Rules with interesting dynamics

For discussion of other cellular automata.
Post Reply
User avatar
gmc_nxtman
Posts: 1150
Joined: May 26th, 2015, 7:20 pm

Rules with interesting dynamics

Post by gmc_nxtman » October 8th, 2017, 3:47 pm

This thread is for rules that might not necessarily have engineering potential or other typical desirable aspects of a rule, but have an interesting dynamic or mechanic within them that you find interesting. If possible, describe the dynamic in detail. There's also been some discussion of these over at the #other-ca channel in the unofficial Discord server.

I'd like to begin by reposting a few old rules that I like:

B3aeijn4n/S234iqz, explosive because of the B-heptomino being an oblique quadratic growth pattern:

Code: Select all

x = 4, y = 3, rule = B3aeijn4n/S234iqz
bo$3o$ob2o!
B2ce3i/S2-a34-aiq, generates large stable patterns and has a fairly common "checkerboard breeder":

Code: Select all

x = 32, y = 16, rule = B2ce3i/S2-a34-aiq
3o2bo2b2ob5obo2b5ob5o$o4bo3b2obobo4bo2bo2bobobobo$b2ob5o2b2o4bobo4b2ob
o3bo$4o3b2o2b2ob3obo3b4ob5o$2bo3bo2b3o2bo3bobo2bo2bo3bo$2b4ob8ob2o2bo
2b2obo2b3o$4ob3obob2obobob7o3bobo$bobo3b3ob6o2b2obo2bob3obo$obob3o3bob
4o2bo2b2o2b3obobo$2b2o4b3o2bo4b2obo2bo4b3o$2b2obob3o4b2obo7b2obobo$bo
2b4o3bo2bobobo4b4ob2obo$2ob2obo2bo3bobo4bob2obobobobo$2bo3b3ob4ob7o2bo
bo2bo$9o3bob3obob8ob2o$o2b4ob3obob2ob3obobobobob3o!
B3-aq/S234-aeiq, large enough soups in this rule generate diamonds consisting of stable sections with small unstable "signals" that can drift and take a long time to stabilize:

