Carrier bridge snake
Jump to navigation
Jump to search
| Carrier bridge snake | |||||||||
| View static image | |||||||||
| Pattern type | Strict still life | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Number of cells | 12 | ||||||||
| Bounding box | 6 × 6 | ||||||||
| Frequency class | 34.6 | ||||||||
| Static symmetry | Unspecified | ||||||||
| Discovered by | Robert Wainwright Everett Boyer | ||||||||
| Year of discovery | 1973 | ||||||||
| |||||||||
| |||||||||
| |||||||||
| |||||||||
Carrier bridge snake is a 12-cell still life.
Construction
This still life is known to be constructible with 7 gliders.[1] Some known glider syntheses can be found in Mark Niemiec's database.[2]
|
Occurrence
Among the 121 still lifes with 12 cells, this is the 113th most common still life (9th rarest) according to Catagolue. It is the third rarest not to have rotational symmetry.
There are no occurrences of this still life in final patterns of collisions in octohash, octo3obj or octo3g databases.
References
- ↑ xs12_ck3146z11 at Adam P. Goucher's Catagolue
- ↑ 2.0 2.1 The 121 twelve-bit still-lifes at Mark D. Niemiec's Life Page (download pattern file: 12/12-106.rle)
External links
- Carrier bridge snake at Adam P. Goucher's Catagolue
- 12.86 at Heinrich Koenig's Game of Life Object Catalogs
Categories:
- Patterns
- Patterns with Catagolue frequency class 34
- Natural periodic objects
- Periodic objects with minimum population 12
- Patterns with 12 cells
- Patterns found by Robert Wainwright
- Patterns found by Everett Boyer
- Patterns found in 1973
- Patterns that can be constructed with 6 gliders
- Still lifes
- Strict still lifes
- Strict still lifes with 12 cells