bo
44b5o42b2o43b5o40bo47b2o43b5o41b5o64b2o76bo47bo44b5o55b5o41b5o43b5o49b
5o40b2o43b5o41b5o89b5o50b2o43b5o41b5o41b5o40b2o45b5o41b5o40bo68b5o74b
2o46b2o43b5o55b5o40bo48b5o48bo44b5o40bo46b5o89b5o49b5o40bo46b5o40bo44b
5o43b5o40bo45b2o67b5o73b5o43b5o40bo59bo45b2o46bo53b2o43b5o40b2o44bo93b
o54b5o40b2o44bo45b2o43b5o42bo45b2o43b5o64bo78b5o43b5o40b2o58b2o43b5o
44b2o51b5o40bo44b5o42b2o92b2o52bo44b5o42b2o43b5o40bo47b2o43b5o41b5o64b
2o76bo47bo44b5o55b5o41b5o43b5o49b5o40b2o43b5o41b5o89b5o50b2o43b5o41b5o
41b5o40b2o45b5o41b5o40bo68b5o74b2o46b2o43b5o55b5o40bo48b5o48bo44b5o40b
o46b5o89b5o49b5o41b5o41b5o41b5o67b5o103b5o47b5o40b2o43b5o40b2o43b5o40b
2o49b5o41b5o40b2o43b5o40b2o51b5o72bo74b5o40bo54b5o40bo46b5o40b2o64b2o
55b5o59b5o40bo44b5o41b5o42bo44b5o52bo80b5o112b2o77b5o40bo77b2o61b5o41b
5o54bo44b5o41b5o40b2o43b5o49b5o41b5o42b2o43b5o41b5o41b5o40b2o57b5o40bo
44b5o50b2o43b5o42b2o43b5o73b5o41b5o40bo62b5o40bo45b2o43b5o41b5o68bo44b
5o52b2o43b5o46b2o43b5o40bo44b5o50b2o43b5o42bo45b2o43b5o41b5o40bo48b5o
40bo44b5o41b5o40b2o78bo45b2o43b5o41b5o40bo45b2o49b5o60bo54b5o40bo46b5o
41b5o40bo89b2o43b5o40bo46b5o41b5o46b2o43b5o81b5o40bo54b5o41b5o73b5o40b
2o57b5o40bo44b5o40bo44b5o41b5o40b2o52bo45b2o44bo45b2o75b5o48bo45b2o43b
5o64bo45b2o50b2o43b5o40bo46b5o47b5o40bo45b2o69b5o41b5o50b2o74bo80b5o
40bo45b2o44bo81b2o52bo44b5o43b5o117b5o40bo62b5o99b5o59b5o40bo47bo45b2o
43b5o40b2o43b5o41b5o40bo45b2o48b2o43b5o40b2o43b5o49b5o40bo47b2o120bo
44b5o58bo103bo63bo44b5o43b5o41b5o40b2o43b5o40bo45b2o43b5o41b5o45b5o40b
2o43b5o40bo54b5o40bo46b5o41b5o40bo45bo44b5o44b2o43b5o40bo45b2o43b5o75b
5o41b5o40bo45b2o43b5o41b5o46bo64b5o50b2o43b5o42bo45b2o43b5o63b5o41b5o
40b2o43b5o65b5o44b2o43b5o73b5o62b2o52bo45b2o45b5o40bo45b2o44b2o43b5o
43b5o41b5o40b2o43b5o40bo80b5o40bo45b2o43b5o41b5o40bo51b2o63b5o49b5o41b
5o41b5o41b5o43b5o40bo44b5o56bo45b2o64b2o43b5o44b2o43b5o41b5o47b5o41b5o
40b2o56b2o43b5o51b5o40bo54b5o40b2o44bo45b2o43b5o63b5o40bo71bo44b5o40bo
61b2o43b5o40bo59bo44b5o41b5o40bo45b2o79b5o40bo47b2o43b5o62bo45b2o52bo
45b2o45b5o40bo45b2o66b2o43b5o40bo45b2o67b5o44bo44b5o42bo44b5o43b5o40b
2o43b5o54bo103b2o44bo44b5o50b2o43b5o42b2o43b5o59b5o40bo44b5o52b2o43b5o
40b2o55b5o40bo74b5o40b2o47b5o40b2o43b5o47b5o40b2o43b5o62bo66b5o40bo44b
5o42b2o43b5o49b5o41b5o42b2o43b5o41b5o41b5o40b2o46bo45b2o43b5o40bo44b5o
76b2o43b5o41b5o40bo45b2o43b5o47b5o60b2o52bo44b5o42b2o43b5o41b5o41b5o
40b2o43b5o40bo44b5o50bo44b5o40bo45b2o60b2o64bo44b5o41b5o51b5o40bo44b5o
41b5o49b5o41b5o42b2o43b5o41b5o84bo44b5o41b5o42b2o43b5o46bo45b2o83b5o
41b5o50b2o43b5o73b5o40bo59b2o43b5o40b2o43b5o40b2o43b5o40bo54b5o40b2o
44bo45b2o43b5o41b5o40bo44b5o41b5o40b2o53b5o40b2o43b5o40bo61bo66b5o40b
2o43b5o52b2o43b5o40b2o43b5o50b2o43b5o42b2o43b5o60b2o72bo45b2o43b5o40b
2o50bo44b5o40bo44b5o40bo56b5o41b5o45b5o40b2o43b5o49b5o41b5o41b5o41b5o
58bo45b2o43b5o67b5o41b5o40b2o43b5o81b5o50b2o44b2o43b5o48bo44b5o40bo45b
2o52bo45b2o44bo45b2o75b5o48bo45b2o43b5o64bo45b2o50b2o43b5o40bo46b5o47b
5o40bo45b2o69b5o41b5o50b2o74bo80b5o40bo45b2o44bo81b2o52bo44b5o42b2o43b
5o41b5o40b2o43b5o45b5o40b2o43b5o68b2o46b2o43b5o40b2o47b5o78b2o43b5o40b
2o43b5o41b5o40b2o43b5o40bo44b5o41b5o40bo54b5o40bo46b5o40bo72b5o102bo
52b5o40bo44b5o41b5o40bo86b5o40bo78b5o40bo44b5o40bo45b2o66bo44b5o41b5o
58bo44b5o50b2o43b5o42b2o43b5o56bo44b5o48b2o43b5o40b2o53b5o40bo55bo45b
2o43b5o44b2o43b5o43b5o47b5o40bo45b2o43b5o48bo90b5o50b2o43b5o42b2o43b5o
59b5o40bo44b5o52b2o43b5o40b2o55b5o40bo74b5o40b2o47b5o40b2o43b5o47b5o
40b2o43b5o62bo66b5o40bo44b5o42b2o43b5o49b5o41b5o42b2o43b5o41b5o41b5o
40b2o46bo45b2o43b5o40bo44b5o76b2o43b5o41b5o40bo45b2o43b5o47b5o60b2o52b
o44b5o42b2o43b5o41b5o41b5o40b2o43b5o40bo44b5o50bo44b5o40bo45b2o60b2o
64bo44b5o41b5o51b5o40bo44b5o41b5o49b5o41b5o42b2o43b5o41b5o84bo44b5o41b
5o42b2o43b5o46bo45b2o83b5o41b5o50b2o43b5o73b5o40bo59b2o43b5o40b2o43b5o
40b2o43b5o40bo54b5o40b2o44bo45b2o43b5o41b5o40bo44b5o41b5o40b2o53b5o40b
2o43b5o40bo61bo66b5o40b2o43b5o52b2o43b5o40b2o43b5o50b2o43b5o42b2o43b5o
60b2o72bo45b2o43b5o40b2o50bo44b5o40bo44b5o40bo56b5o41b5o45b5o40b2o43b
5o49b5o41b5o41b5o41b5o58bo45b2o43b5o67b5o41b5o40b2o43b5o81b5o50b2o44b
2o43b5o48bo44b5o40bo44b5o50b2o43b5o42b2o43b5o73b5o48b2o43b5o40bo69b2o
43b5o47b5o41b5o40b2o44bo51bo45b2o43b5o67b5o40bo54b5o72b2o79b5o40b2o43b
5o42b2o79b5o50b2o43b5o41b5o41b5o40bo44b5o40bo49bo44b5o40bo72b5o43b5o
40bo44b5o45b5o77b5o40bo44b5o41b5o40bo44b5o41b5o40b2o43b5o40bo45b2o52bo
45b2o44bo45b2o70bo107b2o51b5o40b2o43b5o40bo45b2o85b5o40b2o77b5o40b2o
43b5o40b2o43b5o64b2o43b5o40bo63b2o43b5o49b5o40bo46b5o40bo45b2o65b5o41b
5o67b5o40b2o43b5o56bo45b2o43b5o55b5o40b2o43b5o41b5o40bo81b2o43b5o42bo
45b2o65b5o40bo54b5o40bo46b5o40b2o84bo44b5o40bo44b5o40bo44b5o66b2o43b5o
40b2o46b2o43b5o61b5o40bo49bo44b5o41b5o54bo44b5o40bo45b2o52bo45b2o45b5o
40bo45b2o66b2o43b5o40bo45b2o68b2o45b5o51b5o40bo64b5o40b2o43b5o41b5o40b
2o48b2o43b5o52bo45b2o43b5o42b2o43b5o50b2o43b5o42b2o43b5o59b5o40bo44b5o
52b2o43b5o40b2o55b5o40bo74b5o40b2o47b5o40b2o43b5o47b5o40b2o43b5o62bo
66b5o40bo44b5o42b2o43b5o49b5o41b5o41b5o41b5o67b5o103b5o48b2o43b5o40b2o
43b5o41b5o82b2o43b5o74b2o43b5o40b2o43b5o40bo68b5o40b2o43b5o59b5o40b2o
52bo44b5o42b2o43b5o41b5o62bo45b2o70b2o43b5o40b2o59b5o41b5o40b2o58b2o
43b5o40bo45b2o43b5o77b5o40b2o45b5o41b5o62b2o43b5o49b5o41b5o41b5o41b5o
82b2o43b5o40bo44b5o69b5o40bo50b5o76bo72b5o40bo71b2o43b5o41b5o40b2o59b
5o40bo45b2o64b2o47b5o50b2o43b5o41b5o41b5o40bo70b5o41b5o49b5o40bo45bo
44b5o45b5o40bo44b5o77b5o83b5o40bo44b5o40bo60b5o40bo45b2o46b2o43b5o67b
5o40b2o52bo45b2o44bo45b2o70bo107b2o51b5o40b2o43b5o40bo45b2o85b5o40b2o