Code: Select all

x = 120, y = 121, rule = B3-aq/S234-aeiq
60b2o$59b2obo$58bobob2o$57b2obo3bo$56bo3b3o2bo$55bobobo3b2obo$54b2obob
ob2obob2o$53bobobobobo2bo3bo$54bobobo4bob3obo$51bob2o2bobo2b2o5b2o$50b
2ob2o2b2o6b4o2bo$49bobo6bobob4o4bobo$47b3ob2ob2o3b2obo2b4obob2o$46bo2b
obo3bo5b2ob2o2bo2bo2bo$44b4obo2b2o8bobo4bobobobo$43bo5b3o9bo5bobobobob
2o$42b7o3bobo7b6o3bobobobo$50b3ob2o5bo6bo3b2obobo$40b2ob7o4bobob2o2b5o
8bo2b2o$41b2o4bo2b2ob2obo2b2o2bo5bo2b2ob3o2bo$39bo4b7o5b2o3bobo2b6obo
5bobo$37b3ob4obobo2b5obobobobobo5bo2b6ob2o$36bo2bobo3b2ob3o2bo2bob2obo
bob4obob2o7bobo$35b4o3b2ob2obo2b2o3bobo3bobo5bobob2ob2obo2b2o$34bo4b3o
b2o5b2o3b2o3b3ob2o2b2o5b2obobobo2bo$33bob4o2bobo7bo2bobo3bo2b2obo2b6o
3bobob3o$32b2obo3bo2bo7bob3o3bo2b2o3b2o7bo2bobo4b3o$31bo2bo2b3o2bo6b3o
2bobob3o2b3obobo4bo3bobob3o2b2o$31b3ob2o4bobob2o2b2obo2b2o2bobobo3bobo
5b2obobobo2bobobo$29bo3bo3b3obob2o2b2obobo3b2obobobob2o2bo4b2obo2bo3b
2obob2o$28b3o2b4o3bobo5b2ob3o3bob2o3bo2b3o8b2ob3ob2obo2bo$27bo8b5o2bob
2obo5bo3bo2b3obo3bobob5obobo6bob3o$27bobob4obo4bobobobob7o3b3o3b2obo2b
2o5bob2ob6o4bo$28b2obo2bobo2b3obobobo8bo5b4ob4o2b4obo4bo4b7o$24bo4bobo
bo2bobobobobobob3obobobo4bo5bo2b4o3b5o2b4o7bo$23bobo2b2obob2obob2o2bo
3bobo2b2ob2o4bob5ob2o4b3o4b4o2b4o2b2obo$22b2obo3bobo2bobo3b3o3b2o3bo9b
o4bobob4o3b4o5bo4bo2b2obo$21bo3bobobo8b2o2bobobo15b3obo7bob2o3b4ob8o3b
o$20bob3o2bobo4bo2b2ob3ob2o6bo3bo7bob8o4b3o3bo9b6o$19bobo2b4o6bo3bobob
o8b3obobo7bo8b4o4b2ob9obo4bo$18b2ob3o4b3obob3o2b2obob2o4bo2bobob2o7b8o
3b5o3bobobo5bob2ob2o$17bo2bo2b5o2bobo4b2o3bo6b3obobobobo5b2o2bo3b4o4bo
bobobobob5obo2bobo$17b2o2b2o4bob2ob2ob2o2bobo2b2o5bobo2b2ob2o3bo2b2ob
3o3b4o4bobobob2o4bob3obo$15bo2bo5b2o3bobo4b4ob3o2bo6b2obobobo2bo2bo2bo
2bo2bo5b4obobo3b3o2bo4b3o$14b3o4b2obo3b2obob3o2bobo2b5o4b2ob2obob11obo
bobob3o4bobobobo3b2o2b2obo2bo$13bo2bo5bobo4bobobo2b2o2b3o5bo4bo4bo11bo
bo2b2obo2bob2obo2bob4o2b2obo3bobo$12bobob2o5b2o3bobob2o2bo3bo2b2obobo
4b4o2b10obobo4b4ob2obo3bo4bobob2o3b2ob2o$11b2ob2o8b2o2bobo4b2obobobo5b
o3bo4b2o10bobob4obo2b2o2bob7obo10bo$10bo2bo2b4obo3b2obob4obob2obobo2bo
2bo2bobob2o3b8obobobo4bobo2b2obobo2b2ob2obo4b3o$9b4o2bo3bob2o3bobobo2b
obo2bobo2bo4bo7bo2bo5bo2b3obobob2o2b4obob2o5bob2o3b2ob2o$8bo4b2obobo8b
o3bo3b2o3bo3bobobo2b2o5bo2b4o2bo4bobobob2o3bobob2o4bo2bo7bobob2obo$7b
5obobo3b4o5b4obo2bo2b2obobobobo3bobob2o2b2o2b7obobobobobobo2bo2bo2b2o
2b2o4bo2bobobob2o$6bo4bobobob3o2bo6bo3b3o2bobobobob2o5b2o8bo7b2obobo3b
ob2o4bo2b2o3bo2b2o2bob2obobob2o$5b2ob2obobobobo3bo2bo5b3o3b3obo3b3o7bo
b6ob7obobo2bo2b2ob2o4bobob2ob2o3bobo3bobobo3bo$4b2obo2b2obo2b2o2b5o2b
2obo2b3o3bob3o11bo6bo6bobobobo2bo2b2o5bobobo3bobobo2b2o2bo2b4obo$5bobo
bo2b3obo9bobobob2o2b2obo3bo13b6ob4o2b2obob7obo2bob2ob2o3bobo2bob5obo5b
2o$6b2obobo2bo7b2ob2obob2o2b2obob2o2bobobo10bo3bobo2bo3bobo4bo2bobo2b
2obobo2bo4b2ob2o5b5o3bo$bo5bobob2obo4bobobobo2bo3bo5b2o4b2ob2o10b2ob2o
bobobob2ob2o4bo2bobobo2bob2obob2ob3ob4o6b5o$3o4b2obobobobobob2obo2b2ob
4o6bob3ob2o2bo10bo3b2obob2obobo7b2obob2obobo3bo5bobo2bob2o2b2o4bo$3bo
6bob2ob2obobob2o3b2o2bob2o3bobo2b2o2b2o12b2obobobobobobo2bo3b2ob2obo2b
obo3bob3obo2bobobobo3b5o$2ob2o2b2o2bobobo2bobobo2bo3bobobobo2bobobo5b
2o12bobobobobo2b2obob2o3bo3bobob2obobobo2bob3obobob5o$bo4bobo4bo2b2o2b
obob6o2bobobobobob5o17bo2b2ob3o3bob2o5b2ob3o3b5ob2obo2bo4bo4bob2o$2b5o
b3o2b4ob2obobo5b4obob2ob3o4bo16bob2o3bo2b3o3bo3bobo2bo3b2o2bobobo2bob
2ob3o3b3obo$7bo3bo7bobob2ob3o3bobo4bo2b4o3bobo11bobobob2obo2bob2o2b3ob
obob4ob2o2bo2b3obob2o4bo3bo$4b2o2b2obob6o2b2obobo2b3o2bob3o2bo2bo3b2ob
2o9b2obobobob3obo4b2o2bob2obob4o2bob2o3b2o3b2o3b3o$5bo4b3o4bob2o3bo2b
2o2b4obo2b3o5b2o4bo9bobobobo3bobo2b3o2b2obobo9b2ob3o2bobo2bo3bo$6b2obo
3b3o5b4o4b2o4bob2o2b2o7b5o5b2obobobob4obo3bo7bob2o9bo2bob2o3b4o$7bob4o
2bo5bo2b5o2b3ob2o2b2o9bo4bobob2obob2obo2bo3bob2o5b2obobo7b2ob2o2bob4o
4bo$8bo3b2obobo2b2o2bo4b2o3bobobobo8b2ob3ob3obobobob3o3b3o9b4o4bo4bo3b
3obo4b3o$9b2obobob5ob2ob4o2b4obobob2o7bobo2bo3bobob2o4bo4bob3o10b2obob
2obob2obo2bo2b3obo$10bobobo8bobo2b4o3b2obobo7b2obobob2obobo3b4obo3bo4b
obo6bobobo4b3obo2b2ob2o2bo$11b2obob6o2b2obo4b3o3bobo8bobobobob2ob4o3bo
2bob7ob2o10bo4bo2bob2obobobo$12bo2bobo3bo3bob5o2b4ob2ob2obo3bobob2o3b
2o5bo2bobobo3bo6b3ob3o4b4ob2o2bobob2o$13bobobob2o3bo3bo2b3o8b2ob2o2bob
obo2b2ob2ob7obobob2o5b4obo4bo2b2obobobob2o2bo$14bob3o6b2obobo3b7o3bo3b
2obobo4bo9bobobobo4bo6b2o3bo4b2o3bo3b2o$15bo3b4o3bobob2obo2bo3bob2ob2o
b2obobo5bo2b5o2bo3b2o6bob2obo2bo2bobo3b4ob3o$17b3o3bo2b2obobob2obob2o
9bobo2bobo2bo6b3o5bo6bobob2ob3o4b2o6bo$17bo2b3o4bobobobobobobo3bob2ob
2obobobobobob4o3b4o2bobo3b2o6b2o2b2o2b6obo$18b2obo6bo2bobobobobobobobo
bobobob2obobob2o2b3o5bo2bo3b2o2bo4bob3obo3bo3bo$19bobo7b3obobobobobo5b
o3bo2bobobo3b3o2b5o8bob3o4bo2bob3obob2o$20b2obo4b2o3b2obobob2o5bo3bo2b
obobob2o3b2o8b4obobo5bobobo3b3obo$23b2obo2bob2obobobo4bo3bobo2b3obob2o
b4o2b8o3bobo2b3o2b3obob2o3bo$22b2ob4obo4b2obob3o4bob2obo4bo3bo3b2o4bo
3b3o2b3o5bo2bobobob2o$23bobo4b5o2bobobob4obo2bob7obob2ob4o3bobo2b2o3b
6ob2obobobo$24b2ob3o2bo2bo3bobobo3b5o2bob2o2bobobo5b5ob2ob4o6bobobob2o
$25bobo2bobob2obobobobobo6bo5b3o3bob2o2bo5bo7b2o2b2obobobo$26bob3obobo
b2ob2obob2ob5o9bo2bobobo2b2ob2ob6obo2bobobob2o$27bo2bobobo2b2obobo6bob
2o5b3obobobobo3bobo2bo5bob3obobobo$28b2o2bo2bo4bobob4obobo2bob3o3bob2o
bo2bobobo2bob3obobo2b3obo$29b4ob2ob2obobobo4b5ob3ob2ob2obob4obob5o2bob
obobo3bo$30bo3bobobob2ob2ob2o6bo2bobo3bobobo4bo6bo4b2obob2o$31b2obobob
o2bo2bobo6b2o2bobo3bobo3b2obob7o4bobobo$32bobobob2ob2obobo6b5obobobob
4o2bobobo5bo6bo$33b2obo2bobobobo2b2obobo5b2obobobo2bobobo3b4obo$34bob
2obo3bobob2ob2o3b2obo3bobobob9o4b2o$35bo2b2obobobo2bo4bo2bobo2b2obob2o
10b2obo2bo$36b2o2b2obobo2bob2obo2b2obo2bobo3b9obob2ob2o$37b3o3bob2obob
ob3o2b3o2bob4o6bo2bo2bob2o$39bob2obobobobo4bobo2bobo4bob4o2bob2obobo$
39bo2bobob3obob3o2bob2obob2obobo2b5obob2o$40bobobobo2bobo3b3obobob2o2b
obobo6bobo$41b2obobob2obobobo3bobo4bob2ob2o2b2ob2o$43bobo2bo2bob3ob4ob
3obo9bobo$43bo2b3ob3o2bobobobo3bob8ob2o$44b2obo3bo4bo4bobob2o4bo2bobo$
45bobobob2o7b2obobo2b2obo2bo$46bobobobo6bobo2b2o3bobob2o$47bo2b2o6b2ob
3o3bobobobo$48b2o3bo2b2o6b3ob2o2bo$49bo5bobob6o3bob2o$50b2obobo9b4obo$
51bob2obo3b5o4bo$52b2o3b3o6b3o$54b4obob4obo$54bo3bo2bo4bo$55b2ob2ob2ob
2o$56bobo2b2obo$57b2obob2o$58bobobo$59bobo$60bo!
B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:

