Cellular automaton simulation programs by supported rulespaces

From LifeWiki
Jump to navigation Jump to search

This is an incomplete, messy table of multiple cellular automaton simulator programs with the rulespaces they natively support.

Grids

Euclidean regular

{∞}

One-dimensional cellular automata, run on the cells of an apeirogon.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1[n 1] range 1[n 1] No ? ? range ?-?[n 2] ? ? ? range 0-?
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1[n 1] range 1[n 1] No ? ? range ?-?[n 2] ? ? ? range 0-?[n 2]
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1 range 1 No ? ? range ?-? ? ? ? range 0-?
n-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1[n 1] range 1[n 1] No ? ? range ?-?[n 2] ? ? ? range 0-?
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1[n 1] range 1[n 1] No ? ? range ?-?[n 2] ? ? ? range 0-?[n 2]
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
1D range 1 range 1 No ? ? range ?-? ? ? ? range 0-?

{4,4}

Two-dimensional cellular automata, run on the cells of a square grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
von Neumann range 1-500[n 3] range 1-500[n 3] range 1[n 4] range 1-? ? range 1-10[n 5] ?[n 6] range 1-2[n 7] range 1-? No
Moore range 1-500[n 3] range 1-500[n 3] range 1-5[n 3]
range 1-7[n 8]
range 1-? ? range 1-10[n 3][n 5] range 1 range 1-2[n 7] range 1-? No
cross range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
saltire range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
star range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
hash range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
checkerboard range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
L2 range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
circular range 1-500 range 1-500 No range 1-? ? No ?[n 6] range 1-2[n 7] ? No
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
range 1
von Neumann
Yes[n 4] Yes[n 4] Yes[n 4] Yes[n 9] ? Yes[n 9] ? ? ? No
range 1
Moore
Yes Yes Yes Yes ? Yes[n 9] ? ? ? No
exploded
Moore
No No C2E1
C1E3
C2E1
C1E3
? ? ? ? ? No
range 2
von Neumann
Multistate emulation only Multistate emulation only Yes Yes ? ? ? ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Margolus Multistate emulation only Yes No Yes ? Yes ? ? ? No
range 1
von Neumann
Yes Yes No Yes[n 9] ? Yes[n 9] ? ? ? No
range 1
Moore
Yes Yes No Yes[n 9] ? Yes[n 9] ? ? ? No
range 2
von Neumann
Multistate emulation only Multistate emulation only No Yes[n 9] ? ? ? ? ? No
Custom OT
neighbourhood
range 1-500 range 1-500 No range 1-? ? No ? range 1-2 ? No
Naive rules Multistate emulation only Multistate emulation only No Yes ? ? ? ? ? No
3-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
BSFKL Yes[n 10] Yes[n 10] Yes Yes[n 10] ? ? ? ? ? No
range 1
Moore
Yes[n 10] Yes[n 10] Yes[n 10] Yes[n 10] ? ? ? ? ? No
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
range 1
Moore
Yes[n 10] Yes[n 10] Yes[n 10] Yes[n 10] ? ? ? ? ? No
16-state
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Partitioned cellular automata Yes[n 10] Yes No No ? ? ? ? ? No
n-state
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Cyclic No No No No ? range 1-10
states ?-?
range ?-?
states ?-?
? ? No
Rock-paper-scissors No No No No ? ? range ?-?
states ?-?
? ? No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 states 2-? states 2-?[n 11] ? states 2-?[n 11] states 2-50 ? ? No
Extended Generations Yes[n 10] Yes[n 10] states 2-?[n 12] states 2-?[n 11] ? ? ? ? ? No
Deficient Yes[n 10] Yes[n 10] states 2-?[n 12] states 2-?[n 11] ? ? ? ? ? No
Alternating Yes[n 10] rules 2 Yes[n 10] ? ? ? ? ? ? No
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 states 2-? states 2-?[n 11] ? Weighted Generations
states 2-?[n 11]
? ? ? No
Extended Generations Yes[n 10] Yes[n 10] states 2-?[n 12] states 2-?[n 11] ? ? ? ? ? No
Deficient Yes[n 10] Yes[n 10] states 2-?[n 12] states 2-?[n 11] ? ? ? ? ? No
Alternating Yes[n 10] rules 2 Yes[n 10] ? ? ? ? ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Square Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 No ? ? ? ? ? ? No
Extended Generations Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Deficient Unclear how deficient rules can generalize to non-isotropic rules
Alternating Yes[n 10] rules 2 No ? ? ? ? ? ? No