77b5o40b2o43b5o40b2o43b5o64b2o43b5o40bo63b2o43b5o49b5o41b5o41b5o40bo
61b2o43b5o47b5o40bo44b5o51b5o40b2o54b2o43b5o40bo48b5o40bo47bo51bo45b2o
43b5o40bo53b2o89b5o49b5o41b5o42b2o43b5o41b5o41b5o40b2o46bo45b2o43b5o
40bo44b5o76b2o43b5o41b5o40bo45b2o43b5o47b5o60b2o52bo44b5o42b2o43b5o41b
5o41b5o40b2o43b5o40bo44b5o50bo44b5o40bo45b2o60b2o64bo44b5o41b5o51b5o
40bo44b5o41b5o49b5o41b5o42b2o43b5o41b5o84bo44b5o41b5o42b2o43b5o46bo45b
2o83b5o41b5o50b2o43b5o73b5o40bo59b2o43b5o40b2o43b5o40b2o43b5o40bo54b5o
40b2o44bo45b2o43b5o41b5o40bo44b5o41b5o40b2o53b5o40b2o43b5o40bo61bo66b
5o40b2o43b5o52b2o43b5o40b2o43b5o50b2o43b5o42b2o43b5o60b2o72bo45b2o43b
5o40b2o50bo44b5o40bo44b5o40bo56b5o41b5o45b5o40b2o43b5o49b5o41b5o41b5o
41b5o58bo45b2o43b5o67b5o41b5o40b2o43b5o81b5o50b2o44b2o43b5o48bo44b5o
40bo45b2o52bo45b2o44bo45b2o75b5o48bo45b2o43b5o64bo45b2o50b2o43b5o40bo
46b5o47b5o40bo45b2o69b5o41b5o50b2o74bo80b5o40bo45b2o44bo81b2o52bo44b5o
42b2o43b5o41b5o40b2o43b5o45b5o40b2o43b5o68b2o46b2o43b5o40b2o47b5o78b2o
43b5o40b2o43b5o41b5o40b2o43b5o40bo44b5o41b5o40b2o52bo45b2o44bo45b2o70b
o107b2o51b5o40b2o43b5o40bo45b2o85b5o40b2o77b5o40b2o43b5o40b2o43b5o64b
2o43b5o40bo63b2o43b5o49b5o41b5o42b2o43b5o41b5o63b5o40bo44b5o41b5o47b5o
40b2o43b5o40b2o53b5o40b2o43b5o44b2o43b5o49b5o41b5o42b2o43b5o41b5o41b5o
40b2o46bo45b2o43b5o40bo44b5o76b2o43b5o41b5o40bo45b2o43b5o47b5o60b2o52b
o45b2o44bo44b5o82b2o43b5o40b2o43b5o40b2o43b5o65b5o40bo44b5o43b5o41b5o
61b5o40b2o48b2o43b5o40bo59b2o43b5o40b2o43b5o49b5o41b5o41b5o41b5o72bo
52b5o41b5o40b2o67b5o41b5o47b5o40bo44b5o42b2o50b2o43b5o41b5o66bo45b2o
53b5o71b5o76bo44b5o41b5o41b5o77b5o49b5o40bo46b5o40bo45b2o43b5o40b2o45b
5o41b5o40b2o43b5o57b5o40b2o43b5o40b2o43b5o53b5o41b5o40b2o43b5o40bo45b
2o43b5o49b5o$2ob3o49bo4bo39bo4bo40b2ob3o40bo4bo39bo4bo41b2ob3o40bo4bo
39b2ob3o63b2ob3o73bo4bo42bo4bo39bo4bo54bo4bo39b2ob3o43bo4bo47b2ob3o39b
2ob3o39b2ob3o41bo4bo88bo4bo48b2ob3o39b2ob3o41bo4bo39b2ob3o39b2ob3o42bo
4bo39b2ob3o40bo4bo63bo4bo72b2ob3o42b2ob3o39b2ob3o54b2ob3o40bo4bo42b2ob
3o48bo4bo39bo4bo39bo4bo40b2ob3o88b2ob3o49bo4bo39bo4bo40b2ob3o40bo4bo
39bo4bo41b2ob3o40bo4bo39b2ob3o63b2ob3o73bo4bo42bo4bo39bo4bo54bo4bo39b
2ob3o43bo4bo47b2ob3o39b2ob3o39b2ob3o41bo4bo88bo4bo48b2ob3o39b2ob3o41bo
4bo39b2ob3o39b2ob3o42bo4bo39b2ob3o40bo4bo63bo4bo72b2ob3o42b2ob3o39b2ob
3o54b2ob3o40bo4bo42b2ob3o48bo4bo39bo4bo39bo4bo40b2ob3o88b2ob3o49bo4bo
39bo4bo40b2ob3o40bo4bo39bo4bo41b2ob3o40bo4bo39b2ob3o63b2ob3o73bo4bo42b
o4bo39bo4bo54bo4bo39b2ob3o43bo4bo47b2ob3o39b2ob3o39b2ob3o41bo4bo88bo4b
o48b2ob3o39b2ob3o41bo4bo39b2ob3o39b2ob3o42bo4bo39b2ob3o40bo4bo63bo4bo
72b2ob3o42b2ob3o39b2ob3o54b2ob3o40bo4bo42b2ob3o48bo4bo39bo4bo39bo4bo
40b2ob3o88b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o67bo4bo101b2ob3o46b2ob3o
39b2ob3o39b2ob3o39b2ob3o39b2ob3o39b2ob3o45b2ob3o40b2ob3o39b2ob3o39b2ob
3o39b2ob3o47b2ob3o72bo4bo69bo4bo39bo4bo48b2ob3o40bo4bo40b2ob3o39b2ob3o
60b2ob3o52bo4bo57b2ob3o40bo4bo39bo4bo39b2ob3o42bo4bo39bo4bo51bo4bo75bo
4bo110b2ob3o74bo4bo39bo4bo71b2ob3o57b2ob3o41bo4bo53bo4bo39bo4bo39b2ob
3o39b2ob3o39b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob
3o54bo4bo39bo4bo39bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo72bo4bo39b2ob3o
40bo4bo57bo4bo39bo4bo39b2ob3o40bo4bo39b2ob3o68bo4bo39bo4bo50b2ob3o39b
2ob3o45b2ob3o39b2ob3o40bo4bo39bo4bo48b2ob3o40bo4bo41bo4bo39b2ob3o40bo
4bo40bo4bo39bo4bo42b2ob3o40bo4bo39bo4bo39b2ob3o39b2ob3o75bo4bo39b2ob3o
40bo4bo39b2ob3o40bo4bo39b2ob3o46bo4bo59bo4bo48b2ob3o40bo4bo41bo4bo39b
2ob3o40bo4bo83b2ob3o39b2ob3o40bo4bo41bo4bo39b2ob3o45b2ob3o40bo4bo79b2o
b3o40bo4bo49bo4bo39b2ob3o72b2ob3o39b2ob3o54bo4bo39bo4bo39bo4bo39bo4bo
39bo4bo39b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o72bo4bo47bo4bo39b
2ob3o39b2ob3o64bo4bo39b2ob3o46b2ob3o40bo4bo39bo4bo40b2ob3o46b2ob3o40bo
4bo39b2ob3o66bo4bo39b2ob3o49b2ob3o71bo4bo75bo4bo39bo4bo39b2ob3o41bo4bo
75b2ob3o49bo4bo39bo4bo41b2ob3o117bo4bo39bo4bo57bo4bo98bo4bo58bo4bo39bo
4bo42bo4bo39b2ob3o39b2ob3o39b2ob3o40bo4bo39b2ob3o40bo4bo39b2ob3o44b2ob
3o39b2ob3o39b2ob3o39b2ob3o49bo4bo39bo4bo41b2ob3o117bo4bo39bo4bo57bo4bo
98bo4bo58bo4bo39bo4bo42bo4bo39b2ob3o39b2ob3o39b2ob3o40bo4bo39b2ob3o40b
o4bo39b2ob3o44b2ob3o39b2ob3o39b2ob3o40bo4bo48b2ob3o40bo4bo41bo4bo39b2o
b3o40bo4bo40bo4bo39bo4bo42b2ob3o40bo4bo39bo4bo39b2ob3o39b2ob3o75bo4bo
39b2ob3o40bo4bo39b2ob3o40bo4bo39b2ob3o46bo4bo59bo4bo48b2ob3o40bo4bo41b
o4bo39b2ob3o40bo4bo62bo4bo39b2ob3o39b2ob3o40bo4bo63b2ob3o43b2ob3o39b2o
b3o72b2ob3o61b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o40b2ob3o39b2o
b3o43bo4bo39b2ob3o39b2ob3o40bo4bo39bo4bo74b2ob3o40bo4bo39b2ob3o40bo4bo
39b2ob3o40bo4bo45b2ob3o59b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o43bo4bo
39bo4bo39bo4bo55bo4bo39b2ob3o60b2ob3o39b2ob3o43b2ob3o40bo4bo39b2ob3o
47bo4bo39b2ob3o39b2ob3o52b2ob3o39b2ob3o50b2ob3o40bo4bo48b2ob3o39b2ob3o
41bo4bo39b2ob3o40bo4bo61b2ob3o40bo4bo66bo4bo39bo4bo39bo4bo55b2ob3o40bo
4bo39bo4bo54bo4bo39bo4bo39b2ob3o40bo4bo39b2ob3o76bo4bo39bo4bo41b2ob3o
40bo4bo61bo4bo39b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o62b2ob3o
40bo4bo39bo4bo39b2ob3o64bo4bo43bo4bo39bo4bo41bo4bo39bo4bo41b2ob3o39b2o
b3o40bo4bo53bo4bo97b2ob3o41bo4bo39bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo
57b2ob3o40bo4bo39bo4bo50b2ob3o39b2ob3o39b2ob3o52bo4bo39bo4bo68b2ob3o
39b2ob3o43b2ob3o39b2ob3o40bo4bo45b2ob3o39b2ob3o39b2ob3o62bo4bo61bo4bo
39bo4bo39bo4bo40b2ob3o39b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o
40b2ob3o39b2ob3o43bo4bo39b2ob3o39b2ob3o40bo4bo39bo4bo74b2ob3o40bo4bo
39b2ob3o40bo4bo39b2ob3o40bo4bo45b2ob3o59b2ob3o49bo4bo39bo4bo40b2ob3o