Code: Select all

x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!
B3-q/S234y, a rule only two transitions from life with a common diagonal pi-based puffer that produces some pretty weird phenomena:

Code: Select all

x = 16, y = 6, rule = B3-q/S234y
13b3o4$3o$o2bo!

Code: Select all

x = 13, y = 6, rule = B3-q/S234y
11bo$11b2o3$3o$o2bo!
That's all for now, I hope to see more rules with interesting dynamics and textures later on.

User avatar
SuperSupermario24
Posts: 120
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Rules with interesting dynamics

Post by SuperSupermario24 » October 8th, 2017, 4:57 pm

Can't forget the anti-tub rule (TRYPOPHOBIACS BEWARE):

Code: Select all

x = 16, y = 17, rule = B36-c7c8/S134cijkrw5-aej6-a7
3b2o2bo$2bob2ob2o3bo$o3b2o3b5o$14o$7ob4obo$4b2obob3o$b2o2b2ob5obo$5b6o
2bo$4b2ob4obo$4bobob4ob2o$4b2ob2ob2o2b2o$3b5obobo$3b6ob3o$4bo2b4obo$7b
3obo$9b2o$9b2o!

Code: Select all

bobo2b3o2b2o2bo3bobo$obobobo3bo2bobo3bobo$obobob2o2bo2bobo3bobo$o3bobo3bo2bobobobo$o3bob3o2b2o3bobo2bo!

User avatar
Macbi
Posts: 815
Joined: March 29th, 2009, 4:58 am

Re: Rules with interesting dynamics

Post by Macbi » October 8th, 2017, 5:28 pm

gmc_nxtman wrote:B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:

Code: Select all

x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!
Cool! This is a Crystallographic defect between the two possible offsets of the checkerboard region.
SuperSupermario24 wrote:Can't forget the anti-tub rule (TRYPOPHOBIACS BEWARE):

Code: Select all

x = 16, y = 17, rule = B36-c7c8/S134cijkrw5-aej6-a7
3b2o2bo$2bob2ob2o3bo$o3b2o3b5o$14o$7ob4obo$4b2obob3o$b2o2b2ob5obo$5b6o
2bo$4b2ob4obo$4bobob4ob2o$4b2ob2ob2o2b2o$3b5obobo$3b6ob3o$4bo2b4obo$7b
3obo$9b2o$9b2o!
A similar thing happens in B35678/S01234567

Code: Select all

x = 16, y = 16, rule = B35678/S01234567
b2ob2obo2b4o$7bo6b2o$b4ob2ob3o2bo$o3bobo3bo2b3o$o3bo2bo2b2obo$obo2bo2b
o2bo3bo$2b7obo4bo$2b3o2b2obob3o$2b2o4b3o2bo$bobo4bob3ob2o$2b3o2b5ob3o$
3b5obob2obo$2o2bob2o2b5o$4o3b2obob2obo$o2bo4b2o2b2o$bob2obob2o!

