I have found and explored many members of this rule family using Square Cell and recently wrote a Python script to convert these rules to Golly's RULE format. Here is an example rule:
Code: Select all
@RULE IS8
@TABLE
n_states:9
neighborhood:Moore
symmetries:permute
var a={0,1,2,3,4,5,6,7,8}
var b={0,1,2,3,4,5,6,7,8}
var c={0,1,2,3,4,5,6,7,8}
var d={0,1,2,3,4,5,6,7,8}
var e={0,1,2,3,4,5,6,7,8}
var f={0,1,2,3,4,5,6,7,8}
var g={0,1,2,3,4,5,6,7,8}
var h={0,1,2,3,4,5,6,7,8}
var a2={0,1,3,4,5,6,7,8}
var b2={0,1,3,4,5,6,7,8}
var c2={0,1,3,4,5,6,7,8}
var d2={0,1,3,4,5,6,7,8}
var e2={0,1,3,4,5,6,7,8}
var f2={0,1,3,4,5,6,7,8}
var g2={0,1,3,4,5,6,7,8}
var a3={0,1,2,4,5,6,7,8}
var b3={0,1,2,4,5,6,7,8}
var c3={0,1,2,4,5,6,7,8}
var d3={0,1,2,4,5,6,7,8}
var e3={0,1,2,4,5,6,7,8}
var f3={0,1,2,4,5,6,7,8}
var g3={0,1,2,4,5,6,7,8}
var a4={0,1,2,3,5,6,7,8}
var b4={0,1,2,3,5,6,7,8}
var c4={0,1,2,3,5,6,7,8}
var d4={0,1,2,3,5,6,7,8}
var e4={0,1,2,3,5,6,7,8}
var f4={0,1,2,3,5,6,7,8}
var g4={0,1,2,3,5,6,7,8}
var a5={0,1,2,3,4,6,7,8}
var b5={0,1,2,3,4,6,7,8}
var c5={0,1,2,3,4,6,7,8}
var d5={0,1,2,3,4,6,7,8}
var e5={0,1,2,3,4,6,7,8}
var f5={0,1,2,3,4,6,7,8}
var g5={0,1,2,3,4,6,7,8}
var a6={0,1,2,3,4,5,7,8}
var b6={0,1,2,3,4,5,7,8}
var c6={0,1,2,3,4,5,7,8}
var d6={0,1,2,3,4,5,7,8}
var e6={0,1,2,3,4,5,7,8}
var f6={0,1,2,3,4,5,7,8}
var g6={0,1,2,3,4,5,7,8}
var a7={0,1,2,3,4,5,6,8}
var b7={0,1,2,3,4,5,6,8}
var c7={0,1,2,3,4,5,6,8}
var d7={0,1,2,3,4,5,6,8}
var e7={0,1,2,3,4,5,6,8}
var f7={0,1,2,3,4,5,6,8}
var g7={0,1,2,3,4,5,6,8}
0,5,a5,b5,c5,d5,e5,f5,g5,1
0,4,a4,b4,c4,d4,e4,f4,g4,2
0,4,4,a4,b4,c4,d4,e4,f4,4
0,7,7,7,a7,b7,c7,d7,e7,5
0,3,a3,b3,c3,d3,e3,f3,g3,6
0,6,6,6,a6,b6,c6,d6,e6,6
0,5,a5,b5,c5,d5,e5,f5,g5,7
0,6,a6,b6,c6,d6,e6,f6,g6,7
0,7,7,a7,b7,c7,d7,e7,f7,7
0,2,2,a2,b2,c2,d2,e2,f2,8
0,4,a4,b4,c4,d4,e4,f4,g4,8
0,6,6,6,a6,b6,c6,d6,e6,8
1,a,b,c,d,e,f,g,h,0
2,a,b,c,d,e,f,g,h,0
3,a,b,c,d,e,f,g,h,0
4,a,b,c,d,e,f,g,h,0
5,a,b,c,d,e,f,g,h,0
6,a,b,c,d,e,f,g,h,0
7,a,b,c,d,e,f,g,h,0
8,a,b,c,d,e,f,g,h,0
@COLORS
0 0 0 0
1 255 0 0
2 0 255 0
3 0 0 255
4 255 255 0
5 0 255 255
6 255 0 255
7 92 36 110
8 0 99 140
Brian Prentice