40bo4bo39b2ob3o40b2ob3o39b2ob3o39b2ob3o40bo4bo39bo4bo49bo4bo39bo4bo39b
o4bo39b2ob3o56b2ob3o61bo4bo39bo4bo39b2ob3o51bo4bo39bo4bo39bo4bo39b2ob
3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o84bo4bo39bo4bo39b2ob3o41b2ob3o
40bo4bo45bo4bo39b2ob3o80bo4bo39b2ob3o49b2ob3o40bo4bo72bo4bo39bo4bo53b
2ob3o39b2ob3o39b2ob3o39b2ob3o39b2ob3o40bo4bo39bo4bo48b2ob3o39b2ob3o41b
o4bo39b2ob3o40bo4bo40bo4bo39bo4bo39bo4bo39b2ob3o39b2ob3o49b2ob3o39b2ob
3o39b2ob3o40bo4bo56bo4bo60b2ob3o39b2ob3o40bo4bo50b2ob3o39b2ob3o39b2ob
3o40bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo58b2ob3o69bo4bo39b2ob3o39b2ob3o
39b2ob3o47bo4bo39bo4bo39bo4bo39bo4bo39bo4bo51bo4bo39b2ob3o44b2ob3o39b
2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o58bo4bo39b2ob3o39b2ob3o67bo
4bo39b2ob3o39b2ob3o39b2ob3o80b2ob3o49b2ob3o40b2ob3o39b2ob3o48bo4bo39bo
4bo39bo4bo39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o72bo4bo47bo4bo39b2ob3o
39b2ob3o64bo4bo39b2ob3o46b2ob3o40bo4bo39bo4bo40b2ob3o46b2ob3o40bo4bo
39b2ob3o66bo4bo39b2ob3o49b2ob3o71bo4bo75bo4bo39bo4bo39b2ob3o41bo4bo75b
2ob3o49bo4bo39bo4bo40b2ob3o40bo4bo39b2ob3o39b2ob3o39b2ob3o44b2ob3o39b
2ob3o39b2ob3o67b2ob3o42b2ob3o39b2ob3o39b2ob3o44bo4bo76b2ob3o39b2ob3o
39b2ob3o40bo4bo39b2ob3o39b2ob3o40bo4bo39bo4bo39bo4bo39b2ob3o40bo4bo48b
2ob3o40bo4bo40b2ob3o40bo4bo66b2ob3o102bo4bo47bo4bo39bo4bo39bo4bo39b2ob
3o40bo4bo81bo4bo39bo4bo73bo4bo39bo4bo39bo4bo39bo4bo39b2ob3o63bo4bo39bo
4bo39b2ob3o58bo4bo39bo4bo48b2ob3o40bo4bo40b2ob3o39b2ob3o56bo4bo39bo4bo
46b2ob3o39b2ob3o39b2ob3o50bo4bo39bo4bo50bo4bo39b2ob3o39b2ob3o43b2ob3o
39b2ob3o42b2ob3o46b2ob3o40bo4bo39b2ob3o39b2ob3o48bo4bo85bo4bo48b2ob3o
40bo4bo40b2ob3o40bo4bo57b2ob3o40bo4bo39bo4bo50b2ob3o39b2ob3o39b2ob3o
52bo4bo39bo4bo68b2ob3o39b2ob3o43b2ob3o39b2ob3o40bo4bo45b2ob3o39b2ob3o
39b2ob3o62bo4bo61bo4bo39bo4bo39bo4bo40b2ob3o39b2ob3o49bo4bo39b2ob3o41b
2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob3o43bo4bo39b2ob3o39b2ob3o40bo4bo39bo
4bo74b2ob3o40bo4bo39b2ob3o40bo4bo39b2ob3o40bo4bo45b2ob3o59b2ob3o49bo4b
o39bo4bo40b2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob3o39b2ob3o40bo4bo39bo4bo
49bo4bo39bo4bo39bo4bo39b2ob3o56b2ob3o61bo4bo39bo4bo39b2ob3o51bo4bo39bo
4bo39bo4bo39b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o84bo4bo39bo4bo
39b2ob3o41b2ob3o40bo4bo45bo4bo39b2ob3o80bo4bo39b2ob3o49b2ob3o40bo4bo
72bo4bo39bo4bo53b2ob3o39b2ob3o39b2ob3o39b2ob3o39b2ob3o40bo4bo39bo4bo
48b2ob3o39b2ob3o41bo4bo39b2ob3o40bo4bo40bo4bo39bo4bo39bo4bo39b2ob3o39b
2ob3o49b2ob3o39b2ob3o39b2ob3o40bo4bo56bo4bo60b2ob3o39b2ob3o40bo4bo50b
2ob3o39b2ob3o39b2ob3o40bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo58b2ob3o69bo
4bo39b2ob3o39b2ob3o39b2ob3o47bo4bo39bo4bo39bo4bo39bo4bo39bo4bo51bo4bo
39b2ob3o44b2ob3o39b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o58bo4bo
39b2ob3o39b2ob3o67bo4bo39b2ob3o39b2ob3o39b2ob3o80b2ob3o49b2ob3o40b2ob
3o39b2ob3o48bo4bo39bo4bo39bo4bo39bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo
71b2ob3o47b2ob3o40bo4bo39bo4bo63b2ob3o40bo4bo46bo4bo39b2ob3o39b2ob3o
41bo4bo46bo4bo39b2ob3o40bo4bo65b2ob3o40bo4bo49bo4bo70b2ob3o75b2ob3o39b
2ob3o40bo4bo40b2ob3o76bo4bo48b2ob3o39b2ob3o41bo4bo39b2ob3o40bo4bo39bo
4bo39bo4bo44bo4bo39bo4bo39bo4bo67bo4bo42bo4bo39bo4bo39bo4bo43b2ob3o77b
o4bo39bo4bo39bo4bo39b2ob3o40bo4bo39bo4bo39b2ob3o39b2ob3o39b2ob3o40bo4b
o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o67bo4bo101b2ob3o47b2ob3o39b2ob
3o39b2ob3o40bo4bo39b2ob3o81b2ob3o39b2ob3o73b2ob3o39b2ob3o39b2ob3o39b2o
b3o40bo4bo62b2ob3o39b2ob3o40bo4bo57b2ob3o39b2ob3o49bo4bo39bo4bo40b2ob
3o40bo4bo39b2ob3o62bo4bo39b2ob3o66b2ob3o39b2ob3o39b2ob3o56bo4bo39b2ob
3o39b2ob3o54b2ob3o39b2ob3o40bo4bo39b2ob3o40bo4bo75b2ob3o39b2ob3o42bo4b
o39b2ob3o61b2ob3o40bo4bo48b2ob3o40bo4bo40b2ob3o39b2ob3o81bo4bo39bo4bo
39bo4bo39bo4bo39bo4bo39bo4bo64b2ob3o39b2ob3o39b2ob3o42b2ob3o40bo4bo60b
o4bo39bo4bo44bo4bo39bo4bo39b2ob3o54bo4bo39bo4bo39bo4bo39b2ob3o49bo4bo
39b2ob3o41b2ob3o40bo4bo39b2ob3o62b2ob3o40bo4bo39bo4bo39b2ob3o64b2ob3o
41b2ob3o50b2ob3o40bo4bo58b2ob3o39b2ob3o39b2ob3o40b2ob3o39b2ob3o44b2ob
3o39b2ob3o52bo4bo39b2ob3o40bo4bo40b2ob3o40bo4bo48b2ob3o40bo4bo40b2ob3o
40bo4bo57b2ob3o40bo4bo39bo4bo50b2ob3o39b2ob3o39b2ob3o52bo4bo39bo4bo68b
2ob3o39b2ob3o43b2ob3o39b2ob3o40bo4bo45b2ob3o39b2ob3o39b2ob3o62bo4bo61b
o4bo39bo4bo39bo4bo40b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o67bo4b
o101b2ob3o47b2ob3o39b2ob3o39b2ob3o40bo4bo39b2ob3o81b2ob3o39b2ob3o73b2o
b3o39b2ob3o39b2ob3o39b2ob3o40bo4bo62b2ob3o39b2ob3o40bo4bo57b2ob3o39b2o
b3o49bo4bo39bo4bo40b2ob3o40bo4bo39b2ob3o62bo4bo39b2ob3o66b2ob3o39b2ob
3o39b2ob3o56bo4bo39b2ob3o39b2ob3o54b2ob3o39b2ob3o40bo4bo39b2ob3o40bo4b
o75b2ob3o39b2ob3o42bo4bo39b2ob3o61b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo
39b2ob3o81b2ob3o39b2ob3o40bo4bo39bo4bo68bo4bo39bo4bo44b2ob3o76bo4bo67b
o4bo39bo4bo65b2ob3o40bo4bo39b2ob3o39b2ob3o56bo4bo39bo4bo39b2ob3o60b2ob
3o44bo4bo48b2ob3o39b2ob3o41bo4bo39b2ob3o40bo4bo65bo4bo39b2ob3o49bo4bo
39bo4bo40bo4bo39bo4bo44bo4bo39bo4bo39bo4bo75b2ob3o83bo4bo39bo4bo39bo4b
o39bo4bo54b2ob3o40bo4bo39b2ob3o42b2ob3o40bo4bo65b2ob3o39b2ob3o49bo4bo
39b2ob3o41bo4bo39b2ob3o67bo4bo101b2ob3o47b2ob3o39b2ob3o39b2ob3o40bo4bo
39b2ob3o81b2ob3o39b2ob3o73b2ob3o39b2ob3o39b2ob3o39b2ob3o40bo4bo62b2ob
3o39b2ob3o40bo4bo57b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39bo4bo55b2ob3o
39b2ob3o47bo4bo39bo4bo39bo4bo49b2ob3o39b2ob3o50b2ob3o40bo4bo39bo4bo43b
o4bo39bo4bo42bo4bo46bo4bo39b2ob3o40bo4bo39bo4bo47b2ob3o85b2ob3o49bo4bo