User avatar
toroidalet
Posts: 1276
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Rules with interesting dynamics

Post by toroidalet » October 8th, 2017, 5:29 pm

B2ikn3-nqr4ceijnqw5jq6ae/S01c2-k3ci4aceiqty5-ijqr6-ck7c is explosive across lines of orthogonal and diagonal symmetry:

Code: Select all

x = 3, y = 3, rule = B2ikn3-nqr4ceijnqw5jq6ae/S01c2-k3ci4aceiqty5-ijqr6-ck7c
bo$3o$bo!
B2cen3ac4ar5/S5678 expands in an interesting way due to B2c phoenices:

Code: Select all

x = 40, y = 40, rule = B2cen3ac4ar5/S5678
7o3b4obob22o$5o2b7obob10ob12o$5ob4ob2ob7obo3b3o2b3ob5o$b3o2bob4ob6ob3o
b5ob2ob7o$b2ob5obo2bob2ob8obob2ob2ob2ob2o$7obobo4bobo2b5o2b11obo$3ob3o
b3ob5obob7ob5o2b3obo$ob11o3b3obo2b3ob3obo2b2ob2o$8ob5ob4ob9obo2bo2bo2b
o$ob2o2b2obob2obobo2b11obob7o$o4bob4o3b2obob21o$11obob3ob4obob8ob5o$bo
2bo2b2ob6obob6obob3ob8o$5ob5ob3ob5obob9o2b4o$o2b2ob7ob3o2bob2o3b2ob5o
3b3o$5ob4o2b3o3b3ob5ob2obob5obo$3ob5ob3obob5o3b4ob5ob5o$23obob6o2b6o$b
3o2bob5ob2ob7ob3ob4ob4obo$2b7obobob5ob3obob4ob4obob2o$4ob4ob12obobob2o
2b2ob6o$2obobob2o2bob8obo2b2obobo2b3ob3o$b5ob2ob5ob2ob5o2b5ob3o2b3o$3b
2o3b4obob3obob5ob5o2bo2b2o$5ob4ob7obobob3ob2o4bo2b4o$7o2b2o2b3ob5o3b7o
b7o$b2ob4obob3ob9ob2ob3ob3o2b2o$2b3obob11ob2ob5ob6ob4o$2bob2o3b3obob2o
b5ob4o2b2obob3o$b15ob4obob3ob5ob6o$4obob3obob4ob2ob6ob10obo$ob3obo2b2o
2b8ob2obob5obobo2b2o$4obob6o2b7ob7ob3ob4o$21obo2b5ob5ob2o$o2b3o2bobob
5obob2ob7o3b7o$obo2b16o2bob4ob10o$2obob9ob2o2b8o2b5ob5o$ob9ob7o3b3ob6o
b2ob2obo$ob3o2b18o2bo3b9o$15ob4ob2ob2ob7ob4o!
"But if you close your eyes—does it almost feel like nothing's changed at all?
And if you close your eyes—does it almost feel like you've been here before..."

User avatar
Saka
Posts: 3626
Joined: June 19th, 2015, 8:50 pm
Location: Indonesia
Contact:

Re: Rules with interesting dynamics

Post by Saka » October 9th, 2017, 2:50 am

Can't forget these 2:
B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78:

Code: Select all

x = 30, y = 29, rule = B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
6bobo$8b2o2bobobobobobo$5bob6obobobobo3bo$3b18obob3o$2b23obo$2b25o$ob
26o$28obo$b29o$b29o$2b28o$2b26o$3b25o$6b21o$6b21o$6b20o$7b19o$7b18o$8b
17o$9b15o$12b12o$11b12o$13b10o$11b11o$14b8o$12b8o$15b5o$14b4o$16b2o!

Code: Select all

x = 7, y = 13, rule = B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
3bo$3b3o$b6o$3b4o$6o$2b3o$6o$4o$6o$2b3o$5o$2b2o$2b2o!
B2e3ai4arw5678/S3-an4ar5i678:

Code: Select all

x = 530, y = 441, rule = B2e3ai4arw5678/S3-an4ar5i678
303bo$303bobo$301b5obo3bo$299bob7ob3obo$297bob15obo3bo$295bob19ob3obo$
295b27obo3bo$293b31ob3ob3o$291bob39o$289bob42o$287bob46o$287b48o$285b
50o$283bob49o$281bob53o$279bob54o$279b56o$277b57o$275bob59o$273bob60o$
273b62o$271b63o$269bob65o$269b66o$267b68o$265bob67o$265b71o$263b72o$
261bob72o$259bob73o$257bob77o$255bob78o$253bob80o$251bob81o$249bob85o$
247bob86o$245bob88o$243bob89o$241bob93o$239bob94o$237bob96o$235bob97o$
233bob101o$231bob102o$229bob104o$227bob105o$225bob109o$223bob110o$221b
ob112o$219bob113o$219b117o$217b118o$217b120o$215b121o$215b123o$213b
124o$213b126o$211b127o$209bob129o$207bob130o$207b134o$205b136o$203bob
138o$203b139o$201b143o$201b143o$199b147o$199b147o$197b151o$197b150o$
195b154o$195b154o$193b158o$193b158o$191b162o$191b161o$189b165o$189b
165o$187b169o$187b169o$185b173o$185b172o$183b176o$183b176o$181b180o$
181b180o$179b184o$179b183o$177b187o$177b187o$175b191o$175b191o$173b
195o$173b194o$171b198o$171b198o$169b202o$169b202o$167b206o$167b205o$
165b209o$165b209o$163b213o$163b213o$161b217o$161b216o$159b220o$159b
220o$157b224o$157b224o$153b230o$153b229o$151b233o$151b233o$149b237o$
149b237o$147b241o$147b240o$143b246o$143b246o$141b250o$141b250o$137b
256o$137b255o$135b259o$135b259o$133b263o$133b263o$131b267o$131b266o$
129b270o$129b270o$127b274o$127b274o$125b278o$125b277o$123b281o$123b
281o$121b285o$121b285o$119b289o$119b288o$117b292o$117b292o$115b296o$
115b296o$113b300o$113b299o$111b303o$111b303o$109b307o$109b307o$105b
313o$105b312o$101b318o$101b318o$97b324o$97b324o$93b330o$93b329o$89b
335o$89b335o$85b341o$85b341o$81b347o$81b346o$79b350o$79b350o$77b354o$
77b354o$75b358o$75b357o$73b361o$73b361o$71b365o$71b365o$67b371o$67b
370o$65b374o$65b374o$61b380o$61b380o$57b386o$57b385o$53b391o$53b391o$
49b397o$49b397o$45b403o$45b402o$43b406o$43b406o$41b410o$41b410o$39b
414o$39b413o$37b417o$37b417o$35b421o$35b421o$31b427o$29bob426o$23bo3bo
b430o$21bob3ob432o$15bo3bob440o$15b3ob442o$13b450o$11bob449o$11b453o$
5bo3b455o$5b3ob457o$3b463o$3b465o$b466o$469o$469o$2b469o$2b469o$4b469o
$4b468o$6b468o$6b468o$8b468o$8b468o$10b468o$10b467o$12b467o$12b467o$
14b467o$14b467o$16b467o$16b466o$18b466o$18b465o$20b465o$20b465o$22b
465o$22b464o$24b464o$24b463o$26b463o$26b463o$28b463o$28b463o$30b463o$
30b462o$32b462o$32b462o$34b462o$34b461o$36b461o$36b461o$38b461o$38b
460o$40b460o$40b459o$42b459o$42b458o$44b458o$44b457o$46b457o$46b456o$
48b456o$48b455o$50b455o$50b455o$52b455o$52b454o$54b454o$54b453o$56b
453o$56b453o$58b453o$58b452o$60b452o$60b451o$62b451o$62b450o$64b450o$
64b449o$66b449o$66b448o$68b448o$68b448o$70b448o$70b447o$72b447o$72b
446o$74b446o$74b445o$76b445o$76b445o$78b445o$78b444o$80b444o$80b444o$
82b444o$82b443o$84b443o$84b442o$86b442o$86b441o$88b441o$88b440o$90b
440o$90b438o$92b437o$92b435o$94b434o$94b432o$96b431o$96b429o$98b428o$
98b426o$100b425o$100b423o$102b422o$102b420o$104b419o$104b417o$106b416o
$106b414o$108b413o$108b411o$110b410o$110b408o$112b402ob4o$112b396ob3o
3b2o$114b395o2b2o$114b393o$116b386o$116b384o$118b383o$118b381o$120b
374o$120b372o$122b371o$122b362ob6o$124b360o2b2o$124b358o$126b356o$126b
354o$128b352o$128b350o$130b348o$130b346o$132b344o$132b342o$134b340o$
134b338o$136b336o$136b334o$138b332o$138b318o$140b316o$140b312o$142b
308o$142b304o$144b298o$144b298o$146b294o$146b295o$148b291o$148b289o$
150b285o$150b283o$152b281o$152b277o$154b275o$154b273o$156b269o$156b
269o$158b264o$158b259o$160b257o$160b255o$162b253o$162b251o$164b246o$
164b244o$166b243o$166b241o$168b236o$168b234o$170b233o$170b231o$172b
227o$172b227o$174b221o$174b221o$176b215o$176b215o$178b209o$178b209o$
180b203o$180b203o$182b197o$182b197o$184b191o$184b191o$186b185o$186b
185o$188b179o$188b179o$190b173o$190b173o$192b167o$192b167o$194b161o$
194b161o$196b155o$196b155o$198b149o$198b149o$200b143o$200b143o$202b
137o$202b137o$204b5ob125o$204b4o2bob123o$212bob117o$214bob115o$216bob
109o$218bob107o$220bob101o$222bob99o$224bob93o$226bob91o$228bob85o$
230bob83o$232bob75o$234b75o$236b69o$236bob67o$238bob63o$240bob61o$242b
37ob17o$244b17ob3ob13o3b3ob11o$244bob13obo3bo3b5o11bo3b3o$246b3ob3ob3o
bo11b3o17bo$248bo3bo3bo!
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
gmc_nxtman
Posts: 1150
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Post by gmc_nxtman » October 14th, 2017, 1:08 pm

B3-cen/S234eijkrw5cry6ik:

Code: Select all

x = 16, y = 16, rule = B3-cen/S234eijkrw5cry6ik
3o3bo4bo2bo$b4o3b3o3b2o$3obobo2b5o$b5ob4obob2o$obob2o4bo$ob4o2b2obo3bo
$bo2bob4obob2o$ob2o2bo3b2o3bo$3o2bobo4b3o$bo2b2o3b3obo$2ob3o3bob2o$b2o
b6ob3obo$6o6bo$3ob2o2b7o$3obo2b4o3bo$2ob3ob4o2bo!
B3-cej/S234eijkrw5cry6ik7:

Code: Select all

x = 16, y = 16, rule = B3-cej/S234eijkrw5cry6ik7
9bo2bob2o$o5bob2o4b2o$3ob2obo2bob2obo$2bo3bo2bo2bo$2ob2o2bob5obo$3o2b
2ob4obobo$2ob2obob2o$o3b2obo5b2o$3b4ob3ob2o$4ob2ob5o2bo$2b2o3bob2obobo
$3bo3bob2ob4o$ob4obo3b2o$4bobob6obo$4b2obob2o2b3o$o4b2obo4b2o!
EDIT Oct 28: A variant of one of the first rules in the thread, B2cik3aciny4c5n/S23-ay4cjn, produces similar "snakeheads" that form crystal-like structures separating checkerboard agars. Discovered by Saka.

Code: Select all

x = 32, y = 16, rule = B2cik3aciny4c5n/S23-ay4cjn
6b2o4b7o5bo5bo$6b2o4b3obo2b2ob4ob2o2bo$bo2b3o3b3o2b3o2b4o2b5o$2b2ob4o
2bo2b2o2bobo7b4o$b2obo2b2ob2ob3ob5o2b2obo$3b2ob8o3bobo2b5ob4o$3obo2bo
2bo3b5ob2o5bob2o$2o5bo4b3o5b3o3bobo$o5bob3ob3ob4o2b3ob6o$3obob3o2b2obo
bob3o3b3o2bo$3ob5obob3o5b2obobobobo$2bob2o2bo2bob3obo4b2ob2o2bo$2obo2b
o2b2obobob4ob3o3b2ob2o$b3ob2obob4o5b11obo$o7b2o4b3ob2o2b7ob2o$b2obo3b
2o6bo2b5o2b2ob2o!

User avatar
Saka
Posts: 3626
Joined: June 19th, 2015, 8:50 pm
Location: Indonesia
Contact:

Re: Rules with interesting dynamics

Post by Saka » November 9th, 2017, 9:19 am

This rulespace can create large crystallish structures from relatively small seeds:

Code: Select all

x = 16, y = 16, rule = B2ci3-i4ai78/S2a34a5aijn6acn78
3bo3b3o2bobo$3bo3b3o$3obo3bob2ob3o$ob5o5b2obo$obo3b3o3b3o$ob5o2b2obob
2o$2b4o2bo3bo$2ob4ob3obo2bo$2bobobob3ob4o$4obob2obo2b2o$4b2obo2b4obo$
3o3b2o3b2obo$2o2bo6b3o$obob5ob3obo$2b2o2bo2b2o2b2o$ob2ob3o3bobo!

Code: Select all

x = 16, y = 16, rule = B2ci3-i4ai6i78/S2a34a5aijn6acn78
3o5b4ob3o$7obobobo$2o2b4o2bo2b2o$bo2b2ob2ob3o2bo$2obob2obo3b4o$bobob6o
b4o$b2obo2b9o$bo7bo3bobo$4b8o2bo$ob3ob4ob2obo$ob5o3b3o2bo$2o3b2o2b4ob
2o$2obob6ob2obo$3bo3bo3b2ob2o$2bobob4o2bo2bo$3bo4b3ob2obo!

Code: Select all

x = 16, y = 16, rule = B2ci3-i4ai6ai78/S2a34a5aijn6acn78
2obob2o3bob2o$2o2bob2ob2o3b2o$obob5obob4o$bobob2obob2ob2o$5b2o2b7o$3b
3o2b2ob3obo$2obobob3o3b3o$2obobob4o3b2o$bobob2o2b2obob2o$o4b3obob2o2bo
$o2b4obob3o2bo$obob8o2bo$2b9ob2o$ob3o3bo4bobo$ob4o2b2o2bo2bo$o2bo2bobo
2bob2o!
Who can find the longest-lasting in these 3 rules?
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
toroidalet
Posts: 1276
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Rules with interesting dynamics

Post by toroidalet » November 14th, 2017, 10:59 am

variable-period replicator world:

Code: Select all

x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!
"But if you close your eyes—does it almost feel like nothing's changed at all?
And if you close your eyes—does it almost feel like you've been here before..."

User avatar
Saka
Posts: 3626
Joined: June 19th, 2015, 8:50 pm
Location: Indonesia
Contact:

Re: Rules with interesting dynamics

Post by Saka » November 14th, 2017, 7:05 pm

toroidalet wrote:variable-period replicator world:

Code: Select all

x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!
Maybe a SMORBTRAASBIARAAS is possible (Spaceship Made Of Replicators But The Replicators Are Adjustable So Basically It's A Replicator-Afjustable Adjustable Ship)
Currently taking a little break, but still hanging around on the Discord server.
Add your computer to the Table of Lifeenthusiast Computers!

