Here's another tagalong for two spiders:
Code: Select all
x = 92, y = 10, rule = B3/S23
67b2o5b2o5b2o5b2o$65bo3bo3bo2bo3bo2bo3bo3bo$2b2o5b2o5b2o5b2o10b2o16bob
2o8bo3bobob3o5b3obobo3bo$o3bo3bo2bo3bo2bo3bo3bo7bobobo2b3o4b2o3bobo2bo
6bo5b2o2b3ob3o2b2o5bo$o3bobob3o5b3obobo3bo3b3obobo2b3obo4bob2obobobo2b
o4b2ob3o15b3ob2o$o5b2o2b3ob3o2b2o5bo3b3o2b2o8bo4bo5bo3b2o3bo25bo$2ob3o
15b3ob2o2b3o3b2o9b5o5bobo2bo4bo3bo15bo3bo$o25bo2bo5b2o3bo3bo2bob3o4bo
5bo4bo2bo15bo2bo$bo3bo15bo3bo4bo10bo14bo3bobo$2bo2bo15bo2bo!
This is interesting, as the first 15 columns of the tagalong are the same as the last 15 columns flipped and advanced one generation. There are four ways for spiders to support either side of this tagalong, the two methods shown above and the following two related methods:
Code: Select all
x = 93, y = 11, rule = B3/S23
35b2o16bob2o11b2o5b2o5b2o5b2o$34bobobo2b3o4b2o3bobo2bo7bo3bo3bo2bo3bo
2bo3bo3bo$30b3obobo2b3obo4bob2obobobo2bo5bo3bobob3o5b3obobo3bo$2b2o5b
2o5b2o5b2o5b3o2b2o8bo4bo5bo3b2o4bo5b2o2b3ob3o2b2o5bo$o3bo3bo2bo3bo2bo
3bo3bo2b3o3b2o9b5o5bobo2bo4b2ob3o15b3ob2o$o3bobob3o5b3obobo3bo2bo5b2o
3bo3bo2bob3o4bo5bo3bo25bo$o5b2o2b3ob3o2b2o5bo3bo10bo14bo3bobo4bo3bo15b
o3bo$2ob3o15b3ob2o41bo2bo15bo2bo$o25bo$bo3bo15bo3bo$2bo2bo15bo2bo!
There seems to be a lot of potential for more of these tagalongs to be found.
Edit: Here is another tagalong for two spiders:
Code: Select all
x = 81, y = 10, rule = B3/S23
56bo5b2o5b2o5bo$44b4o6bo2b2ob2o2bo3bo2b2ob2o2bo$2b2o5b2o5b2o5b2o12bo3b
4o7b3o4bobo3bobo3bobo4b3o$o3bo3bo2bo3bo2bo3bo3bo9bo8b4o3b2o2bo2b3ob2o
3b2ob3o2bo2b2o$o3bobob3o5b3obobo3bo10bobo3bo3bob2ob3o2b3o4bo3bo4b3o2b
3o$o5b2o2b3ob3o2b2o5bo3bo7b2o3bo4bo2b3obo2bo15bo2bobo$2ob3o15b3ob2o3bo
7b2o12bobo23bo$o25bo3bo3bo3bo2bo8b2o$bo3bo15bo3bo6bo2b2o3bo$2bo2bo15bo
2bo7bo!
There is a very simple connection at the center of this tagalong, which looks potentially useful (it is the same sort of reaction that is the basis for
eater 3).