39b2ob3o41b2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob3o43bo4bo39b2ob3o39b2ob3o
40bo4bo39bo4bo74b2ob3o40bo4bo39b2ob3o40bo4bo39b2ob3o40bo4bo45b2ob3o59b
2ob3o49bo4bo39bo4bo40b2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob3o39b2ob3o40bo
4bo39bo4bo49bo4bo39bo4bo39bo4bo39b2ob3o56b2ob3o61bo4bo39bo4bo39b2ob3o
51bo4bo39bo4bo39bo4bo39b2ob3o49bo4bo39b2ob3o41b2ob3o40bo4bo39b2ob3o84b
o4bo39bo4bo39b2ob3o41b2ob3o40bo4bo45bo4bo39b2ob3o80bo4bo39b2ob3o49b2ob
3o40bo4bo72bo4bo39bo4bo53b2ob3o39b2ob3o39b2ob3o39b2ob3o39b2ob3o40bo4bo
39bo4bo48b2ob3o39b2ob3o41bo4bo39b2ob3o40bo4bo40bo4bo39bo4bo39bo4bo39b
2ob3o39b2ob3o49b2ob3o39b2ob3o39b2ob3o40bo4bo56bo4bo60b2ob3o39b2ob3o40b
o4bo50b2ob3o39b2ob3o39b2ob3o40bo4bo48b2ob3o40bo4bo40b2ob3o40bo4bo58b2o
b3o69bo4bo39b2ob3o39b2ob3o39b2ob3o47bo4bo39bo4bo39bo4bo39bo4bo39bo4bo
51bo4bo39b2ob3o44b2ob3o39b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o
58bo4bo39b2ob3o39b2ob3o67bo4bo39b2ob3o39b2ob3o39b2ob3o80b2ob3o49b2ob3o
40b2ob3o39b2ob3o48bo4bo39bo4bo39bo4bo39b2ob3o49bo4bo39b2ob3o41bo4bo39b
2ob3o72bo4bo47bo4bo39b2ob3o39b2ob3o64bo4bo39b2ob3o46b2ob3o40bo4bo39bo
4bo40b2ob3o46b2ob3o40bo4bo39b2ob3o66bo4bo39b2ob3o49b2ob3o71bo4bo75bo4b
o39bo4bo39b2ob3o41bo4bo75b2ob3o49bo4bo39bo4bo40b2ob3o40bo4bo39b2ob3o
39b2ob3o39b2ob3o44b2ob3o39b2ob3o39b2ob3o67b2ob3o42b2ob3o39b2ob3o39b2ob
3o44bo4bo76b2ob3o39b2ob3o39b2ob3o40bo4bo39b2ob3o39b2ob3o40bo4bo39bo4bo
39bo4bo39b2ob3o39b2ob3o49bo4bo39b2ob3o41bo4bo39b2ob3o67bo4bo101b2ob3o
47b2ob3o39b2ob3o39b2ob3o40bo4bo39b2ob3o81b2ob3o39b2ob3o73b2ob3o39b2ob
3o39b2ob3o39b2ob3o40bo4bo62b2ob3o39b2ob3o40bo4bo57b2ob3o39b2ob3o49bo4b
o39b2ob3o41b2ob3o40bo4bo39b2ob3o62b2ob3o40bo4bo39bo4bo39b2ob3o46b2ob3o
39b2ob3o39b2ob3o39b2ob3o49b2ob3o39b2ob3o39b2ob3o43b2ob3o39b2ob3o49bo4b
o39b2ob3o41b2ob3o40bo4bo39b2ob3o40b2ob3o39b2ob3o43bo4bo39b2ob3o39b2ob
3o40bo4bo39bo4bo74b2ob3o40bo4bo39b2ob3o40bo4bo39b2ob3o40bo4bo45b2ob3o
59b2ob3o49bo4bo39b2ob3o41bo4bo39bo4bo80b2ob3o39b2ob3o39b2ob3o39b2ob3o
39b2ob3o39b2ob3o65bo4bo39bo4bo39bo4bo42bo4bo39b2ob3o60b2ob3o39b2ob3o
44b2ob3o39b2ob3o40bo4bo53b2ob3o39b2ob3o39b2ob3o39b2ob3o49bo4bo39b2ob3o
41bo4bo39b2ob3o72bo4bo47bo4bo39b2ob3o39b2ob3o64bo4bo39b2ob3o46b2ob3o
40bo4bo39bo4bo40b2ob3o46b2ob3o40bo4bo39b2ob3o66bo4bo39b2ob3o49b2ob3o
71bo4bo75bo4bo39bo4bo39b2ob3o41bo4bo75b2ob3o49bo4bo39bo4bo40b2ob3o40bo
4bo39b2ob3o39b2ob3o39b2ob3o42bo4bo39b2ob3o39b2ob3o40bo4bo55b2ob3o39b2o
b3o39b2ob3o39b2ob3o39b2ob3o53bo4bo39b2ob3o39b2ob3o39b2ob3o40bo4bo39b2o
b3o40bo4bo48bo4bo$b5o49b5o40bo46b5o40bo44b5o43b5o40bo45b2o67b5o73b5o
43b5o40bo59bo45b2o46bo53b2o43b5o40b2o44bo93bo54b5o40b2o44bo45b2o43b5o
42bo45b2o43b5o64bo78b5o43b5o40b2o58b2o43b5o44b2o51b5o40bo44b5o42b2o92b
2o52bo44b5o42b2o43b5o40bo47b2o43b5o41b5o64b2o76bo47bo44b5o55b5o41b5o
43b5o49b5o40b2o43b5o41b5o89b5o50b2o43b5o41b5o41b5o40b2o45b5o41b5o40bo
68b5o74b2o46b2o43b5o55b5o40bo48b5o48bo44b5o40bo46b5o89b5o49b5o40bo46b
5o40bo44b5o43b5o40bo45b2o67b5o73b5o43b5o40bo59bo45b2o46bo53b2o43b5o40b
2o44bo93bo54b5o40b2o44bo45b2o43b5o42bo45b2o43b5o64bo78b5o43b5o40b2o58b
2o43b5o44b2o51b5o40bo44b5o42b2o92b2o52bo45b2o44bo45b2o70bo107b2o50b2o
43b5o40b2o43b5o40b2o43b5o46b2o44b2o43b5o40b2o43b5o48b2o75b5o70bo44b5o
50b2o43b5o42b2o43b5o61b5o52bo63b2o43b5o40bo45b2o45b5o40bo56b5o76bo116b
5o74bo44b5o73b5o58b2o44bo58b5o40bo45b2o43b5o40b2o52bo45b2o45b5o40bo45b
2o44b2o43b5o54bo44b5o40bo54b5o40bo46b5o40bo77bo45b2o43b5o58bo44b5o41b
5o40bo45b2o71b5o40bo56b5o40b2o49b5o40b2o43b5o40bo54b5o40bo46b5o41b5o
40bo45bo44b5o44b2o43b5o40bo45b2o43b5o75b5o41b5o40bo45b2o43b5o41b5o46bo
64b5o50b2o43b5o42bo45b2o43b5o85b5o40b2o43b5o42bo45b2o49b5o40bo85b2o43b
5o50bo45b2o76b2o43b5o54bo44b5o40bo44b5o40bo45b2o43b5o49b5o41b5o41b5o
41b5o72bo52b5o41b5o40b2o67b5o41b5o47b5o40bo44b5o42b2o50b2o43b5o41b5o
66bo45b2o53b5o71b5o76bo44b5o41b5o41b5o77b5o49b5o40bo47b2o120bo44b5o58b
o103bo63bo44b5o43b5o41b5o40b2o43b5o40bo45b2o43b5o41b5o45b5o40b2o43b5o
40b2o52bo44b5o43b5o117b5o40bo62b5o99b5o59b5o40bo47bo45b2o43b5o40b2o43b
5o41b5o40bo45b2o48b2o43b5o40b2o43b5o50b2o43b5o42bo45b2o43b5o41b5o40bo
48b5o40bo44b5o41b5o40b2o78bo45b2o43b5o41b5o40bo45b2o49b5o60bo54b5o40bo
46b5o41b5o40bo67bo45b2o43b5o40bo69b2o47b5o40b2o76b2o65b5o49b5o41b5o42b
2o43b5o41b5o41b5o40b2o46bo45b2o43b5o40bo44b5o76b2o43b5o41b5o40bo45b2o
43b5o47b5o60b2o52bo45b2o44bo45b2o46bo44b5o40bo60b5o41b5o61b5o40b2o47b
5o40bo45b2o50bo45b2o43b5o53b5o40b2o54b2o43b5o50b2o43b5o41b5o41b5o40bo
67b2o43b5o67b5o40bo44b5o57b5o40bo44b5o55b5o40bo45b2o43b5o41b5o76bo44b
5o43b5o40bo66b5o41b5o49b5o41b5o42b2o43b5o41b5o63b5o40bo44b5o41b5o64bo
48b5o40bo46b5o40bo47b2o43b5o40bo58b5o99b5o41b5o40bo54b5o40bo46b5o40bo
63b2o43b5o40bo56b5o40b2o43b5o52bo44b5o70b2o43b5o44b2o43b5o40bo51b2o43b
5o40b2o65b5o62bo44b5o40bo46b5o40b2o52bo45b2o45b5o40bo45b2o44b2o43b5o
43b5o41b5o40b2o43b5o40bo80b5o40bo45b2o43b5o41b5o40bo51b2o63b5o49b5o40b
o46b5o40bo45b2o44b2o43b5o40b2o43b5o40bo54b5o40bo44b5o41b5o57b5o61b5o
40bo45b2o54bo44b5o40bo45b2o52bo45b2o45b5o40bo45b2o87b5o40bo45b2o45b5o
40bo50b5o41b5o80bo45b2o53b5o40bo77bo44b5o55b5o40b2o43b5o40b2o43b5o40bo
44b5o50b2o43b5o41b5o41b5o40bo45bo44b5o40bo45b2o43b5o50b2o43b5o40b2o43b
5o57b5o62b2o43b5o40bo56b5o40b2o43b5o40bo54b5o40bo46b5o40bo64b5o69b5o
41b5o40b2o43b5o47b5o40bo44b5o40bo44b5o52bo45b2o48b2o43b5o40b2o52bo45b
2o44bo45b2o61b5o41b5o40b2o70bo45b2o43b5o40b2o84b2o53b5o41b5o40b2o51b5o
40bo44b5o41b5o49b5o41b5o41b5o41b5o72bo52b5o41b5o40b2o67b5o41b5o47b5o
40bo44b5o42b2o50b2o43b5o41b5o66bo45b2o53b5o71b5o76bo44b5o41b5o41b5o77b
5o49b5o40bo46b5o40bo45b2o43b5o40b2o48b2o43b5o40b2o71b5o43b5o40b2o43b5o