{6,3}

Two-dimensional cellular automata, run on the cells of a hexagonal grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
tripod range 1-500 range 1-500[n 3] No ? ? ? ? range 1-2[n 7] ? No
asterisk range 1-500 range 1-500 No ? ? ? ? range 1-2[n 7] ? No
hexagonal range 1-500[n 3] range 1-500[n 3] range 1 ? ? ? range 1 range 1-2[n 7] ? No
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
range 1
hexagonal
Via MAP strings Yes Yes Yes ? Yes[n 9] ? ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
range 1
hexagonal
Yes Yes No Yes[n 9] ? Yes[n 9] ? ? ? No
Custom OT
neighbourhood
range 1-500 range 1-500 No range 1-? ? No ? range 1-2 ? No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 states 2-? states 2-?[n 11] ? states 2-?[n 11] states 2-50 ? ? No
Extended Generations Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Deficient Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Alternating Yes[n 10] rules 2 Yes[n 10] ? ? ? ? ? ? No
Isotropic non-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 states 2-? states 2-?[n 11] ? Weighted Generations
states 2-?[n 11]
? ? ? No
Extended Generations Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Deficient Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Alternating Yes[n 10] rules 2 Yes[n 10] ? ? ? ? ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Hexagonal Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 No ? ? ? ? ? ? No
Extended Generations Yes[n 10] Yes[n 10] No ? ? ? ? ? ? No
Deficient Unclear how deficient rules can generalize to non-isotropic rules
Alternating Yes[n 10] rules 2 No ? ? ? ? ? ? No

{3,6}

Two-dimensional cellular automata, run on the cells of a triangular grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Triangular Cell Life32 WolframAlpha
edges range 1[n 13] range 1 No range 1 ? ? range 1 ? ? No
inner range 1[n 13] range 1 No range 1 ? ? No ? ? No
outer range 1[n 13] range 1 No range 1 ? ? No ? ? No
vertices range 1[n 13] range 1 No range 1 ? ? No ? ? No
Moore range 1-500 range 1-500[n 3] No range 1-? ? ? range 1 ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Triangular Cell Life32 WolframAlpha
Custom OT
neighbourhood
range 1-500 range 1-500 No range 1-? ? No ? ? ? No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Triangular Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 No ? ? ? states 2-50 ? ? No
Extended Generations No No No ? ? ? ? ? ? No
Deficient No No No ? ? ? ? ? ? No
Alternating No rules 2 No ? ? ? ? ? ? No
Non-isotropic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Triangular Cell Life32 WolframAlpha
Generations states 2-255 states 2-255 No ? ? ? ? ? ? No
Extended Generations No No No ? ? ? ? ? ? No
Deficient Unclear how deficient rules can generalize to non-isotropic rules
Alternating No rules 2 No ? ? ? ? ? ? No

{4,3,4}

Three-dimensional cellular automata, run on the cells of a cubic grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
von Neumann range 1[n 14] No No ? ? ? range 1 No ? No
corners range 1[n 14] No No ? ? ? No No ? No
edges range 1[n 14] No No ? ? ? No No ? No
hexahedral range 1[n 14] No No ? ? ? No No ? No
Moore range 1[n 14] No No ? ? ? range 1 No ? No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
Generations No No No No No No states 2-10 No No No

{4,3,3,4}

Four-dimensional cellular automata, run on the cells of a tesseractic grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
Moore No No No No No No range 1 No No No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
Generations No No No No No No states 2-10 No No No

{3,4,3,3}

Four-dimensional cellular automata, run on the cells of a 24-cell grid.

{3,3,4,3}

Four-dimensional cellular automata, run on the cells of a 16-cell grid.

{4,3,3,3,4}

Five-dimensional cellular automata, run on the cells of a penteractic grid.

2-state
Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
Moore No No No No No No range 1 No No No
n-state extensions of 2-state

All of the cases that are supported for 2-state also support extensions (if both the cases and extensions are themselves natively supported) unless mentioned otherwise.

Outer-totalistic
Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
Generations No No No No No No states 2-10 No No No

Notation extensions

Rulespace Golly LifeViewer lifelib CAViewer Caterer Mirek's Cellebration Visions of Chaos Java Cell Life32 WolframAlpha
[Rule]History Yes Yes No Yes ? ? ? ? ? No
[Rule]Super Yes Yes No No ? ? ? ? ? No

Notes

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 As a subset of elementary Wolfram CA
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Possibly as a subset of other supported 1D rulespaces
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Has a simpler notation for the range-1 case
  4. 4.0 4.1 4.2 4.3 via Moore isotropic non-totalistic notation
  5. 5.0 5.1 Consecutive birth/survival transitions (Larger than Life) only for ranges above 2
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 "Large Neighborhood Totalistic Cellular Automata" may allow for this - testing needed
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 For Java Cell applications, neighbourhoods are manually specified and not systematically generated
  8. Consecutive birth/survival transitions (Larger than Life) only for ranges above 5
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 via Weighted Life
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 10.25 10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 10.36 10.37 10.38 10.39 10.40 10.41 Requires custom ruletables
  11. 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 Extended neighbourhoods unknown
  12. 12.0 12.1 12.2 12.3 Only range-1 Moore natively supported, and range-1 von Neumann through its notation
  13. 13.0 13.1 13.2 13.3 Requires the use of a custom CoordCA neighbourhood
  14. 14.0 14.1 14.2 14.3 14.4 requires 3D.lua