The pattern is basically equivalent to just two backrakes and a debris pile, but I am posting the original file:
Code: Select all
x = 271, y = 240, rule = B3/S23
232b6o$231bo5bo$237bo$231bo4bo$233b2o2$245b2o$239bob4ob2o$238b2o2b5o$
239bo3b3o3$243b4o$242bo3bo$246bo$237b2o3bo2bo$233b4ob2o$233b6o$234b4o
17$232b6o$231bo5bo$237bo$231bo4bo$233b2o2$245b2o$239bob4ob2o$238b2o2b
5o$239bo3b3o3$243b4o$242bo3bo$246bo$237b2o3bo2bo$233b4ob2o$233b6o$234b
4o37$254b4o$253b6o$253b4ob2o$257b2o4$263b6o$259b4o5bo$259b2obo5bo$259b
2o2bo3bo$265bo$265b2o$264b4o$264b2ob2o$266b2o$255b6o$254bo5bo$260bo$
254bo4bo$256b2o6$258b2o$256bo4bo$262bo$256bo5bo$257b6o$268b2o$266b2ob
2o$266b4o$267b2o$259b3o5bo$258bob2o3bo3bo$258bo5bo5bo$258b3o3bo5bo$
259bo3bob6o$261bo3$259b2o$255b4ob2o$255b6o$256b4o12$51b6o$50bo5bo$56bo
$50bo4bo$52b2o2$64b2o$58bob4ob2o$57b2o2b5o$58bo3b3o3$62b4o$61bo3bo$65b
o$56b2o3bo2bo$52b4ob2o$52b6o$53b4o16$60b2o$57b3ob2o$57b5o$58b3o2$39bob
o16b3o$24bobo10b2ob2o11bobob5o$2o21bo3b2o6b3o3bob3o5b2o10b2o$2o19bo4bo
b2o6bob3o3b2o2b2ob2o3bo3bo4bo$20bo3b4ob2o4b2o3bo5bo2b2obobobo4b2o2bo$
20bo3bo6bo3b4ob2o2b2o6bob3o7b2o$19b3o8bobobo4bo3bobobob2ob2o2bo3b4o$
17b3o2bo2bo2bobobobob3o7bo2bob2o7b2o$17b3o2b2o4bobobobobo11bobo8bo$17b
3o2b2o4bobobobobo11bobo8bo$17b3o2bo2bo2bobobobob3o7bo2bob2o7b2o$19b3o
8bobobo4bo3bobobob2ob2o2bo3b4o$20bo3bo6bo3b4ob2o2b2o6bob3o7b2o$20bo3b
4ob2o4b2o3bo5bo2b2obobobo4b2o2bo$21bo4bob2o6bob3o3b2o2b2ob2o3bo3bo4bo$
23bo3b2o6b3o3bob3o5b2o10b2o$24bobo10b2ob2o11bobob5o$39bobo16b3o2$58b3o
$57b5o$57b3ob2o$60b2o12$44b4o$43b6o$43b4ob2o$47b2o3bo2bo$56bo$52bo3bo$
53b4o3$49bo3b3o$48b2o2b5o$49bob4ob2o$55b2o2$43b2o$41bo4bo$47bo$41bo5bo
$42b6o!
Again, this type of pattern can be made with just two backrakes and a still life or other "debris pile". In this case the "equivalent" backrakes are a P128 LWSS backrake and a P64 glider backrake.
If someone has a fast computer with lots of memory I would like to know if it is still going strong at 1 billion gens and beyond.