44bo82b5o40b2o43b5o40bo45b2o43b5o40bo44b5o40bo45b2o43b5o50b2o43b5o42b
2o43b5o68b2o105b5o48bo44b5o40bo45b2o43b5o82bo44b5o74bo44b5o40bo44b5o
41b5o63b5o40bo45b2o61b5o40bo54b5o40bo46b5o40b2o59b5o40bo52b5o40b2o43b
5o50bo44b5o51b5o41b5o40b2o47b5o40b2o46b2o50b2o43b5o41b5o40b2o51b5o86bo
54b5o40bo46b5o40bo63b2o43b5o40bo56b5o40b2o43b5o52bo44b5o70b2o43b5o44b
2o43b5o40bo51b2o43b5o40b2o65b5o62bo44b5o40bo46b5o40b2o52bo45b2o45b5o
40bo45b2o44b2o43b5o43b5o41b5o40b2o43b5o40bo80b5o40bo45b2o43b5o41b5o40b
o51b2o63b5o49b5o40bo46b5o40bo45b2o44b2o43b5o40b2o43b5o40bo54b5o40bo44b
5o41b5o57b5o61b5o40bo45b2o54bo44b5o40bo45b2o52bo45b2o45b5o40bo45b2o87b
5o40bo45b2o45b5o40bo50b5o41b5o80bo45b2o53b5o40bo77bo44b5o55b5o40b2o43b
5o40b2o43b5o40bo44b5o50b2o43b5o41b5o41b5o40bo45bo44b5o40bo45b2o43b5o
50b2o43b5o40b2o43b5o57b5o62b2o43b5o40bo56b5o40b2o43b5o40bo54b5o40bo46b
5o40bo64b5o69b5o41b5o40b2o43b5o47b5o40bo44b5o40bo44b5o52bo45b2o48b2o
43b5o40b2o52bo45b2o44bo45b2o61b5o41b5o40b2o70bo45b2o43b5o40b2o84b2o53b
5o41b5o40b2o51b5o40bo44b5o40bo54b5o40bo46b5o40bo77b2o51b5o40bo44b5o65b
5o40bo51bo45b2o43b5o41b5o47b5o41b5o40bo71b2o43b5o50bo76b5o76b2o43b5o
40bo46b5o76bo54b5o40b2o44bo45b2o43b5o40bo44b5o45b5o40bo44b5o68bo47bo
44b5o40bo49b2o80bo44b5o40bo45b2o43b5o40bo45b2o43b5o40b2o43b5o41b5o49b
5o41b5o41b5o41b5o67b5o103b5o48b2o43b5o40b2o43b5o41b5o82b2o43b5o74b2o
43b5o40b2o43b5o40bo68b5o40b2o43b5o59b5o40b2o52bo44b5o42b2o43b5o41b5o
62bo45b2o70b2o43b5o40b2o59b5o41b5o40b2o58b2o43b5o40bo45b2o43b5o77b5o
40b2o45b5o41b5o62b2o43b5o50b2o43b5o42b2o43b5o81b5o40bo44b5o40bo44b5o
40bo70b5o40b2o43b5o43b5o40bo65bo44b5o45b5o40bo45b2o57b5o40bo44b5o41b5o
49b5o41b5o42b2o43b5o41b5o63b5o40bo44b5o41b5o65b5o42b2o54b2o43b5o60b2o
43b5o40b2o44b2o43b5o45b5o40b2o55b5o41b5o40bo46b5o40bo54b5o40bo46b5o40b
o63b2o43b5o40bo56b5o40b2o43b5o52bo44b5o70b2o43b5o44b2o43b5o40bo51b2o
43b5o40b2o65b5o62bo44b5o40bo46b5o40b2o52bo45b2o44bo45b2o70bo107b2o51b
5o40b2o43b5o40bo45b2o85b5o40b2o77b5o40b2o43b5o40b2o43b5o64b2o43b5o40bo
63b2o43b5o49b5o40bo46b5o40bo45b2o65b5o41b5o67b5o40b2o43b5o56bo45b2o43b
5o55b5o40b2o43b5o41b5o40bo81b2o43b5o42bo45b2o65b5o40b2o52bo45b2o44bo
45b2o85b5o40b2o43b5o40bo73bo44b5o46b2o79b5o68bo44b5o67b5o40bo45b2o43b
5o56bo44b5o41b5o61b5o44bo54b5o40b2o44bo45b2o43b5o66bo45b2o52bo44b5o41b
5o40bo49bo44b5o40bo81b2o86bo44b5o40bo44b5o56b2o43b5o41b5o43b5o40bo71b
2o43b5o49b5o41b5o41b5o41b5o67b5o103b5o48b2o43b5o40b2o43b5o41b5o82b2o
43b5o74b2o43b5o40b2o43b5o40bo68b5o40b2o43b5o59b5o40b2o52bo45b2o44bo44b
5o57b5o40b2o50bo44b5o40bo55b2o43b5o51b5o40bo44b5o44bo44b5o43b5o47b5o
41b5o40bo44b5o49b5o86b2o52bo45b2o45b5o40bo45b2o44b2o43b5o43b5o41b5o40b
2o43b5o40bo80b5o40bo45b2o43b5o41b5o40bo51b2o63b5o49b5o40bo46b5o40bo45b
2o44b2o43b5o40b2o43b5o40bo54b5o40bo44b5o41b5o57b5o61b5o40bo45b2o54bo
44b5o40bo45b2o52bo45b2o45b5o40bo45b2o87b5o40bo45b2o45b5o40bo50b5o41b5o
80bo45b2o53b5o40bo77bo44b5o55b5o40b2o43b5o40b2o43b5o40bo44b5o50b2o43b
5o41b5o41b5o40bo45bo44b5o40bo45b2o43b5o50b2o43b5o40b2o43b5o57b5o62b2o
43b5o40bo56b5o40b2o43b5o40bo54b5o40bo46b5o40bo64b5o69b5o41b5o40b2o43b
5o47b5o40bo44b5o40bo44b5o52bo45b2o48b2o43b5o40b2o52bo45b2o44bo45b2o61b
5o41b5o40b2o70bo45b2o43b5o40b2o84b2o53b5o41b5o40b2o51b5o40bo44b5o41b5o
49b5o41b5o41b5o41b5o72bo52b5o41b5o40b2o67b5o41b5o47b5o40bo44b5o42b2o
50b2o43b5o41b5o66bo45b2o53b5o71b5o76bo44b5o41b5o41b5o77b5o49b5o40bo46b
5o40bo45b2o43b5o40b2o48b2o43b5o40b2o71b5o43b5o40b2o43b5o44bo82b5o40b2o
43b5o40bo45b2o43b5o40bo44b5o40bo45b2o43b5o49b5o41b5o41b5o41b5o67b5o
103b5o48b2o43b5o40b2o43b5o41b5o82b2o43b5o74b2o43b5o40b2o43b5o40bo68b5o
40b2o43b5o59b5o40b2o52bo45b2o45b5o40bo45b2o66b2o43b5o40bo45b2o50b2o43b
5o40b2o43b5o50b2o43b5o40b2o47b5o40b2o52bo45b2o45b5o40bo45b2o44b2o43b5o
43b5o41b5o40b2o43b5o40bo80b5o40bo45b2o43b5o41b5o40bo51b2o63b5o49b5o41b
5o41b5o40bo86b5o40b2o43b5o40b2o43b5o40b2o68bo44b5o40bo47bo45b2o64b2o
43b5o45b5o40b2o43b5o55b5o40b2o43b5o40b2o52bo45b2o44bo45b2o75b5o48bo45b
2o43b5o64bo45b2o50b2o43b5o40bo46b5o47b5o40bo45b2o69b5o41b5o50b2o74bo
80b5o40bo45b2o44bo81b2o52bo44b5o42b2o43b5o41b5o40b2o43b5o42bo45b2o43b
5o40bo61b2o43b5o40b2o43b5o40b2o56bo45b2o43b5o40b2o43b5o41b5o40bo53bo$
2b3o96bo3bo42b3o42bo3bo88b3o42bo3bo110b3o168bo3bo55bo3bo89bo3bo94b3o
88bo3bo89bo3bo50b3o88bo3bo86b3o44bo3bo155bo3bo74b3o45b3o294bo3bo235bo
3bo177bo3bo134b3o144bo3bo43bo3bo146b3o99b3o87b3o237b3o89b3o135b3o42bo
3bo236b3o57b3o42bo3bo44b3o50bo3bo85bo3bo42b3o91b3o96bo3bo42b3o42bo3bo
88b3o42bo3bo110b3o168bo3bo55bo3bo89bo3bo94b3o88bo3bo89bo3bo50b3o88bo3b
o86b3o44bo3bo155bo3bo74b3o45b3o294bo3bo235bo3bo87bo3bo113bo3bo200b3o
87b3o87b3o139b3o87b3o202bo3bo232b3o63b3o54bo3bo149bo3bo133bo3bo133bo3b
o112b3o76bo3bo118b3o106bo3bo99bo3bo86b3o96bo3bo88b3o42bo3bo132b3o56bo
3bo85bo3bo50b3o42bo3bo42b3o42bo3bo73bo3bo149bo3bo86b3o42bo3bo159bo3bo
52b3o93b3o132bo3bo50b3o42bo3bo88b3o42bo3bo41bo3bo179bo3bo86b3o123b3o
42bo3bo132b3o48bo3bo207bo3bo176b3o134bo3bo92b3o42bo3bo181bo3bo164b3o
56bo3bo85bo3bo85bo3bo86b3o97b3o89b3o74bo3bo94b3o157b3o49b3o42bo3bo230b
3o68bo3bo96b3o154bo3bo86b3o125b3o96bo3bo165bo3bo103bo3bo99bo3bo59bo3bo
134b3o87b3o42bo3bo132b3o47b3o87b3o96bo3bo88b3o164bo3bo271bo3bo43bo3bo
86b3o133b3o42bo3bo136b3o234bo3bo177bo3bo44b3o42bo3bo86b3o122bo3bo132b
3o42bo3bo157bo3bo50b3o42bo3bo88b3o42bo3bo63bo3bo86b3o42bo3bo114b3o187b
3o97b3o135b3o43b3o90bo3bo86b3o42bo3bo212b3o42bo3bo138b3o116bo3bo87bo3b
o89bo3bo85bo3bo102b3o63b3o91b3o42bo3bo93bo3bo86b3o55b3o243b3o89b3o42bo
3bo225bo3bo102b3o42bo3bo145bo3bo132b3o78bo3bo88b3o42bo3bo108b3o97b3o