User avatar
BlinkerSpawn
Posts: 1981
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Post by BlinkerSpawn » November 14th, 2017, 7:14 pm

Saka wrote:
toroidalet wrote:variable-period replicator world:

Code: Select all

x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!
Maybe a SMORBTRAASBIARAAS is possible (Spaceship Made Of Replicators But The Replicators Are Adjustable So Basically It's A Replicator-Afjustable Adjustable Ship)
I don't see how you could make a spaceship out of a four-way replicator without some really messy junk interaction.
I can't even escort one with the natural c/3s because whenever the tail catches up to the head the timing gets thrown off.
There appears to be a cool family of hasslers, though.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
Rhombic
Posts: 1072
Joined: June 1st, 2013, 5:41 pm

Re: Rules with interesting dynamics

Post by Rhombic » November 22nd, 2017, 3:54 pm

Has a spaceship and very weird pseudorandom linear growths:

Code: Select all

x = 10, y = 15, rule = B2ce3ak4cjnqt5ein7e/S1e2aik3cejqr4ikwy5nr6k8
9o$6bo2bo$9o10$3b6o$6bo2bo$3b6o!
Failed MMS

Code: Select all

x = 48, y = 11, rule = B34z5e6n7/S2-i34q
13b2o$6b2ob4obo$3o3bo16b2o$obo2bo2bobo10b2o3bo7bo3bo$6bob4o9b2obo2bo2b
6obobo5b2o$7bob3o10b3o4b2o4bobobo4bo2bo$8b2o12bobo7bob2o2bo5bo2bo$23b
2ob2o6bo8b2ob2o$24b3o2b4ob2o8b2o$31bo3bo$35bo!
Last edited by Rhombic on December 21st, 2017, 5:43 am, edited 1 time in total.
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?

User avatar
LaundryPizza03
Posts: 1316
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Post by LaundryPizza03 » December 15th, 2017, 12:54 am

Unusually textured chaos (as well as an optical illusion):

Code: Select all

#C [[ THEME 6 ZOOM 1.0 GPS 60 STEP 1 ]]
x = 16, y = 16, rule = B2678/S34578
o3b5o$o3bo2b2ob2obobo$o5b5obobo$5bo2b2obo$o3bobo3bo4bo$b11ob2o$bo2b4o
3bob3o$o3bob3obo2b3o$2ob2o2b6obo$3b3o3bo4bo$o2b5ob4ob2o$b2ob2o2b2o4b2o
$ob5ob3obo2bo$o2b3o3b3ob2o$2ob2o2b2ob4obo$o4b2o5bob2o!
The chaos has small regions of short-term stability, and the white regions appear light gray while it plays at 60 gps, 1x speed.

The rule is also black/white symmetric and has a bidirectional double c wickstretcher sandwiching a replicator-like system:

Code: Select all

x = 11, y = 12, rule = B2678/S34578
3bo3bo$bob5obo$4obob4o$11o2$bo7bo$bo7bo2$11o$4obob4o$bob5obo$3bo3bo!
As well as a stable eater:

Code: Select all

x = 12, y = 16, rule = B2678/S34578
4bo2bo2$5b2o3$4bo$7bo$5b2o3$4bo2bo$5b2o2$bo8bo$12o$bo2bo2bo2bo!
EDIT:
This rule produces an expanding cloud of chaos with escaping puffers.

Code: Select all

x = 4, y = 4, rule = B3/S02-i34q
2b2o$2b2o$3o$bo!
The puffer is a c/2 p60 that evolves from the B-heptomino. It leaves a trail that emits gliders, which can interact with other puffers in various ways:

Code: Select all

x = 29, y = 33, rule = B3/S02-i34q
26bo$26b2o$27b2o$26b2o12$ob2o$3o$bo12$26b3o$28bo$26bobo$26b2o!
This rule produces regions of horizontal and vertical farmland with filaments of chaos at places where the farmland changes phase (not orientation):

Code: Select all

#C [[ ZOOM 1.0 ]]
x = 5, y = 7, rule = B3/S0123:T512,512
3bo$3bo$3b2o3$2o$bo!
Although there are no spaceships, I'd like to know if there is a pattern that fills the plane with zebra stripes without gaps or defects.
Last edited by LaundryPizza03 on December 15th, 2017, 1:53 am, edited 1 time in total.

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1316
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Post by LaundryPizza03 » December 15th, 2017, 1:12 am

gmc_nxtman wrote: B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:

Code: Select all

x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!
Those rivers, in the absence of crystallographic defects, tend to evolve according to the curve-shortening flow:

Code: Select all

x = 140, y = 140, rule = B2c3aijn4k/S2-k34cnqrt
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobobo
bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobobob
obobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobob
obobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobobo
bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobob
obobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobob
obobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobo
bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2ob
obobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobo
bobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bo
bobobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobob
obobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2o
bobobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobob
obobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobobo
bobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobob
obobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobob
obobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobo
bobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobob
obobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobob
obobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobo
bobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobo
bobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobob
obobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobob
obobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobo
bobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobo
bobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobob
obobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobo
bobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobo
bobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobob
obobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo
2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob
2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobob
o2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobo
b2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobo
bo2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
ob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobob
obo2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobo
bob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobo
bobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobobo
bobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobob
obobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobob
obobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobo
bobobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobobo
bobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobo
bobobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobo
bobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobob
obobobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobob
obobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobob
obobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobobo
bobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobob
obobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobob
obobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobo
bobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobo
bobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobob
obobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobob
obobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobo
bobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobo
bobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobob
obobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobob
obobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobo
bobobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobo
bobobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobob
obobobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobo
bobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobo
bobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobob
obobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobob
obobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobo
bobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobo
bobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobob
obobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobob
obobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobo
bobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobo
bobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobob
obobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobob
obobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobo
bobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobo
bobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobob
obobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobob
obobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobo
bobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobo
bobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobob
obobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobo
bobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobo
bobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobob
obobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobob
obobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobo
bobobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
obobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
obobobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobo
bobobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

dani
Posts: 1030
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA
Contact:

Re: Rules with interesting dynamics

Post by dani » December 15th, 2017, 11:08 am

gmc_nxtman wrote: B2c3aijn4k/S2-k34cnqrt
Certain soups don't seem to stabilize:

Code: Select all

x = 16, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
bobo2b2o2b3o$2o4bobobo2bo$bobo2bobob2o2b2o$6o2bob3obo$ob3o5b3o$7obobo$
3o2bo2bo2b2ob2o$3b2obo4b3obo2$ob3obobobo2bobo$obob2o2bo3bobo$bob5ob4ob
o$7b3obo3bo$o4b3ob2o2b3o$3b2ob2ob4ob2o$2b2ob9o!
Please let me know if it somehow does.
she/her

User avatar
LaundryPizza03
Posts: 1316
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Post by LaundryPizza03 » December 25th, 2017, 9:52 pm

Circuit city!