135b3o65b3o42bo3bo86b3o66bo3bo89bo3bo87bo3bo88b3o42bo3bo158b3o88bo3bo
50b3o42bo3bo42b3o42bo3bo149bo3bo52b3o87b3o54bo3bo160b3o91b3o42bo3bo92b
3o176bo3bo85bo3bo42b3o96bo3bo88b3o42bo3bo132b3o91b3o132bo3bo76b3o42bo
3bo132b3o42bo3bo112b3o96bo3bo42b3o42bo3bo132b3o132bo3bo95bo3bo86b3o59b
3o108bo3bo97bo3bo85bo3bo95bo3bo88b3o42bo3bo175bo3bo88b3o42bo3bo92b3o
82bo3bo96b3o42bo3bo73bo3bo100b3o87b3o87b3o42bo3bo140b3o89b3o42bo3bo41b
o3bo85bo3bo86b3o97b3o261b3o42bo3bo52b3o87b3o42bo3bo50b3o42bo3bo42b3o
42bo3bo60b3o117b3o87b3o94bo3bo85bo3bo97bo3bo136b3o96bo3bo87bo3bo150b3o
114bo3bo86b3o183b3o43b3o140bo3bo86b3o97b3o89b3o74bo3bo94b3o157b3o49b3o
42bo3bo230b3o68bo3bo96b3o154bo3bo86b3o125b3o96bo3bo42b3o42bo3bo86b3o
137b3o115b3o45b3o87b3o46bo3bo78b3o87b3o42bo3bo86b3o42bo3bo85bo3bo511bo
3bo85bo3bo173bo3bo119bo3bo85bo3bo86b3o110bo3bo149bo3bo50b3o42bo3bo42b
3o148bo3bo48b3o87b3o52bo3bo142b3o91b3o233b3o186bo3bo50b3o42bo3bo42b3o
42bo3bo149bo3bo52b3o87b3o54bo3bo160b3o91b3o42bo3bo92b3o176bo3bo85bo3bo
42b3o96bo3bo88b3o42bo3bo132b3o91b3o132bo3bo76b3o42bo3bo132b3o42bo3bo
112b3o96bo3bo42b3o42bo3bo132b3o132bo3bo95bo3bo86b3o59b3o108bo3bo97bo3b
o85bo3bo95bo3bo88b3o42bo3bo175bo3bo88b3o42bo3bo92b3o82bo3bo96b3o42bo3b
o73bo3bo100b3o87b3o87b3o42bo3bo140b3o89b3o42bo3bo41bo3bo85bo3bo86b3o
97b3o261b3o42bo3bo52b3o87b3o42bo3bo50b3o42bo3bo42b3o42bo3bo60b3o117b3o
87b3o94bo3bo85bo3bo97bo3bo136b3o96bo3bo87bo3bo150b3o114bo3bo86b3o183b
3o43b3o140bo3bo85bo3bo50b3o42bo3bo42b3o42bo3bo126b3o42bo3bo110b3o42bo
3bo47bo3bo86b3o141b3o42bo3bo167bo3bo72b3o123b3o42bo3bo42b3o78bo3bo50b
3o88bo3bo131bo3bo135bo3bo113bo3bo43bo3bo85bo3bo127bo3bo85bo3bo131bo3bo
86b3o133b3o97b3o89b3o177b3o95b3o133b3o129b3o121b3o87b3o42bo3bo64b3o
151b3o96bo3bo178b3o64bo3bo158b3o149b3o147b3o42bo3bo168b3o135b3o301b3o
128bo3bo85bo3bo85bo3bo66b3o87b3o45b3o42bo3bo61bo3bo135bo3bo145bo3bo86b
3o97b3o135b3o65b3o42bo3bo86b3o67b3o255b3o133b3o47b3o145b3o42bo3bo42b3o
42bo3bo50b3o42bo3bo42b3o42bo3bo149bo3bo52b3o87b3o54bo3bo160b3o91b3o42b
o3bo92b3o176bo3bo85bo3bo42b3o96bo3bo87bo3bo113bo3bo156b3o87b3o42bo3bo
128b3o121b3o87b3o201b3o42bo3bo104b3o96bo3bo42b3o42bo3bo154b3o69b3o87b
3o58bo3bo86b3o57b3o133b3o42bo3bo122b3o44bo3bo108b3o96bo3bo87bo3bo128b
3o132bo3bo69bo3bo245bo3bo112b3o42bo3bo86b3o58bo3bo86b3o63b3o46bo3bo50b
3o88bo3bo157bo3bo95bo3bo131bo3bo45bo3bo85bo3bo165bo3bo85bo3bo192b3o45b
3o42bo3bo112b3o97b3o89b3o177b3o95b3o133b3o129b3o121b3o87b3o42bo3bo64b
3o151b3o96bo3bo87bo3bo102b3o94bo3bo85bo3bo96b3o53b3o42bo3bo89bo3bo186b
3o42bo3bo94b3o142bo3bo88b3o42bo3bo132b3o91b3o132bo3bo76b3o42bo3bo132b
3o42bo3bo112b3o96bo3bo42b3o42bo3bo132b3o132bo3bo95bo3bo86b3o59b3o108bo
3bo97bo3bo85bo3bo95bo3bo88b3o42bo3bo175bo3bo88b3o42bo3bo92b3o82bo3bo
96b3o42bo3bo73bo3bo100b3o87b3o87b3o42bo3bo140b3o89b3o42bo3bo41bo3bo85b
o3bo86b3o97b3o261b3o42bo3bo52b3o87b3o42bo3bo50b3o42bo3bo42b3o42bo3bo
60b3o117b3o87b3o94bo3bo85bo3bo97bo3bo136b3o96bo3bo87bo3bo150b3o114bo3b
o86b3o183b3o43b3o140bo3bo86b3o97b3o89b3o74bo3bo94b3o157b3o49b3o42bo3bo
230b3o68bo3bo96b3o154bo3bo86b3o125b3o96bo3bo42b3o42bo3bo86b3o137b3o
115b3o45b3o87b3o46bo3bo78b3o87b3o42bo3bo86b3o42bo3bo85bo3bo86b3o97b3o
89b3o177b3o95b3o133b3o129b3o121b3o87b3o42bo3bo64b3o151b3o96bo3bo88b3o
42bo3bo199bo3bo138b3o87b3o97b3o91b3o96bo3bo88b3o42bo3bo132b3o91b3o132b
o3bo76b3o42bo3bo132b3o42bo3bo112b3o97b3o88bo3bo82b3o87b3o87b3o112bo3bo
85bo3bo43bo3bo152b3o47b3o147b3o87b3o96bo3bo87bo3bo171bo3bo86b3o66bo3bo
183bo3bo42b3o49b3o42bo3bo158b3o128bo3bo121bo3bo87bo3bo131bo3bo178b3o
87b3o44bo3bo86b3o42bo3bo102b3o87b3o100bo3bo86b3o133b3o42bo3bo49bo3bo$
103bo91bo137bo285bo59bo93bo189bo93bo145bo137bo159bo423bo239bo181bo285b
o47bo857bo345bo101bo89bo239bo91bo137bo285bo59bo93bo189bo93bo145bo137bo
159bo423bo239bo91bo117bo821bo359bo153bo137bo137bo195bo231bo103bo189bo
137bo195bo89bo99bo91bo77bo153bo135bo163bo287bo99bo137bo45bo183bo261bo
187bo211bo317bo141bo185bo227bo89bo89bo359bo355bo305bo257bo317bo169bo
107bo103bo63bo273bo375bo259bo275bo47bo271bo377bo181bo93bo215bo181bo
161bo99bo137bo67bo135bo685bo135bo261bo261bo91bo93bo89bo311bo97bo531bo
229bo151bo149bo217bo137bo463bo159bo93bo91bo137bo253bo99bo91bo153bo203b
o303bo275bo89bo145bo137bo365bo125bo181bo215bo91bo271bo99bo263bo101bo
89bo99bo137bo179bo137bo181bo145bo77bo329bo281bo45bo89bo499bo191bo99bo
91bo371bo89bo101bo239bo91bo271bo465bo359bo355bo305bo257bo317bo91bo535b
o217bo135bo89bo515bo89bo177bo123bo89bo203bo153bo99bo197bo197bo665bo99b
o91bo153bo203bo303bo275bo89bo145bo137bo365bo125bo181bo215bo91bo271bo
99bo263bo101bo89bo99bo137bo179bo137bo181bo145bo77bo329bo281bo45bo89bo
499bo191bo99bo91bo371bo89bo101bo239bo91bo271bo465bo89bo99bo91bo175bo
159bo51bo279bo171bo247bo127bo145bo135bo139bo117bo47bo89bo131bo89bo135b
o1223bo321bo249bo509bo745bo89bo89bo253bo65bo139bo149bo441bo797bo91bo
99bo91bo153bo203bo303bo275bo89bo145bo91bo117bo295bo595bo207bo91bo381bo
331bo173bo211bo91bo267bo73bo249bo161bo151bo205bo145bo161bo99bo135bo49b
o89bo169bo89bo289bo1113bo321bo91bo203bo89bo201bo93bo235bo243bo137bo
365bo125bo181bo215bo91bo271bo99bo263bo101bo89bo99bo137bo179bo137bo181b
o145bo77bo329bo281bo45bo89bo499bo191bo99bo91bo371bo89bo101bo239bo91bo
271bo465bo359bo355bo305bo257bo317bo91bo535bo217bo135bo89bo1087bo321bo
137bo203bo525bo137bo365bo125bo181bo307bo381bo89bo47bo545bo91bo175bo
159bo187bo143bo293bo125bo91bo135bo319bo135bo299bo271bo53bo!
That also puts the minimum period of a square-Orthogonoid design at around 150,000 ticks. 256c/150,000 is somewhere around c/586 -- pretty speedy for a non-Caterloopillar self-constructing spaceship.

This means that the Orthogonoid will only need about fifteen rows, or maybe twenty if the recipe has to be thinned out a lot to make all the stream crossings possible -- there will be on the order of 180-380 crossing points. I'm pretty optimistic that not too much thinning will be needed. These recipes are already mostly empty space.

The main thing to realize is that only about one glider in fifteen ends up producing a NE-traveling output glider (on the west side of the square Orthogonoid -- NW-traveling on the east side). In some sense those NE travelers are the only ones we have to worry about. For those rare gliders that produce a NE traveler, we have to wait around and send the final trigger at the first tick where it will be able to slip through up to 14 perpendicular streams.

[The first fifteenth of the recipe has no crossing constraints; the next fifteenth has one stream to cross, the next fifteenth has to cross two streams, and so on.]

If we do this wait-around-and-slip-the-glider-through trick each time we encounter a NE output glider, working from the beginning of the recipe to the end, then eventually we're guaranteed to be able to complete the recipe (right? That's what I'm thinking at the moment, anyway.) Will just have to see if there isn't enough room between gliders to handle all those crossings, and we have to add an order of magnitude to the length of the recipe.

It seems to me that it might be possible to align the glider pairs somehow, at some particular frequency related to the width of the Orthogonoid, such that all the NE crossing gliders are able to slip through an appropriate space. But I'm afraid that my grasp of the relevant mathematics is shaky enough that it will be easier for me to figure it out by writing a compiler script and test-compiling a bunch of different frequencies and spaceship widths.