Code: Select all

x = 3, y = 3, rule = B2a3i4i6k7e/S2e3j5k
3o$obo$obo!

Code: Select all

x = 16, y = 16, rule = B2a3i4i6k7e/S2e3j5k
5bob2ob3o$bobobobo2bob2o$2b2o3bobob5o$o5bob5obo$o3bob2ob3o3bo$o3bo2bob
7o$2ob2o2b2o2b3o$2o2bo4b2o$o5bobobo2bo$b2obo3bob3obo$3obo7bo$o3bob4obo
bo$o2bobobob3o2bo$obo2b2o2b2ob2o$b7o3bo3bo$5b3obo3b2o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

User avatar
LaundryPizza03
Posts: 1316
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Post by LaundryPizza03 » December 25th, 2017, 10:52 pm

Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:

Code: Select all

x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!
This unit cell has period 4. What rule is this?

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

User avatar
KittyTac
Posts: 534
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Post by KittyTac » December 25th, 2017, 11:34 pm

B2cek3i/S12-ak

A rule that has quite a bit of engineering potential, but is also fun to watch on a randomly seeded 1500x1500 torus. Also, the replicator, if left alone on an infinite plane, produces the ruler sequence. Check out the thread for it BTW.

Code: Select all

#CXRLE Pos=3,0
x = 2, y = 3, rule = B2cek3i/S12-ak
o$bo$o!

User avatar
KittyTac
Posts: 534
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Post by KittyTac » December 25th, 2017, 11:38 pm

LaundryPizza03 wrote:Circuit city!

Code: Select all

x = 3, y = 3, rule = B2a3i4i6k7e/S2e3j5k
3o$obo$obo!

Code: Select all

x = 16, y = 16, rule = B2a3i4i6k7e/S2e3j5k
5bob2ob3o$bobobobo2bob2o$2b2o3bobob5o$o5bob5obo$o3bob2ob3o3bo$o3bo2bob
7o$2ob2o2b2o2b3o$2o2bo4b2o$o5bobobo2bo$b2obo3bob3obo$3obo7bo$o3bob4obo
bo$o2bobobob3o2bo$obo2b2o2b2ob2o$b7o3bo3bo$5b3obo3b2o!
I wonder if this could be used to procedurally generate cities for video games.

User avatar
KittyTac
Posts: 534
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Post by KittyTac » December 26th, 2017, 10:23 am

In B2cik3aciny4c5n/S23-ay4cjn, the bigger, pre-block like replicator-like growths on the crystals need another pre-block to replicate, have we found sexually-reproducing replicators here? :P

User avatar
toroidalet
Posts: 1276
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Rules with interesting dynamics

Post by toroidalet » December 26th, 2017, 2:08 pm

KittyTac wrote:In B2cik3aciny4c5n/S23-ay4cjn, the bigger, pre-block like replicator-like growths on the crystals need another pre-block to replicate, have we found sexually-reproducing replicators here? :P
This is confusing, it just appears to be another of those snake rules that have popped up at least 3 times. (Yes, the snakes "crystallize, but saka mentioned that too)
Some explosive cousins of B2cek3q4-i/S13ck4k, such as B2cek3q4-i5ajkqr6-i/S13ck4k exhibit strange dynamics because of the "pushy" p33 oscillator:

Code: Select all

x = 37, y = 18, rule = B2cek3q4-i5ajkqr6-i/S13ck4k
35bo$36bo$35bo5$3bo$4bo$3bo7$obo$bo!
"But if you close your eyes—does it almost feel like nothing's changed at all?
And if you close your eyes—does it almost feel like you've been here before..."

User avatar
BlinkerSpawn
Posts: 1981
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Post by BlinkerSpawn » December 26th, 2017, 2:26 pm

LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:

Code: Select all

x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!
This unit cell has period 4. What rule is this?
B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
KittyTac
Posts: 534
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Post by KittyTac » December 26th, 2017, 9:52 pm

BlinkerSpawn wrote:
LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:

Code: Select all

x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!
This unit cell has period 4. What rule is this?
B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678
I wonder if there's a program for that.

User avatar
Majestas32
Posts: 524
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Rules with interesting dynamics

Post by Majestas32 » December 26th, 2017, 10:12 pm

There's this thing called Golly...
Please, stop spam searching Snowflakes.

User avatar
BlinkerSpawn
Posts: 1981
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Post by BlinkerSpawn » December 26th, 2017, 10:14 pm

KittyTac wrote:
BlinkerSpawn wrote:
LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:

Code: Select all

x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!
This unit cell has period 4. What rule is this?
B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678
I wonder if there's a program for that.
Program for what?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
KittyTac
Posts: 534
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Post by KittyTac » December 26th, 2017, 10:25 pm

BlinkerSpawn wrote: Program for what?
For finding rules that the natural unit cells like that one simulate.

Post Reply