If someone would be interested in helping me out with the theory here, I'd be most grateful.

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid spaceship -- completed!

Post by dvgrn » October 21st, 2018, 12:21 am

Here are a couple of shiny new Orthogonoids.

They won't set any records for population, bounding box, or period. But along the same lines as the most recent Hashlife-friendly Demonoid, they require much less memory to "run away" in Golly, though still more than the Demonoid does. The threshold seems to be just over 12 gigabytes.

I think they do set a speed record for self-constructing spaceships, though. The faster one is c/64, or (2^21)c/(2^27), and so the slower one is c/128.
Orthogonoid-2^27.mc.gz
Orthogonoid with step size 2097152 and period 134217728
(506.65 KiB) Downloaded 822 times
Orthogonoid-2^28.mc.gz
Orthogonoid with step size 2097152 and period 268435456
(246.18 KiB) Downloaded 796 times
I'm finding these to be a lot more fun to watch than previous Orthogonoids or other self-constructing stuff, both because Golly runs them much faster, and because you can get a good sense of what's happening at both ends of the ship at once, without having to zoom in.

It will be interesting to see if the speed can be improved to c/32, or even all the way down to c/16, using the new inline Cordership recipe. That improvement should also cut the populations down by a full order of magnitude and more. The great majority of gliders in the current recipe are wasted doing the long initial elbow block push.

User avatar
calcyman
Moderator
Posts: 2964
Joined: June 1st, 2009, 4:32 pm

Re: Orthogonoid spaceship -- completed!

Post by calcyman » October 27th, 2018, 1:56 pm

dvgrn wrote: It will be interesting to see if the speed can be improved to c/32, or even all the way down to c/16, using the new inline Cordership recipe. That improvement should also cut the populations down by a full order of magnitude and more. The great majority of gliders in the current recipe are wasted doing the long initial elbow block push.
The latest slmake (which includes both efficient pulls and pushes) yields a recipe that will allow a c/16 Orthogonoid with a minimum population of < 640 000 cells (so 4x faster, 4x smaller bounding box, and 20x smaller population).

I'll leave @dvgrn to actually produce the pattern -- the infile.mc he gave me didn't contain the last seed of destruction.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
calcyman
Moderator
Posts: 2964
Joined: June 1st, 2009, 4:32 pm

Re: Orthogonoid spaceship -- completed!

Post by calcyman » October 27th, 2018, 5:02 pm

Actually, it was fairly routine to do this myself by copying the necessary parts of Dave's period-2^27 version:
ortho16.mc.gz
c/16 Orthogonoid
(279.21 KiB) Downloaded 821 times
EDIT: The minimum population drops below 350 000 cells in one phase (where there's both a 2-engine and a 3-engine Cordership flying in the same direction). Annoyingly, this is somewhat larger than the Caterloopillar (the other method of producing arbitrary-speed orthogonal spaceships).
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
dvgrn
Moderator
Posts: 11194
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Orthogonoid spaceship -- completed!

Post by dvgrn » October 27th, 2018, 7:02 pm

calcyman wrote:Actually, it was fairly routine to do this myself by copying the necessary parts of Dave's period-2^27 version...
Yup, slsparse is making it so easy to roll your own self-constructing spaceship design, that I don't know why everyone isn't doing it by now!

The Corderships will hold the speed of this edition of the Orthogonoid to something slower than c/12, so we aren't going to get another factor of two speed improvement until we switch to making new targets and elbows with loafers chased by *WSSes, instead of Corderships chased by gliders.

It's possible to change the speed either by altering the step size -- i.e., asking slsparse to build the child copy at a different offset -- or by changing the period by moving the two halves relative to each other. The second is much easier since it doesn't require recompiling the recipe. Looks like the fastest this particular Orthogonoid recipe can travel is 2^21 steps every 30450336 ticks.*

That's faster than c/15 -- about c/14.52. Not bad for a self-constructing spaceship!
ortho-p30450336.mc.gz
ortho16 at closest adjustment = non-Hashlife-friendly ortho14.52
(239.12 KiB) Downloaded 822 times
* (Not a perfect number, though it shares six out of eight digits with one.)

Post Reply